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Abstract

We show how the binary encoding and decoding of typed data and
typed programs can be understood, programmed, and verified with
the help of question-answer games. The encoding of a value is
determined by the yes/no answers to a sequence of questions about
that value; conversely, decoding is the interpretation of binary data
as answers to the same question scheme.

We introduce a general framework for writing and verifying game-
based codecs. We present games for structured, recursive, poly-
morphic, and indexed types, building up to a representation of
well-typed terms in the simply-typed λ-calculus. The framework
makes novel use of isomorphisms between types in the definition
of games. The definition of isomorphisms together with additional
simple properties make it easy to prove that codecs derived from
games never encode two distinct values using the same code, never
decode two codes to the same value, and interpret any bit sequence
as a valid code for a value or as a prefix of a valid code.

1. Introduction

Let’s play a guessing game:

I am a simply-typed program.1 Can you guess which one?
Are you a function application? No.
You must be a function. Is your argument a Nat? Yes.
Is your body a variable? No.
Is your body a function application? No.
It must be a function. Is its argument a Nat? Yes.
Is its body a variable? Yes.
Is it bound by the nearest λ? No.
You must be λx:Nat.λy:Nat.x. You’re right!

From the answer to the first question, we know that the program
is not a function application. Moreover, the program is closed, and
therefore it can only be a λ-abstraction; hence we proceed to ask

1 A closed program in the simply-typed λ-calculus with types τ ::= Nat |
τ → τ and terms e ::= x | e e | λx:τ.e, identified up to α-equivalence.
We have deliberately impoverished the language for simplicity of presen-
tation; in practice there would also be constants, primitive operations, and
perhaps other constructs.
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new questions about the argument type and body. We continue ask-
ing questions until we have identified the program. In this exam-
ple, we asked just seven questions. Writing 1 for yes, and 0 for
no, our answers were 0100110. This is a code for the program
λx:Nat.λy:Nat.x.

By deciding which questions constitute our game we’ve thereby
built an encoder for programs. By interpreting a bit sequence as
answers to that same game, we have a decoder. If we choose our
questions carefully, we can make sure that no two programs are
assigned the same code (no ambiguity), no two codes identify the
same program (no redundancy), and moreover, any bit sequence
either has a prefix that is a valid code, or is a prefix of a valid code
(no junk). No junk justifies the phrase in the title ‘every bit counts’.

Related ideas have previously appeared in domain-specific work;
tamper-proof bytecode [10, 13] and compact proof witnesses in
proof carrying code [19]. This paper crystallizes and formalizes the
key intuition behind both those works: question-and-answer games.

More specifically, in this paper we show how to program games,
from which we create codecs for numbers, lists, and sets, build-
ing up to every-bit-counts codes for terms of the simply-typed λ-
calculus. Our contributions are as follows:

• We introduce games for encoding and decoding: a novel way
to think about and program codecs (Section 2). We build sim-
ple games for numeric types, and provide combinators that con-
struct complex games from simpler ones, producing correct-by-
construction coding schemes for structured, recursive, polymor-
phic, and indexed types.
• Under easily-stated assumptions concerning the structure of

games, we prove round-trip properties of encoding and decod-
ing, and the ‘every bit counts’ property of the title (Section 3).
• We develop more sophisticated games for abstract types such

as sets and multisets, making crucial use of the invariants asso-
ciated with such types. (Section 4)
• We build question-answer games for simply-typed terms that

yield unambiguous and non-redundant codes. In addition, we
give an every-bit-counts coding scheme (Section 5) for simply-
type terms. To our knowledge, this is the first provably such
coding scheme for a typed language. Finally, we give discussion
and connections to related work. (Sections 6 and 7)

We will be using Haskell (for readability, familiarity, and exe-
cutability) but the paper is accompanied by a partial Coq formal-
ization (for correctness) downloadable from:

http://research.microsoft.com/people/dimitris/

The non-ambiguity and non-redundancy properties of our coding
schemes follow by construction in our Coq development, and by
very localized reasoning in our Haskell code. We make use of
infinite structures, utilizing laziness in Haskell (and co-induction in
Coq), but the code should adapt to call-by-value languages through
the use of thunks.
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Figure 1: Unary game for naturals
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Figure 2: Range dichotomy game for naturals in [0, 15]

2. From games to codecs

We can visualize question-and-answer games graphically as binary
decision trees.

Figure 1 visualizes a (naı̈ve) game for natural numbers. Each rect-
angular node contains a question, with branches to the left for yes
and right for no. Circular leaf nodes contain the final result that has
been determined by a sequence of questions asked on a path from
the root. Arcs are labelled with the ‘knowledge’ at that point in the
game, characterised as subsets of the original domain.

Let’s dry-run the game. We start at the root knowing that we’re in
the set {n | n > 0}. First we ask whether the number is exactly
0 or not. If the answer is yes we continue on the left branch and
immediately reach a leaf that tells us that the result is 0. If the
answer is no then we continue on the right branch, knowing now
that the number in hand is in the set {n | n > 1}. The next question
asks whether the number is exactly 1 or not. If yes, we are done,
otherwise we continue as before, until the result is reached.

Figure 2 shows a more interesting game for natural numbers in the
range [0, 15]. This game proceeds by asking whether the number in
hand is greater than the median element in the current range. For
example, the first question asks of a number n ∈ [0, 15] whether
n ∈ [8, 15] or n ∈ [0, 7], splitting the range into two disjoint
parts. If n ∈ [8, 15] we play the game given by the left subtree.
If n ∈ [0, 7] we play the game given by the right subtree.

In both games, the encoding of a value can be determined by
labelling all left edges with 1 and all right edges with 0, and
returning the path from the root to the value. Conversely, to decode,
we interpret the input bitstream as a path down the tree. So in
the game of Figure 1, a number n ∈ N is encoded in unary as
n zeroes followed by a one, and in the game of Figure 2, a number
n ∈ [0, 15] is encoded as 4-bit binary, as expected. For example, the
encoding of 2 is 0010 and 3 is 0011. There is one more difference

between the two games: the game of Figure 1 is infinite whereas
the game of Figure 2 is finite.

It’s clear that question-and-answer games give rise to codes that are
unambiguous: a bitstring uniquely determines a value. Moreover,
the one-question-at-a-time nature of games ensures that codes are
prefix-free: no code is the prefix of any other valid code [20].

Notice two properties common to the games of Figure 1 and 2:
every value in the domain is represented by some leaf node (we call
such games total), and each question strictly partitions the domain
(we call such games proper). Games satisfying both properties give
rise to codecs with the following property: any bitstring of is a
prefix of or has a prefix that is a code for some value. This is the
‘every bit counts’ property of the title. In Section 3 we pin these
ideas down with theorems.

But how can we actually compute with games? We’ve explained the
basic principles in terms of set membership and potentially infinite
trees, and we need to translate these ideas into code.
• We must represent infinite games without constructing all the

leaf nodes ahead-of-time. This is easy: just construct the game
tree lazily.

• We need something corresponding to ‘a set of possible values’,
which we’ve been writing on the arcs in our diagrams. Types are
the answer here, sometimes with additional implicit invariants;
for example, in Haskell, ‘Int in the range [4, 7]’.

• We must capture the splitting of the domain into two disjoint
parts. This is solved by type isomorphisms of the form τ ∼=
τ1 + τ2, with τ1 representing the domain of the left subtree
(corresponding to answering yes to the question) and τ2 repre-
senting the domain of the right subtree (corresponding to no).

