
The Left Hand of Equals

James Noble

Victoria University of Wellington

New Zealand

kjx@ecs.vuw.ac.nz

Andrew P. Black

Portland State University

USA

black@cs.pdx.edu

Kim B. Bruce

Pomona College

USA

kim@cs.pomona.edu

Michael Homer

Victoria University of Wellington

New Zealand

mwh@ecs.vuw.ac.nz

Mark S. Miller

Google Inc.

USA

erights@google.com

Abstract

When is one object equal to another object? While object

identity is fundamental to object-oriented systems, object

equality, although tightly intertwined with identity, is harder

to pin down. The distinction between identity and equality

is reflected in object-oriented languages, almost all of which

provide two variants of “equality”, while some provide many

more. Programmers can usually override at least one of these

forms of equality, and can always define their own methods

to distinguish their own objects.

This essay takes a reflexive journey through fifty years

of identity and equality in object-oriented languages, and

ends somewhere we did not expect: a “left-handed” equality

relying on trust and grace.

Categories and Subject Descriptors D.3.3 [Programming

Languages]: Language Constructors and Features—Classes

and objects.

Keywords equality, identity, abstraction, object-orientation

Introduction

I’ll make my report as if I told a story, for I was

taught as a child on my homeworld that Truth is a

matter of the imagination. The soundest fact may fail

or prevail in the story of its telling.

The Left Hand of Darkness

(LeGuin 1969)

We began with Simula. This is hard to say now, for all

of us who came of age in the golden years of programming

language design feel in our bones that the world began with

Smalltalk. Even though we know it’s not so, we cherish the

memories of the dusty underground shelf where the library

hid the Smalltalk books, of the Tektronix 4404 Smalltalk

machine, equipped with a “cat” as well as a “mouse”, and

of loading Smalltalk-80 off the Apple-branded floppy disks

onto a Lisa. So much romance! Meanwhile, down in the

basement machine room, Simula had been chugging along

happily on the DECSYSTEM-10 since 1975. That Simula

system lacked the sexy graphics of the Lisa and the 4404,

but did offer an online debugging facility with breakpoints

that has evolved but slightly into the debuggers of today.

We finish with Grace. Or perhaps: we hope to finish with

grace, to finish gracefully. Much of our recent professional

lives have been occupied with the design of a new object-

oriented language — Grace — intended be useful in educa-

tion (Black et al. 2012). Grace follows in the tradition of

Simula, Smalltalk, Self, Basic, and Pascal, mixing in Java,

Ruby, Python, Newspeak and many other languages. If this

essay has a question, a motivation, or a destination, it is: can

we find a Graceful definition of equality, simple enough to

explain to novice programmers, but general enough to pro-

vide the foundations for serious programming. What should

it mean for for two Grace objects to be equal, and what

“equals” operators should Grace provide?

Simula

Associated with an object there is a unique

“object reference” which identifies the object. . . .

Two object references X and Y are said to be

“identical” if they refer to the same object.

SIMULA-67 Common Base Standard

(Dahl et al. 1970)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

Onward!’16, November 2–4, 2016, Amsterdam, Netherlands
ACM. 978-1-4503-4076-2/16/11...$15.00
http://dx.doi.org/10.1145/2986012.2986031

224

Simula-67 introduced the idea of “object identity”, sup-

ported by two “reference comparators”, == and =/=. We

will mostly call this comparison reference equality because

it tests if two references actually refer to the same object,

although we may lapse into using the synonym object iden-

tity. Simula also includes the Algol-like operators = and /=,

which compare primitive objects such as numbers or charac-

ters by looking at the values that they contain. We will call

this kind of comparison value equality. Thus, Simula has

two distinct families of equality operators.

Reference Equality

Do two references refer to the same object?

Value Equality

Do two objects contain equal values?

By a family of operators we mean a set of operators that

use the same concept of equality. Each family consists of

an equality operator (such as =) and a inequality operator

(such as /=). Simula’s reference equality operators (== and

=/=) are one family, and its value equality operators (= and

<> or /=) are another family. Families get bigger over time:

many languages include a unary hash operation as a third

member of each family. We will pretty much ignore the other

operators, and talk about the family in terms of the equality

operator and its semantics.

Simula actually goes one step further and distinguishes

assignments, using Algol’s := for value assignment, and its

own :− for reference assignment. Famously, Simula assign-

ments are legal if there is any subtype relationship between

the left- and right-hand sides: if the type of the right-hand

side is a supertype of that of the left, the assignment is

checked dynamically.

Simula keeps things mostly straightforward because

“There is no value assignment operation for objects” (Dahl

et al. 1970). Objects in Simula are accessed by references,

so objects always use the reference family operators (with

reference equality semantics), while numbers and characters

use the value family (with value equality semantics). We

say that Simula is “mostly” straightforward, because strings

are more complicated, as they are represented by a mutable

reference type text. Texts behave pretty much like objects,

but support both reference equality, to distinguish different

text objects, and value equality, to determine if two text ob-

jects contain the same characters. If T and U are texts, then

“the relations T=U and T=/=U may both have the value

true” (Dahl et al. 1970).

Here is the worm in our garden of Eden.

Smalltalk and Self

Equivalence (==) is the test of whether two ob-

jects are the same object. Equality (=) is the test of

whether two objects represent the same component.

The decision as to what it means to be “represent the

same component” [sic] is made by the receiver of the

message.

Smalltalk: The Language and its Implementation

(Goldberg and Robson 1983)

Conceptually, Smalltalk starts from Simula’s design, with

two families of equality operators. It even writes the core

operators the same way: == and =. The operator == is ref-

erence equality, testing whether its arguments “are the same

object” (Goldberg and Robson 1983). Smalltalk’s operator

=, though, is not value equality — although it may appear to

be so at first glance.

Rather, Smalltalk’s = is a dynamically-dispatched method

request, so its semantics depends critically on the = method

in the receiving object. The semantics of = should be one

part of the overall semantics of the abstraction represented

by the object, so for this reason we’ll call this kind of opera-

tion abstract equality. Whereas reference equality involves

only two objects, abstract equality (and value equality) can

involve many more: the objects being compared, and any

other objects that are part of those objects’ implementations.

“(I am large, I contain multitudes.)” (Whitman 1891).

Abstract Equality

Do two objects represent the same abstract value?

Both = and == are nominally implemented as Smalltalk

primitives that invoke operations directly: in fact, Smalltalk

cheats on ==, compiling it directly as reference equality, so

== cannot be redefined in Smalltalk.

Smalltalk makes two significant conceptual advances

over Simula. The first is the depth of its object-orientation.

Simula is a hybrid language, defined by adding object-

oriented features to Algol 60, and retaining many features

(control structures, numbers, array, procedures, texts) that

are not object-oriented. In contrast, pretty much everything

in Smalltalk is an object, and all computation is carried out

by dynamically dispatched messages. Second, Smalltalk in-

troduces an encapsulation boundary around each object: an

object’s fields (instance variables) can be accessed only from

within that object.

