
Weak Memory Models with Matching Axiomatic and Operational

Definitions

Sizhuo Zhang1 Muralidaran Vijayaraghavan1 Dan Lustig2 Arvind1

1{szzhang, vmurali, arvind}@csail.mit.edu 2dlustig@nvidia.com
1MIT CSAIL 2NVIDIA

Abstract

Memory consistency models are notorious for being difficult to define precisely, to reason about,
and to verify. More than a decade of effort has gone into nailing down the definitions of the ARM
and IBM Power memory models, and yet there still remain aspects of those models which (perhaps
surprisingly) remain unresolved to this day. In response to these complexities, there has been somewhat
of a recent trend in the (general-purpose) architecture community to limit new memory models to being
(multicopy) atomic: where store values can be read by the issuing processor before being advertised to
other processors. TSO is the most notable example, used in the past by IBM 370 and SPARC-TSO, and
currently used in x86. Recently (in March 2017) ARM has also switched to a multicopy atomic memory
model, and the new RISC-V ISA and recent academic proposals such as WMM are pushing to do the
same.

In this paper, we show that when memory models are atomic, it becomes much easier to produce
axiomatic definitions, operational definitions, and proofs of equivalence than doing the same is under non-
atomic models. The increased ease with which these definitions can be produced in turn allows architects
to build processors much more confidently, and yet the relaxed nature of the models we propose still
allows most or all of the performance of non-atomic models to be retained. In fact, in this paper, we show
that atomic memory models can be defined in a way that is parametrized by basic instruction and fence
orderings. Our operational vs. axiomatic equivalence proofs, which are likewise parameterized, show that
the operational model is sound with respect to the axioms and that the operational model is complete:
that it can show any behavior permitted by axiomatic model.

For concreteness, we instantiate our parameterized framework in two forms. First, we describe GAM
(General Atomic Memory model), which permits intra-thread load-store reorderings. Then, we show how
forbidding load-store reordering (as proposed by WMM) allows the operational and axiomatic model to
be even further simplified into one based on Instantaneous Instruction Execution (I2E). Under I2E,
each processor executes instructions in order and instantaneously, providing an even simpler model still
for processors which do not implement load-store reordering. We then prove that the operational and
axiomatic definitions of I2E are equivalent as well.

1 Introduction

Interest in weak memory models stems from the belief that such models provide greater flexibility in im-
plementation and thus, can lead to higher performance multicore microprocessors than those that support
stronger memory models like Sequential Consistency (SC) or Total Store Order (TSO). However, extremely
complicated and contentious definitions of POWER and ARM ISAs, which are the most important modern
examples of industrially supported weak memory models, have generated somewhat of a backlash against
weak memory models. As recently as 2017, a trend is emerging in which general-purpose processors are mov-
ing away from extremely weak (so-called “non-atomic”) memory models and back towards simpler options
which are much more tractable to understand and analyze.

Over the years, two competing memory model definition approaches have emerged. One form is the
operational model, which is essentially an abstract machine that can run a program and directly produce its

1

legal behaviors. The other form is the axiomatic model, which is a collection of constraints on legal program
behaviors. Each type has its own advantage. Axiomatic models can use general-purpose combinatorial
search tools like model checkers and SMT solvers to check whether a specific program behavior is allowed
or disallowed, and they are useful for building computationally-efficient tools [8, 55, 36]. However they are
not as suitable for inductive proofs that aim to build up executions incrementally, and many architects find
them rather non-intuitive and a big departure from actual hardware. On the other hand, operational models
are very natural representations of actual hardware behavior, and their small step semantics are naturally
very well suited to building formal inductive proofs [41].

Given the complementary natures of these two types of definitions, it would be ideal if a memory model
could have an axiomatic definition and an operational definition which match each other. Then different
definitions can serve different use cases. This is indeed the case for strong memory models like SC and
TSO, but unfortunately, not so for weak memory models. The research in weak memory models can then
be classified into the following two categories:

1. Build accurate axiomatic and operational models of existing architectures.
2. Specify what memory models ought to look like: proposed memory models should be simple to understand

with no obvious restrictions on implementations, and the equivalence of axiomatic and operational models
may even be understood intuitively.

While great efforts have been devoted to the first type of research to create models for commercial archi-
tectures like POWER and ARM, these models and proofs are still subject to subtle incompatibilities and
frequent model revisions that invalidate the efforts [46, 8, 22, 33]. More importantly, the veracity of these
models is hard to judge because they are often based on information which is not public. For example, the
ARM operational model proposed by Flur et al. [22] allows many non-atomic memory behaviors that cannot
be observed in any ARM hardware, and the paper claims that those behaviors are introduced to match the
intentions of ARM’s architects. However, the recently released ARM ISA manual [10] clearly forbids those
behaviors, invalidating the model completely.

This paper falls in the second category, and is motivated by the aim to reduce the complexity of com-
mercial weak memory models. The results in this paper are not purely academic – the growing importance
of the open source RISC-V ISA [1] has provided an opportunity to design a clean slate memory model.
The memory model for RISC-V is still being debated, and the members of the RISC-V community who are
involved in the debate have expressed a strong desire for both axiomatic and operational definitions of the
memory model.

In this paper, we present a framework which provides an axiomatic semantics, an operational semantics,
and proofs of equivalence, and all in a way that is parameterized by the basic instruction and fence orderings
in a given model. With our model, specifications and proofs are not nearly as fragile and subject to frequent
breakage with every subtle tweak to a memory model definition. Instead, the parameterization allows fence
semantics to be simply and easily tweaked as needed.

1.1 Contributions

The main contribution of this paper is GAM, a general memory model for systems with atomic memory.
The model is parameterized by fences and basic instruction reorderings. Both its operational and axiomatic
definitions can be restricted to provide definitions of other simpler atomic memory models. We provide proofs
that the operational definition of GAM is sound and complete with respect to its axiomatic definition. We
believe that GAM is the first memory model that allows load-store reordering and for which matching
axiomatic and operational definitions have been provided.

On top of GAM, we show that GAM can be further simplified by simply preventing load-store reordering.
Such models can be described in terms of Instantaneous Instruction Execution (I2E), a model in which
instructions execute instantaneously and in-order, with special memory buffers capturing the weak memory
behaviors. Furthermore, I2E models can additionally be parameterized by dependency orderings (under a
commonly satisfied constraint), providing even more flexibility. We provide proofs of equivalence for our
axiomatic and operational definitions of I2E as well.

2

Paper organization: In Section 2, we present three issues that complicate the definitions of weak memory
models. In Section 3, we presented the related work. In Section 4, we present the axiomatic and opera-
tional definitions of our parameterized general atomic memory model GAM, along with the proofs of the
equivalence of the two definitions. In Section 5, we present an alternative axiomatic definition of GAM
because this definition is better suited for using model checkers. In Section 6, we show how GAM can be
restricted to represent other simpler memory models. In Section 7, we show that if Load-Store reordering is
disallowed, then the operational models can be described in the Instantaneous Instruction Execution manner
and parameterized by dependency orderings. Finally we end the paper with brief conclusions in Section 8.

2 Memory Model Background

In the following, we discuss the three specific challenges in defining a weak memory model such that it has
matching operational and axiomatic definitions, and explain briefly how we tackle the challenges.

2.1 Atomic versus Non-atomic Memory

Both ARM (until March 2017) and IBM Power use what is known as non-atomic memory which does not
have a universally-agreed-upon definition [8, 40]. A major source of complication in weak model definitions
stems from the use of non-atomic memory. This lack of consensus makes it difficult to have matching
definitions with non-atomic memory. In this paper, we define memory models that use atomic memory,
or more precisely its variant which is known as multicopy atomic memory. By atomic memory we mean
a conceptual multiported monolithic memory where loads and stores are executed instantaneously and a
load a returns the value of the latest store to address a. Multicopy atomic memory lets a processor that
generates a store bypass the value of that store to other newer loads in the same processor, before other
processors may see that store value. Multicopy atomic memory captures the abstraction of a store buffer
in the microarchitecture and is the underlying memory system for the popular TSO memory model used
by Intel and AMD [48]. In this paper we will use the term atomic memory and multicopy atomic memory
interchangeably.

In the RISC-V debate a strong consensus has emerged that the memory model for RISC-V should depend
only on atomic memory and therefore in this paper we will discuss only atomic memory models.

2.2 Instruction Reorderings and Single-thread Semantics

Modern high-performance processors invariably execute instructions out of order (aka OOO processors) but
they do it such that this reordering is transparent to a single threaded program. However, in a multithreaded
setting these instruction reorderings become visible. A major classification of memory models is along
the lines of which (memory) instruction reorderings are permitted. For example, SC does not allow any
reordering, while TSO allows a Load to be reordered with respect to previous Stores (i.e., it allows Store-
Load reordering). WMM [56], Alpha, ARM, and Power also permit Store-Store and Load-Load reordering,
provided the accesses are to different addresses, and all of these, except WMM, also permit Load-Store
reordering[10, 29, 2, 56]. The same address Store-Store reordering would clearly destroy the single thread
semantics and thus, is prohibited. The reason for disallowing the same address Load-Load reorderings is
subtler, and a variation of WMM can be defined that indeed allows such a reordering.

However, it should be noted that all of SC, TSO and WMM have matching axiomatic and operational
definitions, while to our knowledge Alpha and RMO have only axiomatic definitions. This difference is
likely to be caused by the added complexity of permitting Load-Store reordering, i.e., issuing a Store to the
memory before all the previous Loads have completed. A consequence of allowing Load-Store reordering is
that the value a load gets in a multithreaded setting can depend upon a future store from the same thread.
This complicates operational definitions. Load-Store reordering also complicates axiomatic semantics where
a special axiom is often needed to disallow so-called out-of-thin-air (OOTA) behavior [16, 2]. These two
factors add to the difficulty of matching axiomatic and operational definitions.

3

The General Atomic Memory (GAM) model defined in this paper takes the challenge and allows all four
reorderings (i.e., including Load-Store reordering). To model Load-Store reordering, this paper provides
an operational definition of GAM using unbounded Reorder Buffer (ROB) with speculative execution and
atomic memory. (The memory system itself is not speculative, i.e., once a store has been issued it cannot be
retracted.) A similar mechanism has been used in the past to define the operational model for Power [46],
but there are separate concerns about that model which are discussed in Section 3.

2.3 Fences for Writing Multithreaded Programs

If we classify memory models based on instruction reordering only then for a given program, GAM allows
more program behaviors than WMM, WMM allows more behaviors than TSO, and TSO allows more be-
haviors than SC. More behaviors generally mean more flexibility in hardware implementation, however, a
programmer needs a way to control instruction reorderings in order to write shared memory multithreaded
programs. The foundations of all multithreaded programming, from Dijkstra [20] and Lamport [34] to cur-
rent Java multithreaded libraries, is based on SC, that is, order-preserving interleaving of instructions in a
multithreaded program. Hence as a minimum, any ISA supporting a memory model weaker than SC must
provide fence instructions to make it possible to disallow instruction reorderings to enforce SC, if desired.
Not surprisingly, different models require different types of fences and the execution cost of a fence varies
from implementation to implementation.

Fences are often explained in two entirely different ways. One way is to define a fence simply to prevent
reordering between loads and stores. For example, RMO and RISC-V have four individual fence components,
FenceSS, FenceLS, FenceSL and FenceLL, to prevent reorderings between Store-Store, Load-Store, Store-
Load and Store-Store, respectively (the actual names of fence instructions are different), and as many as
fifteen fences can be formed by composing these options. Such fences specify when two instructions in a
dynamic instruction stream in a processor may not be reordered. Of course, for complete specification, one
also has to specify how fences may be reordered with respect to each other or how/whether, for example,
FenceSS may be reordered with respect to a Load. This view of fences is only about reordering with in a
processor and has nothing to do with the memory system.

Specifying how fences control instruction reordering is not sufficient to understand how programs behave.
We need to specify what the meaning of “a store has completed”, i.e., when the value of a store becomes
visible to loads in other processors or to a load in the same processor. One needs to understand the details of
the memory subsystem, such as presence of store buffers, write through caches, etc., to give precise meaning
to fences.

The second type of fence definitions is usually explained in terms of their effect on memory. For example,
a Store-Release fence (alternatively known as a Commit) blocks the execution of the following stores until all
the preceding instructions have completed. Similarly, Load-Acquire fence (or Reconcile) blocks the execution
of following instructions until all preceding loads are satisfied. Similarly, there is Full-fence instruction that
blocks the execution of all subsequent memory instructions until all the preceding memory instructions have
completed.

In addition to subtle differences in the semantics of fences, there can be huge differences in performance
penalty of using different types of fences. For example, a full fence may be overkill in an algorithm where it
may be sufficient to keep two sequential stores from being reordered. Insertion of fences in a multithreaded
program by the programmer or the compiler writer is one of the thorniest problems related to weak memory
models. If too many unnecessary fences are inserted in a program then it would show poor performance,
and in the extreme case the whole purpose of having a weak memory model would be lost. If too few fences
are inserted, then the meaning of a program may change by admitting new behaviors which may not be
acceptable. The debugging of multithreaded programs is a difficult task in the best of times, insertion of
fences creates the possibility of including even more silent bugs which may manifest under very peculiar
scheduling conditions. Automatic insertion of fences by a compiler for the programming model such as
the one embodied in C11 may be feasible but that memory model of C11 is already based on some cost
assumptions of various fences, creating a catch-22 situation [30].

4

The lack of agreement on the set of fences and the nuances between different fences all add to the difficulty
of matching axiomatic and operational definitions. To address these problems, GAM restricts itself to a very
simple atomic memory model where there is no ambiguity about when a value is visible to other processors.
Such atomic memory automatically avoids many of the thorniest difficulties (such as cumulativity [8]) in
the definitions of fences. Since there is still no clear consensus on which set of fences gives the best tradeoff
between ease of use and performance, we have parameterized the GAM model with the type of fences. The
axiomatic definition, operational definition and the proofs of equivalence are all also parameterized by the
type of fences.

3 Related Work

Lamport’s paper on SC [34] is probably the first formal definition, both axiomatic and operational, of a
memory model. In the nineties, three different weak memory models were defined axiomatically for SUN’s
Sparc processors: TSO, PSO and RMO [52, 53]. A weak memory model for DEC Alpha was also specified
axiomatically in the same time frame [2]. Until a decade ago, however, there was no effort to specify weak
memory models operationally or match axiomatic specifications to operational models. In this context,
papers by Sarkar et al.[47], Sewell et al.[48] and Owens et al. [43] are very important because they showed
that the axiomatic specification of TSO is exactly equivalent to an operational model using store buffers
connected to I2E processors and atomic memory.

Until recently, weak memory models have not been defined prior to ISA implementation and have been
documented by manufacturers only in an ad hoc manner using a combination of natural language and litmus
tests. Not surprisingly, such “definitions” have had to be revised as implementations have changed, revealing
new corner cases of behaviors. Over the last decade, several studies have been performed, mostly by academic
researchers, to determine the allowed and disallowed behavior of several commercial microprocessors, with
the goal of creating formal models to explain the observed behaviors. These studies have been done on real
machines by running billions of instructions and recording the observations (just like studying any natural
phenomenon). Then, with extra inputs from hardware designers, a model is constructed that tries to satisfy
all these observations. For example, Sarkar et al. specified an operational model for POWER [46, 45], using
a non-atomic memory. Later, Mador-Haim et al. [37] developed an axiomatic model for POWER and proved
that it matches the earlier operational model. Alglave et al. [5, 7, 4, 8, 6] give axiomatic specifications for
ARMv7 and POWER using the Herd framework; Flur et al. [22] give operational specification for ARMv8.

However, there has been some dispute if the operational model of POWER models actual POWER
processors accurately [8]. We attribute the reason for the potential errors to be the inherent complexity
of the operational model because of the use of non-atomic memory. Alglave models are not sufficiently
grounded in operational models and face the problem of being too liberal. The model may admit behaviors
which cannot be observed in any implementation. Such models can also lead to insertion of unnecessary
fences in a program. We think it is important to have matching operational and axiomatic models.

Researchers have also proposed several other consistency models: Processor Consistency [26], Weak
Consistency [21], RC [24], CRF [49], Instruction Reordering + Store Atomicity [11]. The tutorials by Adve
et al. [3] and by Maranget et al. [40] provide relationships among some of these models.

Researchers have also proposed architectural mechanisms for implementing SC [34] efficiently [23, 44, 28,
25, 19, 54, 14, 50, 35, 27]. Several of these architectural mechanisms are interesting in their own right and
applicable to reducing power consumption, however, so far commercial processor vendors have shown little
interest in adopting stricter memory models.

Recently, there is a splurge of activity in trying to specify semantics of concurrent languages: C/C++
[51, 15, 13, 12, 32], Java [39, 18, 38]. These models are specified axiomatically, and allow load-store reordering.
For C++, there has been work to specify an equivalent operational model [42].