• Lastly, we need a means of using this splitting to query the data
(when encoding), and to construct the data (when decoding).
Type isomorphisms provide a very elegant solution to this task:
we simply use the maps associated with the isomorphism.

Let’s get concrete with some code, in Haskell!

2.1 Games in Haskell

Let’s dive straight in, with a data type for games:

data Game :: * → * where
Single :: ISO t () → Game t
Split :: ISO t (Either t1 t2) →

Game t1 → Game t2 → Game t

A value of type Game t represents a game with domain t, whose
leaves built with Single represent singletons and whose nodes
built with Split represent a splitting of the domain into two parts.
The leaves carry a representation of an isomorphism between t

and (), Haskell’s unit type. The nodes carry a representation of an
isomorphism between t and Either t1 t2 (Haskell’s sum type),
and two sub-games of type Game t1 and Game t2.2

What is ISO? It’s just a pair of maps witnessing an isomorphism:

-- (Iso to from) must satisfy invariants
-- to ◦ from = id and from ◦ to = id
data ISO t s = Iso { to :: t → s, from :: s → t }

Without further ado we write a generic encoder and decoder, once
and for all. We use Bit for binary digits rather than Bool so that
output is more readable:

type Bit = Int -- 0 or 1

2 The type variables t1 and t2 are existential variables, not part of vanilla
Haskell 98, but supported by all modern Haskell compilers.



Given a Game t, here is an encoder for t:

enc :: Game t → t → [Bit]
enc (Single _) x = []
enc (Split (Iso ask _) g1 g2) x

= case ask x of Left x1 → 1 : enc g1 x1
Right x2 → 0 : enc g2 x2

If the game we are playing is a Single leaf, then t must be a
singleton, so we need no bits to encode t, and just return the empty
list. If the game is a Split node, we ask how x of type t can be split
to a value of either t1 or t2 for some t1 and t2. Depending on the
answer we output 1 or 0 and continue playing either the sub-game
g1 or g2.

A decoder is also simple to write:

dec :: Game t → [Bit] → (t, [Bit])
dec (Single (Iso _ bld)) str = (bld (), str)
dec (Split _ _ _) [] = error "Input too short"
dec (Split (Iso _ bld) g1 g2) (1:xs)

= let (x1, rest) = dec g1 xs
in (bld (Left x1), rest)

dec (Split (Iso _ bld) g1 g2) (0:xs)
= let (x2, rest) = dec g2 xs

in (bld (Right x2), rest)

The decoder accepts a game Game t and a bitstring of type [Bit]. If
the input bitstring is too short to decode a value then dec raises an
error indicating this3. Otherwise it returns a decoded value of type
t and the suffix of the input list that was not consumed. If the game
is Single, then dec can return the unique value in t by applying the
inverse map of the isomorphism on (). No bits are consumed, as
no questions need answering! If the game is Split but the input list
is empty then dec raises an error. Otherwise, depending on the first
bit, dec decodes the rest of the bitstring using either sub-game g1 or
g2, building a value of t using the bld function of the isomorphism
gadget.

Hopefully the way that type isomorphisms are used in Split is now
clear. When encoding a value, we ask questions of the data using
the forward map of the isomorphism to get answers of the form
Left x or Right y, that capture both the yes/no ‘answer’ to the
question and data with which to continue playing the game. When
decoding, we apply the inverse map of the isomorphism to build
data with Left x or Right x as determined by the next bit in the
input stream.

A trivial game for booleans expresses this most directly, utilizing
the isomorphism between Bool and Either () () (or in mathemat-
ical notation, B ∼= 1 + 1).

unitGame :: Game ()
unitGame = Single (Iso (λ() → ()) (λ() → ()))

boolIso :: ISO Bool (Either () ())
boolIso =

Iso (λb → if b then Left() else Right())
(λx → case x of Left() → True; Right() → False)

boolGame :: Game Bool
boolGame = Split boolIso unitGame unitGame

2.2 Warm-up: number games

These simple definitions are already enough to write games for a
range of numeric encodings.

3 We could alternatively have dec return Maybe (t,[Bit]); this is indeed
what our Coq formalization does.

Unary games for naturals The following function accepts an
integer k and returns a game for natural numbers greater than or
equal to k. In Haskell it is difficult to express such invariants using
types so we will be commenting our functions with their ‘real’ more
expressive types in the rest of this paper.

-- geNatGame k returns a game for { n:Nat | n > k }
geNatGame :: Nat → Game Nat
geNatGame k = Split iso (constGame k) (geNatGame (k+1))

where iso :: ISO Nat (Either Nat Nat)
iso = Iso ask bld
-- Precondition of ask x: x > k
ask x = if x == k then Left x else Right x
bld (Left x) = x
bld (Right x) = x

What is constGame k? It’s simply a singleton game for some data
which is exactly equal to k:

constGame :: t → Game t
constGame k = Single (Iso (const ()) (const k))

Notice that our definition of geNatGame exactly matches the tree
of Figure 1. Each recursive call to geNatGame corresponds to a
rectangular node in the figure. Each call to constGame corresponds
to a circular node in the figure.

We can test our games using the generic dec and enc functions:

> enc (geNatGame 0) 3
[0,0,0,1]
> enc (geNatGame 0) 2
[0,0,1]
> dec (geNatGame 0) [0,0,1]
Just (2,[])

There is yet another, simpler, game for naturals based on their unary
encoding. This time the game just asks if a number n is zero or not:
if the answer is yes then we are done, otherwise we play the very
same game for the predecessor of n.

succIso :: ISO Nat (Either () Nat)
succIso = Iso ask bld

where ask 0 = Left ()
ask (n+1) = Right n
bld (Left ()) = 0
bld (Right n) = n+1

unaryNatGame :: Game Nat
unaryNatGame = Split succIso unitGame unaryNatGame

All the magic lies in succIso. The ask function asks whether the
number is 0. If yes, it returns () on the left. If not it returns the
predecessor of n on the right. It is easy to see by inspection that ask
and bld form an isomorphism between Nat and Either () Nat, or
N ∼= 1 + N.

The range game for naturals How about the range encoding for
natural numbers, sketched in Figure 2? Easy:

-- Precondition for rangeGame k1 k2: k1 6 k2
rangeGame :: Nat → Nat → Game Nat
rangeGame k1 k2 | k1 == k2 = constGame k1
rangeGame k1 k2 = Split (Iso ask bld) g1 g2

where g1 = rangeGame (m+1) k2
g2 = rangeGame k1 m
ask x = if x > m then Left x else Right x
bld (Left x) = x
bld (Right x) = x
m = (k1 + k2) ‘div‘ 2

The game proceeds by keeping two numbers k1 and k2 as its state
that corresponds to the range of numbers it is currently dealing



with, very much like the tree in Figure 2. Again, the magic is in
the isomorphism gadget. Function ask goes left or right depending
on whether the current value is greater than, or less than or equal to
the median value m.