Self (Ungar and Smith 1991) is a descendant of Smalltalk

that eschews classes in favour of cloning and delegation.

Like Smalltalk, everything in Self is an object, and all com-

putation proceeds by dynamic dispatch. Also like Smalltalk,

Self’s encapsulation boundaries surround individual objects

(at least in early versions of Self; later versions kept the vis-

ibility definitions but did not enforce them). Self’s compari-

225

son operators are the == reference equality and = abstract

equality of Smalltalk: but unlike Smalltalk, in Self both are

dynamically dispatched. Indeed, a major goal of Self’s im-

plementation was to demonstrate that a language could per-

form well even when the lowest level operations (reference

equality, control structures, and even arithmetic) are dynam-

ically dispatched (Chambers et al. 1989).

Self’s == operation is implemented by a low-level

primitive function Eq: that takes two arguments. Here is the

flaw in Self’s design: Self’s reference equality primitive Eq:

can be applied to any pair of objects at any time, although

doing so would be considered extremely bad style.

Lisp and EGAL

Lisps systems have a large number of different equality op-

erations — Common Lisp has at least eight (Steele 1990).

Henry Baker addresses the proliferation of Lisp equality op-

erators in his seminal 1993 paper by proposing one equality

operator to unify them all:

We define a single, computable, primitive equal-

ity predicate called EGAL which we show is consis-

tent with the notion of “operational identity” of data

structures . . .

Our model for object identity distinguishes muta-

ble objects from immutable objects, and mutable com-

ponents of aggregate objects from immutable compo-

nents.

Equal Rights for Functional Objects . . .

(Baker 1993)

EGAL compares mutable objects using reference equality,

and “automatically recurse[s] into the components of an

immutable object” i.e., compares them with value equality.

EGAL is also defined over closures, primarily to support

idioms that build objects (Hoyte 2008). The point of EGAL

is that, like reference identity, it is a stable comparison: it

does not depend on the mutable state of any objects in the

program. The key practical difference between EGAL and

reference equality is that two immutable objects containing

equal values (say, two point objects representing the same

location, or two immutable sequences of the same numbers)

are indistinguishable under EGAL.

EGAL

Compare mutable objects with reference equality, and

immutable objects with value equality.

EGAL does not support abstract equality. Two different

representations of the same abstract object (say, the sequence

containing (1, 2, 3, 4, 5) and the range 1..5 (Cook 2009)) are

not EGAL, whereas Smalltalk’s abstract equality could be de-

fined to consider them equal. Baker does suggest that “Sys-

tems defining abstract datatypes might consider providing a

new “generic” predicate that defaults to EGAL for primitive

datatypes, and can be overloaded for user-defined abstract

datatypes” but doesn’t take this suggestion further.

Two recent languages have adopted EGAL. Clojure (Hickey

2016) uses EGAL for its = operator, along with reference

equality (called identical). Pyret (Krishnamurthi et al. 2016)

supports three main equality operators: reference equality,

written <=> or identical; EGAL written = or equals−always,

simplified from Baker’s design by eschewing function com-

parison; and value equality, written =∼ or equals−now).

Pyret’s design makes clear that EGAL sits between ref-

erence and value equality. By default, Pyret objects are com-

pared using EGAL. Programmers can define an equals

method to override the default, but the equals method is

used only when the objects being compared have the same

brands, so its ability to implement abstract equality is tightly

constrained. We really like Pyret’s names though: “equal

always” and “equal now” are quite evocative.

Curly Bracket Languages

In BETA there is clear distinction between refer-

ence equality and value equality . . .

Note that it is the presence of the symbol [] which

indicates reference equality instead of value equality

Object-Oriented Programming

in the BETA Programming Language

(Lehrmann Madsen et al. 1993)

C++ was originally designed to combine SIMULA and C,

and combines statically dispatched operators with functions

and dynamically dispatched methods. C++ chooses between

reference equality, value equality, and abstract equality, us-

ing its type systems to determine which operation should be

invoked (Stroustrup 1991). BETA, Simula’s most direct suc-

cessor, distinguishes reference and value equality based on

argument syntax.

Java follows C++ syntactically, although its semantics

draws more from Smalltalk. Java’s built-in operator ==

gives reference equality, just like Smalltalk’s ==, while

an overridable equals(Object) method parallels Smalltalk’s

abstract =. C# started out by following the essentials of

Java, but has become more complicated over time. C# sports

an overridable == operator, and an Equals(Object) method,

overloaded by an Equals(T) method, which provide abstract

equality. A separate ReferenceEquals(x,y) method on a sys-

tem object tests reference equality.

JavaScript follows Java in syntax, but its semantics are

more influenced by Self and Scheme. JavaScript offers the

=== and Object.is operators that test reference equality

for objects, and also a == equality operator that performs

numerous type conversions and is better avoided (Crockford

2008).

Although syntatically not a curly bracket language ,

Python provides primitive reference equality (the is oper-

226

ator) and an overridable == operator that can be used to

provide abstract equality. Ruby follows Smalltalk’s design

in many respects. It has an equal? method testing reference

equality, and a == method testing abstract equality. Ruby

also offers three special purpose comparisons: eql? (used

for keys), === (used for case matching), and <=> (for

three-way comparison). As in Self, Ruby’s reference equal-

ity method equal? is a true method request, so it can be

overridden, although programmers are advised not to do so!

Scala builds on Java, with a user level abstract equality

== defined in terms of an overridable equal method, and a

separate eq method for reference equality. Scala also sup-

ports the definition of “case classes”: objects that are gener-

ally immutable and automatically implement equals as value

equality.

final def == (that: Any): Boolean =
if (null eq this) null eq that else this equals that

The Scala Language Specification Version 2.9

(Odersky 2010)

Equality

All animals are equal,

but some animals are more equal than others.

Animal Farm

(Orwell 1945)

We have avoided until now what is perhaps the most

important question of all: what is the intention of equal-

ity? Equality of opportunity or equality of outcome? Should

some or all of the object comparison operations possess the

mathematical properties of an equivalence operator? What

does it mean if we say that two objects are equal?

The Java specification offers a relatively comprehen-

sive definition: the “relation” induced by all the overridden

equals methods in the program must be reflexive, symmetric,

transitive, consistent, and must handle nulls properly.

public boolean equals(Object obj)

Indicates whether some other object is “equal to”

this one.

The equals method implements an equivalence re-

lation on non-null object references:

• It is reflexive: for any non-null reference value x,

x.equals(x) should return true.

• It is symmetric: for any non-null reference values

x and y, x.equals(y) should return true if and only if

y.equals(x) returns true.

• It is transitive: for any non-null reference values x,

y, and z, if x.equals(y) returns true and y.equals(z)

returns true, then x.equals(z) should return true.

• It is consistent: for any non-null reference values

x and y, multiple invocations of x.equals(y) con-

sistently return true or consistently return false,

provided no information used in equals comparisons

on the objects is modified.

• For any non-null reference value x, x.equals(null)

should return false.

. . .

Returns:

true if this object is the same as the obj argument; false

otherwise.

