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2 A. Tolmach and D. Olivamake FLs well-suited for rapid prototyping and stand-alone applications. But manyreal-world applications need to take advantage of an existing base of \legacy" codewritten in imperative 3GLs. Thus a reasonable aim is to enable programmers touse an FL to write \glue" code that combines existing 3GL code components, orto write FL components that can be integrated into larger 3GL-based systems.Unfortunately, FL implementations typically do not give the programmer controlover the detailed layout and lifetime of data, and usually assume a special-purposeruntime system; these characteristics impede interfacing with foreign languages.\Foreign function" interfaces that address these problems are becoming more com-mon (Huelsbergen, 1996; Leroy, 1997; Peyton Jones et al., 1997; Tofte et al., 1997),but tend to have several disadvantages: moving data between languages typicallyrequires expensive on-the-y format conversions or tricky cast operations; there isoften substantial overhead in transferring control between FL and 3GL runtimesystems, which discourages small-grained interactions; and the resulting integratedcode is an inelegant hybrid that depends on the implementation details of FL and3GL compilers, which may be unacceptable in organizations that mandate use ofstandardized, portable 3GLs.We have developed an alternative approach to interoperability that completelybypasses these problems by translating the entire FL program into the impera-tive 3GL used by the legacy code base. Speci�cally, we have built a system thattranslates an ML-like source language (called RML, for \Restricted ML") into well-typed, portable, \vanilla"Ada83 or ANSI C code, which can be passed to a standardcompiler. Since the output of the translator represents the FL's types and controlstructures using the 3GL's types and control structures, FL and 3GL code can beeasily integrated, even within a single procedure, in an e�cient and fully type-safemanner.Our system has been developed as the back end of a larger application generatorsystem that produces integrable components fromhigh-level speci�cations (Kieburtzet al., 1995); we �rst generate RML code from the speci�cations using semantics-directed techniques, and then translate that code to Ada83 using the scheme de-scribed in this paper.1 However, the system is quite general; it can accommodatehand-written or generated RML code from any source, and may be useful in anycontext where tight integration with an existing legacy code base is desirable.This paper describes the design and implementation of our RML-to-3GL trans-lator. Many of the requirements on such a translator are familiar from existingFL compilers: high-level features such as polymorphism, higher-order functions,and algebraic datatypes need to be expressed in terms of much lower-level typeand control constructs. However, the need to generate adequately performing, well-typed, vanilla target code|particularly for Ada83, a quite secure and restrictivelanguage|makes special demands on the translator. These have led us to a novelcombination of compilation techniques, some of which are of independent interest:1 The choice of Ada83 was mandated by our project sponsor, the U.S. Air Force MaterielCommand.



From ML to Ada 3� We use a type-based macro-expansion technique called templates (Volpanoand Kieburtz, 1985; Volpano and Kieburtz, 1989) to integrate 3GL code intoRML. Each RML program is translated with respect to a particular tem-plate, which de�nes a set of abstract, primitive types and a set of primitiveoperators. The de�nitions take the form of macros that expand into target-language text. Both substantial legacy code components and simple primitivetypes and operators are handled uniformly in this fashion. Operators mustbe monomorphic and �rst-order. Templates are speci�ed using a specializedde�nition language; see Section 4.� Our system removes polymorphism from RML programs by cloning polymor-phic functions and datatype declarations, making a separate monomorphicversion for each distinct set of instantiating type variables; see Section 6. Al-though this approach has been suggested before (Jones, 1993), and similare�ects have sometimes been achieved by accident (Tarditi et al., 1996), weare unaware of any previous practical, intentional realizations. The approachrequires access to the whole RML program.� Our system removes higher-order functions using a novel typed closure-conversionalgorithm that represents closures as members of algebraic datatypes, andgenerates type-speci�c dispatch functions to interpret them; see Section 9.The resulting code does not even require function pointers (which Ada83lacks). Unlike previous treatments of typed closure-conversion (Minamideet al., 1996), we do not need to introduce new language primitives or fancytype systems to maintain typability, although our method does again requireaccess to the whole program, which must be monomorphic.� Our system optimizes the closure-converted code, using simple, standard \partial-evaluation-style" transformations; although optimizing at this stage has beensuggested before, we are not aware that anyone has actually done it, and itproves to be useful. For example, the standard uncurrying optimization isperformed \for free" by the standard inlining optimization; see Section 10.1.� Furthermore, the code produced by our typed closure-conversion algorithmcan be viewed as being the result of the simple, implicit closure analysis. Oursystem takes advantage of this closure analyses to choose more e�cient closurerepresentations and perform more aggressive inlining than an untyped conver-sion could support; see Section 10.2. We also show how to express the resultsof the somewhat stronger closure analysis of Bondorf and J�rgensen (Bon-dorf and J�rgensen, 1993; Palsberg, 1995) within the standard algebraic typeframework; see Section 10.3.� Our system eliminates tail calls, even among mutually recursive functions,without introducing global labels (which both ANSI C and Ada83 lack). Ituses local labels instead, merging mutually recursive functions into a singlefunction with multiple entry points if necessary; see Section 11.The architecture of our translator resembles that of other recent transformation-based FL compilers (Appel, 1992; Leroy, 1991; Peyton Jones, 1996; Tarditi et al.,1996). The translator, which is itself written in Standard ML, is structured as a



4 A. Tolmach and D. Olivaseries of relatively simple transformations, each preserving semantics and types; seeSection 5. It uses a small set of intermediate languages, each of which is stronglytyped and executable by an interpreter. There are type-checkers and self-test mech-anisms built in at each intermediate language stage; these have been used heavilyduring development to �nd and correct bugs in the translator. Only the very lasttransformation step is dependent on the particular 3GL target language involved,so the translator is easily retargeted to new output languages. Our system relieson standard 3GL compilers to handle traditional low-level concerns like registerallocation, instruction selection, and local optimization, with reasonable results.Although high performance is not our primary goal, the performance of the C codegenerated by the translator compares favorably with the output of the well-regardedStandard ML of New Jersey compiler.Memory management is one area in which we have not innovated. Our C back endincorporates the Boehm-Demers-Weiser conservative collector (Boehm and Weiser,1988). Heap allocation in C is the one spot where we must perform casting, in orderto allocate storage for values of di�erent types from a common heap; of course, thisis standard practice in C. Although Ada83 supports garbage collection in principle,the implementations we are using do not; the Ada-based applications we have builtso far are structured so that it is safe to perform simple \bulk" deallocation (in theAda code) at a few key points.There has been much recent interest in using typed intermediate representationsin compilers (Peyton Jones et al., 1993; Morrisett, 1995), but in most cases typesare abandoned well before code generation. The TIL compiler (Tarditi et al., 1996)does keep type information until a late stage in the compilation process when codehas reached a low level form more primitive than 3GL code, but its type systemis substantially more complex than the C or Ada-style typing we use. While thereare many existing systems that compile ML or Haskell to C (Tarditi et al., 1992;Cridlig, 1992; Chailloux, 1992; Peyton Jones, 1992; Tofte et al., 1997), they oftenmake heavy use of casts or non-standard extensions (e.g., as provided by gcc),especially to handle closures and exceptions and to avoid using the C procedureactivation model. Our system generates ANSI-standard, nearly cast-free code. Also,many of these systems generate C from very low-level intermediate forms, e.g., stackmachines, so that the target C program has a completely di�erent structure thanthe source FL program. By contrast, our translator only perturbs the function-levelstructure of the source program when it needs to; a \C-like" RML program with nonested or higher-order functions and no inter-function tail calls will be translatedto a very natural-looking C program with the same structure. Our system does notcurrently handle exceptions, however.This paper describes the overall architecture of our system, and reports in detailon the more novel transformations. We assume the reader to be familiar with thesyntax of functional languages such as ML, and to be able to read Ada and C code.We have tried to avoid formality except as demanded for the sake of precision.



From ML to Ada 5PACKAGE GeoLib ISTYPE trans_array IS ARRAY (1..3, 1..3) of float;TYPE transform IS ACCESS trans_array;TYPE point IS RECORD x:float; y:float; END RECORD;ID:transform := ...;FUNCTION rotate (r:float) RETURN transform;FUNCTION translate (x,y:float) RETURN transform;...FUNCTION compose (x,y:transform) RETURN transform;FUNCTION apply (t:transform; p:point) RETURN point;END GeoLib; Fig. 1. Example Ada package speci�cation (excerpts).2 ExampleAs a simple motivating example, suppose we wish to build an RML componentusing an existing Ada package that implements simple 2D transformations on points(see Figure 1). Points are represented as pairs of reals and transformations as heap-allocated 3x3 real matrices; transformations are composed and applied using matrixmultiplication (see Figure 2).We want to use this existing Ada to do the numerical computation, while usingRML for convenient manipulation of points and transforms considered as abstractvalues.2 (We will also use Ada to write the \main program" or driver that will beresponsible for invoking the RML component; we have little more to say about thisdriver, however.) In this application the granularity of the primitive operations isquite small, so invoking a function to perform each one might be quite ine�cient. Atemplate de�nition that imports these operations (and basic real number support)into an RML component is shown in Figure 3. This template declares real, pointand transform as new abstract types, with the operator signatures as listed. Mostof the operators expand into calls to the corresponding Ada routines; apply isde�ned to expand into inline Ada code. Template syntax is explained in Section 4.A simple RML component that uses this template is shown in Figure 4. RMLconcrete syntax is similar to SML; details are given in Section 3. This componentmakes heavy use of RML's facility for de�ning and manipulating polymorphic alge-braic types like list and abstract traversal operations like foldl. It builds a listof transforms and uses foldl and compose to make a combined transformation;it then uses another foldl to apply the combined transform to a list of points,and a third foldl to reverse the result (returning the list of transformed points toits original order).The remainder of the paper will refer repeatedly to this example component, to2 This is a somewhat arti�cial example, since many functional language implementationshave good built-in support for numerical computing, and recoding such a small legacycomponent would be easy.



6 A. Tolmach and D. OlivaPACKAGE BODY GeoLib IS...FUNCTION rotate (r:float) RETURN transform ISBEGINRETURN NEW trans_array'((cos(r),-sin(r),0.0),(sin(r), cos(r),0.0),( 0.0, 0.0,1.0));END rotate;...FUNCTION compose (x,y:transform) RETURN transform ISret_val:transform;BEGINFOR i IN 1..3 LOOP FOR j IN 1..3 LOOP ... END LOOP; END LOOP;RETURN (ret_val);END compose;FUNCTION apply (t:transform; p:point) RETURN point ISret_val:point;BEGIN-- N.B. Bottom row of t is always (0.0,0.0,1.0)ret_val.x := (p.x * t(1,1)) + (p.y * t(1,2)) + t (1,3);ret_val.y := (p.x * t(2,1)) + (p.y * t(2,2)) + t (2,3);RETURN (ret_val);END apply;END GeoLib; Fig. 2. Example Ada package implementation (Excerpts)template GeoLibTemplatetype real "float"type point "point"type transform "transform"val add (x0:real,x1:real) : (res:real) pure "`res` := `x0` + `x1`;"...val div (x0:real,x1:real) : (res:real) "`res` := `x0` / `x1`;"...val id : transform "id"val rotate (r:real) : (res:transform) pure "`res` := rotate (`r`);"...val apply (t:transform,p:point) : (res:point) pure"BEGIN \\ `res`.x := ((`p`.x * `t`(1,1)) + (`p`.y * `t`(1,2)) + `t`(1,3)); \\ `res`.y := ((`p`.x * `t`(2,1)) + (`p`.y * `t`(2,2)) + `t`(2,3)); \\ END"Fig. 3. Example template for geometric operations (excerpts).