The binary game for naturals The range encoding results in a
logarithmic coding scheme, but only works for naturals in a given
range. Can we give a general logarithmic scheme for arbitrary
naturals? Yes, and here is the protocol: we first ask if the number is
0 or not. If yes, we are done. If not, we ask whether it is divisible
by 2 or not. After playing the game for the quotient, in the first case
we multiply by 2 and in the second we multiply by 2 and add 1. In
other words, there is a isomorphism N ∼= N + N, via division by 2.
Here is the code:

binNatGame :: Game Nat
binNatGame = Split succIso unitGame divG
where divG = Split (Iso ask bld) binNatGame binNatGame

ask n | even n = Left (n ‘div‘ 2)
| otherwise = Right (n ‘div‘ 2)

bld (Left m) = 2*m
bld (Right m) = 2*m+1

We can test this game; for example:

> enc binNatGame 8
[0,0,0,1,0,1,1]
> dec binNatGame [0,0,0,1,0,1,1]
Just (8,[])
> enc binNatGame 16
[0,0,0,1,0,1,0,1,1]

After staring at the output for a few moments one observes that the
encoding takes double the bits (plus one) that one would expect for
a logarithmic code. This is because before every step, an extra bit
is consumed to check whether the number is zero or not. The final
extra 1 terminates the code. In the next section we explain how the
extra bits result in prefix codes, a property that our methodology is
designed to validate by construction.

The accompanying Haskell code gives additional examples of
games for natural numbers, including Elias codes [8], as well as
codes based on prime factorization.

2.3 Game combinators

To build games for structured types we provide combinators that
construct complex games from simple ones. The simplest combi-
nator, (+>), transforms a game for t into a game for s, given that s
is isomorphic to t.

(+>) :: Game t → ISO s t → Game s
(Single j) +> i = Single (i ‘seqI‘ j)
(Split j g1 g2) +> i = Split (i ‘seqI‘ j) g1 g2

What is seqI? It is a combinator on isomorphisms, which wires two
isomorphisms together. In fact, combining isomorphisms together
in many ways is generally useful, so we define a small library of
isomorphism combinators. Their signatures are given in Figure 3
and their implementation (and proof) is entirely straightforward.

Choice It’s dead easy to construct games for sums of two types, if
we are given games for each. The sumGame combinator is so simple
that it hardly has a reason to exist as a separate definition:

sumGame :: Game t → Game s → Game (Either t s)
sumGame = Split idI

idI :: ISO a a
seqI :: ISO a b → ISO b c → ISO a c
sumI :: ISO a b → ISO c d

→ ISO (Either a c) (Either b d)
prodI :: ISO a b → ISO c d → ISO (a,c) (b,d)
invI :: ISO a b → ISO b a
swapProdI :: ISO (a,b) (b,a)
swapSumI :: ISO (Either a b) (Either b a)
assocProdI :: ISO (a,(b,c)) ((a,b),c)
assocSumI :: ISO (Either a (Either b c))

(Either (Either a b) c)
prodLUnitI :: ISO ((),a) a
prodRUnitI :: ISO (a,()) a
prodRSumI :: ISO (a,Either b c) (Either (a,b) (a,c))
prodLSumI :: ISO (Either b c, a) (Either (b,a) (c,a))

Figure 3: Isomorphism combinator signatures

Composition Suppose we are given a game g1 of type Game t and
a g2 of type Game s. How can we build a game for products (t,s)?
A simple strategy is to play g1, the game for t, and at the leaves
insert copies of g2, the game for s. Graphically, if g1 looks like the
tree on the left, below, composing it with g2 creates the structure
on the right.

...
...

=⇒ ...
...

... g2

... g2

The code to achieve this is given by the prodGame combinator:

prodGame :: ∀ t s. Game t → Game s → Game (t,s)
prodGame (Single iso) g2 = g2 +> iso’

where iso’ :: ISO (t,s) s -- assuming ISO t ()
iso’ = prodI iso idI ‘seqI‘ prodLUnitI

prodGame (Split (iso::ISO t (Either ta tb)) g1a g1b) g2
= Split iso’ (prodGame g1a g2) (prodGame g1b g2)
where iso’ :: ISO (t,s) (Either (ta,s) (tb,s))

iso’ = prodI iso idI ‘seqI‘ prodLSumI

If the game for t is a singleton node, then we play g2, which is
the game for s. However, that will return a Game s, whereas we’d
like a Game (t,s). Fortunately, we can coerce g2 to the appropriate
type since we are able to construct an isomorphism iso’ between
(t,s) and s. Readers should be able to convince themselves that
such an isomorphism can be constructed, using the available iso-
morphism iso of type ISO t (), without even looking at the exact
combinatory definition of iso’. In the case where Game t is a Split
node, we are going to simply be asking a question to a pair (t,s)
that is derived from the original question to t, and can give us back
Either (ta,s) (tb,s) depending on what the answer from t was.
This is taken care of by the isomorphism iso’ which in turn uses
iso (again, readers should not bother too much about the defini-
tion of iso’.). Recursively, we create the product of g2 with the
sub-games of g1, g1a and g1b.

Recursion What can we do with prodGame? We can use it to build
more complex combinators, such as the following that can operate
on lists (or streams):

listIso :: ISO [t] (Either () (t,[t]))
listIso = Iso ask bld

where ask [] = Left ()
ask (x:xs) = Right (x,xs)
bld (Left ()) = []
bld (Right (x,xs)) = x:xs



listGame :: Game t → Game [t]
listGame g =

Split listIso unitGame (prodGame g (listGame g))

The listGame function accepts a game for t and creates a game for
lists (or streams) of t. The question asked, defined by listIso is
whether the list is empty or not. If the list is empty (left sub-game)
we have a singleton node. If the list is non-empty (right sub-game)
we have to play the game for the element in the head of the list
followed by the very same game for lists, for the tail of the list. This
is just the product prodGame g (listGame g). In math notation,
listIso simply expresses the isomorphism t∗ ∼= 1 + t× t∗.

Composition by interleaving Notice that prodGame plays always
bits from the first game, and when that game finishes, it plays
the bits of the second game. An alternative approach would be to
interleave the bits of the two games. Here is a graphical illustration.
Suppose that we start with the games given below:

A1

α1 A2

α2 α3

B1

B2

β1 β2

β3

Interleaving the two games, starting with the left-hand game gives:

A1

B1

B2

α1, β1 α1, β2

α1, β3

B1

A2

B2

α2, β1 α2, β2

B2

α3, β1 α3, β2

A2

α2, β3 α3, β3

The ilGame below does that by playing a bit from the game on the
left, but always ‘flipping’ the order of the games in the recursive
calls. Its definition is similar to prodGame:

ilGame :: ∀ t s. Game t → Game s → Game (t,s)
ilGame (Single iso) g2 = g2 +> iso’

where iso’ :: ISO (t,s) s -- assuming ISO t ()
iso’ = prodI iso idI ‘seqI‘ prodLUnitI

ilGame (Split (iso :: ISO t (Either ta tb)) g1a g1b) g2
= Split iso’ (ilGame g2 g1a) (ilGame g2 g1b)
where iso’ :: ISO (t,s) (Either (s,ta) (s,tb))

iso’ = swapProdI ‘seqI‘ prodI idI iso
‘seqI‘ prodRSumI

The resulting encoding of product values of course differs between
ilGame and prodGame. The ilGame may be more convenient for
combining games for infinite data structures, such as streams.

Dependent composition Suppose that, after having decoded a
value of datatype t, we wish to play a game which depends on the
particular value that has been decoded: for instance, given a game
for natural numbers, and a game for lists of a particular size, we
might want to create a game for arbitrary lists paired up with their
size. We may do this with the help of a dependent product game
combinator.