5

4 General Atomic Memory Model (GAM)

In this section, we introduce GAM, an atomic memory model framework parametrized by how the memory
model enforces following two types of orderings:

1. Memory instruction ordering: the ordering between two memory instructions, i.e., the commonly referred
load-load, load-store, store-store and store-load orderings.

2. Fence ordering, the ordering between a fence and a memory instruction or between two fences.

We refer to the combination of the above two orderings as memory/fence ordering. GAM uses a function
ordered(Iold, Inew) to represent memory/fence ordering, and this function is used in both the axiomatic and
operational definitions of GAM. ordered(Iold, Inew) returns true when the older instruction Iold should be
ordered before the younger instruction Inew according to the memory instruction ordering or fence ordering
enforced by the memory model. For example, Table 1 shows the ordered(Iold, Inew) table for TSO, which has
only one type of fence. The only memory ordering that is not enforced by TSO is the store-load ordering, as
represented by the false entry (St, Ld). As a more complex example, Table 2 shows the ordered(Iold, Inew)
table for RMO. In RMO, all four memory instruction orderings are relaxed, as shown by the false entries (Ld,
Ld), (Ld, St), (St, Ld) and (St, St). The four fences are used to enforce each type of orderings respectively.
For example, the true entries (FenceLS, St) and (Ld, FenceLS) means that FenceLS is ordered before younger
stores and is ordered after older loads, thus enforce load-to-store ordering. The fences are even unordered
with respect to each other. As a framework, given an ordered function (such as Table 1 or 2), GAM can
produce equivalent axiomatic and operational models that enforce the memory/fence orderings represented
by the ordered function.

PPPPPPPPIold

Inew Ld St Fence

Ld True True True
St False True True
Fence True True True

Table 1: Orderings for TSO memory instructions and fences: orderedTSO(Iold, Inew)

PPPPPPPPIold

Inew Ld St FenceLL FenceLS FenceSL FenceSS

Ld False False True True False False
St False False False False True True
FenceLL True False False False False False
FenceLS False True False False False False
FenceSL True False False False False False
FenceSS False True False False False False

Table 2: Orderings for RMO memory instructions and fences: orderedRMO(Iold, Inew)

It should be noted that the memory/fence ordering cannot fully describe a memory model. The following
three aspects are not captured by the ordered function:

1. Load value: a memory model must specify which store values a load may read.
2. Dependency ordering: most memory models order two instructions if the younger instruction is dependent

on the older instruction in certain ways.
3. Same-address ordering: even when the memory/fence ordering does not apply to two memory instructions

for the same address, a memory model may still order them for the correctness of single-threaded programs.

The GAM definition given in this section is not parametrized in terms of the above three aspects. Later
in Section 6, we will show how to tweak the definition of GAM to derive memory models with a different

6

dependency ordering or a different same-address ordering. The way to determine load values should be
common across all multicopy atomic memory models, so we do not bother changing that. In the following,
we give axiomatic and operation definitions of GAM and the equivalence proof. When we use examples to
explain our definitions, we assume the ordered function in Table 2, i.e., with all four memory instruction
reorderings and relaxed fences.

We present the axiomatic definition before the operational definition but these definitions can be read in
any order.

4.1 Axiomatic Definition of GAM

The axiomatic definition of GAM takes three relations as input: program order (<po), read-from relations
(−→rf) and memory order (<mo). The program order (<po) is a per-processor total order and represents the
order in which the instructions are committed in that processor. A read-from edge specifies that a load reads
from a particular store; −→rf points from a store instruction to a load instruction for the same address, with
the load getting the same value that is written by the store. The memory order (<mo) is a total order of
all memory instructions in all processors. Intuitively, <mo specifies the order of when each memory accesses
are performed globally.

The axiomatic model checks <po, −→rf and <mo against a set of axioms. If all the axioms are satisfied,
then the program behavior given by <po is allowed by the memory model.

It should be noted that <po is the observable program behavior, while −→rf and <po are just a witness
which cannot be observed directly. To justify that a program behavior is allowed by GAM, we only need
to find one witness (i.e., 〈−→rf , <mo〉) that satisfies all the axioms. To prove that a program behavior is
disallowed by GAM, we must show that there is no witness that can satisfy all the axioms simultaneously.

In order to describe the axioms, we first define preserved program order (<ppo), which is computed from
<po. <ppo captures the constraints on the out-of-order (OOO) execution of instructions in each processor
(locally). Thus, a property of <ppo is that if I1 <ppo I2 then I1 <po I2 where I1 and I2 are instructions.

As will become clear <po by itself cannot reflect the constraints on the memory system and the interaction
between processors. These constraints are expressed by the separate memory axioms of GAM. In the
following, we first define how to compute <ppo from <po, and then give the memory axioms of GAM.

4.1.1 Definition of Preserved Program Order <ppo for GAM

We define <ppo in three parts. The first part is the preserved memory/fence order (<ppomf) which is captured
by the ordered function. The second part is the preserved dependency order (<ppod), which includes branch
dependencies, address dependencies, data dependencies, etc. The last part is the preserved same-address
order (<pposa), i.e., the ordering of memory instructions for the same address. Finally <ppo is defined as the
transitive closure of <ppomf , <ppod and <pposa.
Definition of preserved memory/fence order <ppomf for GAM: The preserved memory/fence order
is fully described by the ordered function.

Definition 1 (Preserved memory/fence order <ppomf). I1 <ppof I2 iff I1 and I2 both are memory or fence
instructions, and I1 <po I2, and ordered(I1, I2) is true.

Definition of preserved dependency order <ppod for GAM: We first give some basic definitions that
are used to define dependency orderings precisely (all definitions ignore the PC register and the zero register):

Definition 2 (RS: Read Set). RS(I) is the set of registers an instruction I reads.

Definition 3 (WS: Write Set). WS(I) is the set of registers an instruction I can write.

Definition 4 (ARS: Address Read Set). ARS(I) is the set of registers a memory instruction I reads to
compute the address of the memory operation.

Definition 5 (data-dependency <ddep). I1 <ddep I2 if I1 <po I2 and WS(I1)∩RS(I2) 6= ∅ and there exists
a register r in WS(I1)∩RS(I2) such that there is no instruction I such that I1 <po I <po I2 and r ∈WS(I).

7

Definition 6 (addr-dependency <adep). I1 <adep I2 if I1 <po I2 and WS(I1) ∩ ARS(I2) 6= ∅ and there
exists a register r in WS(I1) ∩ ARS(I2) such that there is no instruction I such that I1 <po I <po I2 and
r ∈WS(I).

Note that data-dependency includes addr-dependency, i.e., I1 <adep I2 =⇒ I1 <ddep I2.
Now we define <ppod, which essentially says that the data-dependencies must be observed, stores should

not execute until the preceding branches have been resolved, the execution of stores should be constrained by
instructions on which prior memory instructions are address dependent, and in the case of a load following
a store to the same address, the execution of the load should be constrained by instructions which produce
the store’s data.

Definition 7 (Preserved dependency order <ppod). I1 <ppod I2 if either

1. I1 <ddep I2, or
2. I1 <po I2, and I1 is a branch, and I2 is a store, or
3. I2 is a store instruction, and there exists a memory instruction I such that I1 <adep I <po I2, or
4. I2 is a load instruction, and there exists a store S to the same address such that I1 <ddep S <po I2, and

there is no other store for the same address between S and I2.

In the above definition, cases 1 and 2 are straightforward; we discuss the rest of the cases below.
Case 3 is about a subtle dependency caused by an address dependency and is illustrated by the example

in Figure 1. If I3 (store) is allowed to be issued before I1, then the earlier load (I2) may end up reading its
own future store in case I1 returns value r1 = b.

I1 : r1 = Ld a
I2 : r2 = Ld r1
I3 : St b = 1

Figure 1: Example for case 3

Case 4 is about another subtle dependency when data is transfered not by registers but by local bypassing.
In Figure 2, I3 must be issued after I1. Otherwise, in case I3 is issued before I1, I3 must bypass from I2.
However, the data of I2 is still unknown at that time.

I1 : r1 = Ld a
I2 : St b = r1
I3 : r2 = Ld b

Figure 2: Example for case 4

Definition of preserved same-address order <pposa for GAM: Next we give the definition of <pposa,
which captures the orderings between memory instructions for the same address.

Definition 8 (Preserved same-address order <pposa). I1 <pposa I2 if either

1. I1 <po I2, and I1 is a load and I2 is a store to the same address, or
2. I1 <po I2, and both I1 and I2 are store instructions for the same address, or
3. I1 <po I2 and both I1 and I2 are load instructions for the same address with no intervening store to the

same address.

The above definition explicitly excludes the enforcement of ordering of a store followed by a load to the
same address. Otherwise our model would be stricter than TSO in some cases. Case 3 requires that loads
for the same address without store to the same address in between to be issued in order. For example, all
instructions in Figure 3 must be issued in order.

It should be noted that the choice to enforce this same-address load-load ordering in GAM is kind of
arbitrary, because we do not see any decisive argument to support either enforcing or relaxing this ordering.

8

I1 : r1 = Ld a
I2 : r2 = Ld (b + r1 − r1)
I3 : r3 = Ld b
I4 : r4 = Ld (c + r3 − r3)

Figure 3: Example for case 3

On the one hand, implementations that execute loads for the the same address out of order will not violate
single-thread correctness, and do not need the extra hardware to enforce this load-load ordering. On the
other hand, programmers may expect memory models to have the per-location SC property [17], i.e., all
memory accesses for a single address appear to be sequentially consistent, and enforcing this same-address
load-load ordering is an easy way to provide the per-location SC property. The Alpha memory model [2]
is the same as GAM in enforcing this ordering, while the RMO memory model [53] chooses to relax this
ordering completely. In Section 6.3 programmers would like memory models to have the per-location SC
property [17]. It should be noted that ARMv8.2 makes yet another choice in same-address load-load ordering
which we will explain in Section 6.5.

Finally, we define <ppo as the transitive closure of <ppod, <pposa and <ppomf .

Definition 9 (Preserved program order <ppo). I1 <ppo I2 if either

1. I1 <ppomf I2, or
2. I1 <ppod I2, or
3. I1 <pposa I2, or
4. there exists an instruction I such that I1 <ppo I and I <ppo I2.

4.1.2 Memory Axioms of GAM

GAM has the following two axioms (the notation maxmo means to find the youngest instruction in <mo):

• Axiom Inst-Order: If I1 <ppo I2, then I1 <mo I2.
• Axiom Load-Value:

St a v −→rf Ld a⇒ St a v = max
mo
{St a v′ | St a v′ <po Ld a ∨ St a v′ <mo Ld a}

The first axiom says that <mo must respect <ppo. An interpretation of this axiom is that the local ordering
constraints on executing two memory instructions in the processor must be preserved when these two memory
accesses are performed globally. The second axiom specifies the store that a load should read given <mo and
<po. Intuitively, each store overshadows previous stores to the same address and thus, a load should not be
able to read overshadowed values. The only complication is because of bypassing: a load may read one of
its own store values before it is advertised, which means a later load in other processors may still read the
globally advertised store value in the memory. More precisely, the set of stores that are visible to a load
consists of stores that either precede the load in <po or perform globally before the load does (i.e., precede
the load in <mo). The store read by the load must be visible to the load, and cannot be overshadowed (in
<mo) by another store which is also visible to the load.

4.2 An Operational Definition of GAM

The operational model of GAM consists of n processors P1 . . . Pn and a monolithic memory m. Each processor
Pi consists of an ROB and a PC register. The PC register contains the address of the next instruction to
be fetched into ROB. When an instruction is fetched, if the instruction is a branch, we predict the branch
target address and update the PC register speculatively; otherwise we simply increment the PC register.
Each instruction in the ROB has a done bit. (We refer to an instruction as done if the done bit is true, and
as not done otherwise.) Though instructions that have been marked as done can be removed from the ROB,
we will not bother with this detail.

9

At each step of the execution one of the instructions marked as not-done in the ROB of a processor Pi

is selected and executed and (sometimes) marked as done. There is often a guard condition associated with
the execution of an instruction, and an instruction can be executed only if the guard is true. As will become
clear soon that sometimes the execution of an instruction cannot proceed even when its guard is true.

Our axiomatic model, permits very aggressive execution of load instructions but it also requires that
consecutive loads to the same address be done in order. If the operational model executed load instructions
only when the address for its preceding memory instructions were known, then we will not be able to capture
all the behaviors allowed by the axiomatic model. Thus, in the operational model, we let a load execute
even before all the addresses of preceding memory instructions are known, and then later kill a done load if
an older memory instruction happens to get the same address. The kill of a load instruction means that all
the instruction younger than the killed load, including that load itself, are discarded from the ROB, and the
PC register is updated to make instruction fetch begin by refetching the killed load instruction.

In order to implement these speculative loads, we need an additional address-available state bit in the
ROB for each memory instruction. This bit indicates when the address calculation has been completed.
Initially this bit is not set.

We need to know if the source operands of an instruction are available in order to execute the instruction.
If the operand is specified as a source register r, then its availability is determined by searching the ROB
from the current instruction slot towards older instructions until the first slot containing r as the destination
register. (The search always terminates because we assume that the ROB has been initialized with instruc-
tions that set initial register values). If the slot containing the destination register is marked as done then
the operand is assumed to be available, otherwise not.

This operational model is also parametrized by the memory/fence ordering. That is, it uses ordered
function to control when a memory or fence instruction can be marked as done.

In the following we specify how to execute an instruction in the ROB according to the preserved program
order definition given in Section 4.1.1. Each operational rule has a guard and a specified action.

• Rule Fetch:
Guard: True.
Action: Fetch a new instruction from the address stored in the PC register. Add the new instruction into
the tail of ROB. If the new instruction is a branch, we predict the branch target address of the branch,
update PC to be the predicted address, and record the predicted address in the ROB entry of the branch;
otherwise we increment PC.

• Rule Execute-Reg-to-Reg: Execute a reg-to-reg instruction I.
Guard: I is marked not-done and all source operands of I are ready.
Action: Do the computation, record the result in the ROB slot, and mark I as done.

• Rule Execute-Branch: Execute a branch instruction I.
Guard: I is marked not-done and all source operands of I are ready.
Action: Compute the branch target address and mark I as done. If the computed target address is different
from the previously predicted address (which is recorded in the ROB entry), then we kill all instructions
which are younger than I in the ROB (excluding I). That is, we remove those instructions from the ROB,
and update the PC register to the computed branch target address.

• Rule Execute-Fence: Execute a fence instruction I.
Guard: I is marked not-done, and for each older (memory or fence) instruction I ′ such that ordered(I ′, I)
is true, I ′ is done.
Action: Mark I as done.

• Rule Execute-Load: Execute a load instruction I for address a.
Guard: I is marked not-done, and the address-available bit is set to available, and for each older (memory
or fence) instruction I ′ such that ordered(I ′, I) is true, I ′ is done.
Action: Search the ROB from I towards the oldest instruction for the first not-done memory instruction
with address a:

1. If a not-done load to a is found then instruction I cannot be executed, i.e., we do nothing.
2. If a not-done store to a is found then if the data for the store is ready, then execute I by bypassing the

10

data from the store, and mark I as done; otherwise, I cannot be executed.
3. If nothing is found then execute I by reading m[a], and mark I as done.

• Rule Compute-Store-Data: compute the data of a store instruction I.
Guard: the source registers for the data computation are ready.
Action: Compute the data of I and record it in the ROB slot.

• Rule Execute-Store: Execute a store I for address a.
Guard: I is marked not-done and in addition all the following conditions must be true:

1. The address-available flag for I is set,
2. The data of I is ready,
3. For each older (memory or fence) instruction I ′ such that ordered(I ′, I) is true, I ′ is done,
4. All older branch instructions are done,
5. All older loads and stores have their address-available flags set,
6. All older loads and stores for address a are done.

Action: Update m[a] and mark I as done.
• Rule Compute-Mem-Addr: Compute the address of a load or store instruction I.

Guard: The address-available bit is not set and the address operand is ready with value a
Action: We first set the address-available bit and record the address a into the ROB entry of I. Then we
search the ROB from I towards the youngest instruction (excluding I) for the first memory instruction
with address a. If the instruction found is a done load, then we kill that load and all instructions that
are younger than the load in the ROB. That is, we remove the load and all younger instructions from the
ROB, and set the PC register to the instruction-fetch address of the load. Otherwise no instruction needs
to be killed.

4.3 Soundness: GAM Operational model ⊆ GAM Axiomatic Model

The goal is to show that for any execution of the operational model, we can construct 〈<po, <mo,−→rf 〉 which
satisfies the GAM axioms and has the same program behavior as the operational execution. To do this, we
need to introduce some ghost states to the operational model, and show invariants that hold after every step
in the operational model.