From ML to Ada 7export type point list "PList"val Nil : point list "PNil"val Cons : point * point list -> point list "PCons"val doit : point list -> point list "doit"datatype 'a list = Cons of 'a * 'a list | Nilfun foldl (c,n,l) =case l ofNil => n| Cons(x,r) => foldl(c,c(x,n),r)val ts = Cons(translate (2.0,~2.0),Cons(scale(1.0,0.5),Cons(rotate((div(3.141592,2.0))),Nil)))fun doit ps =let val whole_t = foldl (compose,id,ts)fun consapp (x,l) = Cons(apply(whole_t,x),l)val ps0 = foldl(consapp,Nil,ps)in foldl(Cons,Nil,ps0)end Fig. 4. RML component using geometric template.show the e�ect of various transformations. As a preview of the end product, we showthe �nal output of the RML-to-Ada translator on this component in Figure 5. Thisis genuine output, except that we have renamed the variables and reformatted forbetter readability, and coalesced some variable declarations and initial assignmentsinto declarations with initializers. The output code illustrates many of the keycharacteristics of our translation approach, although because of the extremely smallsize of the input program, the optimizer has done an unusually good job with it. Theoutput is e�cient �rst-order monomorphic code. The original polymorphic foldlfunction has been specialized into two monomorphic variants foldl0 and foldl1,taking transform lists to transforms and point lists to point lists, respectively.The two possible functional arguments to foldl1, namely Cons and consapp, arerepresented as members of a discriminated record type closure. The discriminanttag indicates which function is required; the consapp variant, which carries the freevariable whole t as an associated value, must be dynamically constructed, whereasthe Cons variant is statically de�ned. In either case the closure is small enough tobe manipulated by value, rather than being heap-allocated. Moreover, since Consand consapp are used only as arguments to foldl, their code is actually inlinedinto foldl1. The primitive Ada code for apply, used within consapp, has beeninlined, as speci�ed in the template. Even stronger optimization has been appliedto foldl0: since compose is the only argument that can be passed to it, no closureis required at all, and its body is specialized to call the primitive Ada composeroutine directly.



8 A. Tolmach and D. OlivaWITH GeoLib; USE GeoLib; WITH Math; USE Math;PACKAGE Geo_package ISTYPE PList_item ; TYPE PList IS ACCESS PList_item;TYPE PList_item IS RECORD PCons_0:point; PCons_1:PList; END RECORD;FUNCTION PCons (PCons_0:point; PCons_1:PList) RETURN PList;PNil:PList := NULL;FUNCTION doit (ps:PList) RETURN PList;END Geo_package;PACKAGE BODY Geo_package ISTYPE TList_item ; TYPE TList IS ACCESS TList_item;TYPE TList_item IS RECORD TCons_0:transform; TCons_1:TList; END RECORD;FUNCTION TCons (TCons_0:transform; TCons_1:TList) RETURN TList;TNil:TList := NULL;TYPE closure_constructors IS (cons_variant,consapp_variant);TYPE closure (constructor:closure_constructors := cons_variant) ISRECORD CASE constructor ISWHEN cons_variant => NULL;WHEN consapp_variant => whole_t:transform;END CASE; END RECORD;cons:closure(cons_variant);tf: float; t0:transform; t1:transform; t2:transform;vts0:TList; ts1:TList; ts:TList;FUNCTION PCons (p0:point; p1:PList) RETURN PList ISBEGIN return NEW PCons_item'(PCons_0 => p0, PCons_1 => p1); END;FUNCTION TCons (t0:transform; t1:TList) RETURN TList ISBEGIN return NEW TCons_item'(TCons_0 => t0, TCons_1 => t1); END;FUNCTION foldl0 (n:transform; l:TList) RETURN transform ISn0:transform := n; l0:TList := l;BEGINGOTO JumpPoint0;<<JumpPoint0>>IF l0 = NULL THENRETURN n0;ELSEDECLARE x : transform := l0.TCons_0; r: TList := l0.TCons_1;n : transform := compose(x,n0);BEGINn0 := n; l0 := r;GOTO <<JumpPoint0>>;END;END IF;END foldl0;Fig. 5. Generated Ada code corresponding to example (beginning).



From ML to Ada 9FUNCTION foldl1 (c:closure, n:PList; l:PList) RETURN PList ISc0 : closure := c; n0 : PList := n; l0 : PList := l;BEGINgoto JumpPoint1;<<JumpPoint1>>IF l0 = NULL THENRETURN n0;ELSEDECLARE x : point := l0.PCons_0 ; r : PList := l0.PCons_1;BEGINCASE c.constructor ISWHEN cons_variant =>DECLARE n: PList := PCons(x,n0);BEGINc0 := c0; n0 := n; l0 := r;GOTO <<JumpPoint1>>;END;WHEN consapp_variant =>DECLARE whole_t : transform := c0.whole_t; p0 : point;BEGINp0.x := ((x.x * whole_t(1,1)) +(x.y * whole_t(1,2)) + whole_t(1,3));p0.y := ((x.x * whole_t(2,1)) +(x.y * whole_t(2,2)) + whole_t(2,3));DECLARE n : PList := PCons(p0,n0);BEGINc0 := c0; n0 := n; l0 := r;GOTO JumpPoint1;END;END;END CASE;END IF;END f1;FUNCTION doit (ps:PList) RETURN PList ISwhole_t : transform := foldl0(id,ts);c : closure := (consapp_variant,whole_t);ps0 : PList := foldl1(c,PNil,ps);ps1 : PList := foldl1(cons,PNil,ps0);BEGINRETURN ps1;END doit;BEGINt0 := translate(2.0,-2.0); t1 := scale(1.0,0.5);tf := 3.141592 / 2.0; t2 := rotate(tf);ts0 := TCons(t2,TNil); ts1 := TCons(t1,ts0); ts := TCons(t0,ts1);END Geo_package;Fig. 5 (cont.). Generated Ada code corresponding to example (conclusion).



10 A. Tolmach and D. Oliva� ::= K (primitive types)j t (type variables)j (h�i�)! � (function types)j (h�i;)D (algebraic types)� ::= [8hti;.]� (type schemes)e ::= (k : K) (primitive constants)j (v : �) (variables)j e(hei;) (function applications)j (c : �)(hei;) (constructor applications)j p(hei;) (primitive applications)j fn [inline] rule (anonymous abstractions)j let vdecs in e (local declarations)j case e of h(c : �) ruleij (destructuring)rule ::= (hv : �i;) => e (rules)vdecs ::= val rec hv : � = fn [inline] ruleiand (recursive function declarations)j val v : � = e (value declarations)atdec ::= (hti;)D[flat] = 
c [of h�i�]�j (algebraic type declarations)atdecs ::= datatype hatdeciand (mutually recursive declarations)export ::= type � "name" (type exports)j val v : � "name" (value exports)comp ::= export hexporti hatdecsi hvdecsi (components)Fig. 6. RML Abstract Syntax. In this and other syntax descriptions, we use the notationhxisep to mean a sequence of zero or more x's separated by sep, and [x] to mean anoptional x. When giving examples written in the syntax, we generally omit the groupingparentheses () when no ambiguity results.The only heap-allocated structures in the Ada program are the lists themselves,for which the translator has automatically chosen an e�cient representation usingone record per list item and the NULL pointer to represent the empty list; point listsuse a completely attened �ve-word record per item, with no indirection for thepoint pair or for the embedded reals. The tail-recursive calls in foldl0 and foldl1have been converted to local jumps. The only major remaining optimizations to beperformed by the Ada compiler are variable coalescing, jump-to-jump elimination,and loop invariant hoisting.3 RML Source LanguageRML is an eager language with �rst-class functions, algebraic datatypes and para-metric (Hindley-Milner) polymorphism. Plain RML, without primitives, is essen-tially similar to the pure subset of core Standard ML (SML '97) (Milner et al.,



From ML to Ada 111997), without nested patterns or many derived forms, but with the addition oftrue multi-argument functions and data constructors. Impure features such as ref-erences, arrays, and I/O can be added to the language via the template primitivemechanism (see Section 4), but exceptions are fundamentallymissing. In this paper,we use a human-readable but still somewhat abstract syntax for RML (Figure 6)and the other intermediate languages used in the translator. In this representation,it is assumed that no identi�er is bound twice. In practice, source code is fed tothe RML translator using a more elaborate concrete syntax (very similar to SMLsyntax) with the usual lexical scoping rules, or, for machine-generated source, usingan internal representation of the abstract syntax. The primary di�erence betweenconcrete and abstract syntax is that the former is untyped; the system performsstandard Hindley-Milner type inference (Hindley, 1969; Milner, 1978; Damas, 1984;Cardelli, 1987) to obtain the type-annotated abstract form. Also, the concrete syn-tax allows primitives and constructors to be used as �rst-class values whereas theabstract syntax permits them only in the operator position of applications; such�rst-class uses are automatically eta-expanded by the concrete syntax parser. Fi-nally, the parser accepts and translates some of the common SML derived forms,e.g., fun for val rec.RML's typing rules are largely standard, so we mention only distinctive pointshere. RML abstract syntax includes explicit type annotations on variable and con-structor uses and type schemes on declarations. These annotations su�ce to re-construct the types of arbitrary terms. Di�erent mentions of a let-bound (or top-level) function or of a constructor may, of course, have di�erent types; for any givenmention, the instantiating type expressions for the generic type variables can bedetermined by unifying the type annotation on the mention with the scheme an-notation on the declaration. Like SML '97, RML adheres to the value restrictionon polymorphic bindings (Wright, 1995), requires recursive bindings to be explicitfunction abstractions, and prohibits polymorphic recursion among functions.Unlike SML '97, RML also prohibits polymorphic recursion in datatype de�nitions.3Also, unlike SML, RML lacks records or tuples per se, but these can be built asdatatypes with a single constructor. Datatypes can be marked as \flat" mean-ing that they should be manipulated as a tuple of immediate values rather thanbeing heap-allocated; this is suitable for small records or simple sum types. As adegenerate special case, a data type may have zero constructors; a case over sucha value of such a type has no arms and thus arbitrary result type, and its dynamicsemantics is to abort.The semantics of RML declarations and expressions are straightforward, so weomit a formal presentation. As in SML, evaluation order is �xed left-to-right, andall conditional control ow is governed by case expressions. User-de�ned functionsand primitives all receive their parameters by value. There is no built-in facility forexceptions, nor can these be sensibly implemented using call-by-value primitives.The unit of translation is a component: a sequence of type and value declarations3 I.e., in a datatype de�nition abstracted over a given list of type variables, every right-hand-side mention of that datatype must be instantiated at exactly the same variables.