Ideally (in type theory), the signature of this combinator would be:

∀ t s. Game t→ ((x:t)→ Game (s x))→ Game (Σx:t, s x)

In Haskell, we compromise with the simpler type of depGame given
below:

depGame :: ∀ t s. Game t → (t → Game s) → Game (t,s)
depGame (Split (iso::ISO t (Either ta tb)) ga gb) f

= Split iso’ (depGame ga fa) (depGame gb fb)
where fa :: ta → Game s

fa = f ◦ from iso ◦ Left
fb :: tb → Game s
fb = f ◦ from iso ◦ Right

iso’ :: ISO (t,s) (Either (ta,s) (tb,s))
iso’ = prodI iso idI ‘seqI‘ prodLSumI

depGame (Single iso) f = f (from iso ()) +> iso’
where iso’ = prodI iso idI ‘seqI‘ prodLUnitI

The definition of depGame resembles the definition of prodGame,
but notice how in the Single case we call the f function on the
singleton value to determine the game we must play next. In the
Split case we have to create functions fa and fb to make the types
match up for the recursive calls to ga and gb. Their implementation
is completely determined by the types we have to construct.

How can we use depGame? It is illustrative to use it to create yet
another encoding for lists. Suppose first that we are given a function

vecGame :: Game t → Nat → Game [t]

that builds a game for lists of the given length. Its definition should
be straightforward and we leave it as an exercise for the reader
(hint: recurse on the Nat argument, use constGame in the 0 case and
prodGame in the non-zero case). We may then define a game for lists
paired up with their length, and use that to derive yet another game
for lists, listGame’:

lengthListGame :: Game t → Game (Nat,[t])
lengthListGame g = depGame binNatGame (vecGame g)

listGame’ :: ∀ t. Game t → Game [t]
listGame’ g = lengthListGame g +> Iso h j

where h :: [t] → (Nat,[t])
h lst = (length lst, lst)
j :: (Nat,[t]) → [t]
-- Precondition: n = length lst
j (n,lst) = lst

3. Properties of games

Pearly code is all very well, but is it correct? In this section we
study the formal properties of game-derived codecs, proving basic
correctness and termination results, and also the every bit counts
property of the title. All theorems have been proved formally using
the Coq proof assistant.

3.1 Correctness

The following round-trip property follows directly from the iso-
morphisms embedded inside the games.4

LEMMA 1 (Enc/Dec). Suppose g : Game t and x : t. If enc g x =
` then dec g (` ++ `s) = (x, `s).

4 Strictly speaking, it follows from ‘half’ the isomorphism, namely that in
an Iso to from, from◦to = id.



Maybe Nat

= Some 0?

Some 0 = Some 1?

Some 1 = Some 2?

Some 2 ...

Maybe Nat− {Some 0}

Maybe Nat− {Some 0, Some 1}

Figure 4: Game for optional naturals

The lemma asserts that if x encodes to a bitstring `, then the decod-
ing of any extension of ` returns x together with the extension.

The literature on coding theory [20] emphasizes the essential prop-
erty of codes being unambiguous: no two values are assigned the
same code. This follows directly from Lemma 1.

COROLLARY 1 (Unambiguous codes). Suppose g : Game t and
v, w : t. If enc g v = ` and enc g w = ` then v = w.

A stronger property that implies unambiguity is prefix-freedom: no
prefix of a valid code can itself be a valid code. For prefix codes, we
can stop decoding at the first successfully decoded value: no ‘look-
ahead’ is required. This property also follows from Lemma 1, or
can be proved directly from the definition of enc.

COROLLARY 2 (Prefix encoding). Suppose g : Game t and v, w :
t. If enc g v = ` and enc g w = ` ++ `s then v = w.

It is worth pausing for a moment to return briefly to the game
binNatGame from Section 2.1. Observe that the ‘standard’ binary
encoding for natural numbers is not a prefix code. For example
the encoding of 3 is 11 and the encoding of 7 is 111. The extra
bits inserted by binNatGame are necessary to convert the standard
encoding to one which is a prefix encoding. The anticipated down-
side are the inserted ‘terminator’ bits that double the size of the
encoding (but keeping it Θ(logn)).

All games presented so far give rise to unambiguous prefix codes.
This follows from the correct construction of isomorphisms; and
in Coq, the very type of ISO forces us to formally prove the iso-
morphism properties and hence we derive games that are correct
by construction.

3.2 Termination

Having unambiguous codes is an essential correctness property of
an encoding5, but is it the only essential property that we care
about? A close inspection of Lemma 1 reveals that the stated non-
ambiguity property is conditional on the termination of the encoder.
Although in traditional coding theory termination of encoding for
any value is taken for granted, that is not the case in the games
setting.

Here is a problematic example of a somewhat funny game for the
datatype Maybe Nat, appearing in Figure 4. At step-i, the game
asks whether the value in hand is Some i, or any other value in
the datatype Maybe Nat. Notice that when asked to encode a value
Nothing the encoder will simply play the game for ever, diverging.

5 But, to be fair, sometimes lossy coding may be desirable as well; for
instance in video codecs.

That’s certainly no good! Fortunately, we can require games to be
total, meaning that every element in the domain is represented by
some leaf node.

DEFINITION 1 (Totality). A game g of type Game t is total iff for
every value x of type t, there exists a finite path g  x, where 
is inductively defined below:

Single (Iso a b) b ()

g1  x1

Split (Iso a b) g1 g2  b (Left x1)

g2  x2

Split (Iso a b) g1 g2  b (Right x2)

The reader can easily check that the games presented so far are total
and the combinators preserve totality.

LEMMA 2 (Termination). Suppose g : Game t. If g is total then
enc g terminates on all inputs.

3.3 Non-redundancy

Games guarantee that two values will never be assigned the same
code, but what about the converse: is it possible that two codes
represent the same value? Although there is nothing wrong with
allowing such codes, they are arguably less efficient. Happily, the
isomorphism gadgets embedded inside the games eliminate such
codes.

LEMMA 3 (Dec/Enc). Suppose g : Game t. If dec g ` = (x, `s)
then there exists `p such that enc g x = `p and `p ++ `s = `.

Injectivity of decoding follows then easily.

COROLLARY 3 (Non-redundancy). Suppose dec g `1 = (x, [])
and dec g `2 = (x, []). Then `1 = `2.

Hence, all valid codes ‘count’ in an information-theoretic sense:
all resulting codes represent different values. But, do all bits count?
Can we make all bistrings valid codes?

3.4 Proper games

An example of redundancy would be a codec for booleans that
associates the codes 00 and 01 with False and 10 and 11 with True.
Corollary 3 ensures that codes can’t be ‘wasted’ in this way. But
consider a coding for booleans in which True is encoded as 11 and
False as 00, and 01 and 10 are plainly invalid. This corresponds
to a question-answer game in which the question Are you True? is
asked twice. We can write such a game, as follows:

-- Assumption: t is uninhabited
voidIso :: ISO t (Either t t)
voidIso = Iso Left (λx→case x of Left v→v; Right v→v)

voidGame :: Game t
voidGame = Split voidIso voidGame voidGame

badBoolGame :: Game Bool
badBoolGame = Split boolIso

(Split(Iso (λ_→Left ()) (λ_→())) unitGame voidGame)
(Split(Iso (λ_→Right()) (λ_→())) voidGame unitGame)

It may take a little head-scratching to work out what’s going on:
the question expressed with boolIso asks whether a boolean value
is True or False and goes Left or Right respectively. But the
following question in both cases is silly: we ask whether a unit
value is indeed a unit value or it belongs in the empty set (the latter
expressed with playing voidGame)! Here’s a session that illustrates
the badBoolGame behaviour:



> enc badBoolGame False
[0,0]
> enc badBoolGame True
[1,1]
> dec badBoolGame [0,1]
(False,*** Exception: Input too short
> dec badBoolGame [1,0]
(True,*** Exception: Input too short

The first question asked by the game effectively partitions the
booleans into {False} and {True}. But these are singletons, so any
further questions would not reveal further information. If we do ask
a question, using Split, then one branch must be dead, i.e. have a
domain that is not inhabited – hence the use of voidGame in the
code.