The Java Platform (Gosling et al. 2005)

(our underlining)

Using this definition, we can see that, although EGAL

meets the Java specification, Java permits two objects to

be equals when they are not EGAL. This distinction

between equals and EGAL is centred on the clause we have

underlined: Java equals can depend on the mutable state of

the objects being compared. Java permits abstract equal now

semantics for its equals and so results can change if one

or both of its argument objects are modified — or rather, if

any mutable state in any object that happens to be read by

an equals method is modified. Two different mutable objects

will never be EGAL, but they can be equals in Java. On the

other hand, the results of EGAL comparisons are always

consistent, irrespective of any state mutation: two EGAL

objects are equal always.

This kind of definition gives shape to an equality rela-

tion, but does not specify how equality affects the rest of

the program: what are the consequences of two objects be-

ing equal or identical? What are the pragmatic semantics of

equality? Tellingly, the Java specification just says that ob-

jects are “equal to” each other (with quotations marks in the

original) or that the objects are “the same as” each other (our

quotes). But what does that mean? What should it mean?

Pragmatically, if a program discovers that two objects are

equal, what other assumptions should programmers be able

to make about those two objects?

Based on work by Horst Reichel (Reichel 1995) and Bart

Jacobs (Jacobs 1996), William Cook argues for object equiv-

alence based on bisimulation: “if two objects simulate each

other . . . they are equivalent” (Cook 2009). David Ungar has

described this more pragmatically, as the desired semantics

of Self’s identity relation ==:

Basically, given two references, A and B, A == B

implies that for any message M, you could send M to

A or send M to B and there would be no observable

change in the future response to messages of the sys-

tem.

David Ungar, personal communication.

This is a very strong condition. To repurpose Pyret’s ter-

minology: under this semantics, if two objects are equal at

some point in the program, they will always be equal at

any other time. This always equal semantics can be im-

plemented by reference equality, obviously, but there are

227

other kinds of equality can also meet this condition, no-

tably EGAL, and an abstract equality method could be im-

plemented that satisfies this condition.

On the other hand many kinds of equality do not imply

bisimulation, including Java’s equals, Smalltalk and Self’s

=, and Ruby’s ==. These meet a weaker condition: again

stealing Pyret’s terminology, the objects are equal now, but

may not be equal in the future (and may not have been equal

in the past). In terms of messages, we can say:

Given two references, A and B, A is equal now to

B implies that if you sent M to A and received R as

the result, or if you sent M to B and received S as the

result, R and S would be equal now.

If two objects are always equal, they must also be equal

now: the reverse is not the case.

Object-Orientation

O is for Object,

which is the granddaddy of all soap bubbles.

ABC’s for object-gifted children

(Alexander 1992)

If we am to talk about equality in object-oriented lan-

guages, we must also talk about objects, and, in particu-

lar, how object-oriented programming differs from other ap-

proaches to programming. There are many definitions of

object-orientation, focusing on different aspects of program-

ming and design (Noble 2009). The problem with traditional

extensional definitions such as Grady Booch’s “An object

has state, behaviour, and identity” (Booch 1994) is that they

beg the question: if identity is built into your definition of

object-orientation then there is little left to ruminate about.

Ralph Johnson has a three-fold definition which captures

the semiotic, conceptual, and technical aspects of object-

orientation rather well (Johnson 2008, 2007; Noble 2009):

I explain three views of OO programming. The

Scandinavian view is that an OO system is one whose

creators realise that programming is modelling. The

mystical view is that an OO system is one that is built

out of objects that communicate by sending messages

to each other, and computation is the messages flying

from object to object. The software engineering view

is that an OO system is one that supports data ab-

straction, polymorphism by late-binding of function

calls, and inheritance.

Rather more recently, William Cook has characterised the

key structural feature of object-orientation in terms of the

autognostic principle (Cook 2009):

An object can only access other objects

through their public interfaces.

Autognosis means ‘self knowledge’. An autognos-

tic object can only have detailed knowledge of itself.

All other objects are abstract. The converse is quite

useful: any programming model that allows inspec-

tion of the representation of more than one abstrac-

tion at a time is not object-oriented.

On Understanding Data Abstraction, Revisited

(Cook 2009)

Autognosis takes a per-object encapsulation boundary to

its logical conclusion: an object can have detailed knowl-

edge — access to the internal representation — only of itself:

other objects can be known only via their public interfaces.

Cook lays out the implications of autognosis: increasing

flexibility while preventing optimisations of complex oper-

ations that require access to the representations of multiple

objects. One object can be replaced by another object so long

as the replacement object supports the original object’s pub-

lic interface: Jonathan Aldrich has explained how this allows

large systems to be built by combining interoperable exten-

sions (Aldrich 2013).

Cook singles out Microsoft’s COM for praise, because

there is “no built-in notion of object equality”, and ad-

vises Java programmers who wish to adopt a purely object-

oriented system to avoid reference equality (Java’s ==),

instanceof tests on classes, and using classes as types, be-

cause these idioms couple the uses of an object to its imple-

mentation, thus subverting its public interface. Furthermore,

because objects’ instance fields cannot appear in Java inter-

faces, adopting this discipline changes the program’s encap-

sulation boundaries from per class (as in C++ and Java) to

per object (as in Smalltalk, Self, or Newspeak).

A key argument of Cook’s essay is that this difference in

encapsulation stems from a primordial difference between

objects, (build using procedural abstraction based, modelled

by the untyped lambda calculus) and abstract data types

(build using type abstraction, modelled by the typed lambda

calculus). This distinction has not always been clearly under-

stood. For example, a key part of Bertrand Meyer’s definition

of object-oriented programming is that objects, classes, and

abstract data types are tightly related:

A class is a software element describing an ab-

stract data type. . .

An abstract data type is a set of objects defined by

the list of operations, or features, applicable to these

objects, and the properties of these operations.

Object-Oriented Software Construction

(Meyer 1997)

Meyer’s Eiffel is one of the few languages that supports

both encapsulation boundaries simultaneously: individual

method and fields can be accessible to every class in the

228

system, to a specified list of classes, to just their defining

class, or restricted to just the current instance. Conceptu-

ally, abstract data types or the SIMULA-derived encapsu-

lation boundary make abstract equality easy: objects of the

class represent instances of the abstract data type; an ab-

straction function maps instances’ representations into the

corresponding abstract values of the type; the semantics of

equality over the abstract type is precisely defined (e.g. by

reduction to a canonical form); a procedure implementing

that equality can be written relying on access to the repre-

sentations of both instances of the abstract type being com-

pared.

The remainder of this essay tries to answer the comple-

mentary question. What can we do to provide an equality

operator for a pure, autognostic object-oriented language?

What is the most we can do in a world of individually en-

capsulated objects, or what is the least we can get away with

and still write programs? (Spoiler: Grace, which we are at-

tempting to design, has adopted Smalltalk’s per-instance en-

capsulation boundary, rather than Simula’s per class encap-

sulation).

Left-Handed Equals

ΓNΩΘI ΣAΥTON

Know Thyself.

Inscription of Apollo’s temple at Delphi.