12 A. Tolmach and D. Olivatype ::= type K "string" (primitive types)value ::= val k : K "string" (primitive constants)j val p(hv : �i):(v : �) [pure] "string" (primitive functions)t ::= template name htypei hvaluei (templates)Fig. 7. Template speci�cation syntax. Types � are as in RML.(e.g., as in Figure 4). Each RML component has an export clause, which lists thetypes and values that are to be exported for use by 3GL components of the systemand speci�es 3GL names for them. In particular, the main program or driver for anexecutable is always written in the host 3GL, and invokes RML code via one or moreof the exported functions. Polymorphic types and values can only be exported atspeci�c monomorphic instances. Argument and result types of exported functionsmust be �rst-order. Formally, the \meaning" of a component is an environmentmapping 3GL names to RML types and values; this environment must not bealtered by the translation process.Our translator currently does not directly support multiple RML components ina program, although functions generated from one RML component can be treatedlike any other 3GL functions and imported as (�rst-order) primitives into anotherRML component via the template mechanism. There are two obvious reasons whyit might be useful to divide the RML code for a large system into multiple compo-nents: to provide independent namespaces (e.g., for libraries), or to speed up systembuilding via separate compilation. We plan to extend our system to support theformer goal, which should be straightforward. Separate compilation would be muchharder, however, since many of our translation strategies depend fundamentally onhaving access to all the RML source code at one time.4 TemplatesEach RML component is translated with respect to a particular template, whichspeci�es the interface between 3GL components and RML code. The template def-inition plays two key roles. It speci�es which types and operators, implemented inthe 3GL, are to be available to RML code as primitives; this information is usedby the translator when parsing and type-checking RML components. The templatealso includes macro de�nitions for the types and operators in terms of 3GL codefragments; these are used by the translator when it generates 3GL code from RML.Templates are de�ned using a small special-purpose language, whose concrete syn-tax is shown in Figure 7. Template speci�cations make heavy use of quoted strings,which represent text in the target 3GL; they utilize a standard set of escape con-ventions based on those of SML. Figure 3 provides a typical example of an Adatemplate; a C template de�nition would have the same format, though of coursethe macro text would di�er.Primitive types typically include both general-purpose types (e.g., integer, real,: : :) and application-speci�c types (e.g., transform or point). A primitive type is in-



From ML to Ada 13troduced by a type declaration, which gives the type a name to be used within RMLcode and speci�es the corresponding 3GL type name|built-in or user-de�ned|thatprovides a concrete realization of the type. Primitive types are always monomor-phic, i.e., not parameterized.Primitive values and operators are de�ned by val declarations, which specifytheir types and their expansions into 3GL code. Values, operator arguments, andoperator results must have primitive types,4 which implies that values and operatorsare always monomorphic and �rst-order. A value declaration speci�es the (RML)type of the value and the corresponding 3GL syntax for it.5 An operator decla-ration speci�es formal names and types for the operator's arguments and result;the corresponding 3GL code string is treated as a macro using the formal namesas parameters. Formal parameters are referenced inside the string by surroundingthem with back-quotes (`). For example, the de�nition of the primitive divisionoperator might beval div (x0:real,x1:real) : (res:real) "`res` := `x0` / `x1`;"An RML expression like val a = div (x,2) eventually leads to the Ada code: : : a := x / 2; : : :As this example illustrates, the expansions for operators are statements rather thanexpressions, which permits more elaborate de�nitions. To make this possible fromthe RML side, code generation is performed on an imperative intermediate form (seeSection 12.1) in which primitive operator calls appear only as the right-hand sides ofassignment statements, so the result of an operation is \returned" by assigning it toa variable. All actual arguments to operators are either variable names or constants,which prevents potential problems with multiple uses of a formal argument in themacro.Operators on general-purpose primitive types (e.g., the div operator describedabove) can often be implemented using built-in operators of the 3GL. Application-speci�c types and operators usually depend on non-trivial 3GL type de�nitionsand library code. If desired, calls to small functions can be inlined by hand in theoperator de�nition (e.g., apply in our example).6 Operators marked as pure areassumed (without separate veri�cation) to have no side-e�ects; the translator canapply more aggressive optimizations to expressions that involve only pure operators(see Section 8).4 There is also a mechanism, which we do not describe in detail here, for using thealgebraic type bool = true | false; this permits RML code to perform conditionalcomputation based on the result of a primitive operation.5 In principle, every integer, real, and string literal used in a RML program should bespeci�ed this way; to avoid this tedium, the template mechanism has all such literalconstants \built-in."6 Our experience has been that 3GL compilers cannot be depended upon to perform suchinlining automatically.



14 A. Tolmach and D. Oliva5 Compiler Architecture and RepresentationsThe compiler is structured as a pipeline operating on a series of specialized, typedintermediate representations; see Figure 8. This section of the paper summarizesthe most important steps in the compilation sequence, and serves as a guide to thedetailed descriptions of these steps in the sections that follow.� RML code is parsed from a concrete text representation or loaded from abinary representation produced by a separate generator tool. Parsing is per-formed with respect to a particular template de�nition, which provides aparticular set of primitive types and operators.� The RML code is annotated with type information using conventional Hindley-Milner type inference. The annotated code is then translated to monomorphicform (Section 6).� The monomorphic RML code is transformed to a more restrictive language,called SIL (for \Sequentialized Intermediate Language"), which is a variant ofA-normal form (Flanagan et al., 1993), closely related to continuation-passingstyle (Steele, 1978; Kranz et al., 1986; Appel, 1992). In SIL (Figure 12), allarguments to functions and primitives are required to be named variables orconstants. Thus, the translation from RML to SIL (Section 7) e�ectively �xesthe order of evaluation of all primitives. SIL also supports \jump points,"i.e., locally scoped continuation functions (Kelsey, 1995), though the initialtranslation to SIL doesn't use these.� The SIL code is optimized (Section 8) by repeated application of rewriterules that encode \partial-evaluation style" improvements: value and variablepropagation, simpli�cation of case expressions over known values, eliminationof dead code and unused datatypes, and conservative function inlining.� The SIL code is reduced to �rst-order form (Section 9). The resulting code isthen re-optimized (Section 10).� All tail calls are changed into jumps, merging mutually recursive functions ifnecessary (Section 11).� The SIL code is transformed into imperative target code, in two stages, whichare treated only briey in this paper (Section 12). First, SIL code is trans-formed into a further intermediate form, called MIL (for \Mutable Interme-diate Language"), which abstracts the essential characteristics shared by C,Ada83, and similar languages. Then, MIL code is translated into Ada83 or Ccode using the template macros.The entire compiler amounts to about 20,000 lines of Standard ML, and runs underversion 109.31 of the Standard ML of New Jersey system.
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Parsing and type inference

Monomorphic RML code

Sequentialization (7)

SIL code

First-order SIL code

Higher-order removal (9)

Tail-recursion removal (11)

SIL with jump points

Conversion to imperative style (12) 

MIL code

C code Ada code

Specification
Template

Reoptimization (10)

Optimization (8)

RML concrete syntax

Typed RML code

Remove polymorphism (6)

3GL code generation (12)Fig. 8. Architecture of the compiler. Numbers in parentheses refer to section numbers inthis paper where the relevant transformation is described.



16 A. Tolmach and D. Oliva6 Eliminating Polymorphism6.1 ConceptOur target 3GLs do not directly support parametric polymorphism.7 The translatortherefore converts polymorphic components to monomorphic ones by producingspecialized clones of polymorphic functions and constructors for each type at whichthey are used. By arranging to perform this step early in the compilation process, asan RML-to-RML translation, we clear the way for later transformation algorithms,notably the higher-order function remover and the representation analyzer, whichrequire monomorphic input.The specialization algorithm operates on the complete type-checked source pro-gram, in which every use of a polymorphic identi�er has been annotated with itsinstantiated type. Given this representation, the full set of instantiations for eachtype abstraction can be enumerated, in a way which will be described below. RML'srestrictions against polymorphic recursion in datatypes or functions guarantee thatthese sets are �nite. Moreover, the complete set of instantiations for the bound typevariables in a recursive function or datatype de�nition (or mutually recursive set ofde�nitions) can always be determined without looking at the right-hand side(s) ofthe de�nition(s). This fact allows the instantiations to be enumerated by a one-passalgorithm that doesn't require a �xed-point calculation.In our Section 2 example, the specializer generates two versions of the listdatatype, specialized to points and transforms respectively, and two correspondingversions of the foldl function. The resulting component is shown in Figure 9.6.2 Details of the AlgorithmThe complete specialization algorithmconsists of three passes over the type-annotatedprogram produced by a standard inferencer. The �rst pass replaces any occurrencesof free type variables by an arbitrary trivial type; this is safe because the computa-tion never examines values whose types involve free type variables (Morrisett et al.,1995). The second pass computes a mapping from each polymorphic variable andalgebraic type constructor to its corresponding set of instantiations. The third passuses this mapping to perform the actual specialization.The enumeration pass is by far the most complex of the three; details are givenin Figure 10. To explain the algorithm, we �rst require some terminology. A (si-multaneous) substitution S = (hti 7! h� i) is a mapping from a sequence of n typevariables to a corresponding sequence of n types. Applying a substitution S to atype � has the usual e�ect of replacing each type variable t 2 Dom(S) with S(t),while leaving other type variables and all type constructors unchanged. We furtherde�ne the result of applying a substitution S to a sequence of types h� i to be the se-quence hS(� )i. A multi-substitution M is a mapping (hti 7! fh� ig) from a sequence7 Actually, Ada generics have the necessary power, but certain restrictions on the form ofgeneric package interfaces can cause unnecessary extra copies of code to be generated.



From ML to Ada 17exporttype plist "PList"val PNil : plist "PNil"val PCons : point * plist -> plist "PCons"val doit : plist -> plist "doit"datatype plist = PNil | PCons of point * PListdatatype tlist = TNil | TCons of transform * TListval rec foldl0 : (transform * transform -> transform) *transform * tlist -> transform =fn (c,n,l) =>case l ofTNil => n| TCons(x,r) => foldl0 (c,c(x,n),r)val rec foldl1 : (point * plist -> plist) * plist * plist -> plist =fn (c,n,l) =>case l ofPNil => n| PCons(x,r) => foldl0 (c,c(x,n),r)val ts : tlist = TCons(: : :)val rec doit : plist -> plist =fn ps =>let val whole_t : transform =foldl0(fn (t1,t2) => compose(t1,t2),id,ts)in let val consapp : point * plist -> plist =fn (x,l) => PCons(apply(whole_t,x),l)in let val ps0 : plist = foldl1(consapp,PNil,ps)in foldl1(fn (x,l) => Cons(x,l),PNil,ps0)Fig. 9. RML abstract syntax for geometric example component after type specialization.Most type annotations are omitted to improve readability.of n type variables to a set of corresponding sequences of n types; it thus com-pactly describes a set of substitutions with a common domain. We de�ne the resultof applying M to a type (resp. a sequence of types) to be the set of types (resp.of sequences of types) resulting from applying the individual substitutions in turnand removing duplicates. Any substitution can be viewed as a multi-substitutionby making the result into a singleton set. If M1 = (hti 7! T1) and M2 = (hti 7! T2)are multi-substitutions with the same domain, we de�ne their sum, M1 ]M2, asthe multi-substitution (hti 7! T1 [ T2), where [ represents ordinary set union withremoval of duplicates. If hM i is a sequence of multi-substitutions all having thesame domain, we write U hM i for their combined sum. We de�ne the compositionM2�M1 of multi-substitutionsM1 = (hti 7! T1) andM2 to be the multi-substitution(hti 7! S fM2(h� i) j h� i 2 T1g), where S computes the union of the members of aset of sets.



18 A. Tolmach and D. OlivaT [[K]] = ;T ��(h�i�)! �0�� = (U hT [[� ]]i) ] T [[�0]]T ��(h�i;)D�� = (U hT [[� ]]i) ] fD 7! (Tyvarsof [[D]] 7! h�i)gS ��8hti;.��� = T [[� ]]E [[(k : K)]] = ;E [[(v : �)]] = fv 7! Inst(Schemeof [[v]]; �)g ] T [[� ]]E ��e0(hei;)�� = E [[e0]] ] (U hE [[e]]i)E ��(c : �)(hei;)�� = fTyconof [[c]] 7! Inst(Schemeof [[c]]; �)g]T [[� ]] ] (U hE [[e]]i)E ��p(hei;)�� = U hE [[e]]iE [[fn inl rule]] = R [[rule]]E [[let vdecs in e]] = D(E [[e]]) [[vdecs]]E ��case e of h(c : �) ruleij�� =E [[e]] ] �U hfTyconof [[c]] 7! Inst(Schemeof [[c]]; �)g ] T [[� ]] ]R [[rule]]i�R ��(hv : �i;) => e�� = hT [[� ]]i ] E [[e]]D(I) [[val v : � = e]] = I ] (I [[v]] � S [[�]])]�I [[v]] � �E [[e]] ���Free[[e]]�� ] �E [[e]] ���Bound [[e]]�D(I) ��val rec hv : � = fn inl ruleiand�� =I ] (M � (U hS [[�]]i))]�M � �UDR [[rule]] ���Free[[rule]]E��]�UDR [[rule]] ���Bound [[rule]]E�where M = U hI [[v]]iDS(I) [[hvdecsi vdecs0]] = DS(D(I) [[vdecs0]]) [[hvdecsi]]DS(I) [[ ]] = IAS(I) [[hatdecsi atdecs0]] = AS(A(I) [[atdecs0]]) [[hatdecsi]]AS(I) [[ ]] = IA(I) hhdatatype D(hti;) D t = 
c [of h�i�]�jEandii =I ] (I [[D]] � (U
U
U hT [[� ]]i��))X [[type � "name"]] = T [[� ]]X [[val v : � "name"]] = fv 7! Inst(Schemeof [[v]]; �)g ] T [[� ]]C [[export hexporti hatdecsi hvdecsi]] =AS(DS(U hX [[export]]i) [[hvdecsi]]) [[hatdecsi]]Fig. 10. Enumeration of instances of polymorphic identi�ers.