In the operational model, we assume there is a (ghost) global time which is incremented whenever a rule
fires. We also assume each instruction I in an ROB has the following ghost states which are accessed only
in the proofs (all states start as >):

• I.doneTS: Records the current global time when a rule R fires and marks I as done.
• I.addrTS: Records the current global time for memory instruction I when a Compute-Mem-Addr rule R

fires to compute the address of I.
• I.sdataTS: Records the current global time for a store instruction I, when a Compute-Store-Data rule R

fires to compute the store data of I.
• I.from: Records for load I either the not-done store it bypasses from, or the store with the maximum

doneTS among all done stores for a.

In the final proof, we will use the states at the end of the operational execution to construct the axiomatic
edges. <po will be constructed by the order of instructions in ROB, −→rf will be constructed by the from
states of loads, and <mo will be constructed by the order of doneTS timestamps of all memory instructions.

For convenience, we use I.ldval to denote the load value if I is a load, use I.addr to denote the memory
access address if I is a memory instruction, and use I.sdata to denote the store data if I is a store. These
fields are > if the corresponding values are not available.

Given the model state at any time in the execution of the operational model, we can define the program
order <po-rob, data-dependency order <ddep-rob, address-dependency order <adep-rob, and a new relation
<ntppo-rob which is similar to the preserved program order. (we add suffix rob to distinguish from the
definitions in the axiomatic model):

• <po-rob: Instructions I1 <po-rob I2 iff both I1 and I2 are in the same ROB and I1 is older than I2 in the
ROB.

11

• <ddep-rob: I1 <ddep-rob I2 iff I1 <po-rob I2 and I2 needs the result of I1 as a source operand.
• <adep-rob: I1 <adep-rob I2 iff I1 <po-rob I2, and I2 is a memory instruction, and I2 needs the result of I1 as

a source operand to compute the memory address to access.
• <ntppo-rob: I1 <ntppo-rob I2 iff I1 <po-rob I2 and at least one of the following conditions hold:

1. I1 <ddep-rob I2.
2. I1 is a branch, and I2 is a store.
3. I2 is a store, and there exists a memory instruction I such that I1 <adep-rob I <po-rob I2.
4. I2 is a load with I2.addr = a 6= >, and there exists a store S with S.addr = a, and I1 <ddep-rob S <po-rob

I2, and there is no store S′ such that S′.addr = a and S <po-rob S
′ <po-rob I2.

5. I1 is a load with I1.addr = a 6= >, and I2 is a store with I2.addr = a.
6. Both I1 and I2 are stores with I1.addr = I2.addr = a 6= >.
7. Both I1 and I2 are loads with I1.addr = I2.addr = a 6= >, and there is no store S such that S.addr = a

and I1 <po-rob S <po-rob I2.
8. ordered(I1, I2) is true.

It should be noted that the way to compute <ntppo-rob from <po-rob is almost the same as the way to compute
<ppo from <po except for two differences. The first difference is that <ntppo-rob is not made transitively closed;
this is for simplifying the proof to some degree. The second difference is that in case the definition needs
the address of memory instructions, <ntppo-rob ignores memory instructions which have not computed their
addresses. Since the address of every memory instruction will be computed at the end of the operational
execution, the second difference will diminish by that time. Since <po is defined by the <po-rob at the end
of the operational execution, <ppo will be the transitive closure of <ntppo-rob at the end of the operational
execution.

With the above definitions, we give the invariants of any operation execution in Lemma 1. Invariant 2
is a similar statement to the Inst-Order axiom, and will become exactly the same as that axiom at the end
of the operational execution. Invariants 2 and 3 captures the ordering effects of dependencies carried to the
computation of memory address and store data. Invariant 4 captures guard 5 of the Execute-Store rule, and
is also related to case 3 of Definition 7 for <ppo. Invariant 5 is an important property saying that stores
are never written to the shared memory speculatively, so the model does not need any system-wide rollback.
Invariant 6 constrains the current monolithic memory value. Invariant 7 constrains the store read by a load,
and in particular, invariant 7d will become the Load-Value axiom at the end of the operation execution. The
detailed proof can be found in Appendix A.

Lemma 1. The following invariants hold during the execution of the operational model:

1. If I1 <ntppo-rob I2 and I2.doneTS 6= >, then I1.doneTS 6= > and I1.doneTS < I2.doneTS.
2. If I1 <adep-rob I2 and I2.addrTS 6= >, then I1.doneTS 6= > and I1.doneTS < I2.addrTS.
3. If I1 <ddep-rob I2, and not I1 <adep-rob I2, and I2 is a store, and I2.sdataTS 6= >, then I1.doneTS 6= >

and I1.doneTS < I2.sdataTS.
4. If I1 <po-rob I2, and I1 is a memory instruction, and I2 is a store, and I2.doneTS 6= >, then I1.addrTS 6= >

and I1.addrTS < I2.doneTS.
5. We never kill a done store.
6. For any address a, let S be the store with the maximum doneTS among all the done stores for address a.

The monolithic memory value for a is equal to S.sdata.
7. For any done load L, let S = L.from (i.e., S is the store read by L). All of the following properties are

satisfied:

(a) S still exists in an ROB (i.e., S is not killed).
(b) S.addr = L.addr and S.sdata = L.ldval.
(c) If S is done, then there is no not-done store S′ such that S′.addr = a and S′ <po-rob L.
(d) If S is done, then for any other done store S′ with S′.addr = L.addr, if S′ <po-rob L or S′.doneTS <

L.doneTS, then S′.doneTS < S.doneTS.
(e) If S is not done, then S <po-rob L, and there is no store S′ such that S′.addr = L.addr and S <po-rob

S′ <po-rob L.

12

With the above invariants, we can finally prove the following soundness theorem.

Theorem 1. GAM operational model ⊆ GAM axiomatic model.

Proof. For any execution of the operational model, at the end of the execution, all instructions must be
done. We construct 〈<po, <mo,−→rf 〉 using the ending state of the operational execution as follows:

• <po is constructed as the order of instructions in each ROB.
• <mo is constructed by the ordering of doneTS, i.e., for two memory instructions I1 and I2, I1 <mo I2 iff
I1.doneTS < I2.doneTS.

• −→rf is constructed by the from fields, i.e., for a load L and a store S, S −→rf L iff S = L.from.

Invariant 7b ensures that the constructed −→rf and <po are consistent with each other (e.g., it rules out the
case that −→rf says a load should read a store with value 1, but <po says the load has value 2).

Since all instructions are done at the end of execution, then invariant 7d becomes the Load-Value axiom.
Therefore, the constructed 〈<po, <mo,−→rf 〉 satisfy the Load-Value axiom.

At the end of execution, invariant 1 becomes: if I1 <ntppo-rob I2, then I1.doneTS < I2.doneTS. Note that
the <ppo computed from <po is actually the transitive closure of <ntppo-rob. Since instructions are totally
ordered by doneTS fields, we have if I1 <ppo I2, then I1.doneTS < I2.doneTS. Since <mo is defined by the
order of doneTS fields, the Inst-Order axiom is also satisfied.

4.4 Completeness: GAM Axiomatic model ⊆ GAM Operational Model

Theorem 2. GAM axiomatic model ⊆ GAM operational model.

Proof. The goal is that for any legal axiomatic relations 〈<po, <mo,−→rf 〉 (which satisfy the GAM axioms),
we can run the operational model to give the same program behavior. The strategy to run the operational
model consists of two major phases. In the first phase, we only fire Fetch rules to fetch all instructions
into all ROBs according to <po. During the second phase, in each step we fire a rule that either marks an
instruction as done or computes the address or data of a memory instruction. Which rule to fire in a step
depends on the current state of the operational model and <mo. Here we give the detailed algorithm that
determines which rule to fire in each step:

1. If in the operational model there is a not-done reg-to-reg or branch instruction whose source registers are
all ready, then we fire an Execute-Reg-to-Reg or Execute-Branch rule to execute that instruction.

2. If the above case does not apply, and in the operational model there is a memory instruction, whose
address is not computed but the source registers for the address computation are all ready, then we fire
a Compute-Mem-Addr rule to compute the address of that instruction.

3. If neither of the above cases applies, and in the operational model there is a store instruction, whose
store data is not computed but the source registers for the data computation are all ready, then we fire a
Compute-Store-Data rule to compute the store data of that instruction.

4. If none of the above cases applies, and in the operational model there is a fence instruction and the guard
of the Execute-Fence rule for this fence is ready, then we fire the Execute-Fence rule to execute that fence.

5. If none of the above cases applies, then we find the oldest instruction in <mo, which is not-done in the
operational model, and we fire an Execute-Load or Execute-Store rule to execute that instruction.

Before giving the invariants, we give a definition related to the ordering of stores for the same address. For
each address a, all stores for a are totally ordered by <mo, and we refer to this total order of stores for a as
<a

co.
Now we show the invariants. After each step, we maintain the following invariants:

1. The order of instructions in each ROB in the operational model is the same as the <po of that processor
in the axiomatic relations.

2. The results of all the instructions that have been marked as done so far in the operational model are the
same as those in the axiomatic relations.

3. All the load/store addresses that have been computed so far in the operational model are the same as
those in the axiomatic relations.

13

4. All the store data that have been computed so far in the operational model are the same as those in the
axiomatic relations.

5. No kill has ever happened in the operational model.
6. For the rule fired in each step that we have performed so far, the guard of the rule is satisfied the at that

step (i.e., the rule can fire).
7. In each step that we have performed so far, if we fire a rule to execute an instruction (especially a load)

in that step, the instruction must be marked as done by the rule.
8. For each address a, the order of all the store updates on monolithic memory address a that have happened

so far in the operational model is a prefix of <a
co.

The detailed proof of the invariants can be found in Appendix B.

5 COM: an Alternative Axiomatic Model

In this section, we present an alternative (but still parameterized) axiomatic formulation that is perhaps
less intuitive, but nevertheless in common use due to its computational efficiency. We call this formulation
the COM model (where “COM” stands for communication, as described below). We first present a proof
of equivalence between the GAM axioms and the COM axioms. This in turn implies that COM is also
equivalent to the operational definition of GAM. We then implement both axiomatic models in Alloy [31] in
order to perform sanity checking and empirical testing of the models and of the proofs.

5.1 The COM Axioms

The COM model is defined in terms of three basic relations and three derived relations, plus <ppo:

• Basic relations:

– Program order (<po), as before
– Reads-from (−→rf), as before
– Coherence (<co), a total order over the writes to each memory address

• Derived relations:

– Reads-from external (−→rfe), which is the subset of −→rf for which both the read and the write are in
different threads

– From-reads (−→fr=−→rf−1 ;<co), which relates each read r to every write which follows the −→rf -source
of r in <co. (−→rf−1 indicates the inverse of −→rf)

– Program order, same location (<poloc), which is the subset of program order that relates memory
accesses to the same memory address

Another derived relation <com=−→rf ∪ <co ∪ −→fr is often defined as a convenient shorthand in this style
of model (hence our choice of the name “COM”), but we do not use it in this paper.
In the COM formulation, an execution is legal if it satisfies the following two axioms:

• Axiom SC-per-Location: acyclic(−→rf ∪ <co ∪ −→fr ∪ <poloc)
• Axiom Causality: acyclic(−→rfe ∪ <co ∪ −→fr ∪ <ppo)

5.2 Equivalence of GAM and COM

The complete proofs are provided in Appendix C. We provide an intuition here.
To prove that GAM ⊆ COM, we must do two things: 1) find a suitable choice of <co, which does not

exist in the GAM model, and 2) prove that if the GAM axioms are satisfied, the COM axioms are satisfied.
Of course, the natural choice for <co is to simply take the restriction of <mo that relates only stores to the
same address, and that is indeed what we use. It remains to show that for any choice of <mo in the GAM
axioms, the two COM axioms are satisfied.

We start with a lemma:

14

Lemma 2. All of −→rfe, <co, −→fr, and <ppo are contained in <mo.

Proof. Straightforward; see appendix.

With this lemma, it is easy to show that the Causality axiom is satisfied:

Theorem 3. The Causality axiom is satisfied.

Proof. By Lemma 2, the union −→rfe ∪ <co ∪ −→fr ∪ <ppo is a subset of <mo. Therefore, since <mo is acyclic,
−→rfe ∪ <co ∪ −→fr ∪ <ppo must also be acyclic.

The SC-per-Location axiom will take a bit more work to prove. To start, define <eco as the union of the
following relations:

• <co (Write to Write)
• −→fr (Read to Write)
• <co

∗;−→rf (Write to Read)
• −→rf−1 ;<co

∗;−→rf (Read to Read)

Lemma 3. For all pairs i1, i2 of memory accesses to the same address, either i1 <eco i2 or i2 <eco i1.

Proof. By construction; see appendix.

If i1 and i2 are related in program order, then the <eco direction must match:

Lemma 4. If i1 <poloc i2, then i1 <eco i2.

Proof. The alternative of i2 <eco i1 results in a contradiction, except for one case where it overlaps i1 <eco i2.
See appendix.

Theorem 4. The SC-per-Location axiom is satisfied.

Proof. (abbreviated; see appendix)
First, by Lemma 4, all <poloc edges involving at least one write can be converted into sequences containing

only −→rf , <co, and −→fr. So we consider only cycles with −→rf , <co, −→fr, and read-to-read <poloc edges.
Replace every instance of read-read <poloc in the cycle with −→rf−1 ;<co

∗;−→rf per Lemma 4. Now, because
<co and −→fr both target writes, every appearance of −→rf−1 must be preceded either by −→rf or by −→rf−1

;<co
∗;−→rf . In particular, every appearance of −→rf−1 must be preceded directly by −→rf . Since −→rf ;−→rf−1

is the identity function, all appearances of −→rf−1 in the cycle can be eliminated by simply removing each
−→rf ;−→rf−1 pair in the cycle. This leaves a cycle with only −→rf , <co, and −→fr, which is a contradiction.

5.3 COM ⊆ GAM

This direction is easier. Given <po, −→rf , and <co, we must find a suitable <mo. By the Causality axiom,
−→rfe ∪ <co ∪ −→fr ∪ <ppo is acyclic, and hence there is at least one total ordering compatible with it. We
show that any such total ordering satisfies GAM. The Inst-Order axiom is true by construction, and hence
we must only show that the Load-Value axiom is satisfied.

Theorem 5. Any <mo which is a total ordering of −→rfe ∪ <co ∪ −→fr ∪ <ppo satisfies the Load-Value axiom.

Proof. If w −→rf r, then either w −→rfi r or w −→rfe r. In the first case, w <po r, or else it would contradict
the SC-per-Location axiom. In the second case, w <mo r by construction of <mo. In either case, w must be
in the candidate set

{St a v′ | St a v′ <po Ld a ∨ St a v′ <mo Ld a}.

It remains to be shown that w is in fact the <mo-maximal element of that candidate set.
Suppose that w is not maximal. Then there is some other write w′ to the same address a such that

w <mo w′ and either w′ <po r or w′ <mo r. But then by definition, r −→fr w′, and −→fr cannot contradict
either <po (by SC-per-Location) or <mo (by construction of <mo). Hence we have a contradiction.

15

5.4 Empirical Validation

We also used model checking to confirm the validity of the proof of equivalence between GAM and COM.
We encoded both models into Alloy [31, 55], a relational model finder backed by a SAT solver, and checked
for any mismatches. The definition of this model is shown in Appendix D. In keeping with the spirit of the
proofs, <ppo is entirely parameterized; there is no explicit notion of fence or dependency in this version of
the model. We only assume that Definition 8 always holds. Under these conditions, Alloy verifies in roughly
one hour that no counterexamples are found for tests with up to seven instructions.

6 Comparing GAM with Existing Atomic Memory Models

Now that we have defined our three model formulations and completed the proofs of equivalence, we can
now show how GAM is related to existing atomic memory models. Most atomic memory models already
have the same axioms as GAM, so our commparison will base off from the definitions of <ppo. In some cases,
the existing memory model can be instantiated from GAM. While in other cases, the dependency ordering
or same-address load-load ordering of an existing model does not match that in GAM, and we will explain
the difference and possible ways to tweak GAM to match the existing model.

6.1 SC

SC has no fence, the memory/fence ordering enforced by SC is shown in Table 3.

PPPPPPPPIold

Inew Ld St

Ld True True
St True True

Table 3: Memory/fence orderings for SC: orderedSC(Iold, Inew)

After supplying orderedSC to GAM, <ppo in the GAM axiomatic instance will order every pair of memory
instructions from the same processor. In this case, the Load-Value axiom will reduce to

St a v −→rf Ld a⇒ St a v = max
mo
{St a v′ <mo Ld a}

This is because I1 <po I2 implies I1 <ppo I2 ⇒ I1 <mo I2. Thus, the GAM axiomatic instance is equivalent
to SC. In the operational instance of GAM, the SC-ordered function makes the guards of Execute-Load and
Execute-Store rules to wait for all previous memory instructions to be done. This is also the same as SC.