For domains more complex than Bool, such non-revealing ques-
tions are harder to spot. Suppose, for example, that in the game for
programs described in the introduction, the first question had been
‘Are you a variable?’ Because we know that the program under in-
spection is closed, this question is silly, and we already know that
the answer is no.

We call a game proper if every isomorphism in Split nodes is a
proper splitting of the domain. Equivalently, we make the following
definition.

DEFINITION 2 (Proper games). A game g of type Game t is proper
iff for every subgame g′ of type Game s, type s is inhabited.

It is immediate that voidGame is not a proper game and conse-
quently badBoolGame is not proper either.

Codecs associated with proper games have a very nice property that
justifies the slogan every bit counts: every possible bitstring either
decodes to a unique value, or is the prefix of such a bitstring.

LEMMA 4 (Every bit counts). Let g be a proper and total Game t.
Then, if dec g ` fails then there exists `s and a value x of type t

such that enc g x = ` ++ `s.

Notice though, that even in a total and proper game with infinitely
many leaves (such as the natural numbers game in Figure 1) there
will be an infinite number of bit strings on which the decoder fails:
By König’s lemma, in such a game there must exist at least one
infinite path, and the decoder will fail on all prefixes of that path.

The careful reader will have observed that this lemma requires that
the game be not only proper, but also total. Consider the following
variation of binNatGame from Section 2.2.

binNatGame’ :: Game Nat
binNatGame’ = Split iso binNatGame’ binNatGame’

where iso = Iso ask bld
ask n | even n = Left (n ‘div‘ 2)

| otherwise = Right (n ‘div‘ 2)
bld (Left m) = 2*m
bld (Right m) = 2*m+1

The question asked splits the input set of all natural numbers into
two disjoint and inhabited sets: the even and the odd ones. However,
there are no singleton nodes in binNatGame’ and hence Lemma 4
cannot hold for this game.

3.5 Summary

Here is what we have learned in this section.
• Games constructed from valid isomorphisms give rise to codes

that are unambiguous, prefix-free, non-redundant, and which
satisfy a basic round-trip correctness property.
• The encoder terminates if and only if the game is total.

• If additionally the game is proper then every bit counts.

For the the rest of this paper we embark in giving more ambitious
and amusing concrete games for sets and λ-terms.

4. Sets and multisets
So far we have considered primitive and structured data types
such as natural numbers, lists and trees, for which games can be
constructed in a type-directed fashion. Indeed, we could even use
generic programming techniques [12, 14] to generate games (and
thereby codecs) automatically for such types.

But what about other structures such as sets, multisets or maps,
in which implicit invariants or equivalences hold, and which our
games could be made aware of? For example, consider representing
sets of natural numbers using lists. We know (a) that duplicate ele-
ments do not occur, and (b) that the order doesn’t matter when con-
sidering a list-as-a-set. We could use listGame binNatGame for this
type. It would satisfy the basic round-tripping property (Enc/Dec);
however, bits would be ‘wasted’ in assigning distinct codes to
equivalent values such as [1,2] and [2,1], and in assigning codes
to non-values such as [1,1].

In this section we show how to represent sets and multisets effi-
ciently. First, we consider the specific case of sets and multisets of
natural numbers, for which we can hand-craft a ‘delta’ encoding in
which every bit counts. Next, we show how for arbitrary types we
can use an ordering on values induced by the game for the type to
construct a game for sets of elements of that type.

4.1 Hand-crafted games

How would we encode the multiset {3, 6, 5, 6}? We might start
by ordering the values to obtain the canonical representation
[3, 5, 6, 6]. But now imagine encoding this using a vanilla list of
natural numbers game listGame binNatGame: when encoding the
second element, we would be wasting the codes for values 0, 1, and
2, as neither of these values could possibly follow 3 in the ordering.
Instead of encoding the value 5 for the second element of the or-
dered list, we can encode 2, the difference between the first two el-
ements. Doing the same thing for the other elements, we obtain the
list [3, 2, 1, 0], which we can encode using listGame binNatGame

without wasting any bits. To decode, we reverse the process and
add the difference.

We can apply the same ‘delta’ idea for sets, except that the delta is
decremented, taking account of the fact that the difference between
successive elements must be non-zero.

In Haskell, we can implement diff and undiff functions that
respectively compute and apply difference lists.

diff minus [] = []
diff minus (x:xs) = x : diff’ x xs

where diff’ base [] = []
diff’ base (x:xs) = minus x base : diff’ x xs

undiff plus [] = []
undiff plus (x:xs) = x : undiff’ x xs

where undiff’ base [] = []
undiff’ base (x:xs) = base’ : undiff’ base’ xs

where base’ = plus base x

The functions are parameterized on subtraction and addition oper-
ations, and are instantiated with appropriate concrete operations to
obtain games for multisets and sets of natural numbers, as follows.

natMultisetGame :: Game Nat → Game [Nat]
natMultisetGame g =

listGame g +> Iso (diff (-) ◦ sort) (undiff (+))



natSetGame :: Game Nat → Game [Nat]
natSetGame g =

listGame g +> Iso (diff (λ x y → x-y-1) ◦ sort)
(undiff (λ x y → x+y+1))

Here is the multiset game in action, using our binary encoding of
natural numbers on the example multiset {3, 6, 5, 6}.

> enc (listGame binNatGame) [3,6,5,6]
[0,0,1,0,1,1,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,1,1]
> enc (natMultisetGame binNatGame) [3,6,5,6]
[0,0,1,0,1,1,0,0,0,1,0,0,1,1,0,1,1]
> dec (natMultisetGame binNatGame) it
([3,5,6,6],[])

As expected, the encoding is more compact than a vanilla list
representation. Observe that here the round-trip property holds up
to equivalence of lists when interpreted as multisets: encoding
[3,6,5,6] and then decoding it results in an equivalent but not
identical value [3,5,6,6.

4.2 Generic games

That’s all very well, but what if we want to encode sets of pairs,
or sets of sets, or sets of λ-terms? First of all, we need an ordering
on elements to derive a canonical list representation for the set.
Conveniently, the game for the element type itself gives rise to
natural comparison and sorting functions:

compareByGame :: Game a → (a → a → Ordering)
compareByGame (Single _) x y = EQ
compareByGame (Split (Iso ask bld) g1 g2) x y =

case (ask x, ask y) of
(Left x1 , Left y1) → compareByGame g1 x1 y1
(Right x2, Right y2) → compareByGame g2 x2 y2
(Left x1, Right y2) → LT
(Right x2, Left y1) → GT

sortByGame :: Game a → [a] → [a]
sortByGame g = sortBy (compareByGame g)

We can then use the list game on a sorted list, but at each successive
element adapt the element game so that ‘impossible’ elements are
excluded. To do this, we write a function removeLE that removes
from a game all elements smaller than or equal to a particular
element, with respect to the ordering induced by the game. If the
resulting game would be empty, then the function returns Nothing.

removeLE :: Game a → a → Maybe (Game a)
removeLE (Single _) x = Nothing
removeLE (Split (Iso ask bld) g1 g2) x =

case ask x of
Left x1 → case removeLE g1 x1 of

Nothing → Just (g2 +> rightI)
Just g1’ → Just (Split (Iso ask bld) g1’ g2)

Right x2 → case removeLE g2 x2 of
Nothing → Nothing
Just g2’ → Just (g2’ +> rightI)

where rightI = Iso (λx → case ask x of Right y → y)
(bld ◦ Right)

The code for listGame can then be adapted to do sets:

setGame :: Game a → Game [a]
setGame g = setGame’ g +> Iso (sortByGame g) id

where setGame’ g = Split listIso unitGame $
depGame g $ λx →
case removeLE g x of

Just g’ → setGame’ g’
Nothing → constGame []

Notice the dependent composition, which, once a value is deter-
mined plays the game having removed all smaller elements from
it.6

5. Codes for programs
We’re now ready to return to the problem posed in the introduction:
how to construct games for programs. As with the games for sets
described in the previous section, the challenge is to devise games
that satisfy the every-bit-counts property, so that any string of bits
represents a unique well-typed program, or is the prefix of such a
code.