From ML to Ada 19An instantiation map I [[x]] is a mapping from polymorphic identi�ers x : 8hti;:�0to multi-substitutions with domain hti; we will build instantiation maps whose do-mains include both variables and algebraic type constructors. If I is an instantiationmap and S is a set of identi�ers, we write I jS for the instantiation map that re-sults from restricting I's domain to S. If I1 and I2 are instantiation maps, we writeI1 ] I2 for the instantiation map fx 7! I1 [[x]] ] I2 [[x]] j x 2 (Dom(I1) [Dom(I2))g.Further, if hIi is a sequence of instantiation maps, U hIi represents their sequentialcombination under ]. Finally, if I = fx 7!Mxg is an instantiation map and M isa multi-substitution, we de�ne the composition M � I to be the instantiation mapfx 7!M �Mxg.Each of the syntax-directed rules in Figure 10 maps a syntactic fragment to theinstantiation map describing the sets of type instantiations induced by mentionsof variables and constructors within that fragment. In particular, C calculates theinstantiation map for an entire component, whose domain is the component's com-plete set of top-level and let-bound variables and algebraic type constructors. Thealgorithm walks over the component in bottom-up fashion, so that informationabout the (non-recursive) mentions of an identi�er has always been incorporatedinto an instantiation map before the de�nition of that identi�er is processed; thismap is passed as an auxiliary argument I to the rule that processes the de�nition,i.e., D or A. Thus, for example, to process a fragment let val v : 8hti;:� = e1 ine2, the algorithmi. builds an instantiation map Ie2 based on e2;ii. builds instantiation maps I� based on � and Ie1 based on e1, in which theinstantiating types may mention the type variables hti;iii. divides Ie1 into two parts, IFe1 and IBe1 , corresponding to the free and boundvariables of e1;iv. expands IFe1 to I 0Fe1 by pre-composing with Ie2 [[v]], the multi-substitutiondescribing all possible instantiations for the hti;v. similarly expands I� to I0� ;vi. sums I 0� , I0Fe1 , the (unexpanded) IBe1 , and Ie2 to yield the �nal map for theoverall let expression.The distinction between free and bound variables e�ectively prevents the map entryfor a locally-de�ned function from being re�ned further after its de�nition has beenprocessed, which is important for the specialization pass. The rules for recursivefunction and datatype de�nitions are similar. Because RML prohibits polymorphicrecursive de�nitions of functions or algebraic types, the auxiliary I is guaranteedto describe all instantiations of the identi�er being de�ned; that is, there is no needto look at the right-hand side of the de�nition as well. However, in the recursivefunction case it is necessary to combine instance information about uses of allmutually-recursive functions before pre-composing.The algorithm relies on a number of auxiliary functions. Free[[e]] returns the setof free variables and type constructors mentioned in expression or rule e; simi-larly, Bound [[e]] returns the set of bound variables of e. Inst(8hti;:�0; � ) returns asubstitution S = (hti 7! h� 0i) such that S(�0) = � ; it will only be called on argu-



20 A. Tolmach and D. Olivadatatype 'a p = P of 'a * 'aval f:8'b.'b -> 'b p = fn (x:'b) => (P:'b * 'b -> 'b p)(x:'b,x:'b)val g:8'c,'d.'c * 'd -> 'd p =fn (y:'c,z:'d) =>let val h:8'e.'e -> 'd p = fn (w:'e) => (f:'d -> 'd p)(z:'d)in let val v:'c p = (f:'c -> 'c p)(y:'c)in (h:'c p -> 'd p)(v:'c p)val a:bool p = (g:int * bool -> bool p) (3:int,true:bool)val b:string p = (g:bool * string -> string p) (false:bool,"abc":string)Fig. 11. Example of nested polymorphic functions.ments for which the result substitution is guaranteed to exist. We also assume theexistence of reconstruction functions Schemeof [[x]], which returns the (possibly de-generate) type-scheme corresponding to any variable or constructor x; Tyconof [[c]],which returns the algebraic type constructor to which data constructor c belongs;and Tyvarsof [[D]], which returns the (possibly empty) sequence of type variablesover which the algebraic type constructor D is abstracted. Moreover, we assumecertain consistency conditions on these functions: the schemes of any two mutually-recursive functions must have the same sequence of bound type variables; simi-larly, the schemes of any two data constructors of the same type constructor or ofmutually-recursive type constructors must have the same sequence of bound typevariables, which must also match the sequence(s) returned by Tyvarsof on the typeconstructor(s). These conditions are naturally met by the annotations produced bya standard type-inferencer, provided that all recursive de�nitions are separated intotheir strongly-connected components before inferencing.As an (arti�cial) example of the algorithm's operation, consider the code in Fig-ure 11, written in explicitly typed form. The computation proceeds roughly asfollows (ignoring the generation of empty map entries for non-polymorphic vari-ables):� The declaration of b is processed, yielding an instantiation mapI1 = fg 7! (h'c; 'di 7! fhbool; stringig); p 7! (h'ai 7! fhstringig)g� The declaration of a is processed, yielding an instantiation mapI2 = fg 7! (h'c; 'di 7! fhint; boolig); p 7! (h'ai 7! fhboolig)g� I2 is added to I1 to produce the overall map for the declarations of a and bI3 = � g 7! (h'c; 'di 7! fhbool; stringi ; hint; boolig);p 7! (h'ai 7! fhbooli ; hstringig) �� The let val v expression is processed, yielding (in several steps) the mapI4 = 8<: f 7! (h'bi 7! fh'cig);h 7! (h'ei 7! fh'cig);p 7! (h'ai 7! fh'ci ; h'dig) 9=;



From ML to Ada 21� The body of the de�nition of h is processed, yielding the mapI5 = ff 7! (h'bi 7! fh'dig); p 7! (h'ai 7! fh'dig)g� The composition I4 [[h]] � I5 is computed, yielding I5 unchanged.� I5 is added to I4 to produce the overall map for the body of the de�nition ofg: I6 = 8<: f 7! (h'bi 7! fh'ci ; h'dig);h 7! (h'ei 7! fh'cig);p 7! (h'ai 7! fh'ci ; h'dig) 9=;� The composition I3 [[g]] � (I6 ���ff;pg ) is computed, yielding the map:I7 = � f 7! (h'bi 7! fhinti ; hstringi ; hboolig);p 7! (h'ai 7! fhinti ; hstringi ; hboolig) �� I7 is added to I6 ���fhg and then to I3 to produce the overall map for thedeclarations of g, h, a, and b:I8 =8>><>>: g 7! (h'c; 'di 7! fhbool; stringi ; hint; boolig);h 7! (h'ei 7! fh'cig);f 7! (h'bi 7! fhinti ; hstringi ; hboolig);p 7! (h'ai 7! fhinti ; hstringi ; hboolig) 9>>=>>;� Processing the de�nitions of f and p will produce the same map I8.I8 can now be used to guide the the specialization pass of the algorithm. Twospecialized copies are made of function g, corresponding to the two instantiationsfor h'c; 'di. Note the importance of tracking the sequences of instantiations forthese type variables; if the instantiations of each variable were tracked separately,there would be no way to distinguish the correct instantiations from the spuriousones with 'c = bool,'d = bool and 'c = int, 'd = string. Within each copyof g, a single specialized version is made of h, with 'e instantiated to the relevantinstance of 'c, namely int within the �rst copy of g and bool within the second.Note that if the enumeration algorithm did not \freeze" the instantiation map forh at its point of de�nition, the �nal map would have the entryh 7! (h'ei 7! fhinti ; hboolig)While this would correctly enumerate the versions of h that are required, it wouldfail to indicate that only one instance is needed within each copy of g, nor saywhich one is needed where. Finally, three specialized copies are made of p and f,corresponding to the three instantiations for 'a and for 'b. We omit a detaileddescription of the specialization pass, which is quite straightforward given the ex-istence of the instantiation map.6.3 DiscussionIn the worst case, the size of the monomorphic program produced by this algorithmmay be exponential in the size of the original polymorphic program. However, we



22 A. Tolmach and D. Olivahave not found code explosion to be a serious problem in practice, as most poly-morphic functions tend to be small; this is probably because the more polymorphica function is, the fewer useful things it can do (Wadler, 1989)!The idea of removing parametric polymorphism by specialization has receivedmuch informaldiscussion, and a small experiment has been attempted for Gofer (Jones,1993), but we are not aware of any previous practical compiler based on this ap-proach. Analysis of benchmarks run on the Til compiler (Tarditi et al., 1996) in-dicates that the compiler removes essentially all polymorphism as the result ofaggressive function inlining, thus o�ering independent evidence that specializationneed not lead to excessive code explosion. However, since Til does not guaranteeto produce a monomorphic program, it cannot take full advantage of having oneduring later compilation stages, as our translator does.7 SequentializationRML has a rich collection of expression forms; our target 3GLs have severely limitedexpressions. Also, even where there appears to be a direct correspondence betweenexpression forms in RML and a target language, evaluation order may di�er. Thus,the �rst step in translating RML is to simplify expressions and name all interme-diate results, at the same time explicitly sequentializing the computation in theintended order. We call the resulting language SIL (for \Sequentialized Intermedi-ate Language"); its syntax is speci�ed in Figure 12. Compared with RML, the mostimportant di�erences are that arguments to applications and discriminants in caseexpressions must be simple, i.e., variables or constants, and there are no anonymousfunction expressions. SIL's type system is monomorphic, since any polymorphismhas already been removed at the RML level. This means that types can no longermention type variables, there are no more type schemes, and type annotations aredropped wherever they have become redundant (e.g., on variable mentions); ex-ports and algebraic type declarations are otherwise identical to RML. Jump points(label and goto) do not appear in the initial translations of RML code; their useis discussed in Section 11. As an example, Figure 13 shows the SIL form of the doitfunctions from the monomorphic version (Figure 9) of our running example fromSection 2.The transformation from RML to SIL essentially performs the naming and se-quentialization steps of a continuation-passing-style (CPS) transform (Steele, 1978;Kranz et al., 1986; Appel, 1992), but without introducing full-scale continuations.We omit the details of the transformation, which are fairly straightforward. Theresulting SIL code closely resembles other \almost-CPS" forms that have beenadopted in recent functional language compilers (Lawall and Danvy, 1993; Flana-gan et al., 1993; Kelsey, 1995; Tarditi, 1996).SIL adopts a relatively permissive approach to the location of let-bindings: itpermits the result of a case to be let-bound, unlike A-normal form (Flanaganet al., 1993), and even permits the result of a let expression to be let-bound,unlike both A-normal form and Til's B-form (Tarditi, 1996). This extra exibilitymakes it easy to transform RML case expressions into SIL without duplicating code



From ML to Ada 23� ::= K (primitive types)j D (monomorphic algebraic types)j (h�i�)! � (function types)se ::= (k : K) (primitive constants)j v (variables)e ::= se (simple expressions)j v(hsei;) (function applications)j c(hsei;) (constructor applications)j p(hsei;) (primitive applications)j let decs in e (local declarations)j case se of 
c(hvi;) => e�j (destructuring)j goto l(hsei;) (jumps to local labels)vdec ::= val v:� = e (variable declarations)fdecs ::= fun 
v [inline] (hv : �i;):� = e�and(mutually recursive function declarations)ldecs ::= label 
l(hv : �i;):� = e�and(mutually recursive jump point declarations)decs ::= vdec (variable declarations)j fdecs (function declarations)j ldecs (jump-point declarations)topdecs ::= vdec (top-level variable declarations)j fdecs (top-level function declarations)atdec ::= D [flat] = 
c [of h�i�]�j (algebraic type declarations)atdecs ::= datatype hatdeciand (mutually recursive declarations)export ::= type � "name" (type exports)j val v : � "name" (value exports)comp ::= export hexporti hatdecsi htopdecsi (components)Fig. 12. SIL syntax.