6.2 TSO

TSO has only one fence, and the memory/fence ordering enforced by TSO is shown in Table 1. The TSO
axiomatic model defines a <ppo edge from instructions I1 to I2 iff orderedTSO(I1, I2). When supplying GAM
with the orderedTSO function, the <ppo of the resulting GAM axiomatic instance is the same as that of
TSO axiomatic model, since <ppod and <pposa are entirely contained within orderedTSO. In other words,
all load-load, load-store, and store-store orderings are automatically enforced anyway, so there is no need to
worry about any particular subset of such orderings. In the operational instance of GAM, the TSO-ordered
function will cause the guard of the Execute-Load rule to wait for all older loads in ROB to be done, and
cause the guard of the Execute-Store rule to wait for all older memory instructions to be done.

6.3 SPARC RMO

RMO has various fences, and the memory/fence orderings enforced by RMO are shown in Table 2. RMO also
enforces the ordering between dependent instructions. However, there is a bug in the dependency definition in

16

RMO [56]. For the sake of comparison, we consider this to be a mistake rather than an intentional deviation,
and hence we simply assume a corrected version of RMO that has the same definition of dependency ordering
as GAM does.

When we supply the orderedRMO function to GAM, the resulting GAM axiomatic instance is very close
to but slightly different from the RMO axiomatic model. The difference is that RMO does not order loads for
the same address. Same-address load-load reordering is a subtle issue (see Section 6.5) and a common source
of implementation bugs [9], but by modern standards RMO’s approach is considered overly aggressive.
Nevertheless, for completeness we describe how GAM could be tweaked to allow same-address load-load
reordering: we can simply tweak the axiomatic definition of GAM by removing case 3 from the definition of
<pposa (Definition 8). After this removal, the GAM axiomatic instance becomes exactly the same as RMO.

The challenge is then to tweak the GAM operational instance to keep it equivalent to the axiomatic
instance. In the GAM operational instance, we relax the Execute-Load rule by making the ROB search
ignore loads for the same address. Also, in the Compute-Mem-Addr rule that computes the address of a
load, the ROB search in the rule should ignore younger loads for the same address. These two changes relax
the ordering between loads for the same address, making the operational instance of GAM still match the
axiomatic instance of GAM.

6.4 WMM

WMM [56] has two fences: Commit and Reconcile, and the memory/fence orderings enforced by WMM
are shown in Table 4. The ordering between Commit and Reconcile is particularly important in WMM, as
preventing store-load reordering requires the combination of a Commit and a Reconcile.

PPPPPPPPIold

Inew Ld St Commit Reconcile

Ld False True True True
St False False True False
Commit False True True True
Reconcile True True True True

Table 4: Memory/fence orderings for WMM: ordered(Iold, Inew)

WMM does not enforce any dependency ordering (although all load-store ordering is automatically en-
forced). Therefore, in order to make GAM match WMM, we must first tweak the axiomatic definition of
GAM by dropping <ppod. After this change, one subtle difference still remains. Consider a scenario in which
L1 <po S <po L2, where L1 and L2 are both loads for address a and S is store for a. GAM does not directly
require L1 and L2 to be ordered in <mo due to the intervening store, but WMM does require L1 <mo L2.
However, it turns out that the two are actually equivalent in this case, because we can transform the <mo

in GAM to a legal <mo in WMM (i.e., one that obeys <ppo in WMM).
During the transformation, the store read by each load determined by the Load-Value axiom will not

change. In each transformation step, for a processor i, we find one such potential counterexample scenario:
a load L2 which is the youngest load in the <po of processor i which is <mo-before an older load L1 from
processor i for the same address. This gives us L1 <po L2 and L2 <mo L1. Since this reordering is allowed by
GAM, there must be store for a between L1 and L2 in the <po of processor i. The transformation is to move
L2 to be right after L1 in <mo. This is legal because no WMM ordering primitive can cause an instruction
to be ordered after L2 without also being ordered after L1. It also does not affect the value returned by
L1, nor does it affect any instruction originally older than L2 in <mo. By repeating the above steps, we
can complete the transformation until no such apparent contradictions remain. Therefore, the axiomatic
instance of GAM is equivalent to WMM.

We also need to tweak the GAM operational instance to keep it equivalent to the axiomatic instance.
In the operational instance of GAM, if a Fetch rule fetches a load into the ROB, we predict the load value
and record it in the new ROB entry. Younger instructions in ROB can read the predicted load value for

17

computation. In the Execute-Load rule, if the load is marked as done, then we compare the read value with
the previously predicted value. In case they are not equal, we kill all instructions younger than the load
in ROB. Introducing load-value prediction relaxes dependency ordering, making the operational instance of
GAM still match the axiomatic instance of GAM.

6.5 ARM v8.2

As of March 2017, ARM completely revamped its memory consistency model. The end result looks very
similar to GAM, with <ppof defined to include DMB LD (load-to-load/store), DMB ST (store-to-store), Load-
Acquire (ordered with subsequent loads/stores), and Store-Release (ordered with prior loads/stores). There
is, however, one main exception: ARM allows read-same-write (RSW) behavior (Figure 4): two loads which
return the value written by the same write are not ordered in <ppo. In particular, in Figure 4, the two loads
of z are not ordered on ARM, even though they are two loads of the same address with no intervening store.
If the two loads read from different stores (e.g., the RDW behavior in Figure 4), however, the outcome is
forbidden.

St x, 1 Ld r1, y (=1)
Fence Ld r2, z + r1− r1 (=0)
St y, 1 Ld r3, z (=0)

Ld r4, x + r3− r3 (=0)

St x, 1 Ld r1, y (=1)
Fence Ld r2, z + r1− r1 (=1)
St y, 1 Ld r3, z (=2)

Ld r4, x + r3− r3 (=0)

Figure 4: The read-same-writes (RSW, left) litmus test is forbidden under GAM but permitted by ARM.
The read-different-writes (RDW, right) litmus test is forbidden under both ARM and GAM. Both tests are
the same, but ARM makes a distinction based on the values returned by the loads.

We feel the subtlety in allowing the RSW behavior while forbidding the RDW behavior may lead to
confusion. Besides, there is no published evidence showing that having this subtlety can lead to higher
performance in implementations. Therefore, definition 8.3 of GAM was carefully chosen to forbid the RSW
behavior, while still allowing so-called “fri-rfi” behavior (Figure 5) which can result from local store forward-
ing in implementations.

St x, 1 Ld r1, y (=1)
Fence St y, 2
St y, 1 Ld r2, y (=2)

Ld r3, x + r2− r2 (=0)

Figure 5: The MP+fence+fri-rfi-addr litmus test.

6.6 Alpha

Alpha’s memory model is similar to GAM with one single fence, but it is strictly weaker in that it does not
enforce any dependencies, including even load-store dependencies. Alpha therefore allows the behavior in
Figure 6, while GAM does not.

It is possible to remove all dependency orderings from the GAM axiomatic model in order to account
for this behavior, but doing so in the operational model would be a substantial challenge (just as it would
be in any real microarchitecture). It is not generally possible to perform speculative stores, as there is no
way to undo a failed speculation, so the operational model that produces such behaviors would necessarily
be somewhat contrived. In any case, such behaviors are no longer produced in more modern memory model
definitions, and so we do not attempt to adapt the GAM operational model to account for speculative
load-store dependency reordering.

18

Ld r1, x (=1) Ld r2, y (=1)
If r1 == 0 St x, r2
then St y, 1
else St y, 1

Figure 6: Alpha is more relaxed to reorder stores before branches

6.7 RISC-V

The RISC-V model is not yet finalized, but it is likely to use a model very similar to GAM. For comparison,
we include the basics of the expected model below. Note in particular that Release is not ordered with
Acquire, in contrast to how WMM does order Commit with Reconcile.

PPPPPPPPIold

Inew Ld St Release Acquire Full

Ld False False True True True
St False False True False True
Release False True True False True
Acquire True True True True True
Full True True True True True

Figure 7: Memory/fence orderings for RISC-V: orderedRISC-V (Iold, Inew)

This model presents all of the best features of GAM: a minimal set of dependency orderings that are
nevertheless up to modern standards, a flexible and performant yet easy-to-define set of fences, and a
reasonably-minimal set of same-address orderings. It can also be adapted to the needs of any subtle variant
or modification by simply changing the set of fences that are included in Table 7. As such, if RISC-V adopts
GAM, it will be the first modern architecture allowing load-store reordering to come complete with a proper
axiomatic model, a proper operational model, and a full proof of equivalence.

7 GAM-I2E: Parameterizing Dependency Ordering

In previous sections, we have seen that GAM is not parameterized by dependency orderings, and requires
manual tweak on the definitions to produce memory models with a different dependency ordering. The
major reason is that GAM is designed to be able to allow load-store reordering. As stated in Section 2.2,
allowing load-store reordering means a store may indirectly affect an older load in the same processor. This
implies that no matter what mechanism an operational model uses, it cannot execute instructions in order.
Thus, when an operational model wants to execute an instruction I, it may not have all the information
(e.g., memory access addresses) of instructions that are older than I in the same processor. However, in the
axiomatic model, such information is always available, and will used in the computation of <ppod edges that
point to I. The lack of information in the operational model makes it difficult to parameterize dependency
ordering while keeping the operational and axiomatic models equivalent.

Recently, Zhang et al. have shown that some memory models can be expressed in the form of instanta-
neous instruction execution (I2E) when load-store reordering is forbidden. I2E means that each processor in
the operational model executes instructions instantaneously and in order. Here we apply that idea, i.e., we
force ordered(Ld, St) to be true (i.e., forbid load-store reordering) to make it possible to express the GAM
operational model in I2E. In the I2E operational model, for the next instruction I to execute on a processor
i, we know all the information of all the instructions older than I in processor i. Thus, the I2E operational
model can compute the <ppo edges pointing to I using the same way as the axiomatic model does. Hence,
the I2E operational model knows the same constraint of executing I (i.e., the constraint on placing I in
the global order) as the axiomatic model does. I2E eliminates the difference in information available to

19

the axiomatic and operational models, making it possible to parameterize the memory model by any form
of <ppod. The model is not parametrized by same-address ordering because some same-address ordering
are required by single-thread correctness. It should be noted that computing the <ppo edges pointing to
instruction I should not require knowing the execution result of I. This is true for computing the <ppomf

and <pposa edges defined in GAM. This should also be true for most definitions of preserved dependency
ordering (i.e., <ppod).

We refer to this new model as GAM-I2E. In the following, we give the axiomatic and operational defini-
tions of GAM-I2E, which are parametrized by <ppomf and <ppod, as well as the equivalence proof.

7.1 Axiomatic Model of GAM-I2E

The axiomatic model of GAM-I2E is exactly the same as that of GAM in Section 4.1. The only additional
requirement is that ordered(Ld, St) must be true. Given this requirement, one can slightly simplify the
definition of <pposa by removing case 1 from Definition 8, because that load-store ordering is already enforced
by <ppomf .

7.2 Operational Model of GAM-I2E

The operational model consists of n processors. Each processor executes instructions instantaneously, and
contains a local buffer to temporarily keep executed stores and fences. The memory system is a list <mo-i2e

of load and store instructions. (we use suffix i2e to distinguish from the definitions in the axiomatic model).
In the following, we will also use <mo-i2e as a total order of memory instructions in the memory system, i.e.,
I1 <mo-i2e I2 means that instruction I1 is closer to the list head than I2.

Assume the next instruction to execute on a processor is I. Let <po-i2e be the execution order of I and
all instructions already executed by the processor (i.e., I is the youngest). If we treat <po-i2e as a program
order, then we can follow the definitions of preserved program order (Section 4.1.1) to compute <ppo-i2e from
<po-i2e. <ppo-i2e is the preserved program order among I and all instructions executed by the processor.
Note that to make this definition meaningful, computing <ppo-i2e should not require knowing the load value
of I. It should also be noted that <ppo-i2e edges grow monotonously. To be specific, consider the case that a
processor has executed k instructions I1 <po-i2e I2 <po-i2e · · · <po-i2e Ik, and we have computed the <ppo-i2e

edges for I1 . . . Ik. If the processor executes a new instruction Ik+1, then the <ppo-i2e edges for I1 . . . Ik+1

will contain all the previously computed <ppo-i2e edges for I1 . . . Ik, and all the newly added edges will point
to Ik+1. This is because whether instructions I and I ′ are ordered by preserved program order is fully
determined by I, I ′ and instructions between I and I ′ in the program order.

With the above definitions, now we give the rules for the operational moddel of GAM-I2E.

• Rule Execute-Reg-Branch: Execute a reg-to-reg or branch instruction I.
Guard: True.
Action: Execute I and update local register states.

• Rule Execute-Store-Fence: Execute a store or fence instruction I.
Guard: True.
Action: Insert I into the local buffer.

• Rule Execute-Load: Execute a load L for address a.
Guard: There is no instruction I in the local buffer that is ordered before L in <ppo-i2e.
Action: Insert L into an arbitrary place in list <mo-i2e such that for any memory instruction I which is
ordered before L in <ppo-i2e, L is after I in <mo-i2e. With the updated <mo-i2e, we can determine the
load value of L in the following way:

1. If the local buffer contains any store for a, then L reads from the youngest (i.e., most recently inserted)
store for a in the local buffer.

2. Otherwise, L reads from the youngest store for a in <mo-i2e that is from the same processor of L or is
older than L in <mo-i2e.

20

• Rule Dequeue-Store: Dequeue a store S from the local buffer to the memory system.
Guard: There is no instruction in the local buffer that is ordered before S in <ppo-i2e.
Action: Remove S from the local buffer, and append S to the end of <mo-i2e (i.e., S becomes the youngest
in <mo-i2e).

• Rule Dequeue-Fence: Dequeue a fence F from the local buffer.
Guard: There is no instruction in the local buffer that is ordered before F in <ppo-i2e.
Action: Remove F from the local buffer.

7.3 Soundness: GAM-I2E Operational Model ⊆ GAM-I2E Axiomatic Model

Theorem 6. GAM-I2E operational model ⊆ GAM-I2E axiomatic model

Proof. The goal is to show that for any execution of the GAM-I2E operational model, we can construct
〈<po, <mo,−→rf 〉 which satisfies the GAM-I2E axioms and has the same program behavior as the operational
execution. <po is the order of executing instructions in each processor of the operational model. −→rf is
constructed according to the Execute-Load rule, i.e., if the Execute-Load rule picks store S to satisfy a
load L, then S −→rf L. <mo is the <mo-i2e at the end of the operational execution. We need to show
that 〈<po,−→rf , <mo〉 satisfies the axioms. It should be noted that <po-i2e and <ppo-i2e always matche <po

and <ppo respectively during the operational execution. That is, when an instruction I of processor i is
executed in the operational execution, <po-i2e and <ppo-i2e of instructions executed by processor i (including
I) satisfies the following invariants:

• <po-i2e is a prefix of <po (of processor i) up to I (including I).
• For any instructions I1 <ppo I2 from processor i, if I1 and I2 are not ordered after I in <po (i.e., I2 may

be equal to I), then I1 <ppo-i2e I2.
• For any instructions I1 and I2, if I1 <ppo-i2e I2, then I1 <ppo I2.

With above invariants, we prove that the Inst-Order axiom is satisfied by contradiction, i.e., we assume
there are two memory instructions I1 and I2 from processor i such that I1 <ppo I2 but I2 <mo I1. In the
operational model, when I2 is executed, I1 must have been executed, and I1 is ordered before I2 in <ppo-i2e

according to the invariants. At the time when I2 is executed, I1 can only be in one of the following two
places:

1. I1 is already in the memory system: In this case, if I2 is a load, then the Execute-Load rule ensures that
I2 is placed after I1 in <mo-i2e. If I2 is a store, it can only be appended to the end of <mo-i2e, and is still
after I1 in I <mo-i2e.

2. I1 is in the local buffer: In this case, I1 must be a store. I2 must also be a store (otherwise if I2 is a load,
the guard of Execute-Load rule will be false due to I1 in the local buffer). And I2 is inserted into the
local buffer. The Dequeue-Store rule ensures that I1 will be appended to <mo-i2e before I2, so I1 is still
before I2 in <mo-i2e.

I1 <mo-i2e I2 implies that I1 <mo I2, contradicting with the initial assumption. Thus the Inst-Order axiom
is satisfied.

Now we show that the Load-Value axiom is also satisfied. Consider a load L for address a from processor
i which reads from a store S in the operational execution. When the Execute-Load rule executes L, we
consider where S resides:

1. S is in the local buffer of processor i: S will be appended to <mo-i2e later, so S must be after L in <mo.
Since we already have S <po L and L <mo S, the Load-Value axiom will only pick stores that are before
L in <po. Now we consider such a store S′ (6= S) for a which is before L in <po. Note that S is the
most recently inserted store for a when L is executed. Thus, when S is executed by processor i, S′ must
have been executed, and we have S′ <po-i2e S ⇒ S′ <ppo-i2e S at that time (according the definition of
same-address ordering). Therefore, S′ is appended to <mo-i2e before S, and thus S′ <mo S. As a result,
the Load-Value axiom also agrees on S −→rf L.