At this point we return to Cook’s definition: an autognos-

tic object can only have detailed knowledge of itself, while

treating every other object as abstract, so their representa-

tions cannot be inspected. If identity is part of an object’s

representation — or at least, the representations of the ab-

stractions modelled by the object — then one object cannot

inspect the identity of any other object. Certainly there can

be no mandate for a third-party object to be able to compare

two objects’ identity.

This is why Cook’s rules for pure object-oriented pro-

gramming in Java rule out Java’s == reference equality op-

erator. As Andrew Black puts it: “An application . . . may

have its own notion of identity that differs from the underly-

ing system” (Black 1993). To see why, consider the example

of a simple string object being used to e.g. represent an ac-

cess key in a distributed object-oriented system. An abstract

equality could compare strings by looking at their contents,

presumably character by character: so clients would be un-

able to determine if two strings were actually identical or

two different string objects that were abstractly equal. A ref-

erence equality comparison (such as Java’s third-party iden-

tity test) would allow clients to distinguish between identi-

cal and abstractly equal strings, so allowing the distinction

to leak through the public interface of the abstraction. This

distinction could potentially open a covert channel e.g. al-

lowing clients to detect whether a key is to a local or a re-

mote resource. A runtime system may need to take extra ef-

fort to preserve reference equality semantics, e.g. ensuring

that strings from remote machines are always accessed via

remote proxies, rather than just copying their contents.

Exposing object identity also makes transparent proxies

more difficult to build. Encapsulators (Pascoe 1986) and

transparent forwarders (McCullough 1987), first developed

in Smalltalk, can monitor objects, check invariants, or pro-

vide access control (Gamma et al. 1994) without modifying

the underlying object. Racket’s chaperones and imperson-

ators (Strickland et al. 2012), and Javascript’s proxies (Cut-

sem and Miller 2010, 2013) offer similar facilities. All these

techniques depend on an object’s clients being unable to dis-

tinguish between the identity of the naked underlying ob-

ject, and that object wrapped within an encapsulator (proxy,

chaperone, impersonator). Direct access to the identity (or

the class) of another object allows encapsulators to be de-

tected directly.

If autognosis is “self-knowledge” then it seems, however,

that there is one special case of reference equality which can

be admitted in an object-oriented system, and that does not

break abstractions: when an object is compared with itself.

For the Java inclined, imagine that you can only write a

primitive reference equality with this on the left-hand side

“this == other” . In Smalltalk, comparing an object with

itself looks even better “self == other” (although in Self we

have the inscrutable “== other”).

Self Reference Equality

Does another reference refer to self?

Arguably the single most important use of reference

equality in Java code is the definition of the equals method in

java.lang.Object, defining the default value comparison for

objects in terms of reference equality. Here, at least, the call

to == is autognostic:

public boolean equals(Object obj) {
return (this == obj);

}

exactly because “this == other” is a self-reference check:

an object determining if some other reference refers to itself

(in Java, to “this”). Any invocation of Java’s “==” which

is not testing against a literal “this” is not autognostic.

We will call the (autognostic) self reference equality test

“refEqualSelf” . In Java refEqualSelf can be defined with

exactly the same code as above:

public boolean refEqualsSelf(Object obj) {
return (this == obj);

}

the crucial point being that the binary == is converted to a

unary operator, effectively by currying.

229

There are no doubt other uses of == in Java for testing

the equality of value types: primitive ints, floats, and so on.

These objects are primitive immutable values: here == em-

bodies primitive value equality, rather than reference equal-

ity. The key question is: what about other uses of == for

reference equality of objects, in particular non-autognostic

uses of ==, where the left argument isn’t self?

From Autognosis to Equals

By analogy with the default definition of equals in Java, we

can lift an autognostic reference equality test (i.e. refEqualSelf)

into an object’s interface by defining a leftEquals method as

follows:

method leftEquals(other : Object) {refEqualSelf(other)}

Clients would call leftEquals method instead of using ==

on objects. Will this do, or do we need a full-strength identity

comparison predicate?

We think that this will do, or rather, that it will be just

enough. For a start, Self’s and Ruby’s reference equality op-

erators are defined in pretty much this way. Ruby’s equal?

runs a primitive method, and although Self’s definition bot-

toms out in the Eq: primitive, that primitive is only ever

used autognostically. In fact it’s only used once, in the beau-

tifully gnomic definition of the nonprimitive, dynamically

dispatched == method:

== x = (Eq: x)

Couldn’t something like leftEquals work just as well in

Java or other object-oriented languages? The big difference

between leftEquals and built in primitives like Java’s ==,

Python’s is or indeed Self’s Eq: is that the built in primi-

tives are trustworthy. Being supported by the language im-

plementation, primitives are guaranteed to give a result that

accords with reality, or at least with the conceptual model

and semantics of the language. Once we switch to using a

method like any other, we lose this guarantee.

Java programmers may argue that they could fix the prob-

lem with leftEquals by making it a final method on class

Object, so every object would be forced to offer this imple-

mentation — this is Ruby’s convention. Pragmatically, this

will be difficult to enforce in an open object-oriented system

where we do not control the provenance of every object.

From Cook’s perspective, of course, this is no longer

object-oriented: it means that every object now knows (and

can depend upon) a crucial fact about the implementation of

every other object: that is, the precise code in the body of

the leftEquals method. Conceptually, we’re just back again

to SIMULA: a special syntax for reference equality baked

into the language.

Trust

the truth is not an obstacle for someone such as me,

she said

because you see we all create our own reality

and if a problem should arise

the best thing you can say is

don’t worry, be happy, and have a nice day

MC 900 ft Jesus, Truth is Out of Style

(MC 900 Ft. Jesus 1989)

Drossopoulou and Noble’s Logic of Risk and Trust can be

brought to bear on this question (Drossopoulou et al. 2015).

Rather than constraining the implementation of leftEquals to

behave in a particular way (to meet a particular specification,

formal or informal) programmers can reason explicitly about

the trust relationships in their programs: which objects are

trusted, and which objects are not. A program may trust only

the objects that it has created directly, or all the objects in the

same process, or all the objects on the same host, or perhaps

all the objects used to access a business’s suppliers and

none of the objects used to access the business’s customers.

Drossopoulou and Noble write “o obeys S” to represent

an assumption that an object o conforms to a specification

S . Their contribution is that this trust is an assumption,

not an assertion: obeys does not mean that o conforms to

that specification, but that we will proceed as if it did meet

the specification. In this way, obeys supports hypothetical

reasoning about the behaviour of code under different trust

assumptions. Moreover, if we are sure that particular object

can be trusted, then we can be sure that method requests on

that object will meet their specification, whether that request

is for leftEquals or any other method.

(This may seem trivial, motherhood-and-apple-pie, espe-

cially one baked by Barbara Liskov: but it is not. Liskov’s

substitution principle aims to ensure that all objects meet

their specification: obeys handles cases where they do not.)

As Cook might put it: the question of whether an object

obeys its specification or not is ultimately a question about

the implementation of that object: when we encapsulate im-

plementations, we also encapsulate their correctness.