24 A. Tolmach and D. Olivafun doit (ps:plist) : plist =let val whole_t : transform =let fun comp (t1:transform,t2:transform) = compose(t1,t2)in foldl0(comp,id,ts)in let fun consapp (x:point,l:plist) =let val p0 = apply(whole_t,x)in PCons(p0,l)in let val ps0 : plist = foldl1(consapp,PNil,ps)in let fun cons (x:point,l:plist) = PCons(x,l)in foldl1(cons,PNil,ps0)Fig. 13. SIL translation of geometric example component (selection).or introducing continuation functions, and also keeps SIL closed under a larger classof optimization transformations.8 OptimizationSIL code is optimized by repeated application of rewrite rules that encode \partial-evaluation style" improvements. These include propagation of simple expressions(constants and variables), simpli�cation of case expressions over known values,8elimination of unused function and (pure) value bindings, elimination of unuseddatatypes, hoisting out of let bindings (described below), and conservative functioninlining. A function application is inlined if� it is the sole application of that function; or� its body is \small, " i.e., a value, variable, or another application; or� its body has the form of a case expression over an argument, the argument isa known value, and the relevant arm of the case is \small" (we call this casesplitting); or� the programmer demands inlining via a source pragma on the function de�-nition.To guarantee termination of the inliner, a function is never inlined into its ownbody. Our choice and implementation of optimizations was largely inspired by Appeland Jim (1998). The optimizer does not perform speculative inlining. Optimizationpasses are performed repeatedly until no change is observed or some �xed smallnumber of passes has been reached. The optimization passes are preceded by asingle round of eta-expansion to improve opportunities for inlining.When a variable is let-bound to a case expression, it's value is not known atcompile time, and so cannot be propagated. Hoisting case expressions out of letsis an optimization-enabling transform that can increase the amount of informa-tion available for constant propagation in each case arm. The general form of thetransformation is:8 This optimization includes selection of �elds from records with known values as animportant special case.



From ML to Ada 25let val v = case e0 ofC1(hwi;) => e1| C2(hwi;) => e2| : : :| Cn(hwi;) => enin e ) case e0 ofC1(hwi;) => let val v = e1 in e| C2(hwi;) => let val v = e2 in e| : : :| Cn(hwi;) => let val v = en in eIt is primarily worth doing if e has the form f(v) and it is possible to perform casesplitting on f . In general, this is a dangerous transformation, since it duplicates thecode for e in each case arm, so it performed only when e is a \small" expression. Inaddition, lets are always hoisted out of lets, as this never causes code explosion,and may help optimization by exposing more case hoisting opportunities.The optimizations described above do not make essential use of type information,but our system does perform some simple type-based global optimizations. All usesof a \transparent" datatype of the form datatype t = T of � can be replaced bydirect uses of � , and the datatype de�nition itself can then be removed. All uses of a\unit" datatype of the form datatype t = T in function or constructor argumentlists can be eliminated (even for escaping functions), and any remaining values oftype t can be replaced by the literal T. These forms of datatype quite often arisein code generated by the higher-order removal process (see Section 9).Since RML has strict semantics, and templates may include impure operators, theoptimizer must guarantee not to duplicate, reorder, or eliminate calls to primitivesor to potentially nonterminating functions. In fact, none of the transformations de-scribed above induce duplication or reordering, and only \pure" expressions can beeliminated. Pure primitive operators are marked as such in the template de�nition;for simplicity, all user function calls are treated as impure. A more sophisticated ap-proach would be to perform an e�ects analysis on functions to increase the numberof eliminable expressions (e.g., (Talpin and Jouvelot, 1992; Tarditi, 1996)).9 Removing Higher-order Functions9.1 ConceptsOur target 3GLs do not directly support �rst-class nested functions; Ada83 doesnot even support pointers to top-level functions, and ANSI C does not supportnested functions. We therefore must convert higher-order programs into equivalent�rst-order programs without nested functions, i.e., perform closure conversion. Forsimplicity, we wish to express the �rst-order programs in a strict subset of theoriginal language, as in \closure-passing style" (Appel and Jim, 1989), where clo-sures are represented as ordinary records, and are constructed and accessed usingordinary record operators. In particular, this would allow us to optimize closuremanipulation operations using ordinary record optimizations. However, we wouldalso like the closure-converted program to be well-typed according to the rules ofthe original language|rules that should also be enforceable in C or Ada. The di�-culty is that two functions with the same type might well di�er in the number andtypes of their free variables, and hence have closure records of completely di�erent(structural) type.



26 A. Tolmach and D. OlivaMinamide, Morrisett, and Harper (1996) have treated this problem, but their so-lutions rely either on new language primitives for closure manipulation, which com-plicate subsequent optimization, or on giving closures existential types, a substantialcomplication to the compiler's type system. Neither solution leads to typable C orAda. Moreover, both solutions continue to make use of (top-level) function pointers.We take a di�erent approach, which relies on having the whole monomorphicprogram available for analysis and transformation. It derives from the interpretivetechnique introduced by Reynolds (1972) and Warren (1982) and explored in typedsettings by Bell, Bellegarde and Hook (Bell, 1994; Bellegarde and Hook, 1994; Bellet al., 1997). The key idea is to represent function closures as members of a closurealgebraic data type (i.e., discriminated union). There is one constructor for eachfunction de�nition in the program; its arguments are the function's free variables.9To convert a program to �rst order, all higher-order operations on functions are re-placed by equivalent operations on closure values. Function de�nitions are lambda-lifted, and their original de�nitions are replaced by closure constructor applications;calls to \unknown" (i.e., lambda-bound) functions are transformed into calls to a\dispatch" function, passing a closure value as argument. The dispatch functionexamines the closure tag and passes control to the appropriate (lambda-lifted) func-tion. As usual, calls to \known" (i.e. let-bound) functions need not be convertedin this way | they are simply changed to invoke the lambda-lifted version; if allcalls to a function are known, the construction of a closure datatype value will beremoved altogether by the standard dead-code elimination optimization. Figure 14provides a simple example involving the higher-order function twice.In a strongly-typed setting, a single closure datatype and dispatch function typi-cally do not su�ce: there must be a pair of them for each distinct arrow type in theprogram.10 The translation algorithm must choose the correct dispatch function ateach site by inspecting the type of the (original) function. This e�ect is illustratedby the code in Figure 15, which shows the closure-converted version of our runningexample.In contrast with higher-order removal techniques based on code specialization (Chinand Darlington, 1996), our algorithm can handle programs in which the numberof generated closures cannot be statically bounded. Figure 16 gives an example,based on the well-known encoding of an integer set as a characteristic function oftype int->bool. Executing upto(n) builds the set f1; 2; 3; : : :; ng, represented byn + 1 int->bool closures, each (except the last) containing another such closureas a free variable. This pattern is reected in the fact that type clos is recursive;in fact, it is isomorphic to the standard list datatype one might use to representsets non-functionally!9 We use a at closure representation in this paper; more elaborate representations couldbe handled in the same framework.10 It is not possible to build a single, polymorphic dispatch function using the ordinarytyping rules for case.



From ML to Ada 27Original code:fun twice (f:int->int, i:int) : int = f(f i)fun main (y:int,z:int) =let fun g1 (x:int) : int = +(x,y)in let fun g2 (x:int) : int = +(x,2)in ...twice(g1,z)...twice(g2,z)...After closure-converting g1 and g2:datatype clos = G1 of int | G2 for type int->intfun g1' (x:int,y:int) : int = +(x,y) lambda-lifted functionsand g2' (x:int) : int = +(x,2)and dispatch (c:clos,i:int) : int = for type int->intcase c ofG1 y => g1'(i,y)| G2 => g2' ifun twice (f:clos, i:int) : int = dispatch(f,dispatch(f,i))fun main (y:int,z:int) =let val g1 : clos = G1 y closure valuesin let val g2 : clos = G2in ...twice(g1,z)...twice(g2,z)...Fig. 14. Simple example of typed closure conversion. The converted code is a slightlyoptimized version of the output produced by the formal algorithm in Section 9.2.9.2 Details of the AlgorithmThe core of the algorithm is a syntax-directed translation of terms to terms, underwhich� each distinct arrow type is converted to a unique corresponding closure datatype;� each function de�nition is \lambda-lifted" by augmenting its argument listwith new arguments representing the function's free variables;� these augmented functions are renamed and their de�nitions are lifted totop-level;� each original function de�nition in the body of the program is replaced by abinding to an application of a freshly chosen closure constructor to the freevariables;� variables bound to function values become variables bound to closure values;� calls to unknown functions become calls to the appropriate dispatch function,passing the closure datatype value as an extra argument;� calls to known functions become calls to the corresponding lifted function,passing the free variables as extra arguments.Along the way, the conversion keeps track of the new closure datatypes and dataconstructors, which are created incrementally; when all top-level declarations in thecomponent have been converted, this information is used to construct the de�nitions



28 A. Tolmach and D. Olivadatatype tclos = Ccomp for type transform*transform->transformdatatype pclos = Ccons | Cconsapp of transformfor type point*plist->plistfun comp' (t1:transform,t2:transform) : transform = compose(t1,t2)and tdispatch (c:tclos,t1:transform,t2:transform) : transform =case c of for type transform*transform->transformCcomp => comp'(t1,t2)and consapp' (x:point,l:plist,whole_t:transform) : plist =let val p0 = apply(whole_t,x)in PCons(p0,l)and cons' (x:point,l:plist) : plist = PCons(x,l)and pdispatch (c:pclos,x:point,l:plist) : plist =case c of for type point*plist->plistCcons => cons'(x,l)| Cconsapp (whole_t) => consapp' (x,l,whole_t)fun foldl0 (c:tclos,n:transform,l:tlist) : transform =case l ofTNil => n| TCons(x,r) =>let val n' : transform = tdispatch(c,x,n)in foldl0(c,n',r)fun foldl1 (c:pclos,n:plist,l:plist) : plist =: : :same except with val n' : plist = pdispatch(c,x,n):: :fun doit' (ps:plist,id:transform,ts:tlist) : plist =let val comp : tclos = Ccompin let val whole_t : transform = foldl0(comp,id,ts)in let val consapp : pclos = Cconsapp(whole_t)in let val ps0 : plist = foldl1(consapp,PNil,ps)in let val cons : pclos = Cconsin foldl1(cons,PNil,ps0)val ts : tlist = TCons(...)fun doit (ps:plist) = doit'(ps,id,ts)Fig. 15. Geometric example component after closure-conversion. This is a slightlyoptimized version of the output produced by the formal algorithm in Section 9.2.