2. S is already in <mo-i2e: When L is executed, the local buffer of processor i cannot contain any store for
a according to the guard of the Execute-Load rule. Thus, all stores for a that are before L in <po are

21

already in <mo-i2e at that time. Since stores can only be appended to the end of <mo-i2e, all stores for
a that are before L in <mo are also in <mo-i2e by the time when L is executed. Then the way that the
Execute-Load rule determines the load value of L is exactly the same as the Load-Value axiom.

7.4 Completeness: GAM-I2E Axiomatic Model ⊆GAM-I2E Operational Model

Theorem 7. GAM-I2E axiomatic model ⊆ GAM-I2E operational model.

Proof. The goal is that for any legal axiomatic relations 〈<po, <mo,−→rf 〉 (which satisfy the GAM-I2E ax-
ioms), we can run the GAM-I2E operational model to simulate the same program behavior. In each step of
the simulation, we first decide which rule to fire in the operational model based on the current state of the
operational model and <mo, and then we fire that rule. Here is the algorithm to determine which rule to
fire in each simulation step:

1. If in the operational model there is a processor whose next instruction is not a load, we fire an Execute-
Reg-Branch or Execute-Store-Fence rule to execute that instruction in the operational model.

2. If the above case does not apply, and in the operational model there is a fence that can be dequeued from
the local buffer, then we fire the Dequeue-Fence rule to dequeue that fence in the operational model.

3. If neither of the above cases applies, and in the operational model there is a store S in the local buffer
of a processor, and S can be dequeued from the local buffer (i.e., the guard for the Dequeue-Store rule is
true), and all stores before S in <mo are already in <mo-i2e, then we fire a Dequeue-Store rule to dequeue
S in the operational model.

4. If none of the above cases applies, then in the operational model there must be a processor such that the
next instruction of the processor is a load L, and L can be executed (i.e., the guard for the Execute-Load
rule is true), and all stores before L in <mo are already in <mo-i2e. We fire an Execute-Load rule to
execute L in the operational model. In the Execute-Load rule of L, we insert L into <mo-i2e such that
for any instruction I already in <mo-i2e, if I <mo L then I <mo-i2e L, otherwise L <mo-i2e I.

After each step of the simulation, we keep the following invariants:

1. The execution order on each processor is a prefix of the <po of that processor.
2. The result of each executed instruction is the same as that in <po.
3. The store read by each executed load is the same as that indicated by the −→rf edges.
4. The simulation cannot get stuck.
5. For two memory instruction I1 and I2, if I1 <mo-i2e I2 in the operational model, then I1 <mo I2 in the

axiomatic relations.
6. The order of all stores in <mo-i2e is a prefix of the order of all stores in <mo.

The first two induction invariants imply that before each simulation step, the following properties hold for
each processor i (assuming the next instruction of the processor is I):

1. <po-i2e is a prefix of <po (of processor i) up to I (including I).
2. For any instructions I1 <ppo I2 from processor i, if I1 and I2 are not ordered after I in <po (i.e., I2 may

be equal to I), then I1 <ppo-i2e I2.
3. For any instructions I1 and I2, if I1 <ppo-i2e I2, then I1 <ppo I2.

The detailed proof for these invariants can be found in Appendix E.

It should be noted that the above models and proofs of GAM-I2E do not rely on the specific forms of
<ppod or <ppomf . Therefore, GAM-I2E is fully parametrized by <ppod and <ppomf .

8 Conclusion

For years, many of the leading industry memory models have been so complicated to understand and to
analyze that the status quo was simply to live with an incomplete and underspecified memory model.
Academics would attempt to build axiomatic and operational models and then to prove them equivalent,

22

but these models and proofs were subject to frequent breakage and refinement due to the thorniness of the
issues at hand. Other models were simply never updated to modern standards, and were therefore left with
definitions fence ordering, same-address ordering, and/or dependency ordering that are today well known to
be insufficient. This has led to no shortage of confusion in the broader understanding of memory models in
the field.

In response to the recently emerging trend back towards atomic memory models, we present GAM, a
flexible operational and axiomatic memory model definition that is parameterized by the set of fences in the
model. GAM corrects the preserved program order definition oversights present in memory models from past
generations, and it reduces the definition of fence behavior into localized intra-thread ordering specifications
that can be easily understood in isolation. GAM also comes with proofs of equivalence between its axiomatic
and operational models, thereby overcoming the obstacle that many previous memory models have faced in
being far too complicated to understand or to work with. The equivalence makes it much easier for architects,
programmers, and theoreticians to each simply use the variant that they find easiest to work with.

Finally, GAM also makes it easy to understand the implications of tweaking a memory model’s definition.
It is easy to add new fences that trade off strength for performance, for example. It is also possible to remove
behaviors; as we show, forbidding load-store reordering altogether allows GAM to be reduced to an even
simpler I2E-based definition. We believe that all of these features will go a long way towards eliminating
the worst of the subtleties and corner cases that have most of the memory models of past generations.

References

[1] The risc-v instruction set. https://riscv.org/.

[2] Alpha Architecture Handbook, Version 4. Compaq Computer Corporation, 1998.

[3] Sarita V Adve and Kourosh Gharachorloo. Shared memory consistency models: A tutorial. computer,
29(12):66–76, 1996.

[4] Jade Alglave. A formal hierarchy of weak memory models. Formal Methods in System Design, 41(2):178–
210, 2012.

[5] Jade Alglave, Anthony Fox, Samin Ishtiaq, Magnus O Myreen, Susmit Sarkar, Peter Sewell, and
Francesco Zappa Nardelli. The semantics of power and arm multiprocessor machine code. In Pro-
ceedings of the 4th workshop on Declarative aspects of multicore programming, pages 13–24. ACM, 2009.

[6] Jade Alglave, Daniel Kroening, Vincent Nimal, and Michael Tautschnig. Software verification for weak
memory via program transformation. In Programming Languages and Systems, pages 512–532. Springer,
2013.

[7] Jade Alglave and Luc Maranget. Computer Aided Verification: 23rd International Conference, CAV
2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, chapter Stability in Weak Memory Models,
pages 50–66. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[8] Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats: Modelling, simulation, testing, and
data mining for weak memory. ACM Transactions on Programming Languages and Systems (TOPLAS),
36(2):7, 2014.

[9] ARM. Cortex-A9 MPCoreTM, programmer advice notice, read-after-read hazards. Technical report,
2011. URL: http://infocenter.arm.com/help/topic/com.arm.doc.uan0004a/UAN0004A_a9_read_
read.pdf.

[10] ARM. ARM Architecture Reference Manual: ARMv8, for ARMv8-A architecture profile. 2017.

[11] Arvind and Jan-Willem Maessen. Memory model = instruction reordering + store atomicity. In ACM
SIGARCH Computer Architecture News, volume 34, pages 29–40. IEEE Computer Society, 2006.

23

https://riscv.org/
http://infocenter.arm.com/help/topic/com.arm.doc.uan0004a/UAN0004A_a9_read_read.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.uan0004a/UAN0004A_a9_read_read.pdf

[12] Mark Batty, Alastair F. Donaldson, and John Wickerson. Overhauling sc atomics in c11 and opencl.
SIGPLAN Not., 51(1):634–648, January 2016.

[13] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. Mathematizing c++ concur-
rency. In ACM SIGPLAN Notices, volume 46, pages 55–66. ACM, 2011.

[14] Colin Blundell, Milo MK Martin, and Thomas F Wenisch. Invisifence: performance-transparent memory
ordering in conventional multiprocessors. In ACM SIGARCH Computer Architecture News, volume 37,
pages 233–244. ACM, 2009.

[15] Hans-J Boehm and Sarita V Adve. Foundations of the c++ concurrency memory model. In ACM
SIGPLAN Notices, volume 43, pages 68–78. ACM, 2008.

[16] Hans-J. Boehm and Brian Demsky. Outlawing ghosts: Avoiding out-of-thin-air results. In Proceedings
of the Workshop on Memory Systems Performance and Correctness, MSPC ’14, pages 7:1–7:6, New
York, NY, USA, 2014. ACM.

[17] Jason F Cantin, Mikko H Lipasti, and James E Smith. The complexity of verifying memory coherence.
In Proceedings of the fifteenth annual ACM symposium on Parallel algorithms and architectures, pages
254–255. ACM, 2003.

[18] Pietro Cenciarelli, Alexander Knapp, and Eleonora Sibilio. The java memory model: Operationally,
denotationally, axiomatically. In Programming Languages and Systems, pages 331–346. Springer, 2007.

[19] Luis Ceze, James Tuck, Pablo Montesinos, and Josep Torrellas. Bulksc: bulk enforcement of sequential
consistency. In ACM SIGARCH Computer Architecture News, volume 35, pages 278–289. ACM, 2007.

[20] Edsger W. Dijkstra. Cooperating sequential processes, technical report ewd-123. Technical report, 1965.

[21] Michel Dubois, Christoph Scheurich, and Fayé Briggs. Memory access buffering in multiprocessors.
In ACM SIGARCH Computer Architecture News, volume 14, pages 434–442. IEEE Computer Society
Press, 1986.

[22] Shaked Flur, Kathryn E. Gray, Christopher Pulte, Susmit Sarkar, Ali Sezgin, Luc Maranget, Will
Deacon, and Peter Sewell. Modelling the armv8 architecture, operationally: Concurrency and isa. In
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2016, pages 608–621, New York, NY, USA, 2016. ACM.

[23] Kourosh Gharachorloo, Anoop Gupta, and John L Hennessy. Two techniques to enhance the perfor-
mance of memory consistency models. In Proceedings of the 1991 International Conference on Parallel
Processing, pages 355–364, 1991.

[24] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop Gupta, and John Hen-
nessy. Memory consistency and event ordering in scalable shared-memory multiprocessors. In Proceed-
ings of the 17th International Symposium on Computer Architecture, pages 15–26. ACM, 1990.

[25] Chris Gniady and Babak Falsafi. Speculative sequential consistency with little custom storage. In
Parallel Architectures and Compilation Techniques, 2002. Proceedings. 2002 International Conference
on, pages 179–188. IEEE, 2002.

[26] James R Goodman. Cache consistency and sequential consistency. University of Wisconsin-Madison,
Computer Sciences Department, 1991.

[27] Dibakar Gope and Mikko H Lipasti. Atomic sc for simple in-order processors. In High Performance
Computer Architecture (HPCA), 2014 IEEE 20th International Symposium on, pages 404–415. IEEE,
2014.

24

[28] Chris Guiady, Babak Falsafi, and Terani N Vijaykumar. Is sc+ ilp= rc? In Computer Architecture,
1999. Proceedings of the 26th International Symposium on, pages 162–171. IEEE, 1999.

[29] IBM. Power ISA, Version 2.07. 2013.

[30] International Organization for Standardization (ISO). Information technology – programming languages
– C, ISO/IEC 9899:2011. Technical report, December 2011.

[31] Daniel Jackson. Alloy: A lightweight object modelling notation. In ACM Transactions on Software
Engineering and Methodology (TOSEM), volume 11, April 2002. URL: http://alloy.mit.edu.

[32] Jeehoon Kang, Chung-Kil Hur, William Mansky, Dmitri Garbuzov, Steve Zdancewic, and Viktor
Vafeiadis. A formal c memory model supporting integer-pointer casts. In Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’15, pages
326–335, New York, NY, USA, 2015. ACM.

[33] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. Repairing sequential
consistency in C/C++11. 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2017.

[34] Leslie Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs.
Computers, IEEE Transactions on, 100(9):690–691, 1979.

[35] Changhui Lin, Vijay Nagarajan, Rajiv Gupta, and Bharghava Rajaram. Efficient sequential consistency
via conflict ordering. In ACM SIGARCH Computer Architecture News, volume 40, pages 273–286. ACM,
2012.

[36] Daniel Lustig, Andrew Wright, Alexandros Papakonstantinou, and Olivier Giroux. Automated gen-
eration of comprehensive memory model litmus test suites. 22nd ACM International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2017.

[37] Sela Mador-Haim, Luc Maranget, Susmit Sarkar, Kayvan Memarian, Jade Alglave, Scott Owens, Rajeev
Alur, Milo MK Martin, Peter Sewell, and Derek Williams. An axiomatic memory model for power
multiprocessors. In Computer Aided Verification, pages 495–512. Springer, 2012.

[38] Jan-Willem Maessen, Arvind, and Xiaowei Shen. Improving the java memory model using crf. ACM
SIGPLAN Notices, 35(10):1–12, 2000.

[39] Jeremy Manson, William Pugh, and Sarita V. Adve. The java memory model. In Proceedings of the
32Nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’05, pages
378–391, New York, NY, USA, 2005. ACM.

[40] Luc Maranget, Susmit Sarkar, and Peter Sewell. A tutorial introduction to the arm and power relaxed
memory models. http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf, 2012.

[41] Kyndylan Nienhuis, Kayvan Memarian, and Peter Sewell. An operational semantics for c/c++11 con-
currency. In Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2016, pages 111–128, New York, NY,
USA, 2016. ACM.

[42] Kyndylan Nienhuis, Kayvan Memarian, and Peter Sewell. An operational semantics for c/c++11 con-
currency. In Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2016, pages 111–128, New York, NY,
USA, 2016. ACM.

[43] Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86 memory model: x86-tso. In Theorem
Proving in Higher Order Logics, pages 391–407. Springer, 2009.

25

http://alloy.mit.edu
http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf

[44] Parthasarathy Ranganathan, Vijay S Pai, and Sarita V Adve. Using speculative retirement and larger
instruction windows to narrow the performance gap between memory consistency models. In Proceedings
of the ninth annual ACM symposium on Parallel algorithms and architectures, pages 199–210. ACM,
1997.

[45] Susmit Sarkar, Kayvan Memarian, Scott Owens, Mark Batty, Peter Sewell, Luc Maranget, Jade Alglave,
and Derek Williams. Synchronising c/c++ and power. In ACM SIGPLAN Notices, volume 47, pages
311–322. ACM, 2012.

[46] Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams. Understanding power
multiprocessors. In ACM SIGPLAN Notices, volume 46, pages 175–186. ACM, 2011.

[47] Susmit Sarkar, Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Tom Ridge, Thomas Braibant,
Magnus O. Myreen, and Jade Alglave. The semantics of x86-cc multiprocessor machine code. SIGPLAN
Not., 44(1):379–391, January 2009.

[48] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O Myreen. x86-
tso: a rigorous and usable programmer’s model for x86 multiprocessors. Communications of the ACM,
53(7):89–97, 2010.

[49] Xiaowei Shen, Arvind, and Larry Rudolph. Commit-reconcile and fences (crf): A new memory model for
architects and compiler writers. In Computer Architecture, 1999. Proceedings of the 26th International
Symposium on, pages 150–161. IEEE, 1999.

[50] Abhayendra Singh, Satish Narayanasamy, Daniel Marino, Todd Millstein, and Madanlal Musuvathi.
End-to-end sequential consistency. In ACM SIGARCH Computer Architecture News, volume 40, pages
524–535. IEEE Computer Society, 2012.

[51] Richard Smith, editor. Working Draft, Standard for Programming Language C++. http://open-std.
org/JTC1/SC22/WG21/docs/papers/2015/n4527.pdf, May 2015.

[52] SPARC International, Inc. The SPARC Architecture Manual: Version 8. Prentice-Hall, Inc., 1992.

[53] David L Weaver and Tom Gremond. The SPARC architecture manual (Version 9). PTR Prentice Hall
Englewood Cliffs, NJ 07632, 1994.

[54] Thomas F Wenisch, Anastasia Ailamaki, Babak Falsafi, and Andreas Moshovos. Mechanisms for store-
wait-free multiprocessors. In ACM SIGARCH Computer Architecture News, volume 35, pages 266–277.
ACM, 2007.

[55] John Wickerson, Mark Batty, Tyler Sorensen, and George A. Constantinides. Automatically comparing
memory consistency models. 44th ACM SIGPLAN Symposium on Principles of Programming Languages
(POPL), 2017.

[56] Sizhuo Zhang, Muralidaran Vijayaraghavan, and Arvind. Weak memory models: Balancing definitional
simplicity and implementation flexibility. In Proceedings of the 2017 International Conference on Parallel
Architectures and Compilation, Portland, OR, USA, 2017.

A GAM Operational model ⊆ GAM Axiomatic Model

Lemma 5. For any operational model state, the following properties hold:

1. If I1 <po-rob I2, then whether I1 is ordered before I2 in any of <ddep-rob, <adep-rob, <ntppo-rob only depends
on the states of I1, I2, and instructions between I1 and I2 in the ROB.

2. If we add a new instruction to the end of an ROB, then changes in <ddep-rob, <adep-rob, <ntppo-rob can
only involve new edges pointing to the newly added instruction.