The very asymmetry of object-orientation (Aldrich 2013)

is what comes to our rescue: left-handed equals is left-

handed for a reason. When we write a.leftEquals(b) what

we mean is: if a obeys I (where I is a specification of the

leftEquals operation) then we can trust that the result is accu-

rate. On the other hand, if a doesn’t obey the specification,

any result whatsoever could be returned. What this means

in practice is that if you’re trying to compare two objects

for identity, make sure the receiver, i.e. the left hand argu-

ment of leftEquals is trusted, whether or not the right hand

argument is.

An immediate consequence of this style of reasoning

is that leftEquals does not provide an equivalence relation

in the presence of just one object that does not obey the

230

specification. Imagine a perverse object that claims to be

equal to any other:

def perverse = object {
method leftEquals(other : Object) → Boolean { true }
}

writing perverse.leftEquals(o) will always return true, unlike

the symmetric call, o.leftEquals(perverse), which will return

false for any trustworthy object o that isn’t actually identical

to perverse.

If you know (or are willing to assume) that you can trust

o, then leftEquals can give you just as much information as a

proper symmetric equality comparison: that the two objects

are (or are not) equal. If you’re not willing to trust o, then

you can’t expect to learn anything by requesting a method on

that object, and in particular you cannot trust the result (so

you’d probably choose not to make the request in the first

place). If you assume you can trust o and o turns out to be

untrustworthy, then your program hit a serious bug, or an

attempt to undermine the system.

Drossopoulou and Noble go on to show how a combina-

tion of the obeys predicate and conditional reasoning can be

used to reason further about trust. We can write a specifica-

tion such that if “a.leftEquals(b)” does return true, we choose

to trust b as much as we trust a (they’d write something like

“a obeys I −→ b obeys I”). It’s important you are not blind

about the objects upon which you request methods.

Alternatively we can recover limited equivalence rela-

tions by limiting the domain. Rather than building one re-

lation over all objects (“any non-null object values” in the

Java Specification) we consider only a given set of trustwor-

thy objects: within that set, leftEquals can be an equivalence.

Points and ColouredPoints

It’s well known that inheritance and subtyping can also cause

an equality relation to break symmetry (Odersky et al. 2009).

Consider the paradigmatic Point type:

type Point = interface {
x → Number
y → Number
leftEquals(o : Object) → Boolean
}

and implementing class:

class point(x′, y′) → Point {
method x { x′ }
method y { y′ }
method leftEquals(other : Object) {
match (other)
case { p : Point →

(x.leftEquals(p.x)) && (y.leftEquals(p.y)) }
case { → false }

}
}

the leftEquals method first tests to see if its argument’s pub-

lic interface conforms to the Point type. If the object is at

least of the type Point the method then compares coordi-

nates, and this comparison is type safe because we now

know that the other is a Point. If the type test fails, we return

false. This type test does not breach Cook’s autognosis prin-

ciple, precisely because it inspects only the public interface

of the other object — and a program may access any num-

ber of objects via their public interfaces. (Testing another

object’s class would expose the other object’s implementa-

tion, breaking instance encapsulation and reducing polymor-

phism.) Here, leftEquals over objects created from the point

class will be an equivalence relation.

Then, because this is the traditional point example, we

consider a subtype and a subclass:

type ColouredPoint = Point & interface {
colour → Colour
}

class colouredPoint(x′, y′, c′) → ColouredPoint {
inherit point(x′, y′)
method colour { c′ }
method leftEquals(other : Object) {
match (other)
case { cp : ColouredPoint →

(x.leftEquals(cp.x)) &&
(y.leftEquals(cp.y)) &&
(colour.leftEquals(cp.colour))}

case { → false }
}

}

where the subtype just requires an additional colour method

and the subclass implements that method, and overrides

leftEquals to compare colours. Again, leftEquals over objects

created by colouredPoint will be an equivalence relation, but

mixing points and coloured points will break symmetry: a

point can consider itself equal to a coloured point at the same

coordinates, but a coloured point will never consider itself

equal to a point.

There are at least two ways to recover symmetry here

should that prove necessary. If colours aren’t important, then

colouredPoint can just inherit the equality method from point,

unchanged, so the Point type, that is, the Point public inter-

face is enough to determine equality. Alternatively we could

add a default colour into the point class and rely only on

the ColouredPoint public interface. Both of these options are

preferable to a third alternative: adding some kind of pub-

licly visible tag into the Point interface and making a choice

based on the return value of the tag method.

Collection

Let’s consider a slightly larger example: some kind of collec-

tion, with just two requests add(element) which adds an el-

ement to the collection, and contains(other) which checks if

231

the collection contains that element. That specification looks

something like this:

type Collection = interface {
method contains(o : Object) → Boolean //for any o

method add(a : Object) → Done //must trust a

}

The point here is that the arguments to the add and

contains methods, although the same type, have different

trust assumptions. Add (obviously) adds element to the col-

lection: if the collection is to be trustworthy we must be able

to trust the elements we store inside it, at least enough to

trust their equals methods (o obeys I). On the other hand,

we do not need to trust that any other object handed into to

the collection obeys the specification.

Looking at a potential implementation of this method

explains why the asymmetry in the specification is feasible:

method contains (other : Object) → Boolean {
for (1 .. size) do { index →

if (contents.at(index).leftEquals(other))
then {return true} }

return false
}

We iterate through a backing collection contents, calling

leftEquals only on the objects in the collection, that is, ob-

jects we have already assumed we can trust. We never call

methods on the other objects because we don’t trust them —

although collections elements may call other methods on the

other objects as part of implementing leftEquals. It is the re-

sponsibility of the collection’s clients to add to the collec-

tion only objects that they trust. If an object (like perverse

above) is added which does not in fact meet its specification,

then the collection will break, in this case, answering that it

contains any other object passed to it, whether or not they

have been added.

Grant Matcher

The Grant Matcher (Miller 1998) is an exemplar problem

developed in the object-capability community to explore the

requirement for a reference equality test in a secure dis-

tributed object-oriented system. The problem is that two

people, Alice and Dana, agree to match each others’ dona-

tion to a charity. Alice and Dana don’t trust each other, but

are willing to trust a third party grant matcher. Alice and

Dana each supply the grant matcher with their donation (a

money object) and an object denoting their idea of the agreed

charity.

The puzzle is to write a grant matcher that avoids fraud,

notably fraud by one person passing in a fake charity. A

charity is a simple object that can accept a donation:

type Charity = interface {
accept(donation : Money) → Done

}

Writing a grant matcher that uses a primitive object iden-

tity is easy. Here’s a match method that does the match, re-

lying on a system.referenceEquals primitive like C#’s:

method match (aliceDonation : Money,
aliceCharity : Charity,
danaDonation : Money,
danaCharity : Charity) → Boolean {

if ((aliceDonation.amount
.leftEquals(danaDonation.amount)) &&

system.referenceEquals(aliceCharity, danaCharity))
then {aliceCharity.accept(aliceDonation)

danaCharity.accept(danaDonation)
return true}

else {return false}
}

This method checks that the donated amounts are the same,

that the charities are the same object, and if so makes the do-

nation. (Miller presents a Java implementation (Miller 1998)

that deals correctly with concurrency, aliasing, transactions,

and escrow; we ignore those concerns here to focus on equal-

ity).