From ML to Ada 29Original code:fun empty (x:int) : bool = falsefun member (s:int->bool,x:int) : bool = s xfun insert (s:int->bool,x:int) : int->bool =let fun s1 y = case =(x,y) of true => true | false => s xin s1fun upto (n:int) : int->bool =case =(n,0) of true => empty | false => insert(upto(-(n,1),n))fun main (n:int) : bool = lookup(upto n,100)After closure-converting the int->bool functions:datatype clos = E | S1 of int * clos for type int->boolfun empty' (x:int) : bool = false lambda-lifted functionsand s1' (y:int,x:int,s:clos) =case = (x,y) of true => true | false => dispatch(s,x)and dispatch(c:clos,i:int) : bool = for type int->boolcase c ofE => empty' i| S1 (x,s) => s1'(i,x,s)val empty : clos = E closure valuefun member (s:clos,x:int) : bool = dispatch(s,x)fun insert (s:clos,x:int) : clos =let val s1 : clos = S1(x,s) closure valuein s1fun upto (n:int) : clos = : : : unchanged: : :fun main (n:int) : bool = : : : unchanged: : :Fig. 16. Closure conversion of code for sets represented by characteristic functions. Toimprove readability, RML concrete syntax is used rather than SIL. The converted code isa slightly optimized version of the output produced by the formal algorithm inSection 9.2.of the closure datatypes and the corresponding dispatch functions. Finally, thesede�nitions are combined with the lifted function de�nitions and the converted termsto form the fully converted component de�nition.As described here, the algorithm rede�nes every function-valued identi�er as aclosure and changes every arrow type to a closure type. But the signatures of ex-ported values must not be changed; this implies that the argument and result typesof exported functions must not involve arrow types (as noted in Section 3), andthat exported functions themselves must not be closure converted. In practice, thesystem handles the latter problem by creating special stub versions of exportedfunctions, with unchanged signatures, but we omit this detail from the formal pre-sentation here, which is therefore correct only for programs that do not exportfunctions.A detailed speci�cation of the term conversion algorithm is given in Figure 17.The translation of type � is denoted � . T S translates top-level declarations, E



30 A. Tolmach and D. OlivaK = KD = D(h�i�)! �0 = ClosType��(h�i�)! �0��Ek [[se]] = seEk ��v(hsei;)�� = if v 2 Dom(k)then let hfvi = k [[v]] in Lift [[v]](hsei;,hfvi;)else (Dispatch �ClosType � Typeof ) [[v]](v,hsei;)Ek ��c(hsei;)�� = c(hsei;)Ek ��p(hsei;)�� = p(hsei;)Ek [[let val v : � = e1 in e2]] = let val v : � = Ek [[e1]] in Ek [[e2]]Ek ��let fun hfdeciand in e�� = let hfvi = FVk ��fun hfdeciand�� inlet k0 = k h+ (FunName[[fdec]] 7! hfvi)i inFSk0 (hfvi) [[hfdeci]] [[e]]Ek hhcase se of 
c(hvi;) => e�jii = case se of 
c(hvi;) => Ek [[e]]�jFSk(hfvi) [[fdec hfdeci]] [[e]] = let Fk(hfvi) [[fdec]] in FSk(hfvi) [[hfdeci]] [[e]]FSk(hfvi) [[ ]] [[e]] = Ek [[e]]Fk(hfvi) ��v0 inl (hv : �i;) : �0 = e�� =Lifted := Lifted + �Lift [[v0]] inl (hv : �i;,
fv : Typeof [[fv]]�;):�0 = Ek [[e]]�;let tc = (ClosType �Typeof ) [[v0]] inlet c = newDataCon() inClosData := ClosData + �tc 7! �c;Lift [[v0]]; 
fv : Typeof [[fv]]���;val v0 : tc = c(hfvi;)Ahhdatatype DD t = 
c [of h�i�]�jEandii = DD t = 
c [of h�i�]�jET Sk [[val v : � = e topdecs]] = val v : � = Ek [[e]] T Sk [[topdecs]]T Sk ��fun hfdeciand topdecs�� = let hfvi = FVk ��fun hfdeciand�� inlet k0 = k h+ (FunName[[fdec]] 7! hfvi)i inhFk0(hfvi) [[fdec]]i T Sk [[topdecs]]T Sk [[ ]] =Fig. 17. Closure conversion of SIL terms.translates expressions, F translates functions, and FS is an auxiliary function fortranslating recursive sets of functions. Each of these translations is explicitly pa-rameterized by an environment k that records those identi�ers in the current scopethat refer to known functions; where de�ned, k [[v]] returns the sequence of freevariables of v, which are guaranteed to be in the current scope as well. F and FSare also parameterized by the function's sequence of free variables. A translatesmutually recursive sets of algebraic type declarations.In addition to producing result terms, these translations use side-e�ects to buildimportant auxiliary structures:



From ML to Ada 31FVk ��fun hfdeciand�� = S hFVk [[fdec]]iFVk ��v0 inl (hv : �i;) : �0 = e�� = FVk [[e]]�S hfvgi � fv0gFVk [[(k : K)]] = ;FVk [[v]] = fvgFVk ��v(hsei;)�� = S hFVk [[se]]i[(if v 2 Dom(k) then fk [[v]]g else fvg)FVk ��c(hsei;)�� = S hFVk [[se]]iFVk ��p(hsei;)�� = S hFVk [[se]]iFVk [[let val v : � = e1 in e2]] = FVk [[e1]] [ (FVk [[e2]]� fvg)FVk ��let fun hfdeciand in e�� = FVk ��fun hfdeciand��[(FVk [[e]]� hFunName[[fdec]]i)FVk [[case se of hc(hvi) => ei]] = FVk [[se]] [ (S
FVk [[e]]�S hfvgi�)Fig. 18. Calculation of free variables. The notation S hXi denotes the set union of all thesets X resulting from a calculation on members of a sequence.i. a mapping Lift from source function names to corresponding lifted functionnames;ii. a bijective mapping ClosType from source arrow types to corresponding clo-sure datatype names;iii. a mapping Dispatch from closure datatype names to corresponding dispatchfunction names;iv. a set Lifted of lifted function de�nitions; andv. a mapping ClosData from closure datatype names tc to sets of tuples(dc; f; hfv : � i)where dc is a closure data constructor of tc, f is the corresponding (lifted)function name, and hfv : � i is the sequence of the corresponding function'sfree variables and their types.The mappings Lift, ClosType, and Dispatch are treated as self-memoizing functions:they generate and return a fresh name when called with a given argument for the�rst time; subsequent calls with that argument return the same result as the �rstcall. We also assume auxiliary functions NewDataCon(), which returns a fresh clo-sure data constructor name each time it is called; Typeof [[e]], which reconstructs the(original) type of any source term e; and FunName[[f ]], which extracts the functionname from a declaration f . The Lifted set and ClosData sets are extended explicitlyas a side-e�ect of the F translation. When the term translation is complete, thesesets are used to generate the closure datatype de�nitions and dispatch functions,as described below. Note that the order in which side-e�ects are executed to buildthese structures does not alter the results except for choice of names, so the trans-lation functions in Figure 17 do not have to be read with any particular imperativeevaluation order in mind. For simplicity, the �gure omits certain variable renamingsrequired to maintain identi�er uniqueness.The auxiliary functionFVk [[e]], speci�ed in Figure 18, computes the free variablesof expression e assuming the initial known function environment k. As speci�ed,



32 A. Tolmach and D. OlivaC [[export hexporti hatdecsi htopdecsi]] =( Lift := ;; ClosType := ;; Dispatch := ;;Lifted := ;; ClosData := ;;let hatdec0i = Flatten hA [[atdecs]]i inlet htopdecs0i = T S; [[htopdecsi]] in(* at this point all mappings have been built *)closure atdecs := ;; dispatch funs := ;;for all tc 2 Codom(ClosType) doclosure atdecs := closure atdecs +tc = 
dc of h�i��j;dispatch funs := dispatch funs +Dispatch[[tc]] (v0 : tc,hv : �i;) : �0 =case v0 of
dc(hfv : �i;) => f(hvi;,hfvi;)�jwhere h(dc;f; hfv : � i)i = ClosData(tc)and h�i� ! �0 = ClosType�1(tc)and v0; hvi are freshdone;export hexportidatatype hatdec0iand and ha j a 2 closure atdecsiandfun hf j f 2 dispatch funsiand and hf j f 2 Liftediandhtopdecs0i)Fig. 19. Closure conversion of SIL components. The notation hs j s 2 Si should be readas a sequence comprehension, i.e., the sequence of s values drawn from set S. Auxiliaryfunction Flatten converts a sequence of sequences into a single sequence.FV returns a set; we assume that an implementation will produce the membersof the set in some deterministic order, which then becomes the canonical sequenceordering for the free variables wherever they are used. The free variable calcula-tion is slightly tricky because it must produce the free variables of the translatedterm, given the original term as input; yet, the free variables must be calculatedbefore the translation can occur! To break the circularity, we observe that the freevariables sets of source and translated terms can only di�er due to the replacementof a known function application f(hvi;) by the corresponding lifted applicationLift [[f ]](hvi;,hfvi;), where hfvi are the free variables of f . In this case the targetfree variable set should not include f , but should include the hfvi.11The top-level conversion function C for components is shown in Figure 19. Thisfunction must be read imperatively, since the construction of the closure datatypesand dispatch functions and the translation of the export list rely on the auxiliarydata structures built as a side-e�ect of the T S and AS translations. A datatypedeclaration and dispatch function are built for each closure datatype invented byClosType, i.e., corresponding to each arrow type in the source program. Note that itis possible for a closure datatype to end up with no constructors; the corresponding11 We discovered this formulation of the free variable calculation in Xavier Leroy's Galliumcompiler (Leroy, 1992).



From ML to Ada 33dispatch function body is a case with no arms and hence no well-de�ned type.These dispatch functions are never actually applied; in most cases, the dead-codeeliminator will remove them.Freshly-created closure datatype declarations may refer to the converted ver-sions of source program datatype declarations (since free variables may belong todatatypes) and vice-versa (since source datatypes may include �elds of arrow type,which are converted to closure types). Therefore, the converted component has asingle mutually recursive set of algebraic type declarations including both closuredatatypes and converted source datatypes. For similar reasons, the converted com-ponent groups all the freshly-created closure dispatch functions and the lifted ver-sions of the source program functions into a single mutually recursive declaration,followed by the translations of the original top-level declarations. Identi�er unique-ness guarantees that it is harmless to declare any set of declarations as mutuallyrecursive; a post-processing step is used to separate both datatypes and functionsinto their true mutually-recursive components.9.3 DiscussionBecause of the need for per-type dispatch functions, our algorithm depends criti-cally on having monomorphic source code, but we believe a similar algorithm couldbe given for polymorphic programs with the addition of a typecase construct (Mor-risett, 1995). Bell, Bellegarde and Hook (Bell et al., 1997) have speci�ed a moreelaborate algorithm for polymorphic source programs that performs type specializa-tion and higher-order removal simultaneously, and may leave parts of the programpolymorphic where that is possible. Their approach is thus more powerful, but itis also signi�cantly more complicated, and has not been implemented.Our algorithm also depends on having the full source program available; this re-striction can be lifted if we permit extensible datatype declarations, i.e., datatypesfor which the data constructor declarations can be scattered throughout the pro-gram, even in separate compilationunits (Tolmach, 1997). Supporting such datatypesrequires only a small extension to the type system (Standard ML treats the built-inexception type constructor in this way), but requires a somewhat more expensiveimplementation of case, and precludes the optimizations discussed in the next sec-tion. 10 Optimization of First-order CodeAfter �rst-order conversion and a pass back through the optimizer, a typical callto an unknown function has become a known call (to a dispatch function) followedby a case dispatch. This sequence is probably less e�cient than the single indirectjump that would be performed by a conventionally closure-converted program.1212 In C, which supports indirect jumps to top-level functions, our representation could beconverted back to a conventional closure representation as a �nal compilation step, byusing the code pointers of the lifted functions as the constructor tags for the closure



34 A. Tolmach and D. OlivaHowever, there are many potential performance advantages to be obtained from the\interpreted" style of the converted program, deriving from the fact that it is anexplicitly �rst-order program. 10.1 UncurryingThe general-purpose optimizations that inline \small" functions and perform \casesplitting" also work together on the explicit closure form to mimic the e�ect of astandard uncurrying transformation, with no extra implementation e�ort. Considera curried functionf (x1:t1) (x2:t2) : t = eexpressed in SIL as:fun f (x1:t1) : t2 -> t =let fun f2 (x2 : t2) : t = ein f2A fully-applied instance ((f e1) e2) is expressed in SIL as:let val g1 : t2 -> t = f e1in g1 e2This code is much less e�cient than an application of an arity-2 function wouldbe, due to the cost of building and entering an intermediate closure. An uncurryingtransformation reduces the cost by introducing an arity-2 function f' and rede�ningf to call f' (note that e is not duplicated).fun f' (x1:t1,x2:t2) : t = efun f (x1:t1) : t2->t =let fun f2 (x2:t2) : t = f'(x1:t1,x2:t2)in f2Now fully-applied instances of f are altered to call f' directly instead; partially-applied or escaping instances of f are not changed. A similar transformation isdesirable for curried functions of more than two arguments, whenever they arecalled with two or more actuals.Uncurrying is ordinarily performed prior to closure conversion. Appel (1992)noted that uncurrying can be achieved simply by introducing the de�nition of f',as above, and relying on standard inlining heuristics to inline f and f2 (whose bodiesare small), yielding a direct call to f'. Our observation is that closure conversionalready performs the same transformation that Appel suggests, introducing a liftedversion of f2. By applying a round of our standard optimizations after closureconversion, we get uncurrying \for free." Here is the result of closure conversion onthe example above:type. (This works because each closure value is cased over only once, by the relevantdispatch function.) Of course, the C code would require unsafe casts.