5.1 No types

First let’s play a game for the untyped λ-calculus, declared as a
Haskell datatype using de Bruijn indexing for variables:

data Exp = Var Nat | Lam Exp | App Exp Exp

For any natural number n the game expGame n asks questions of
expressions whose free variables are in the range 0 to n− 1.

expGame :: Nat → Game Exp
expGame 0 = appLamG 0
expGame n =

Split (Iso ask bld) (rangeGame 0 (n-1)) (appLamG n)
where ask (Var i) = Left i

ask e = Right e
bld (Left i) = Var i
bld (Right e) = e

If n is zero, then the expression cannot be a variable, so expGame

immediately delegates to appLamG that deals with expressions
known to be non-variables. Otherwise, the game is Split between
variables (handled by rangeGame from Section 2) and non-variables
(handled by appLamG). The auxiliary game appLamG n works by
splitting between application and lambda nodes:

appLamG n =
Split (Iso ask bld) (prodGame (expGame n) (expGame n))

(expGame (n+1))
where ask (App e1 e2) = Left (e1,e2)

ask (Lam e) = Right e
bld (Left (e1,e2)) = App e1 e2
bld (Right e) = Lam e

For application terms we play prodGame for the applicand and
applicator. For the body of a λ-expression the game expGame (n+1)

is played, incrementing n by one to account for the bound variable.

Let’s run the game on the expression I K where I = λx.x and
K = λx.λy.x.

> let tmI = Lam (Var 0)
> let tmK = Lam (Lam (Var 1))
> enc (expGame 0) (App tmI tmK)
[0,1,0,1,1,1,0,1]
> dec (expGame 0) it
(App (Lam (Var 0)) (Lam (Lam (Var 1))),[])

It’s easy to validate by inspection the isomorphisms used in
expGame. It’s also straightforward to prove that the game is total
and proper.

5.2 Simple types

We now move to the simply-typed λ-calculus, whose typing rules
are shown in conventional form in Figure 5.

6 The $ notation is just Haskell syntactic sugar that allows applications to
be written with fewer parentheses: f (h g) can be written as f $ h g.



x:τ ∈ Γ
VAR

Γ ` x : τ

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1
APP

Γ ` e1 e2 : τ2

Γ, x:τ1 ` e : τ2
LAM

Γ ` λx:τ1.e : τ1 → τ2

Figure 5: Simply-typed λ-calculus

In Haskell, we define a data type Ty for types and Exp for ex-
pressions, differing from the untyped language only in that λ-
abstractions are annotated with the type of the argument:

data Ty = TyNat | TyArr Ty Ty deriving (Eq, Show)
data Exp = Var Nat | Lam Ty Exp | App Exp Exp

Type environments are just lists of types, indexed de Bruijn-style.
It’s easy to write a function typeOf that determines the type of an
open expression under some type environment – assuming that it is
well-typed to start with.

type Env = [Ty]
typeOf :: Env → Exp → Ty
typeOf env (Var i) = env !! i
typeOf env (App e _) = let TyArr _ t = typeOf env e in t
typeOf env (Lam t e) = TyArr t (typeOf (t:env) e)

We’d like to construct a game for expressions that have type t

under some environment env. If possible, we’d like the game to be
proper. But wait: there are combinations of env and t for which no
expression even exists, such as the empty environment and the type
TyNat. We could perhaps impose an ‘inhabitation’ precondition on
the parameters of the game. But this only pushes the problem into
the game itself, with sub-games solving inhabitation problems lest
they ask superfluous questions and so be non-proper. As it happens,
type inhabitation for the simply-typed λ-calculus is decidable but
PSPACE-complete [21], so we’d rather not go there (yet)!

We can make things easier for ourselves by solving a different
problem: fix the type environment env and a type pattern of the
form τ1 → · · · → τn → ? where ‘?’ is a wildcard standing for any
type. It’s easy to show that for any environment env and pattern
there exists an expression typeable under env whose type matches
the pattern.

We can define such patterns using a data type Pat, and write a
function that returns a boolean indicating whether or not a type
matches a pattern.

data Pat = Any | PArr Ty Pat
matches :: Pat → Ty → Bool
matches Any _ = True
matches (PArr t p) (TyArr t1 t2) = t1==t && matches p t2
matches _ _ = False

Now let’s play some games. Types are easy:

tyGame :: Game Ty
tyGame = Split (Iso ask bld)

(constGame TyNat) (prodGame tyGame tyGame)
where ask TyNat = Left TyNat

ask (TyArr t1 t2) = Right (t1,t2)
bld (Left TyNat) = TyNat
bld (Right (t1,t2)) = TyArr t1 t2

To define a game for typed terms we start with a game for variables.
The function varGame below accepts a predicate Ty → Bool and an
environment, and returns a game for all those indices (of type Nat)
whose type in the environment matches the predicate.

varGame :: (Ty → Bool) → Env → Maybe (Game Nat)
varGame f [] = Nothing
varGame f (t:env) = case varGame f env of
Nothing → if f t then Just (constGame 0) else Nothing
Just g → if f t then Just (Split succIso unitGame g)

else Just (g +> Iso pred succ)

Notice that varGame returns Nothing when no variable in the en-
vironment satisfies the predicate. In all other cases it traverses the
input environment. Observe that if the first type in the input envi-
ronment matches the predicate and there is a possibility for a match
in the rest of the input environment varGame returns a Split that
witnesses this possible choice. It is easy to see that when varGame

returns some game, that game will be proper.

The function expGame accepts an environment and a pattern and
returns a game for all expressions that are well-typed under the
environment and whose type matches the pattern.

-- (env : Env) → (p : Pat) →
-- Game {e | ∃ t, env |- e : t && matches p t}
expGame :: Env → Pat → Game Exp
expGame env p

= case varGame (matches p) env of
Nothing → appLamG
Just varG → Split varI varG appLamG

where appLamG = Split appLamI appG (lamG p)
appG = depGame (expGame env Any) $ λe →

expGame env (PArr (typeOf env e) p)
lamG (PArr t p) = prodGame (constGame t) $

expGame (t:env) p
lamG Any = depGame tyGame $ λt →

expGame (t:env) Any

varI = Iso ask bld where ask (Var x) = Left x
ask e = Right e
bld (Left x) = Var x
bld (Right e) = e

appLamI = Iso ask bld
where ask (App e1 e2) = Left (e2,e1)

ask (Lam t e) = Right (t,e)
bld (Left (e2,e1)) = App e1 e2
bld (Right (t,e)) = Lam t e

The expGame function first determines whether the term can pos-
sibly be a variable, by calling varGame. If this is not possible
(case Nothing) the game proceeds with appLamG that will determine
whether the non-variable term is an application or a λ-abstraction.
If the term can be a variable (case Just varG) then we may imme-
diately Split with varI by asking if the term is a variable or not –
it not we may play appLamG as in the first case. The appLamG game
uses appLamI to ask whether the term is an application, and then
plays game appG; or a λ-abstraction, and then plays game lamG.
The appG performs a dependent composition. After playing a game
for the argument of the application, it binds the argument value
to e and plays expGame for the function value, using the type of e
to create a pattern for the function value. The lamG game pattern
matches on the pattern argument. If it is an arrow pattern we play
a composition of the constant game for the type given by the pat-
tern with the expression for the body of the λ-abstraction in the
extended environment. On the other hand, if the pattern is Any we
first play a game for the argument type, bind the actual type to t

and play expGame for the body of the abstraction using t to updated
the environment.