Can we achieve the same thing using an abstract object-

oriented left-handed equality comparison, like Java’s equals

or Ruby’s ==? Most of the code would be the same, but the

test changes to:

if ((aliceDonation.amount
.leftEquals(danaDonation.amount)) &&

aliceCharity.leftEquals(danaCharity))

The catch is that this design now permits a “man in the

middle” attack (Miller 1998). A fake charity can masquer-

ade as a real charity by delegating its implementation of

leftEquals to a real charity, and then steal the money when

given a donation:

class fakeCharity → Charity {
def underlyingCharity : Charity = ...
def backPocket : Account = ...
method leftEquals(other : Object)

{ underlyingCharity.equals(other) }
method hash { underlyingCharity.hash }
method accept(donation : Money)

{ backPocket.accept(donation) }
}

If Alice passes a fake charity into a grant matcher im-

plemented with leftEquals, she can steal Dana’s money, be-

cause rather than delegating the accept method to the under-

lying charity it goes straight into Alice’s backPocket. (Alice

can steal money even without an underlying real charity by

writing a perverse charity that always returns “true” from

equals — provided no-one calls hash)

The problem arises because the leftEquals call is left-

handed: all it can do is determine if aliceCharity is willing to

believe (or to pretend) that it is “the same as” danaCharity.

This relation is neither symmetric nor transitive. If a re-

quest such as aliceCharity.equals(danaCharity) returns true,

232

then Alice’s charity (and by extension, Alice) is willing to

go ahead. (Alice indicated she was willing to go ahead when

she passed her charity into the grant matcher.)

Formally, we hypothesise that if a charity’s leftEquals

method returns true, then self and the method argument other

are the same object (reference equality) and as a result, the

other object will obey its specification. This is all subject

to the constraint that the left-hand purse is itself trustwor-

thy: aliceCharity obeys C −→ (aliceCharity ≡ danaCharity) ∧

(danaCharity obeys C).

We can (almost) resolve this by restoring symmetry: we

must also ask danaCharity if it considers aliceCharity accept-

able: if Dana’s charity is willing to go ahead, then presum-

ably so is Dana. The change to the condition is almost trivial:

if ((aliceDonation.amount
.leftEquals(danaDonation.amount)) &&

aliceCharity.leftEquals(danaCharity) &&
danaCharity.leftEquals(aliceCharity))

and now the transaction will only proceed if both charities

agree. This ensures that no real charity can be spoofed by a

fake charity. Where this solution differs from a system-wide

third party identity primitive like system.referenceEquals is

that a referenceEquals test can also detect when both sides are

trying to cheat. Imagine both Alice and Dana give fake char-

ities to the grant matcher. With a reference equality compar-

ison, the grant matcher can detect that the two charities are

different and abort the transaction. With a left-handed equal-

ity comparison, each fake charity will accept the other, and

so the transaction will complete, with each charity stealing

its own donation.

Reflection

The other advantage of built in reference equality operators

is that they are guaranteed to work on any object. A program-

mer defined abstract equality method could be buggy, and

in some languages (like Self and JavaScript) some objects

can have no methods whatsoever. An inspector or debugger

may need to handle and manipulate these kind of objects: to

put them into collections, checked for equality or/and iden-

tity, etc. This again is another advantage of the abstraction-

breaking complicit in system-wide equality operators.

Gilad Bracha and Dave Ungar’s model of reflection ad-

dresses all these issues (Bracha and Ungar 2004). A sepa-

rable component of a language can offer privileged access

to interact with any kind of object, however buggy or mini-

mal, by supplying mirror objects that act as proxies for their

reflectees. Because mirror objects are created by a trusted

reflexion subsystem (say by calling reflection.mirror(o) to re-

flect on o) programmers can assume that the mirrors will

implement their API correctly, without having to know any-

thing about the implementation of that API. The mirror API

can include methods (say reflecteeEquals) that performs ref-

erence comparison on their reflectees.

As Ungar wrote in a code comment in Self’s core defini-

tion of its reference equality operator “==”:

== and !== should usually be avoided; if you

really care about object identities then you should

probably be using mirrors, since object identity is a

reflective concept.

Reflection can offer yet another solution to the grant

matcher problem. We create two mirrors, one for each char-

ity, and then use the reflecteeEquals method on the mirrors to

ask if the those mirrors are reflecting on the same object, i.e.,

that the charities are the same.

method match (aliceDonation : Money,
aliceCharity : Charity,
danaDonation : Money,
danaCharity : Charity) → Boolean {

def aliceCharityMirror = reflection.mirror(aliceCharity)
def danaCharityMirror = reflection.mirror(danaCharity)
if ((aliceDonation.amount

.leftEquals(danaDonation.amount)) &&
(aliceCharityMirror

.reflecteeEquals(danaCharityMirror)))
then {aliceCharity.accept(aliceDonation)

danaCharity.accept(danaDonation)
return true}

else {return false}
}

The properties of this design are essentially the same as

using reference equality directly, with an intrinsic reflection

subsystem serving as a trusted third party able to verify

objects’ reference equality.

Reflective Equality

Do two mirrors reflect on the same object?

Grace

“The only reasonable numbers are zero, one, and

infinity”

Principles of Programming Languages

(MacLennan 1995)

To demonstrate how these ideas can come together into

a coherent programming language, we will use them to re-

design equality support in Grace, a new educational object-

oriented programming language (Black et al. 2012). Grace

aims to remove “inessential difficulties” from programming,

so this design needs to be simple, yet sufficient to cover all

the cases we have discussed in this essay.

One Equals Operator

The first question is how many equality operators (or rather,

equality operator families) should a language make gener-

233

ally available? For an autognostic object-oriented language,

that means these operators can be expected to be part of the

public interface of most if not every object. As we’ve seen,

most object-oriented languages provide at least two equality

operators, typically reference equality and abstract equality,

and many provide many more.

Having more operators should arguably make it easier

for programmers to express the equality semantics that they

need, but comes at the cost of programmers having to work

out which operator to choose to compare objects. Programs

would also have to support all the equality operators in every

object. Given Grace’s goals, we hope that just one family of

equality operators will be enough, assuming that the core

operator is well chosen.

Programmers can of course implement an infinity of fam-

ilies of equals operators if that makes sense in their do-

main — testing on keys, on values, implementation, abstrac-

tion — we’ve already met the cornucopia of equals functions

supplied by Lisp. Some programs, especially those mod-

elling complex domains or with complex optimised imple-

mentations, may well need many equality operators making

many fine distinctions. Nothing in this design prevents pro-

grammers defining their own equality operators — the ques-

tion we are considering is: how many operators should a lan-

guage make generally available, that is, how many operators

must every class implement? For an educational language,

parsimony beats munificence: understanding the semantics

of that single operator, how to use it, and how to implement

it will be more than enough in a first or second programming

course.