From ML to Ada 35datatype clos = Cf2 of t1 | ...fun f' (x1:t1) : clos = Cf2(x1)fun dispatch (c:clos,x2:t2) : t =case c ofCf2 x1 => f2'(x2,x1)| ...and f2' (x2:t2,x1:t1) : t = elet val g1 : clos = f'(e1)in dispatch(g1,e2)Now, the standard optimizer proceeds as follows: it inlines the call f'(e1), sincethe body of the function is \small," which yields:let val g1 : clos = Cf2(e1)in dispatch(g1,e2)Now the call to dispatch can be \case split," resulting in the inlining of the dis-patch and yielding the direct n-ary call f2'(e2,e1)! Note that the success of thisinlining strategy doesn't depend on the number of cases in this dispatch function,which might be arbitrarily large. Nor does it depend on a sizing heuristic; evenour conservative inliner will always judge the relevant function bodies to be smallenough. It also works correctly for functions of more than two arguments.10.2 Implicit Type-based Closure AnalysisHigher-order functions complicate compilers by making ow analysis much moredi�cult: data ow and control ow become interdependent, so analyses from theconventional 3GL compiler world won't work without modi�cation. Many partial-evaluation-based optimizations, such as value propagation and dead-code elimina-tion, require the compiler to determine an (approximation of) the set of lambda-expressions that might be invoked at each application site in the program. Existingimplementations of this so-called closure analysis use abstract interpretation involv-ing a �xpoint calculation (Sestoft, 1988; Shivers, 1991), a constraint-based mecha-nism (Bondorf and J�rgensen, 1993; Palsberg, 1995), or region inference (Koch andOlesen, 1996). Surprisingly, no existing system appears to take advantage of thefact that simple typing provides a good �rst cut at the analysis \for free." Also,existing closure analysis algorithms do not express their results within the languageitself, and so cannot feed subsequent general-purpose optimizations.Our closure conversion algorithm can be seen as the encoding of a simple type-based closure analysis. Type inference tags each application site with a type, andthe only lambda-expressions that can be invoked at that site are those whose typematches the annotation. The set of such lambdas is made explicit in the dispatchfunction called at that site and in the corresponding closure datatype. Standardpartial-evaluation style optimizations such as constant propagation and dead code



36 A. Tolmach and D. Olivadatatype pclos flat = Ccons | Cconsapp of transformfun foldl0 (n:transform,l:tlist) : transform =case l ofTNil => n| TCons(x,r) =>let val n' : transform = compose(x,n)in foldl0(n',r)fun foldl1 (c:pclos,n:plist,l:plist) : plist =case l ofPNil => n| PCons(x,r) =>case c ofCcons =>let val n' : plist = Cons(x,n)in foldl1(c,n',r)| Cconsapp(whole_t) =>let val p0 : point = apply(whole_t,x)in let val n' : plist = Cons(p0,n)in foldl1(c,n',r)val ts : tlist = TCons(...)fun doit (ps:plist) : plist =let val whole_t : transform = foldl0(id,ts)in let val consapp : pclos = Cconsapp(whole_t)in let val ps0 : plist = foldl1(consapp,PNil,ps)in foldl1(Ccons,PNil,ps0)Fig. 20. Optimized �rst-order code for geometric example component.elimination, as described in Section 8, work directly on this representation. In ad-dition, there are potential optimization payo�s if the number of data constructorsfor a particular closure type is small. A singleton set of constructors is ideal: theoptimizer knows precisely which function will be called, and can arrange to call itdirectly or (if it small enough) inline it (Jagannathan and Wright, 1996). Inlining isalso possible (with some risk of code blow-up) for sets with just a few constructors,although we have not implemented this.If a closure datatype must be built, the compiler can use the fact that it knowsall the constructors to choose an optimized representation. The standard datatyperepresentation tricks (Cardelli, 1984; Appel, 1992) will avoid building heap recordsfor closure constructors with no free variables. It is also useful to support \at" (i.e.,unboxed) variant types (see Section 12.2) to avoid heap allocation for non-recursiveconstructors that have just a few free variables.As an example, Figure 20 shows the e�ect of optimizing the code in Figure 15.Function pdispatch, having already absorbed consapp' and cons', has been in-lined into foldl1. Closure datatype pclos can be represented \at" and hence



From ML to Ada 37need not be heap-allocated. Datatype tclosure has been recognized as a \unit"type, and its de�nition and uses have been removed altogether, allowing the bodyof tdispatch to be simpli�ed into a call to comp' and thence into a call to compose,before being inlined into foldl0. Finally, function doit' has been inlined into doit.The payo� from inlining and closure representation optimizations depends on theprecision of the underlying type-based closure analysis, and this in turn dependson source program types. To the extent that these types represent structural dis-tinctions among values, they are essentially �xed by the programmer's choice ofdata structures and algorithms. However, source languages that support a name-equivalence model for types allow programmers to distinguish between di�erentuses of structurally equivalent types. In RML (as in Standard ML), for example,this can be done by using \transparent" datatype declarations, e.g.,datatype fahrenheit = F of intdatatype centigrade = C of intOrdinarily, programmers do this in order to make their program text clearer andto obtain help from the compiler's type-checker in detecting logical errors. For ex-ample, lambda-bound functions of type fahrenheit->fahrenheit can be reliablydistinguished from those of type centigrade->centigrade, etc., reducing the riskof accidentally confusing the two kinds of quantities. Under our closure conversionscheme, these two functions will go into distinct closure datatypes, each having fewerconstructors than would a datatype for their common structural type int->int,and hence possibly o�ering more optimization opportunities at their call sites. Thususers have a further motive for making �ne typing distinctions: they may therebyenable better optimization, more e�cient closure representations, and better per-formance! 10.3 Explicit Closure AnalysisThe translator can also perform its own forms of ow analysis explicitly, and recordthe results in the form of a more specialized typing, which the closure converter willtake into account when collecting constructors into closure datatypes, thus perhapsproducing a larger number of datatypes each containing fewer constructors. We havebuilt one such analyzer, structured as a variant of type inferencing. Beginning witha copy of the original SIL program in which every expression is annotated withan explicit (monomorphic) type, the analyzer tags each occurrence of an arrowtype (on a fn expression or a variable) with a unique integer. It then performs astandard type-checking traversal of the program, with one adjustment: wheneverthe type-checker uni�es two arrow types, the integer tags on these types are placedin the same equivalence class. In particular, this guarantees that if a fn expression(l : �1!i�2) is among those that might possibly be applied at an application (a :�1!j�2)(b : �1), then the tags i and j are necessarily in the same equivalence class.On the other hand, arrow tags are not placed in the same equivalence class merelybecause their argument and result types match. Thus the classes are a re�nementon ordinary types. This analysis is simple, given that the typed intermediate form



38 A. Tolmach and D. Olivain already in hand, and it is almost linear (its complexity is dominated by theunion-�nd algorithm). It produces essentially the same analysis as the constraint-based approach described by Bondorf and J�rgensen (1993) and further analyzed byPalsberg (1995). Koch and Olesen (1996) have implemented a closure analysis forthe ML Kit compiler based on (potentially polymorphic) region annotations (Tofteand Talpin, 1997); functions allocated to the same region are placed in the sameclosure-analysis equivalence class. Our tag uni�cation method closely resemblesregion inference for monomorphic programs (Baker, 1990; Tofte and Talpin, 1997),although we developed it independently; nothing in our scheme corresponds to theML Kit's polymorphic region inference, however.An important point about our framework is that the result of an automatedanalysis like this can be expressed directly in SIL, and used as the basis of a (�ner-grained) closure conversion. This is done by rewriting the SIL program. For eachequivalence class �1!i�2, the analyzer simply invents a new unary datatype Di =Ci of �2 and replaces all instances of �1!i�2 by �1 ! Di, adding the necessarycoercions to the program. These amount to a Ci construction around the body ofeach function of this type and a case on the result of each application of such afunction. The resulting program is fed directly to the ordinary closure converter.The transparent Di types are cleaned from the resulting �rst-order program by thestandard optimizer.As future work, we plan to apply conventional (FORTRAN-world) optimizersto our closure-converted code, particularly to take advantage of well-developeddataow frameworks that don't rely on inlining to propagate information.11 Eliminating Tail CallsFunction calls are generally expensive in standard implementations of our target3GLs.13 So it is very desirable to remove tail calls in favor of jumps, especiallywhen such calls are recursive. Tail calls are frequent in SIL, both in user functionsderived from the original RML code, and in the dispatch functions generated byhigher-order function removal.To make it possible to express calls as jumps, SIL includes a facility for de�ninglabeled jump points and corresponding gotos within a function (Kelsey, 1995). Jumppoints are declared similarly to let-bound functions, with a label name, formal pa-rameters, de�ning expression, and body; gotos are similar to function applications,with a target jump point label and actual parameters. However:� goto expressions can only appear in tail position;� jump point labels can only be mentioned as the targets of gotos (i.e., theyare not �rst class values); and� a goto to a particular jump point may appear recursively inside the jumppoint de�nition, or within the immediate body, but not within any functiondeclaration nested inside the body.13 Deeply recursive nests of calls are particularly expensive on SPARC processors whenregister windows are used (as they are by most 3GL compilers).



From ML to Ada 39fun foldl0 (n:transform,l:tlist) : transform =let label jp0 (n0:transform,l0:tlist) : transform =case l0 ofTNil => n0| TCons(x,r) =>let val n' : transform = compose(x,n0)in goto jp0(n',r)in goto jp0(n,l): : :fun doit(ps:plist) : plist =let val whole_t = foldl0(id,ts)in : : : Fig. 21. Insertion of jump points into geometric example code.Hence, when SIL is translated into a target 3GL, SIL jump point labels can becomeordinary labels, their parameters become ordinary variable declarations scoped atthe function level, and a SIL goto translates into a set of assignments to the pa-rameter variables followed by an ordinary local goto.When can a tail-call be turned into a goto? A simple recursive tail call from afunction to itself is easy: a jump point is inserted at the top of the function bodyand the recursive tail call is changed to a goto; non-recursive and non-tail calls areunchanged. As an example, Figure 21 shows how a jump point is introduced at thetop of foldl0 in the code of Figure 20.The same approach can be extended to handle tail-calls amongmutually-recursivefunctions, though at a signi�cantly increased cost. In order to make the nested labelshave the proper scoping, the functions must be combined into a single function withsimulated multiple entry points. A jump point is established inside the combinedfunctions for each of the original functions, and the combined function gets anextra discriminant argument used to dispatch control to the appropriate label. Thediscriminant is encoded as a datatype, in a manner very similar to the closuredatatypes introduced during higher-order function removal. For example:let fun f (x:t1) = ... g zand g (y:t2) = ... f w ... f qin g rbecomesdatatype D flat = F of t1 | G of t2let fun f_or_g (d:D) =let label f (x:t1) = ... goto g zand g (y:t2) = ... f_or_g(F w) ... goto f qin case d ofF x' => goto f x'| G y' => goto g y'in f_or_g(G r)