That was it! Let’s test expGame on the example expression from
Section 1: λx:Nat.λy:Nat.x.

> let ex = Lam TyNat (Lam TyNat (Var 1))
> enc (expGame [] Any) ex
[0,1,0,0,1,1,0]
> dec (expgame [] Any) it



(Lam TyNat (Lam TyNat (Var 1)),[])

Compare the code with that obtained in the introduction. A perfect
match – we have been using the same question scheme!

Finally we can show properness and totality.7

PROPOSITION 1. For all patterns p and environments Γ, the game
expGame Γ p is proper and total for the set of terms e such that
Γ ` e : τ and τ matches the pattern p.

5.3 Stronger non-proper games for typed terms

Let us be brave now and return to the original problem. Given
any environment and type we will construct a game for terms
typeable in that environment with that type. As we have noted
above, obtaining a proper game (and hence an every bit counts
encoding) is difficult, but we can certainly obtain a game easily
without having to implement a type inhabitation solver if we give
up properness. The function expGameCheck below does that.

-- (env:Env) → (t:Ty) → Game {e | env |- e : t}
expGameCheck :: Env → Ty → Game Exp
expGameCheck env t

= case varGame (== t) env of
Nothing → appLamG t
Just varG → Split varI varG (appLamG t)

where appLamG TyNat
= appG +> Iso (λ(App e1 e2)→(e2,e1))

(λ(e2,e1)→App e1 e2)
appLamG (TyArr t1 t2)

= let ask (App e1 e2) = Left (e2,e1)
ask (Lam t e) = Right e
bld (Left (e2,e1)) = App e1 e2
bld (Right e) = Lam t1 e

in Split (Iso ask bld) appG (lamG t1 t2)
appG = depGame (expGame env Any) $ λe →

expGameCheck env (TyArr (typeOf env e) t)
lamG t1 t2 = expGameCheck (t1:env) t2

Similarly to expGame, expGameCheck first determines whether the
expression can be a variable or not and uses the variable game or
the appLamG next. The appLamG game in turn pattern matches on the
input type. If the input type is TyNat the we know that the term can’t
possibly be a λ-abstraction and hence play the appG game. On the
other hand, if the input type is an arrow type TyArr t1 t2 then the
term may be either application or abstraction. The application game
appG as before plays a game for the argument of an application,
binds it to e and recursively calls expGameCheck using the type
of e. Interestingly we use expGame env Any to determine the type
of the argument – alternatively we could perform a dependent
composition where the first thing would be to play a game for the
argument type, and subsequently use that type to play a game for
the argument and the function. The lamG game is straightforward.

There are no obvious empty types in this game – why is it non
proper? Consider the case when the environment is empty and the
expected type is TyNat. According to expGameCheck the game to
be played will be the appG game for applications. But there can’t
be any closed terms of type TyNat to start with, and the game
can’t possibly have any leaves – something that we failed to check
because we did carefully check inhabitation before deciding which
game to play on next. We’ve asked a silly question (by playing
appG) on an uninhabited type!

In other words the expGameCheck game is non-proper and hence vi-
olates the every bit counts property. On the other hand it’s definitely
a useful game and enjoys all other properties we’ve been discussing

7 Since we do not have expGame in Coq, we’ve only showed this on paper,
hence it’s a Proposition and not a Theorem.

in this paper. Happily, there is a way to convert non-proper games
to proper games in many cases and we return to this problem in the
next section.

6. Discussion
Non-proper filtering Sometimes it’s convenient not to be proper.
Using voidGame from Section 3.4 we can write filterGame, which
accepts a game and a predicate on t and returns a game for those
elements of t that satisfy the predicate.

-- (f : t → Bool) → Game t → Game {x:t | f t}
filterGame :: (t → Bool) → Game t → Game t
filterGame f g@(Single (Iso _ bld)) =
if f (bld ()) then g else voidGame -- {x:t |f t} empty!

filterGame f (Split (Iso ask bld) g1 g2)
= Split (Iso ask bld) (filterGame (f ◦ bld ◦ Left) g1)

(filterGame (f ◦ bld ◦ Right) g2)

It works by inserting voidGame in place of all singleton nodes that
do not satisfy the filter predicate. We may, for instance, filter a game
for natural numbers to obtain a game for the even natural numbers.

> enc (filterGame even binNatGame) 2
[1,1,0]
> dec (filterGame even binNatGame) [1,1,0]
(2,[])

Naturally, since the game is no longer proper, decoding can fail:

> dec (filterGame even binNatGame) [1,0,1,0,0,1,1,1,1]
(*** Exception: Input too short

Moreover, for the above bitstring, no suffix is sufficient to convert
it to a valid code – we have entered the voidGame non-proper world.
What is so convenient with the non-proper filterGame implemen-
tation? First, the structure of the original encoding is intact with
only some codes being removed. Second, it avoids hard inhabita-
tion questions that may involve theorem proving or search.

Proper finite filtering Now let’s recover properness, with the
following variant on filtering:

-- (f : t → Bool) → Game t → Maybe (Game {x:t | f t})
filterFinGame :: (t → Bool) → Game t → Maybe (Game t)
filterFinGame f g@(Single (Iso _ bld)) =

if f (bld ()) then Just g else Nothing
filterFinGame f (Split iso@(Iso ask bld) g1 g2)

= case (filterFinGame (f ◦ bld ◦ Left) g1,
filterFinGame (f ◦ bld ◦ Right) g2) of

(Nothing, Nothing) → Nothing
(Just g1’, Nothing) → Just $ g1’ +> iso1
(Nothing, Just g2’) → Just $ g2’ +> iso2
(Just g1’, Just g2’) → Just $ Split iso g1’ g2’

where fromLeft (Left x) = x
fromRight (Right x) = x
iso1 = Iso (fromLeft ◦ ask) (bld ◦ Left )
iso2 = Iso (fromRight ◦ ask) (bld ◦ Right)

The result of applying filterFinGame is of type Maybe (Game t).
If no elements in the original game satisfy the predicate, then
filterFinGame returns Nothing, otherwise it returns Just a game
for those elements of t satisfying the predicate. In contrast to
filterGame, though, filterFinGame preserves proper-ness: if the
input game is proper, then the result game is too. It does this by
eliminating Split nodes whose subgames would be empty.
There is a limitation, though, as its name suggests: filterFinGame
works only on finite games. This can be inferred from the obser-
vation that filterFinGame explores the game tree in a depth-first
manner. Nevertheless, for such finite games we can use it profitably
to obtain efficient encodings:



> enc (fromJust (filterFinGame even (rangeGame 0 7))) 4
[1,0]

Compare this to the original encoding before filtering:

> enc (rangeGame 0 7) 4
[1,0,0]

Being non-proper can also be useful for padding [17] to create a
fixed length code, or one which is a multiple of some block size.
In our setting this is easy to do; here’s a straightforward padding
strategy: in singleton leaves whose path from the root is smaller
than the desired length append a game that splits that singleton set
into the empty set and the original singleton set. Play voidGame for
the empty set, and repeat until you have reached the desired path
length where you may insert the original singleton node.