Autognostic, Abstract, Left-Handed Equals

For reasons already discussed at length in this essay, the

equality operator should be autognostic — with direct access

to only one object’s representation (self) from the inside, and

all other objects only via their public interfaces.

This means that equality will just be a method request

leftEquals(other) that compares its receiver and argument ob-

jects, dynamically dispatched like any other request. Left-

handed equals as a normal method implies that it can be

overridden by the receiver, giving us abstract equality se-

mantics. Where necessary, programmers can and should pro-

vide their own definitions of leftEquals. This solves the prob-

lems of value equality operators being unable to compare

different implementations of the same interface: program-

mers can write appropriate comparisons for their abstrac-

tions. This choice also means that this operator will not form

an equivalence relation — although particular implementa-

tions may provide an equivalence relation over some subset

of all objects. But because leftEquals is not symmetric, pro-

grammers have to care about which object is on the left, and

which on the right.

Just a left-handed reference equality operator isn’t quite

enough. Programmers need to be able to implement it: the

recursion needs a base case. To maintain autognosticism,

such an implementation can only consider the object itself.

A self reference equality operator can fulfil this role: it

must be confidential (to ensure it can only be called from

within its defining object) and primitive (implemented by the

underlying platform) — as discussed above.

Time and Eternity

The next design choice is what the implied consequences of

two objects being equal should be. Implied consequences,

because an abstract equals method can be overridden, so

meeting this guarantee depends on the way particular ab-

stractions choose to interpret equality.

The two main choices are always equals, or equals now. If

we had two equality operators, we could have both. But we

would rather have only one operator; this keeps the design

simpler, and means that novices don’t have to worry about

which equals they should use.

For immutable objects, there is no observable difference

between equals now and always equal: this is Baker’s EGAL

argument.

Similarly, mutable, distinguishable objects that model

phenomena in the domain of the program will need object

identity for their modelling: this is also an always equals

relationship and (self) reference equality will do the trick.

The other main use-case for equality is the collections li-

brary: mutable collections in particular. All collections rely

heavily on equality. Implementors of hashed or indexed col-

lections need always equal semantics because otherwise ob-

jects would have to be reindexed whenever their contents

change. On the other hand, equals now semantics seem es-

sential to clients of mutable collections: with equals always

semantics, two different mutable collections can never be

equal to each other even when they contain exactly the same

elements. Either every mutable collection would have to be

converted into an immutable collection before comparison,

or more likely, equals now semantics would be reintroduced

as a second equality operator in the collections API (but, per-

haps, not for all objects, unless we conclude two operators

really are necessary overall).

Since mutable collections seem integral to Smalltalk-

style object-oriented programming, our design explicitly

opts for equals now semantics. This has the unfortunate side

effect of potentially breaking collections that really need

stable equality, hashes, or even comparisons between ob-

jects. We are willing to accept that risk for three reasons.

First, because once we have opted for an abstract, program-

able equality operator there is no guarantee it will be im-

plemented correctly anyway. Second, because always equal

semantics is a permissible implementation of equals now,

so programmers who need the tighter semantics can adopt

it anyway. Third, because an empirical study showed that

in Java at least, this problem rarely arises in practice (where

234

“rarely” means that the study was unable to find this problem

(Nelson et al. 2010)).

Reflective Equality

Again, for the reasons we have described above, Grace’s ex-

isting reflective mirrors should be extended to support an

equals operator that gives reflective equality (i.e. reference

equality on the objects reflected in the mirror). We see how

this spoils the claim to have only one family of equals oper-

ations: we are effectively squeezing a non-autognostic prim-

itive reference equality operator in through the back door.

For example, collections that need a stable always equal re-

lationship can use reflection to get it.

The key advantage, to us, of this back door solution is

precisely that it is a back door: the language itself and its

core libraries still have only one general equal operator. Re-

flection is the underlying breach of autognosticism, because

it opens up reflected objects’ implementations anyway: once

we’ve gone that far it seems churlish not to support reflective

equality.

Value Equality

What support, if any, should an object-oriented language

provide for value equality? If objects are truly autognostic,

then one answer is none: objects are only accessible behind a

public interface. Value equality compares the representations

of two objects, effectively reducing objects to their represen-

tations and nothing more. But what if this is all you need?

What about the simple cases, the Wirthian sum-of-product

concrete data types introduced in Pascal and COBOL and

adopted by most functional programming languages ever

since — algebraic data types (abbreviated “ADT”) rather

than abstract data types (also abbreviated “ADT”) (Cook

2009). Value equality seems a good fit for these kind of ob-

jects.

Most object-oriented languages do not support value

equality, although Scala’s case classes are a notable excep-

tion. We can extend our design with a publicFieldsEqual prim-

itive that acts as if the programmer had written a method that

compares all the public fields of another object with its own

public fields. This primitive remains autognostic because it

needs only consult the public interface of an object to access

its public fields.

Public Field Equality

Are two objects’ public fields equal?

This is the design decision we are still on the fence about.

Summary

The story is not all mine, nor told by me alone.

Indeed I am not sure whose story it is.

The Left Hand of Darkness

(LeGuin 1969)

So this is where we finish up — not in the sense of stop-

ping, not yet, but in the sense that this is where we’ve got to

so far:

• a x.leftEquals(y) request, understood by most if not all

objects;

• a request that is the negation of leftEquals(y)

• a refEqualsSelf(y) primitive method, inherited or other-

wise available to all objects;

• default definitions of leftEquals() (and its negation) in

terms of refEqualsSelf.

• a reflecteeEquals(otherMirror) request as part of a reflec-

tion system, (if there is one).

• a publicFieldsEquals(t) primitive method, inherited or oth-

erwise available to all objects;

Sometimes a little code is worth a screenful of bullet points:

type Object = interface {
== (other : Object) → Boolean
!= (other : Object) → Boolean
hash → Boolean
...

}

trait graceObject {
method refEqualsSelf(other : Object)
is primitive, confidential { }

method == (other : Object) {refEqualsSelf(other)}
method != (other : Object) {! (self == other)}
...

}

trait graceValue {
use graceObject
method publicFieldsEquals(other : Object)
is primitive, confidential { }

method == (other : Object) {publicFieldsEquals(other)}
...

}

type Reflection = interface {
reflect(reflectee : Object) → ObjectMirror
...

}

type ObjectMirror = Object & interface {
...

}

235

Note that we have renamed a few things in the code:

leftEquals has become ==, and to show the complete fam-

ily we include its inverse != and hash. (We did consider

not including the inverse !=; but apart from being willfully

perverse to disregard every language design precedent, it is

particularly perverse when the interface has to include hash

anyway.)

We also moved reflecteeEquals to be == on the mirrors. If

you’ve survived this long, you should know not to ask how

that is implemented: it really doesn’t matter if the reflection

subsystem ensures there is just one unique mirror object

created for each reflectee (so == is reference equality), or

if there can be many mirrors for each reflectee (and ==

compares reflectees in some other abstract way). A program

using the reflection API has no way to tell the difference.