26

http://open-std.org/JTC1/SC22/WG21/docs/papers/2015/n4527.pdf
http://open-std.org/JTC1/SC22/WG21/docs/papers/2015/n4527.pdf

3. If we mark a not-done non-branch instruction as done in an ROB, then there is no change in <ddep-rob

, <adep-rob, <ntppo-rob.
4. If we mark a not-done branch instruction as done in an ROB, then the changes in <ddep-rob, <adep-rob

, <ntppo-rob can only involve removing existing edges.
5. If we compute the store data of a store in an ROB, then there is no change in <ddep-rob, <adep-rob

, <ntppo-rob.
6. If we compute the address of a memory instruction in an ROB, then the changes in <ddep-rob, <adep-rob

can only involve removing existing edges.
7. If we compute the address of a load L to be a in an ROB, then the changes in <ntppo-rob can only involve:

(a) new edges pointing to L, and
(b) new edges from L, and
(c) removal of existing edges.

8. If we compute the address of a store S to be a in an ROB, then the changes in <ntppo-rob can only involve:

(a) new edges point to S, and
(b) new edges starting from S, and
(c) new edges across S, and
(d) removal of existing edges.

Proof. The cases in the lemma can be proved easily one by one.

Lemma 6. The following invariants hold during the execution of the operational model:

1. If I1 <ntppo-rob I2 and I2.doneTS 6= >, then I1.doneTS 6= > and I1.doneTS < I2.doneTS.
2. If I1 <adep-rob I2 and I2.addrTS 6= >, then I1.doneTS 6= > and I1.doneTS < I2.addrTS.
3. If I1 <ddep-rob I2, and not I1 <adep-rob I2, and I2 is a store, and I2.sdataTS 6= >, then I1.doneTS 6= >

and I1.doneTS < I2.sdataTS.
4. If I1 <po-rob I2, and I1 is a memory instruction, and I2 is a store, and I2.doneTS 6= >, then I1.addrTS 6= >

and I1.addrTS < I2.doneTS.
5. We never kill a done store.
6. For any address a, let S be the store with the maximum doneTS among all the done stores for address a.

The monolithic memory value for a is equal to S.sdata.
7. For any done load L, let S = L.from (i.e., S is the store read by L). All of the following properties are

satisfied:

(a) S still exists in an ROB (i.e., S is not killed).
(b) S.addr = L.addr and S.sdata = L.ldval.
(c) If S is done, then there is no not-done store S′ such that S′.addr = a and S′ <po-rob L.
(d) If S is done, then for any other done store S′ with S′.addr = L.addr, if S′ <po-rob L or S′.doneTS <

L.doneTS, then S′.doneTS < S.doneTS.
(e) If S is not done, then S <po-rob L, and there is no store S′ such that S′.addr = L.addr and S <po-rob

S′ <po-rob L.

Proof. We now prove the invariants inductively. That is, when rule R fires in the operational model, we
assume that all the invariants hold before R fires, and try to prove that the invariants still hold after R fires.
To avoid confusion, we add superscript 0 to model states and orderings before R fires, and add superscript
1 to model states and orderings after R fires. For example, <0

ntppo-rob denotes the non-transitive preserved

program order before R fires, while I.doneTS1 denotes the done timestamp of instruction I after R fires.
Consider the type of rule R:

1. Fetch: Assume R fetches a new instruction I into an ROB. According to Lemma 5, new edges in <1
ddep-rob

, <1
adep-rob, <

1
ntppo-rob must point to I. Now we consider each invariant:

• Invariants 1, 2 and 3: These invariants may be affected by the new edges in <1
ddep-rob, <

1
adep-rob

, <1
ntppo-rob. However, since I.doneTS1, I.addrTS1 and I.sdataTS1 are all >, these invariants cannot

be affected.

27

• Invariants 4, 5, 6, 7: These invariants cannot be affected.

2. Execute-Reg-to-Reg: Assume R executes a reg-to-reg instruction I and marks it as done. According
to Lemma 5, <1

ddep-rob, <
1
adep-rob, <

1
ntppo-rob are the same as <0

ddep-rob, <
0
adep-rob, <

0
ntppo-rob, respectively.

I.doneTS changes from > to current global time. Now we consider each invariant:

• Invariant 1: This invariant can be affected by the change in I.doneTS. Consider any I1 such that
I1 <1

ntppo-rob I. Since I is a reg-to-reg instruction, it must be that I1 <1
ddep-rob I according to the

definition of <ntppo-rob. Since <0
ddep-rob=<1

ddep-rob, I1 <0
ddep-rob I. The guard of R requires that I1 is

already done before R fires, so I1.doneTS
1 = I1.doneTS

0 < I.doneTS1, i.e., the invariant still holds.
• Invariants 2, 3, 4, 5, 6, 7: These invariants cannot be affected.

3. Execute-Branch: Assume R executes a branch instruction I and marks it as done. According to Lemma 5,
<1

ddep-rob, <
1
adep-rob, <

1
ntppo-rob are contained by <0

ddep-rob, <
0
adep-rob, <

0
ntppo-rob, respectively. I.doneTS

changes from > to current global time, and instructions younger than I in the ROB may all be killed.
Now we consider each invariant:

(a) Invariant 1: Consider any I1 such that I1 <1
ntppo-rob I. Since I is a branch, it must be that I1 <1

ddep-rob

I. Since <1
ddep-rob⊆<0

ddep-rob, I1 <0
ddep-rob I. The guard of R ensures that I1 must be already done

right before R fires, so I1.doneTS
1 = I1.doneTS

0 < I.doneTS1, i.e., the invariant still holds.
(b) Invariants 2, 3, 4: These invariants cannot be affected.
(c) Invariant 5: This invariant may be affected if instructions are killed. We prove by contradiction,

i.e., we assume a done store S is killed in rule R. Since S is killed, I <0
po-rob S ⇒ I <0

ntppo-rob S.

According to invariant 1, S.doneTS0 6= > ⇒ I.doneTS0 6= >, i.e., I is done even before R fires. This
contradicts with the guard of R.

(d) Invariant 6: This invariant cannot be affected.
(e) Invariant 7: We consider each case in this invariant:

• Invariant 7a: This invariant can be affected by instruction kills. Assume a store S is killed by I in
rule R (I <0

po-rob S), and S is read by a load L (i.e., S = L.from). We have shown that S cannot

be done, so S is not done before R fires. Invariant 7e says that S <0
po-rob L. Then L will also be

killed by I, so this invariant still holds.
• Invariants 7b, 7c, 7d, 7e: These invariants cannot be affected.

4. Execute-Fence: Assume R executes a fence instruction F and marks it as done. According to Lemma 5,
<1

ddep-rob, <
1
adep-rob, <

1
ntppo-rob are the same as <0

ddep-rob, <
0
adep-rob, <

0
ntppo-rob, respectively. I.doneTS changes

from > to current global time. Now we consider each invariant:

• Invariant 1: This invariant can be affected by the change in I.doneTS. Consider any I1 such that
I1 <1

ntppo-rob F . Since <0
ntppo-rob=<1

ntppo-rob, I1 <0
ntppo-rob F . Since F is a fence, it must be that

orderedf (I1, F) is true before R fires. Then the guard of R ensures that I1 must be already done before
R fires, so I1.doneTS

1 = I1.doneTS
0 < F.doneTS1, i.e., the invariant still holds.

• Invariants 2, 3, 4, 5, 6, 7: These invariants cannot be affected.

5. Compute-Store-Data: Assume R computes the data of a store S. According to Lemma 5, <1
ddep-rob

, <1
adep-rob, <

1
ntppo-rob are the same as <0

ddep-rob, <
0
adep-rob, <

0
ntppo-rob, respectively. S.sdataTS changes from

> to current global time. Now we consider each invariant:

• Invariants 1, 2: These invariant cannot be affected.
• Invariant 3: Consider any instruction I1 such that I1 <1

ddep-rob S but not I1 <1
adep-rob S. Note that

<0
ddep-rob=<1

ddep-rob and <0
adep-rob=<1

adep-rob. Therefore, the computation of the data of S uses the
result of I1 as a source operand. Then the guard of R ensures that I1 must be already done before R
fires. Therefore, we have I1.doneTS

1 = I1.doneTS
0 < S.sdataTS1, and the invariant still holds.

• Invariants 4, 5, 6: These invariant cannot be affected.
• Invariant 7: If there exists a done load L such that L.from0 = S, then S.sdata0 6= > according to

invariant 7b. That is, the store data of S is already computed before R fires, contradicting with the
guard of R. Therefore, S is not read by any load yet, and this invariant is not affected.

6. Execute-Store: Assume R executes a store S and marks it as done. According to Lemma 5, <1
ddep-rob

28

, <1
adep-rob, <

1
ntppo-rob are the same as <0

ddep-rob, <
0
adep-rob, <

0
ntppo-rob, respectively. S.doneTS changes from

> to current global time, and the monolithic memory is also updated. Now we consider each invariant:

• Invariant 1: This invariant can be affected by the change in S.doneTS. Consider any I1 such that
I1 <1

ntppo-rob S. Since <0
ntppo-rob=<1

ntppo-rob, I1 <0
ntppo-rob S. Since S is a store, there can following

cases to form I1 <0
ntppo-rob S:

– I1 <0
ddep S: The guard of R ensures that max(S.addrTS0, S.sdataTS0) < S.doneTS1. Invariants 2 and

3 says that I1.doneTS
0 < max(S.addrTS0, S.sdataTS0). Thus, we have I1.doneTS

1 = I1.doneTS
0 <

S.doneTS1, i.e., the invariant still holds.
– I1 is a branch: The guard of R ensures that I is already done before R fires, so I1.doneTS

1 =
I1.doneTS

0 < S.doneTS1, i.e., the invariant still holds.
– There exists a memory instruction I such that I1 <0

adep-rob I <0
po-rob S: The guard of R ensures that

the address of I has been computed before R fires, i.e., I.addrTS0 < S.doneTS1. Invariant 2 says
that I1.doneTS

0 < I.addrTS0. Thus, I1.doneTS
1 = I1.doneTS

0 < S.doneTS1, i.e., the invariant still
holds.

– I1 is a load whose address has been computed to the same as the address of S: The guard of R
ensures that I is done before R fires, so I1.doneTS

1 = I1.doneTS
0 < S.doneTS1, i.e., the invariant

still holds.
– I1 is a store whose address has been computed to the same as the address of S: The guard of R

ensures that I is done before R fires, so I1.doneTS
1 = I1.doneTS

0 < S.doneTS1, i.e., the invariant
still holds.

– ordered(I1, S) is true: The guard of R ensures that I is done before R fires, so I1.doneTS
1 =

I1.doneTS
0 < S.doneTS1, i.e., the invariant still holds.

• Invariants 2, 3: These invariants are not affected.
• Invariants 4: This invariant can be affected by the change in S.doneTS. Consider any memory instruc-

tion I1 such that I1 <1
po-rob I2. Note that <po-rob cannot be changed by R, so I1 <0

po-rob I2. The guard

of R ensures that I1 has computed its address before R fires, so I1.addrTS
1 = I1.addrTS

0 < S.doneTS1,
i.e., the invariant still holds.

• Invariant 5: This invariant is not affected.
• Invariant 6: This invariant can be affected by making S done and updating the monolithic memory.

We only need to focus on memory address a = S.addr0; other addresses are not affected. Note that
S.doneTS1 is the maximum among the non-> doneTS of every instruction. Therefore, after R fires, S
is the store with the maximum doneTS among all done stores for a. On the other hand, the monolithic
memory location a is updated to S.sdata by rule R. Thus, the invariant still holds.

• Invariant 7: We assume a = S.addr. We consider each case in this invariant:

– Invariant 7a, 7b: These invariants are not affected.
– Invariant 7c: This invariant can be affected when there exists a done load L such that L.from0 = S.

We need to show that there is no not-done store S′ such that S′.addr1 = a and S′ <1
po-rob L. Since

rule does not compute any address or change <po-rob. It is equivalent to show that there is no not-
done store S′ such that S′.addr0 = a and S′ <0

po-rob L. We prove by contradiction, i.e., we assume

such S′ exists before R fires. Since S is not done before R fires, according to invariant 7e, S <0
po-rob L

and it cannot be that S <0
po-rob S′ <0

po-rob L. Thus, it must be that S′ <po-rob S. However, the
guard of R requires that S′ to be done bofore R fires, contradicting with the assumption that S′ is
not done. Thus, the invariant holds.

– Invariant 7d: This invariant can be affected in the following two ways:

(a) There exists a done load L such that L.from0 = S: In this case, we need to show that for
any other done store S′ with S′.addr1 = a, if S′ <1

po-rob L or S′.doneTS1 < L.doneTS1, then

S′.doneTS1 < S.doneTS1. Since S.doneTS1 is the maximum doneTS among all done instructions,
this invariant still holds.

(b) There exists a done load L∗ and a done store S∗ such that L∗.from1 = S∗ and L∗.addr1 =

29

S∗.addr1 = S∗: In this case, we need to show that if S <1
po-rob L

∗ or S.doneTS1 < L∗.doneTS1,

then S.doneTS1 < S∗.doneTS1. Since S.doneTS1 is the maximum, S.doneTS1 < L∗.doneTS1

must be false. We will now show that S <1
po-rob L∗ is also impossible to prove the invariant

holds. We prove it by contradiction, i.e., we assume S <1
po-rob L

∗. Since rule R does not change

<po-rob or any store address or any state of L∗ and S∗, we have S <0
po-rob L∗, S.addr0 = a =

L∗.addr∗ = S∗.addr0, L∗.from0 = S∗, and S∗ is done before R fires. This contradicts with
Invariant 7c. Therefore, the invariant still holds.

– Invariant 7e: This invariant is not affected.

7. Execute-Load: Assume R executes a load L. If L is not marked as done, the model state does not
change, so all invariants still hold. Now we consider the case that L is marked as done. According
to Lemma 5, <1

ddep-rob, <
1
adep-rob, <

1
ntppo-rob are the same as <0

ddep-rob, <
0
adep-rob, <

0
ntppo-rob, respectively.

L.doneTS changes from > to current global time. Now we consider each invariant:

• Invariant 1: This invariant can be affected by the change in L.doneTS. Assume a = L.addr0. Consider
any I1 such that I1 <1

ntppo-rob L. Since <ntppo-rob is not changed by R, we have I1 <0
ntppo-rob L. This

ordering can be caused by the following cases:

– I1 <0
ddep L: Since L only needs to compute the address from registers, I1 <0

adep L. Invariant 2 says

that I1.doneTS
0 < I1.addrTS

0. The guard of R ensures that L.addrTS0 < L.doneTS1. Therefore
I1.doneTS

1 = I1.doneTS
0 < L.doneTS1, i.e., the invariant still holds.

– There exists a store S such that S.addr1 = a and I1 <1
ddep-rob S <1

po-rob L, and there is no store S′

such that S′.addr1 = a and S <1
po-rob S′ <1

po-rob L: Since R does not change <po-rob, <ddep-rob or

any address, the above condition becomes: S.addr0 = a, and I1 <0
ddep-rob S <po-rob L, and there is

no store S′ such that S′.addr0 = a and S <0
po-rob S′ <0

po-rob L. Before R fires, if there are not-done
loads with computed addresses a between S and L in the ROB, then let L′ be the youngest of them
in ROB, and the ROB search conducted in R will stop at L′. This will make R not mark L as done,
contradicting with our previous assumption. Therefore, right before R fires, any load with computed
address a between S and L in the ROB must be done. Since S.addr0 = a, the ROB search in R will
search through S. If S.sdataTS0 = >, then the ROB search will stop at S and L cannot be marked
as done, contradicting with our assumption. Therefore, S.sdataTS 6= > ⇒ S.sdataTS0 < L.doneTS1.
Since address of S is computed before R fires, S.addrTS0 < L.doneTS1. Invariants 2 and 3 say
that I1.doneTS

0 < max(S.addrTS0, S.sdataTS0), so I1.doneTS
1 = I1.doneTS

0 < L.doneTS1, i.e., the
invariant still holds.

– I1 is a load with I1.addr
1 = a, and there is no store S such that S.addr1 = a and I1 <1

po-rob S <1
po-rob L:

Since R does not change <po-rob or any address, the above condition becomes: I1.addr
0 = a, and

there is no store S such that S.addr0 = a and I1 <0
po-rob S <1

po-rob L. Before R fires, if there are
not-done loads with computed addresses a between I1 and L in the ROB, then let L′ be the youngest
of them in ROB, and the ROB search conducted in R will stop at L′. This will make R not mark L
as done, contradicting with our previous assumption. Therefore, right before R fires, any load with
computed address a between I1 and L in the ROB must be done. Since I1.addr = a, the ROB search
in R will search through S. If I1 is not done before R fires, then the ROB search will stop at L and
L cannot be marked as done in R, contradicting with our previous assumption. Therefore I1 is done
before R fires, so I1.doneTS

1 = I1.doneTS
0 < L.doneTS1, i.e., the invariant still holds.

– ordered(I1, L) is true: The guard of R ensures that I is done before R fires, so I1.doneTS
1 =

I1.doneTS
0 < S.doneTS1, i.e., the invariant still holds.