Proper infinite filtering What about infinite domains, as is typ-
ically the case for recursive types? Can we implement a filter on
games that produces proper games for such types?

The answer is yes, if we are willing to drastically change the origi-
nal encoding that the game expressed, and if that original game has
infinitely many leaves that satisfy the filter predicate. Here is the
idea, not given here in detail for reasons of space, but implemented
in the accompanying code as function filterGame_inf: perform a
breadth-first traversal of the original game, and each time you en-
counter a new singleton node (that satisfies the predicate) insert it
into a right-spined tree:

α1
...

α2 α3

...
=⇒

α1

α2

α3
...

The ability to become proper in this way can help us recover proper
games for simply-typed terms of a given type in a given environ-
ment, from the weaker games that expGameCheck of Section 5.3
produces, if we have a precondition that there exists one term of
the given type in the given environment. If there exists one term of
the given type in the given environment, there exist infinitely many,
and hence the expGameCheck game has infinitely many inhabitants.
Consequently it is possible to rebalance it in the described way to
obtain a proper game for simply-typed terms!

expGameCheckProper env t
= filterGame_inf (λ_ → True) (expGameCheck env t)

Practicality There is no reason to believe that the game-based
approach is suitable only for theoretical investigations but not for
‘real’ implementations. To test this hypothesis we intend to apply
the technique to a reasonably-sized compiler intermediate language
such as Haskell Core [23] or .NET CIL [7]. (We’ve already created
an every-bit-counts codec for ML-style let polymorphism.)

Determining the space complexity of games is somewhat tricky: as
we navigate down the tree, pointers to thunks representing both the
left and the right subtrees are kept around, although only one of two
pointers is relevant. An optimization would involve embedding the
next game to be played on inside the isomorphism, by making the
ask functions return not only a split but also, for each alternative
(left or right), a next game to play on. Hence only the absolutely
relevant parts of the game would be kept around during encoding
and decoding. This representation could then be subject to the
optimizations described in stream fusion work [5]. For this paper
though our goal has been to explain the semantics of games and not

their optimization and hence we used the easier-to-grasp definition
of a game as just a familiar tree datatype.

It’s also worth noting that the encoding and decoding functions can
be specialized by hand for particular games, eliminating the game
construction completely. For a trivial example, consider inlining
unaryNatGame into enc, performing a few simplifications, to obtain
the following code:

encUnaryNat x = case x of 0 → 1 : []
n+1 → 0 : encUnaryNat n

Compression For reasons of space, we have compressed away
any discussion of classic techniques such as Huffman coding. In
the accompanying code, however, the reader can find a function
huffGame that accepts a list of frequencies associated with elements
of type t and returns a Game t constructed using the Huffman
technique. Adaptive (or dynamic) Huffman encoding is achieved
using just two more lines of Haskell!

Investigation of other compression techniques using games remains
future work. In particular, we would like to integrate arithmetic
coding, for which slick Haskell code already exists [2].

It would also be interesting to make use of statistics in our games
for typed programs [3], producing codes that are even more com-
pact than is attained through the use of type information.

Games for test generation Test generation for use in tools such
as Quickcheck [4] is a potential application of game-based decod-
ing, since generating random bitstrings amounts to generating pro-
grams. As a further direction for research, we wold like to examine
how the programmer could affect the distribution of the generated
programs, by tweaking the questions asked during a game.

Program development and verification in Coq Our attempts to
encode everything in this paper in Coq stumbled upon Coq’s lim-
ited support for co-recursion, namely the requirement that recur-
sive calls be guarded by constructors of coinductive data types [1].
In many games for recursive types the recursive call was under a
use of a combinator such as prodGame, which was itself guarded.
Whereas it is easy to show on paper that the resulting co-fixpoint
is well-defined (because it is productive) Coq does not admit such
definitions. On the positive side, using the proof obligation genera-
tion facilities of Program [22] was a very pleasant experience. Our
Coq code in many cases has been a slightly more verbose version
of the Haskell code (due to the more limited type inference), and
the isomorphism obligations could be proven on the side. Our over-
all conclusion from the experience is that Coq itself can become a
very effective development platform but it would benefit from bet-
ter support for general recursion, co-recursion, and type inference.

7. Related work

Our work has strong connections to Kennedy’s pickler combina-
tors [16]. There, a codec was represented by a pair of encoder and
decoder functions, with codecs for complex types built from simple
ones using combinators. The basic round-trip property (Enc/Dec)
was considered informally, but stronger properties were not stud-
ied. Before developing the game-based codecs, we implemented
by hand encoding and decoding functions for the simply-typed λ-
calculus. Compared to the game presented in Section 5, the code
was more verbose – partly because the encoder and decoder out
of necessity used the same ‘logic’. In our opinion, games are more
succint representations of codecs, and are easier to verify, requiring
only local reasoning about isomorphisms. Note that other related
work [6] identifies and formally proves similar round-trip proper-
ties for encoders and decoders in several encryption schemes.



One can think of games as yet another technique for datatype-
generic programming [12], where one of the most prominent appli-
cations is generic marshalling and unmarshalling. There exist many
approaches to datatype-generic programming that can address mar-
shalling and umarshalling [14]. Most of these approaches are based
on the structural representations of datatypes, typically as fixpoints
of functors consisting of sums and products. It is straightforward to
derive automatically a default ‘structural’ game for recursive and
polymorphic types. On the other hand, games are convenient for ex-
pressing semantic aspects of the values to be encoded and decoded,
such as naturals in a given range. Moreover, the state of a game
and therefore the codes themselves can be modified as the game
progresses, which is harder (but not impossible, perhaps through
generic views [15]) in datatype-generic programming techniques.

Another related area of work are data description languages, which
associate the semantics of types to their low-level representa-
tions [9]. The interpetation of a datatype is a coding scheme for
values of that datatype. There, the emphasis is on avoiding man-
ually having to write encode and decode functions. Our goal is
slightly different; more related to the properties of the resulting
coding schemes and their verification rather than the ability to au-
tomatically derive encoders and decoders from data descriptions.

Though we have not seen games been used for writing and verify-
ing encoders and decoders, tree-like structures have been proposed
as representations of mathematical functions. Ghani et al. [11] rep-
resent continuous functions on streams as binary trees. In our case,
thanks to the embedded isomorphisms, the tree structures represent
at the same time both the encode and the decode functions.

Other researchers have investigated typed program compression,
claiming high compression ratios for every-bit-counts (and hence
tamper-proof) codes for low-level bytecode [13, 10]. Although that
work is not formalized, it is governed by the design principle of
only asking questions that ‘make sense’. That is precisely what our
properness property expresses, which provably leads to every bit
counts codes. Also closely related is the idea behind oracle-based
checking [19] in proof carrying code [18]. The motivation there is
to eliminate proof search for untrusted software and reduce the size
of proof encodings. In oracle-based checking, the bitstring oracle
guides the proof checker in order to eliminate search and unam-
biguously determine a proof witness. Results report an improve-
ment of a factor of 30 in the size of proof witnesses compared to
their naı̈ve syntactic representations. Although not explicitly stated
in this way, oracle-based checking really amounts to some game
for well-typed terms in a variant of LF.
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