This seems to be is the most we can do in a world of

individually encapsulated autognostic objects, and the least

we can get away with.

Conclusion

Light is the left hand of darkness,

and darkness the right hand of light.

The Left Hand of Darkness

(LeGuin 1969)

Ursula K. LeGuin’s subtle and celebrated feminist novel

“The Left Hand of Darkness” (LeGuin 1969) tells of Genly

Ai, an emissary to the planet Gethen. Written mostly from

Genly’s perspective, the novel includes quotations from

Gethen’s myths and legends, and excerpts from Ai’s reports

home. Ai must navigate the Gethenians’ androgynous muta-

ble sexuality (as an immutable biological male, Ai is seen as

perverse by the Gethenians) and their resulting culture based

on status and equality.

Object identity, reference equality, and value equal-

ity have been in object-oriented programming languages

since SIMULA. Encapsulation, autognosis, coming from

Smalltalk, is perhaps the most important principle of all.

Self demonstrated that abstract equality comparisons (and

many control structures) could be implemented solely as

method requests, without any special cases, with a negligi-

ble runtime cost. Ruby shows that this kind of design can be

practical in a scripting language today, with much less im-

plementation effort. Let’s stop contorting languages to run

on a thirty years old Lisa, and take advantage of today’s and

tomorrow’s machines to make languages that can be more

straightforward, more simple, more trustworthy, and more

graceful.

Acknowledgements

We thank Sophia Drossopoulou for many discussions on

these topics, and William Cook, Shriram Krishnamurthi,

Joe Gibbs Politz, and the anonymous reviewers for their

comments. This work was supported in part by a James

Cook Fellowship and by the Royal Society of New Zealand

Marsden Fund.

References

J. Aldrich. The power of interoperability: why objects are in-

evitable. In Onward!, pages 101–116, 2013.

B. Alexander. ABC’s for object-gifted children. ParcPlace

Newsletter, 5(1), Spring 1992.

H. G. Baker. Equal rights for functional objects or, the more things

change, the more they are the same. OOPS Messenger, 4(4),

Oct. 1993.

A. P. Black. Object identity. In Proc. of the Third Int’l Workshop on

Object Orientation in Operating Systems (IWOOOS ’93). IEEE

Computer Society Press, 1993.

A. P. Black, K. B. Bruce, M. Homer, and J. Noble. Grace: the

absence of (inessential) difficulty. In Onward!, 2012.

G. Booch. Object Oriented Analysis and Design with Applications.

Benjamin Cummings, second edition, 1994.

G. Bracha and D. Ungar. Mirrors: design principles for meta-

level facilities of object-oriented programming languages. In

OOPSLA, pages 331–344, 2004.

C. Chambers, D. Ungar, and E. Lee. An efficient implementation

of Self, a dynamically-typed object-oriented language based on

prototypes. OOPSLA, 1989.

W. R. Cook. On understanding data abstraction, revisited. In

OOPSLA, pages 557–572, 2009.

D. Crockford. JavaScript: the Good Parts. O’Reilly, 2008.

T. V. Cutsem and M. S. Miller. Proxies: design principles for robust

object-oriented intercession APIs. In Proceedings of the 6th

Symposium on Dynamic Languages, (DLS), pages 59–72, 2010.

T. V. Cutsem and M. S. Miller. Trustworthy proxies - virtualizing

objects with invariants. In ECOOP, pages 154–178, 2013.

O.-J. Dahl, B. Myhrhaug, and K. Nygaard. SIMULA: Common

Base Language. Norwegian Computing Center, Oct. 1970.

S. Drossopoulou, J. Noble, and M. S. Miller. Swapsies on the

Internet. In PLAS, 2015.

E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides. Design

Patterns. AW, 1994.

A. Goldberg and D. Robson. Smalltalk-80: The Language and its

Implementation. Addison-Wesley, 1983.

J. Gosling, B. Joy, G. Steele, and G. Bracha. Java Language

Specification. Addison-Wesley Professional, 3rd edition, 2005.

R. Hickey. Clojure Reference Manual. clojure.org, 2016.

D. Hoyte. Let Over Lambda. Lulu.com, 2008.

B. Jacobs. Objects and classes, co-algebraically. In B. Freitag, C. B.

Jones, C. Lengauer, and H.-J. Schek, editors, Object Orientation

with Parallelism and Persistence, Kluwer, 1996.

R. Johnson. Erlang, the next Java, Aug. 2007. http://www.-

cincomsmalltalk.com/userblogs/ralph.

R. Johnson. Object-oriented programming and design, 2008.

http://st-www.cs.uiuc.edu/users/johnson/598rej/.

236

S. Krishnamurthi, B. S. Lerner, and J. G. Politz. Programming

and Programming Languages. Shriram Krishnamurthi, 2016.

http://papl.cs.brown.edu/2016/.

U. K. LeGuin. The Left Hand of Darkness. Macdonald & Co

Limited, 1969.

O. Lehrmann Madsen, B. Møller-Pedersen, and K. Nygaard.

Object-Oriented Programming in the BETA Programming Lan-

guage. Addison-Wesley, 1993.

B. J. MacLennan. Principles of Programming Languages: Design,

Evaluation, and Implementation. OUP, 1995.

MC 900 Ft. Jesus. Truth is out of style. Nettwerk Records, 1989.

P. L. McCullough. Transparent forwarding: First steps. In OOP-

SLA, 1987.

B. Meyer. Object-oriented Software Construction. Prentice Hall,

second edition, 1997.

M. S. Miller. The grant matcher puzzle. http://www.erights.-
org/elib/equality/grant-matcher, Oct. 1998.

S. Nelson, D. Pearce, and J. Noble. Understanding the impact of

collection contracts on design. In TOOLS Europe, 2010.

J. Noble. The myths of object-orientation. In ECOOP, 2009.

M. Odersky. The Scala language specification version 2.8. Techni-

cal report, Programming Methods Laboratory, EFPL, July 2010.

M. Odersky, L. Spoon, and B. Venners. How to write an equality

method in Java. artima developer, June 2009.

G. Orwell. Animal Farm. Secker and Warburg, 1945.

G. A. Pascoe. Encapsulators: A new software paradigm in

Smalltalk-80. In OOPSLA, 1986.

H. Reichel. An approach to object semantics based on terminal co-

algebras. Mathematical Structures in Computer Science, 5(2):

129–152, June 1995.

G. Steele. Common Lisp the Language. Digital Press, 1990.

T. S. Strickland, S. Tobin-Hochstadt, R. B. Findler, and M. Flatt.

Chaperones and impersonators: Runtime support for reasonable

interposition. In OOPSLA, 2012.

B. Stroustrup. Sixteen ways to stack a cat. Technical Report CSTR-

161, AT&T Bell Laboratories, Oct. 1991.

D. Ungar and R. B. Smith. SELF: the Power of Simplicity. Lisp

and Symbolic Computation, 4(3), June 1991.

W. Whitman. Leaves of Grass. David McKay, 1891.

237