• Invariants 2, 4, 3, 5, 6: These invariants cannot be affected.
• Invariant 7: This invariant can be affected because L becomes done. Let S = L.from1, and let a =
L.addr1. We need to show that L and S satisfies all the sub-invariants. We consider each case of
separately.

– Invariant 7a: This invariant cannot be affected.
– Invariant 7b: We need to show that S.addr1 = L.addr1 ad S.sdata1 = L.ldval1. Note that S.addr0 =

30

S.addr0 = L.addr0 = L.addr1. Also note that S.sdata0 = S.sdata1 and L.ldval is the value read in
rule R. If L bypasses from local store in ROB, then S is the store being bypassed, and the invariant
holds. Otherwise, L reads from monolithic memory, and invariant 6 ensures that invariant holds.

– Invariant 7c: Since S is done after R fires, S is also done before R fires. Then R reads the value
from monolithic memory. The guard of R ensures that there is no store S′ such that S′.addr0 = a
and S′ <0

po-rob L. Since R does not change address or <po-rob, the invariant still holds.
– Invariant 7d: Using the same argument as above, R reads the value from monolithic memory. Right

before R fires, invariant 6 says that for any other done store S′ with S′.addr0 = a, S′.doneTS <
S.doneTS. Since R does not change doneTS of stores or address, the invariant still holds.

– Invariant 7e: Since S.doneTS1 = >, S.doneTS0 = >. Then R reads the value by bypassing from
S in the local ROB, i.e., the ROB search in R stops at S. We now prove by contradiction, i.e.,
we assume there exists S′ with S′.addr1 = a and S <1

po-rob S′ <1
po-rob L. Since R does not change

address or <po-rob, S
′.addr0 = a and S <0

po-rob S′ <0
po-rob L. Since S <0

ntppo-rob S′, invariant 1 says

that S′.doneTS0 = >. Then the ROB search cannot stop at S, contradicting with our previous
conclusion. Therefore the invariant still holds.

8. Compute-Mem-Addr for load L: R computes the address of load L to a. According to Lemma 5, edges
in <ddep-rob and <adep-rob may reduce. Some edges in <ntppo-rob may be removed, but there can also be
new <ntppo-rob edges. L.addr changes from > to a. We consider each invariant separately.

• Invariant 1: Since L is not done, we only need to consider newly generated <ntppo-rob edges that start
from L. Consider any I2 such that L <1

ntppo-rob I2 but not L <0
ntppo-rob I2. We need to show that

I2.doneTS
1 = >. I2 must be in the following cases:

– I2 is a store, L <1
po-rob I2, and I2.addr

1 = a: We prove by contradiction, i.e., assume I2.doneTS
1 6=

>. This gives I2.doneTS
0 6= >. Since L <0

po-rob S and L.addrTS0 = >, invariant 2 says that

I2.doneTS
0 = >, contradicting with previous assumption. Therefore the invariant still holds.

– I2 is a load, L <1
po-rob I2, I2.addr

1 = a, and there is no store S such that S.addr1 = a and L <1
po-rob

S <1
po-rob I2: We prove by contradiction, i.e., assume I2.doneTS

1 6= >. This implies that I2 is also
done before R fires. Since the ROB search in R does not kill I2, there must be a not-done load L′ such
that L′.addr0 = a and L <0

po-rob L
′ <0

po-rob I2. Now we have L′ <ntppo-rob I2. Since L′.doneTS = >,
this contradicts with invariant 1. Therefore the invariant still holds.

• Invariant 2: The guard of R ensures that this invariant still holds.
• Invariants 3, 4: These invariants cannot be affected.
• Invariant 5: We prove by contradiction, i.e., we assume a done store S is killed. Note that S.doneTS0 =
S.doneTS1 6= > and L <0

po-rob S. Invariant 4 says that L.addrTS0 6= >, contradicting with the guard of
R. Therefore the invariant still holds.
• Invariants 6 and 7: These invariants cannot be affected.

9. Compute-Mem-Addr for store S: R computes the address of S to be a. According to Lemma 5, edges in
<ddep-rob and <adep-rob may reduce. Some edges in <ntppo-rob may be removed, but there can also be new
<ntppo-rob edges. S.addr changes from > to a. We consider each invariant separately.

• Invariant 1: Since S is not done, we do not need to consider new <ntppo-rob edges ending at S. We only
need to consider new <ntppo-rob edges starting from S or across S. There are the following two cases:

– There is store S′ such that S′.addr1 = a and S <1
po-rob S′: We need to show that S′.doneTS1 = >.

We prove by contradiction, i.e., we assume S′.doneTS1 6= >. This implies S′.doneTS0 6= > and
S <0

po-rob S
′. According to invariant 4, S.addr0 6= >, contradicting with the guard of R.

– There is instruction I1 and load L such that L.addr1 = a and I1 <1
ddep-rob S <1

po-rob L, and there is no

store S′ such that S′.addr1 = a and S <1
po-rob S

′ <1
po-rob L: The above statement becomes: L.addr0 =

a, I1 <0
ddep-rob S <0

po-rob L, and there is not store S′ such that S′.addr0 = a and S <0
po-rob S

′ <0
po-rob

L. We can show that L.doneTS1 = >, so the invariant still holds. We prove by contradiction, i.e.,
L.doneTS1 6= >. This implies L.doneTS0 6= >. Since S is not killed by the ROB search in R,

31

there must be L′ such that L′.addr0 = a, L′.doneTS0 = > and S <0
po-rob L′ <0

po-rob L. This gives

L′ <0
ntppo-rob L. Since L.doneTS0 6= >, this contradicts invariant 1.

• Invariant 2: The guard of R ensures that this invariant still holds.
• Invariants 3, 4: These invariant cannot be affected.
• Invariant 5: We prove by contradiction, i.e., we assume a done store S′ is killed. That is, S′.doneTS0 6= >

and S <0
po-rob S

′. Invariant 4 says that S.addr0 6= >, contradicting with the guard of R.
• Invariant 6: This invariant is not affected.
• Invariant 7: For any done load L∗ for address a, assume S∗ = L∗.from1. The address computation of S

may prevent L∗ and S∗ from satisfying the invariants here. Note that L∗.addr0 = a and S∗ = L∗.from0.
We consider each case of this invariant:

– Invariant 7a: We prove by contradiction, i.e., S∗ is killed but L∗ is not. We have proved that S∗

cannot be done, so S∗ is not done before R fires. Invariant 7e says that S∗ <0
po-rob L∗. Then L∗ is

also killed, contradicting with our assumption.
– Invariant 7b: This invariant cannot be affected.
– Invariant 7c: We need to show that if S∗ is done, then it is impossible that S <1

po-rob L
∗. We prove

by contradiction, i.e., assume S∗.doneTS0 6= > and S <1
po-rob L∗. This implies that S <0

po-rob L∗..

Invariant 7c says that there is no store S′ such that S′.addr0 = a and S′ <0
po-rob L

∗. Since L∗ is not

killed in the ROB search of rule R, there must be load L′ such that L′.addr0 = a and L′.doneTS0 = >
and L′ <0

po-rob L∗. This gives L′ <0
ntppo-rob L∗ ⇒ L′.doneTS0 6= >, contradicting with previous

conclusion. Therefore the invariant still holds.
– Invariant 7d: This invariant is not affected.
– Invariant 7e: We need to show that if S∗ is not done, then it is impossible that S∗ <1

po-rob S <1
po-rob

L∗. We prove by contradiction, i.e., we assume S∗.doneTS0 6= > and S∗ <1
po-rob S <1

po-rob L
∗. This

implies S∗ <0
po-rob S <0

po-rob L∗. Invariant 7e says that there is no store S′ such that S′.addr0 = a

and S∗ <0
po-rob S′ <0

po-rob L∗. Since L∗ is not killed by the ROB search in rule R, there must

be load L′ such that L′.addr0 = a and L′.doneTS0 = > and S <0
po-rob L′ <0

po-rob L∗. This gives

L′ <0
ntppo-rob L

∗ ⇒ L′.doneTS0 6= >, contradicting with previous conclusion. Therefore the invariant
still holds.

B GAM Axiomatic model ⊆ GAM Operational Model

Theorem 8. GAM axiomatic model ⊆ GAM operational model.

Proof. The goal is that for any legal axiomatic relations 〈<po, <mo,−→rf 〉 (which satisfy the GAM axioms),
we can run the operational model to give the same program behavior. The strategy to run the operational
model consists of two major phases. In the first phase, we only fire Fetch rules to fetch all instructions
into all ROBs according to <po. During the second phase, in each step we fire a rule that either marks an
instruction as done or computes the address or data of a memory instruction. Which rule to fire in a step
depends on the current state of the operational model and <mo. Here we give the detailed algorithm that
determines which rule to fire in each step:

1. If in the operational model there is a not-done reg-to-reg or branch instruction whose source registers are
all ready, then we fire an Execute-Reg-to-Reg or Execute-Branch rule to execute that instruction.

2. If the above case does not apply, and in the operational model there is a memory instruction, whose
address is not computed but the source registers for the address computation are all ready, then we fire
a Compute-Mem-Addr rule to compute the address of that instruction.

3. If neither of the above cases applies, and in the operational model there is a store instruction, whose
store data is not computed but the source registers for the data computation are all ready, then we fire a
Compute-Store-Data rule to compute the store data of that instruction.

32

4. If none of the above cases applies, and in the operational model there is a fence instruction and the guard
of the Execute-Fence rule for this fence is ready, then we fire the Execute-Fence rule to execute that fence.

5. If none of the above cases applies, then we find the oldest instruction in <mo, which is not-done in the
operational model, and we fire an Execute-Load or Execute-Store rule to execute that instruction.

Before giving the invariants, we give a definition related to the ordering of stores for the same address. For
each address a, all stores for a are totally ordered by <mo, and we refer to this total order of stores for a as
<a

co.
Now we show the invariants. After each step, we maintain the following invariants:

1. The order of instructions in each ROB in the operational model is the same as the <po of that processor
in the axiomatic relations.

2. The results of all the instructions that have been marked as done so far in the operational model are the
same as those in the axiomatic relations.

3. All the load/store addresses that have been computed so far in the operational model are the same as
those in the axiomatic relations.

4. All the store data that have been computed so far in the operational model are the same as those in the
axiomatic relations.

5. No kill has ever happened in the operational model.
6. For the rule fired in each step that we have performed so far, the guard of the rule is satisfied the at that

step (i.e., the rule can fire).
7. In each step that we have performed so far, if we fire a rule to execute an instruction (especially a load)

in that step, the instruction must be marked as done by the rule.
8. For each address a, the order of all the store updates on monolithic memory address a that have happened

so far in the operational model is a prefix of <a
co.

We now examine each option that we may choose in each step of phase 2, and verify that all invariants hold.

1. We execute a reg-to-reg or branch instruction: trivial.
2. We compute the address of a load or store instruction I: we only need to verify invariant 5, i.e., this

address computation will not kill any done load. Assume the address of I is a, and I is in processor i.
We prove by contradiction, i.e., we assume the address computation of I kills a done load L in the ROB
of processor i. We search <po of processor i from L towards the oldest instruction (excluding L). We
stop the search when we find a load or store instruction for address a (note that all addresses in <po are
known). We refer to the instruction found as Ia. Since I has address a, either I = Ia or I <po Ia. If
I = Ia, then Ia is not-done and its address is not computed before the kill. In case of I <po Ia, Ia cannnot
be a done store (because the address of I is just computed). In this case, Ia must be not-done and its
address must not be computed, otherwise L will not be killed. In either case, Ia must be not-done and
the address of Ia is not computed before the kill. We also have the following observation:

• L can only become done via option 5 in a previous step, so for any not-done memory instruction I ′ in
the operational model, we have L <mo I ′ in the axiomatic relations.

We consider the following two possibilities:

(a) Ia is a load: In this case, the above observation says that L <mo Ia. However, since there is no other
memory instruction for address a between Ia and L in processor i, Ia <pposa L ⇒ Ia <mo L. Thus
this case is impossible.

(b) Ia is a store: In this case, we consider which store is read by L.

i. L bypasses from a store S in processor i. S must be older than Ia in ROB (because address of
Ia is not computed at the time when L is executed), so S <po Ia ⇒ S <mo Ia. This contradicts
with the Load-Value axiom.

ii. L reads the value of a store S from the monolithic memory. Since all the done stores for a form
the prefix of <a

co and Ia is not-done, S <a
co Ia ⇒ S <mo Ia. This also contradicts with the

Load-Value axiom.

Therefore this address computation cannot cause any kill.
3. We compute a store data: trivial.

33

4. We execute a fence instruction: trivial.
5. We execute a memory instruction I from <mo: First note that for any memory instruction I ′ such that

I ′ <mo I, I ′ must be done in the operational model (because of the way we pick I). We now prove
according to the type of I.

• I is a store for address a: we first show that all the guards are satisfied:

(a) Address and data of I have been computed: We prove by contradiction, i.e., the address or data
of I has not been computed. We backtrack the dependency chain on I. The only reason for not
being able to compute the address or data of I is that an older instruction I1 is not-done, and
that I1 <ddep I. I1 can only be a not-done reg-to-reg instruction or a not-done load. If I1 is a reg-
to-reg instruction, it cannot be computed because of a not-done instruction I2 <ddep I1. We trace
this dependency chain until we encounter a load, i.e., Ik <ddep Ik−1 <ddep . . . <ddep I1 <ddep I,
where Ik is a not-done load and I1 . . . Ik−1 are all not-done reg-to-reg instructions. Now we have
Ik <ppo I ⇒ Ik <mo I, contradicting with the way we pick I in option 5.

(b) All older memory or fence instructions that are ordered before I by ordered are done: We prove by
contradiction, i.e., assume there is a not-done memory or fence instruction I1 that is older than
I in ROB and satisfies ordered(I1, I). This implies I1 <po I ⇒ I1 <ppomf I. If I1 is a not-done
fence, the guard to execute it in the operational model must be false according to our algorithm.
Therefore, there must be a not-done memory or fence instruction I2 that is older than I1 in ROB
and satisfies ordered(I2, I1). This implies I2 <ppomf I. We keep backtracking if I2 is also a not-
done fence. We stop backtracking until Ik is a not-done memory instruction. That is, we have
Ik <ppomf Ik−1 <ppomf · · · <ppomf I1 <ppomf I ⇒ Ik <mo I. Since Ik is a not-done memory
instruction, this contradicts with the way we pick I in option 5. Therefore, such I1 does not exist.

(c) All older branches are done: We prove by contradiction, i.e., an older branch B in the ROB of
I is not-done. We backtrack the dependency chain on B, and get Ik <ddep Ik−1 <ddep . . . <ddep

I1 <ddep B, where Ik is a not-done load and I1 . . . Ik−1 are all not-done reg-to-reg instructions.
Since B <po I, we have Ik <ppo B <ppod I ⇒ Ik <ppo I ⇒ Ik <mo I, contradicting with the way
we pick I in option 5.

(d) All older loads and stores have computed their addresses: We prove by contradiction, i.e., an older
load or store I ′ in the ROB of I has not computed its address. We backtrack the dependency
chain on the address of I ′, and get Ik <ddep Ik−1 <ddep . . . <ddep I1 <adep I ′, where Ik is a
not-done load and I1 . . . Ik−1 are all not-done reg-to-reg instructions. Since I ′ <po I, we have
Ik <ppo I1 <ppod I ⇒ Ik <ppo I ⇒ Ik <mo I, contradicting with the way we pick I in option 5.

(e) All older loads and stores for address a are done: For any store S for address a that is older than
I in the ROB of I, we have S <pposa I ⇒ S <mo I. Therefore, S must be done. For any load L
for address a that is older than I in the ROB of i, we have L <pposa I ⇒ L <mo I. Therefore, L
must be done.

We now only need to verify invariant 8. This is trivial, because all stores for a that is older than I in
<mo are done (i.e., have updated m[a]).

• I is a load for address a: we first show that all the guards are satisfied:

(a) Address of I has been computed: same argument as store case.
(b) All older memory or fence instructions that are ordered before I by ordered are done: same

argument as store case.

We now need to verify invariants 2 and 7. To do this, we consider the three possible outcomes of the
ROB search in the Execute-Load rule that executes I:

(a) The search finds a not-done load L: We prove that this case is impossible (for invariant 7) by
contradiction. If there are intervening stores for a between L and I in the ROB, none of those
stores can be done, because the not-done load L will make the guards of Execute-Store rules fail.
Let S be the youngest store among these stores. S must not have computed its address, because
otherwise the search will stop at S. Now we backtrack the dependency chain on the address of
S, and get Ik <ddep Ik−1 <ddep . . . <ddep I1 <ddep S, where Ik is a not-done load and I1 . . . Ik−1

34

are all not-done reg-to-reg instructions. Since there is no store for a between S and I, we have
Ik <ppo I1 <ppod I ⇒ Ik <ppo I ⇒ Ik <mo I. Since Ik is not done, this contradicts with the way
we pick I in option 5. Therefore, there is no store for a between L and I in the ROB. Then we
have L <pposa I ⇒ L <mo I. Since L is not done, this contradicts with the way we pick I in
option 5.