40 A. Tolmach and D. OlivaUnder this transformation, a non-tail call to one of the original functions requiresconstructing a discriminant datatype value, passing it to the combined function,and performing an immediate case dispatch on it. Fortunately, the added datatypecan always sensibly be declared flat, since it cannot be recursive, and its valuesare always consumed immediately at the top of the combined function and neverescape. In most target 3GL compilers, the net e�ect is to push the datatype tagand parameters (i.e., the original functions' arguments) on the stack. In principle,good compilers could pass them in registers. Still, this transformation is costly incode size and execution time (for non-tail calls), so it is performed only if there isat least one tail-recursive call in the set of de�nitions. But it is well worth includingin our repertoire, because mutual tail-recursion between dispatch functions andthe lifted functions they invoke is quite common.12 Generating C or Ada CodeThe translation of �rst-order, optimized SIL code into our target 3GLs is fairlystraightforward, so we give only a brief overview here. To ease re-targeting to new3GLs, the translation is mediated by a common imperative intermediate form calledMIL. A MIL component is a sequence of algebraic type declarations, value de�ni-tions, and function de�nitions. The translations to MIL and thence to Ada or Cmaintain the top-level structure of the SIL code.12.1 MIL CodeThe body of each MIL function is a block, which consists of local (mutable) vari-able declarations, a labeled set of nested sub-blocks, and an imperative statementsequence. A statement sequence consists of zero or more assignment statements(described below) followed by one of: an (unlabeled) sub-block, a case statement(whose arms are blocks), a goto to a label (in this block or an enclosing one), oran explicit function return. MIL blocks are produced for each SIL function body,let-binding, and case arm, and at several other points where it is convenient touse temporary variables. Each MIL block is translated directly to a fg-delimitedblock in C or a DECLARE: : :BEGIN: : :END block in Ada.Assignment statements update variables declared in their block or in an enclosingone. The right-hand side of an assignment is restricted to be a variable, a literalconstant, or an application; applications apply a primitive operator, constructor,or user-de�ned function to variables or constants. In particular, template-de�nedprimitive operators appear only on the right-hand sides of assignments, and onlywith simple variable or constant arguments. MIL assignments are translated directlyinto C or Ada assignments.12.2 Algebraic Type RepresentationMIL algebraic type declarations extend SIL declarations with representation in-formation. Careful choice of representations is quite important for achieving good



From ML to Ada 41performance in target code. Any algebraic type can be represented as a heap-allocated (\boxed"), tagged variant record, with each n-ary data constructor inthe type corresponding to a tagged variant with n �elds, and such types can bede�ned in a straightforward manner in Ada and C. Under this approach, all typerepresentations have uniform size (one word), which is important for systems withpolymorphic target code. More e�cient representations that maintain the uniformsize requirement are well-known; our system uses all the standard tricks (Appel,1992; Cardelli, 1984) except those that require casting. But since our system gen-erates monomorphic code, we need not require that all types have uniform size.Any non-recursive type whose values occupy a su�ciently small space can be rep-resented at (or \unboxed"), i.e., manipulated directly by value rather than beingheap-allocated and manipulated by reference.The use of unboxed records carries both bene�ts and costs. The major bene�tis reducing the use of the heap, with consequent reductions in allocation, garbagecollection, and data access costs. On the other hand, unboxed records are moreexpensive to move around than boxed ones, as each move requires that the entirecontents of the record be copied. Thus automatic use of the unboxed representationshould be restricted to fairly small records; we make the threshold size a tunableparameter of the translator. Users can also force a datatype to be held unboxed bymarking it as flat in the source program.Unlike other functional language compilers known to us, our translator supportsunboxed representations even for variant records. These are particularly useful foravoiding heap-allocation of small closures. Of course, unboxed values always occupythe space needed for the largest possible variant, and hence waste space (and copy-ing time) for smaller variants, so it is again important that the largest variant notbe too large.Both Ada and ANSI C support manipulation of unboxed record values, thoughnot as e�ciently as we would like. One potential advantage of using unboxed valuesis that they need not, in principle, stored in memory at all; they can often bepro�tably spread over registers (at least on machines that have lots of registers).Unfortunately, our target 3GL compilers are generally reluctant to handle unboxedrecords this way; in particular, they insist on passing and returning unboxed recordson the stack. We cannot improve on this without direct access to machine code.Even so, choosing unboxed representations o�ers measurable improvements in theperformance of some benchmarks, as discussed in Section 13.12.3 Code GenerationWe have used the gcc compiler for ANSI C compilation and the Sun Ada compiler(versions 1.1 and 3.0) for Ada83 compilation. We rely on the 3GL compilers to doseveral important tasks, including register allocation and copy propagation, peep-hole optimization of jumps, and generation of good code for case statements. Inpractice, the two compilers we use vary considerably in the quality of their code,with gcc generally doing a better job, especially on copy propagation.In a few cases, the semantics of the target language cause subtle performance



42 A. Tolmach and D. OlivaTable 1. Benchmark results.life fft interpd interpc sieve messlines 302 237 113 119 48 385smlnja timeb 2.0 5.8 2.3 3.0 11.2 13.5standardc d timeb 0.8 2.7 2.0 4.7 8.3 4.6closure sizee 3 1 1 1 1 9flow-flatc d timeb 0.8 2.7 1.7 4.6 8.2 4.6flow-boxedc d timeb 1.0 2.7 2.0 5.1 8.2 4.7closure sizee 3 1 5 7 1 9flow-flat-nogcc timeb 0.5 2.6 1.2 2.4 5.1 3.4heapf 2.4 0 6.6 29.9 26.9 13.3flow-boxed-nogcc timeb 0.6 2.7 1.3 2.6 5.1 3.2heapf 3.9 0 8.5 34.9 26.9 16.6a SML/NJ version 109.27 with reducemore := 0 and rounds := 0.b User+system time in seconds, on unloaded 133MHz Pentium with 80MB memory, underLinux version 2.0.27.c Generated C code compiled under gcc version 2.7.2.1 with option -O3.d Generated C code linked with Boehm-Demers-Weiser conservative collector version 4.11.e Maximum closure size in words.f Heap allocation in MB.problems. For example, in Ada83 a local variable slated to contain a variant recordmust be initialized with a default value, even if it is immediately overwritten byan assignment; these initializations make function entry much more expensive thanthe simple stack pointer adjustment one might expect.We have also had to deal with a number of complications arising from arbitrarylimitations in the Sun Ada compiler. For example, there is a hard internal limit onthe depth of syntactically nested blocks; this has required us to perform a transfor-mation on MIL function bodies that lifts all nested blocks to the top of the function.Unfortunately, this transformation broadens the syntactic scope of local variablesand thus substantially increases the stress on the Ada compiler's register allocator.13 Performance BenchmarksSimple benchmark results indicate that our compiler generates code that is quitecompetitive in quality with the well-established Standard ML of New Jersey com-piler. We also measure the e�ects of using more re�ned closure analysis and of usingunboxed closure representations. A summary of the benchmark results is given inTable 1. life is an implementation by Reade (1989) of Conway's Game of Lifemaking makes heavy use of higher-order functions; the inner loop processes a listof pairs of integers which we mark as flat. fft is an implementation of the FastFourier Transform due to Xavier Leroy; it is based on a template that supports



From ML to Ada 43simple operations on arrays of reals. interpd and interpc are lambda-calculusinterpreters evaluating the factorial function; the former is in direct style and thelatter in continuation-passing style; they are taken from Bondorf (1990). sieve isa list-based version of the sieve of Eratosthenes. mess parses and reformats sim-ple bit-based messages; the RML code was generated by our Message Speci�cationLanguage application generator (Kieburtz et al., 1995).Row smlnj represents the behavior of Standard ML of New Jersey. The other rowsrepresent the behavior of our compiler generating C under a variety of compilationsettings; the resulting C was then compiled gcc and (unless otherwise noted) linkedwith the Boehm-Demers-Weiser conservative garbage collector (Boehm and Weiser,1988). Row standard represents the standard con�guration of our compiler. Inparticular, at (non-heap) datatype representations are used for all non-recursiveclosure types. Execution times for our compiler are within a small factor of those ofSML/NJ, and substantially better in some cases. These �gures should be consideredonly as a rough indication of comparable performance, however, since there arenumerous di�erences between the two systems that make exact comparison di�cult.For example, SML/NJ checks for overow on integer arithmetic operations, whereasC does not|although pro�ling results indicate that this di�erence is irrelevant tothese particular benchmarks. More seriously, the performance of each system isheavily inuenced by the amount of physical memory allocated by its memorymanagement system at start-up, but it is di�cult to control this quantity to ensurea fair comparison.flow-flat represents a con�guration in which we invoke the more explicit clo-sure analysis described in Section 10.3 and continue to use the (often larger) atrepresentations for all closure types; flow-boxed does the same analysis but usesboxed representations for all closure types. Comparing these �gures indicates thatthe re�ned closure analysis is occasionally worthwhile (e.g., for interpd), but onlyin conjunction with the at representation for closure types.These comparisons of at vs. boxed closure representations may be skewed by ouruse of the relatively slow Boehm-Demers-Weiser collector, which probably penal-izes heavy heap allocation disproportionately more than a system with an e�cientbuilt-in allocator. To get better evidence that at closures types are worthwhile,we linked the generated code for flow-flat and flow-boxed against a very low-overhead heap memory management implementation: allocation from a single largearray and no garbage collection. The results are shown as flow-flat-nogc andflow-boxed-nogc. Even with very cheap heap management, and despite the factthat gcc doesn't generate particularly good code for handling at structures, thesubstantially lower heap allocation requirements of the flat approach lead to mea-surable speed improvement.We conclude that at closure allocation is worth furtherinvestigation as an optimization technique for functional language compilers.14 ConclusionsVersions of the compiler described here have been in use within our overall trans-lation system for over two years. It generates working Ada83 and ANSI C code



44 A. Tolmach and D. Olivawith respectable performance relative to established functional language compilers,and an unimpeachable level of type safety. It has cheerfully handled RML inputprograms of up to 20,000 lines. Generated Ada components have been integratedinto the US Air Force's Generic CommandCenter demonstration environment, thusmeeting the speci�c goals of the project for which this work was originally under-taken.More broadly, we believe that our template approach is a promising alternativeto previous interoperability schemes for strongly-typed functional languages. Wewould like to perform more detailed comparisons between our work and existingnon-functional \glue" languages like Tcl. We also plan to extend template de�ni-tions to include speci�cations of algebraic laws that capture important primitive-speci�c optimizations such as arithmetic constant folding.We also believe that our simple approaches to handling polymorphismand higher-order functions may be generally useful for implementing type-preserving compilers.Like other researchers (Tarditi et al., 1996; Peyton Jones, 1996) we have found theability to type-check intermediate representations invaluable in uncovering bugsin the course of compiler development. Moreover, the type systems required byour intermediate languages are considerably simpler than those needed by someother systems. We have also developed new uses for type information in late-stageoptimization of programs, and we see further opportunities to apply more con-ventional optimization techniques on �rst-order SIL code. The ability to generatee�cient monomorphic data representations and to avoid some heap-allocation ofclosures has an important impact on performance. The e�ects of polymorphic func-tion cloning on code size need more thorough investigation, however.The most signi�cant restriction of our system is that it requires access to theentire RML program, because both the polymorphism removal and higher-orderremoval algorithms are \whole-program" transformations. However, we believe thatthis problem can be at least partly addressed by providing separately compiledcomponents a digest of the relevant type and function information from the othercomponents. ReferencesAppel, A. W. (1992). Compiling with Continuations. Cambridge University Press.Appel, A. W. and Jim, T. (1989). Continuation-passing, closure-passing style. In SixteenthACM Symp. on Principles of Programming Languages, pages 293{302, New York. ACMPress.Appel, A. W. and Jim, T. (1998). Shrinking lambda expressions in linear time. Journalof Functional Programming. (to appear).Baker, H. G. (1990). Unify and conquer (garbage collection, updating, aliasing, : : :) infunctional languages. In Proc. 1990 ACM Conference on Lisp and Functional Program-ming, pages 218{226.Bell, J. M. (1994). An implementation of Reynold's defunctionalization method for amodern functional language. Master's thesis, Oregon Graduate Institute.Bell, J. M., Bellegarde, F., and Hook, J. (1997). Type-driven defunctionalization. In Proc.2nd International Conference on Functional Programming, pages 25{37.
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