(b) The search finds a not-done store S: Using the same argument as above, there cannot be any store
for a between I and S in ROB. We now prove that the data of the S must have been computed (for
invariant 7). We prove by contradiction, i.e., we assume the data of S is not yet computed. We
backtrack the dependency chain on the data of S, and get Ik <ddep Ik−1 <ddep . . . <ddep I1 <ddep S,
where Ik is a not-done load and I1 . . . Ik−1 are all not-done reg-to-reg instructions. Since there is
no store for a between S and I, we have Ik <ppo I1 <ppod I ⇒ Ik <mo i, contradicting with the
way we pick i in option 5 (jn is a not-done load).
Since the data of S has been computed, I reads from S. We now need to verify invariant 2. Since
S is not-done, we have I <mo S, i.e., the Load-Value axiom can only select from stores <po I.
Since there is no other store for a between S and I in the ROB, the Load-Value axiom also agrees
on S −→rf I.

(c) The search finds nothing: In this case, I reads from m[a], and we need to verify invariant 2. We
first show that all stores for a older than I in ROB are done. If there are not-done stores for a
older than I in the ROB, then let S be the youngest one among them. There cannot be any done
store for a between S and I, because the guard of the Execute-Store rule that marks the store as
done cannot be satisfied. The address of S cannot be computed (otherwise the search will stop at
S). Now we backtrack the dependency chain on the address of S as we do in the first case, and
can show a contradiction.
Assume m[a] is last written by store S∗ before this rule fires. Thus, for any done store S′ for a
when this rule fires, either S′ = S∗ or S′ <mo S∗. Since loads and stores can only be marked as
done via option 5 in the operational model and S∗ is already done, we have S∗ <mo I. For any
store S1 <mo I, S1 must be done, so either S1 = S∗ or S1 <mo S∗. For any store S2 <po I, S2

is also done, so either S2 = S∗ or S2 <mo S∗. Therefore, the Load-Value axiom also agrees on
S∗ −→rf I.

C Equivalence of COM and GAM

We first define one more derived relation:

• Reads-from internal (−→rfi), which is the subset of −→rf for which both the read and the write are in the
same thread

C.1 GAM ⊆ COM

Lemma 7. All of −→rfe, <co, −→fr, and <ppo are contained in <mo.

Proof. Two of the four cases are easy: <co is contained in <mo by construction, and <ppo is contained in
<mo by the Inst-Order axiom.

By the Load-Value axiom, if for any write w and read r, if w −→rf r, then w precedes r either in <po or
in <mo. The former is ruled out in the definition of −→rfe, and hence w must precede r in <mo.

The proof for −→fr proceeds by contradiction. Suppose there is some write w and some read r such
that r −→fr w and w <mo r. Then by definition of −→fr, there is some other write w′ such that w′ −→rf r
and w′ <co w. Furthermore, since <co⊆<mo, we have w′ <mo w <mo r. This, however, contradicts the
Load-value axiom, as w′ is not the <mo-maximal candidate write.

The SC-per-Location axiom will take a bit more work to prove. To start, define <eco as the union of the
following relations:

35

• <co (Write to Write)
• −→fr (Read to Write)
• <co

∗;−→rf (Write to Read)
• −→rf−1 ;<co

∗;−→rf (Read to Read)

Lemma 8. For all pairs i1, i2 of memory accesses to the same address, either i1 <eco i2 or i2 <eco i1.

Proof. By construction. All pairs of same-address writes are ordered in <co by definition. For any read r
and write w, let w′ be the write such that w′ −→rf r. Then either:

• w = w′, so w −→rf r, and hence w<co
∗;−→rf r,

• w <co w′, so w <co;−→rf r, and hence w<co
∗;−→rf r, or

• w′ <co w, so r −→rf−1 ;<co w, and r −→fr w.

Likewise, for any two reads r1 and r2, let w1 and w2 be the writes such that w1 −→rf r1 and w2 −→rf r2. Then
either:

• w1 = w2, so r1 −→rf−1 ;−→rf r2, and hence r1 −→rf−1 ;<co
∗;−→rf r2,

• w1 <co w2, so r1 −→rf−1 ;<co;−→rf r2, and hence r1 −→rf−1 ;<co
∗;−→rf r2,

• w2 <co w1, so r2 −→rf−1 ;<co;−→rf r1, and hence r2 −→rf−1 ;<co
∗;−→rf r1.

If i1 and i2 are related in program order, then the <eco direction must match:

Lemma 9. If i1 <poloc i2, then i1 <eco i2.

Proof. By Lemma 8, either i1 <eco i2 or i2 <eco i1. We show that the latter always results in a contradiction
(except for one case in which it overlaps with the former).

• If i1 and i2 are both writes, then i1 <poloc i2 <co i1, so i1 <poloc i2 <mo i1, which contradicts Definition 8.2.
• If i1 is a read and i2 is a write, then suppose i2<co

∗ i −→rf i1 for some i. If i2 = i, then by the LoadValue
axiom, either i2 <poloc i1, which contradicts the hypothesis, or i2 <mo i1, which contradicts Definition 8.1.
Therefore, suppose i2 <co i −→rf i1. If i −→rfe i1, then i1 <ppo i2 <co i −→rfe i1 by Definition 8.1, which
contradicts Causality. If i −→rfi i1, then i <poloc i1; otherwise, by the LoadValue axiom, i1 <mo i, which
contradicts Definition 8.1. However, this means i <poloc i2 <co i, which again contradicts Definition 8.2.
• If i1 is a write and i2 is a read, then suppose i2 −→fr i1, and let i be the write such that i −→rf i2 and
i <co i1. Since i <mo i1, i is not the <mo-maximal store from which i2 should read, and the LoadValue
axiom is violated.
• If i1 and i2 are both reads, then suppose i2 −→rf−1 i3 <co i4 −→rf i1 for some i3 and i4. (The case
i2 −→rf−1 ;−→rf i1 implies i1 <eco i2.) Then i2 −→fr i4. If i4 −→rfi i1, then i4 <poloc i2 −→fr i4, which as we
have already seen in the previous case is forbidden. If i4 −→rfe i1, then either there is some write i5 such that
i1 <poloc i5 <poloc i2, or there is no such write. If i5 exists, then i4 <co i5, i3 <co i5, and i2 −→fr i5 <poloc i2,
which as we have already seen is forbidden. If i5 does not exist, then i1 <ppo i2 −→fr i4 −→rfe i1, which
contradicts Causality.

Theorem 9. The SC-per-Location axiom is satisfied.

Proof. First, by Lemma 9, all <poloc edges involving at least one write can be converted into sequences
containing only −→rf , <co, and −→fr. So we consider only cycles with −→rf , <co, −→fr, and read-to-read <poloc

edges. Among such cycles, first consider cycles with no <co or −→fr edges. Such cycles cannot contain −→rf

either, because neither −→rf nor read-read <poloc edges can end at a write node, and so there cannot be a
source for −→rf relations. This leaves a cycle consisting only of <poloc, which is a contradiction.

Now, consider cycles with at least one <co or −→fr edge. Replace every instance of read-read <poloc in the
cycle with −→rf−1 ;<co

∗;−→rf per Lemma 9. Now, because <co and −→fr both target writes, every appearance
of −→rf−1 must be preceded either by −→rf or by −→rf−1 ;<co

∗;−→rf . In particular, every appearance of −→rf−1

must be preceded directly by −→rf . Since −→rf ;−→rf−1 is the identity function, all appearances of −→rf−1 in

36

the cycle can be eliminated by simply removing each −→rf ;−→rf−1 pair in the cycle. This leaves a cycle with
only −→rf , <co, and −→fr. If there are any reads in such a cycle, then by similar logic as above, the incoming
relation must be −→rf and the outgoing relation must be −→fr, but this pair is equivalent to a <co edge
between writes alone. Repeating such a transformation produces a cycle consisting of only <co. Since by
hypothesis there is at least one such <co edge, this is a contradiction.

D Alloy Model for Empirical Validation

Figure 8 shows the Alloy model used for validation.

// Model of memory

sig Address {}

abstract sig Event {

po: lone Event , ppo: set Event , mo: set Event , address: one Address }

sig Read extends Event {}

sig Write extends Event { rf: set Read }

fun po_loc : Event ->Event { ^po & address .~ address }

fact { acyclic[po] }

fact { rf.~rf in iden }

fact { total[mo, Event] } // definition of total omitted for space

fact { (Write <: po_loc :> Write) + (Read <: po_loc :> Write)

+ (Read <: (po_loc - (po_loc.po_loc)) :> Read) in ppo }

// GAM axioms

fun candidates[r: Read] : set Write {

(r.~mo & Write & r.address .~ address) // writes preceding r in <mo

+ (r.^~po & Write & r.address .~ address)} // writes preceding r in <po

pred InstOrder { ppo in mo }

pred LoadValue { all w: Write | all r: Read |

w->r in rf <=> w in (let c = candidates[r] | c - c.~mo)} // i.e., max_ <mo

pred GAM { InstOrder and LoadValue }

// COM axioms

fun rfe : Write ->Read { rf - (^po + ^~po) }

fun co : Write ->Write { Write <: ((address .~ address) & mo) :> Write }

fun fr : Read ->Write { ~rf.co + ((Read - Write.rf) <: address .~ address :> Write) }

pred SC_per_Location { acyclic[rf + co + fr + po_loc] }

pred Causality { acyclic[rfe + co + fr + ppo] } // def. of acyclic omitted for space

pred COM { SC_per_Location and Causality }

// Equivalence Checks

check gam_com { GAM => COM } for 7

check com_gam { rfe + co + fr + ppo in mo => COM => GAM } for 7

Figure 8: Comparing GAM and COM in Alloy

E Completeness: GAM-I2E Axiomatic Model ⊆ GAM-I2E Oper-
ational Model

Theorem 10. GAM-I2E axiomatic model ⊆ GAM-I2E operational model.

Proof. The goal is that for any legal axiomatic relations 〈<po, <mo,−→rf 〉 (which satisfy the GAM-I2E ax-
ioms), we can run the GAM-I2E operational model to simulate the same program behavior. In each step of
the simulation, we first decide which rule to fire in the operational model based on the current state of the
operational model and <mo, and then we fire that rule. Here is the algorithm to determine which rule to
fire in each simulation step:

37

1. If in the operational model there is a processor whose next instruction is not a load, we fire an Execute-
Reg-Branch or Execute-Store-Fence rule to execute that instruction in the operational model.

2. If the above case does not apply, and in the operational model there is a fence that can be dequeued from
the local buffer, then we fire the Dequeue-Fence rule to dequeue that fence in the operational model.

3. If neither of the above cases applies, and in the operational model there is a store S in the local buffer
of a processor, and S can be dequeued from the local buffer (i.e., the guard for the Dequeue-Store rule is
true), and all stores before S in <mo are already in <mo-i2e, then we fire a Dequeue-Store rule to dequeue
S in the operational model.

4. If none of the above cases applies, then in the operational model there must be a processor such that the
next instruction of the processor is a load L, and L can be executed (i.e., the guard for the Execute-Load
rule is true), and all stores before L in <mo are already in <mo-i2e. We fire an Execute-Load rule to
execute L in the operational model. In the Execute-Load rule of L, we insert L into <mo-i2e such that
for any instruction I already in <mo-i2e, if I <mo L then I <mo-i2e L, otherwise L <mo-i2e I.

After each step of the simulation, we keep the following invariants:

1. The execution order on each processor is a prefix of the <po of that processor.
2. The result of each executed instruction is the same as that in <po.
3. The store read by each executed load is the same as that indicated by the −→rf edges.
4. The simulation cannot get stuck.
5. For two memory instruction I1 and I2, if I1 <mo-i2e I2 in the operational model, then I1 <mo I2 in the

axiomatic relations.
6. The order of all stores in <mo-i2e is a prefix of the order of all stores in <mo.

The first two induction invariants imply that before each simulation step, the following properties hold for
each processor i (assuming the next instruction of the processor is I):

1. <po-i2e is a prefix of <po (of processor i) up to I (including I).
2. For any instructions I1 <ppo I2 from processor i, if I1 and I2 are not ordered after I in <po (i.e., I2 may

be equal to I), then I1 <ppo-i2e I2.
3. For any instructions I1 and I2, if I1 <ppo-i2e I2, then I1 <ppo I2.

Now we examine each case in the simulation algorithm and prove that all invariants hold:

1. We execute a non-load instruction: trivial.
2. We dequeue a fence from the local buffer: trivial.
3. We dequeue a store S from the local buffer: In this case, we need to verify invariants 5 and 6. Invariant 6

is trivial, because all stores older than S in <mo are already in <mo-i2e (as required by case 3 in the
algorithm). We now consider invariant 5. For each instruction I already in <mo-i2e at the dequeue time,
I must be added to <mo-i2e by case 3 or 4 in the simulation algorithm. Since these two cases require that
every store older than I in <mo to be present in <mo-i2e, S cannot be older than I in <mo, i.e., I <mo S.

4. We execute a load L: We first need to verify invariant 4, i.e., we are able to find such an L that satisfies
the requirements in case 4 of the simulation algorithm. We prove this by contradiction, i.e., such L
cannot be found. In this case, the next instruction of every processor is a load. We examine why the
next instruction L1 (which is a load) of processor 1 does not satisfy the requirements of case 4 of the
simulation algorithm. There are two possibilities:

(a) There is a store S2 <mo L1 but S2 is not yet in <mo-i2e.
(b) The guard of the Execute-Load rule for L1 is false. We backtrack which instruction is stalling L1.

There must exist an instruction I1 in the local buffer of processor 1 which is ordered before L1 in
<ppo-i2e. If I1 is a fence, then I1 cannot be dequeued because there is another instruction I2 <mo-i2e I1
in the local buffer. We keep doing this until we find a store, i.e., Ik <ppo-i2e Ik−1 <ppo-i2e · · · <ppo-i2e

I1 <ppo-i2e L1, where I1 · Ik are all in the local buffer of processor 1, I1 · · · Ik−1 are fences, and Ik is
a store. According to property 3, Ik <ppo-i2e L1 ⇒ Ik <ppo L1 ⇒ Ik <mo L1.

In either case, we find a store S2 <mo L1, and S2 is not in <mo-i2e. Now we consider why S2 is not in
<mo-i2e, and there are two possibilities:

(a) S2 is not executed yet: Assume S2 is in processor i in <po. The next instruction to execute in the

38

processor of S2 in the operational model must be a load L3. According to invariant 1, since S2 is
not in the prefix of <po of processor i up to L3, we have L3 <po S2 ⇒ L3 <ppomf S2 ⇒ L3 <mo S2.
Following the previous argument, L3 cannot be executed because of a store S3 which is before L3 in
<mo but is not in <mo-i2e. That is, S3 <mo S2 and S3 is not in <mo-i2e.

(b) S2 is the local buffer of processor i: There are two possible reasons that stops S2 from being dequeued:

i. There is a store S3 <mo S2 and S3 is not in <mo-i2e.
ii. The guard of the Dequeue-Store rule is false. Using the previous argument, there must be a

store S3 <mo S2, and S3 is in the local buffer.

In all cases, we can find a store S3 <mo S2, and S3 is not in <mo-i2e. Since the simulation algorithm is
assumed to get stuck, we can keep doing this, and find Sk <mo Sk−1 <mo · · · <mo S1 <mo L1, where
S1 . . . Sk are all stores that are not in <mo-i2e, and k can be infinitely large. However, there can only be
finite number of stores before L1 in <mo. Therefore, we must be able to find a load L that satisfies the
requirements of case 4 of the simulation algorithm.
We also need to verify that L can indeed be inserted into <mo-i2e as instructed in case 4 of the simulation
algorithm. Since both <mo and <mo-i2e are total orders, invariant 5 ensures that we can cut <mo-i2e into
two parts, i.e., one part is before L in <mo and the other part is after L in <mo. Then we can simply
place L at the cutting point of <mo-i2e. This also ensures that invariant 5 will still hold after this step of
simulation.
Finally we need to show that invariant 3 still holds. Assume L is from processor i, loads address a, and
reads from store S in the Execute-Load rule. Consider where S resides when we fire the Execute-Load
rule:

(a) S is in the local buffer of processor i: Since all stores <mo L are already in <mo-i2e, S does not
precede L in <mo, i.e., L <mo S. Invariant 1 implies that S <po L. Therefore the Load-Value axiom
can only select stores <po L as the source for the load result. Since all stores for the same address in
the same processor are ordered by <pposa and thus <mo, the Load-Value axiom will pick the youngest
store in <po among all stores that is before L in <po. Since S is the most recently executed store for
a in processor i, invariant 1 ensures that S is the store picked by the Load-Value axiom.

(b) S is already in <mo-i2e: In this case, the local buffer of processor i cannot have any store for address
a. Invariant 1 says that for any store S′ for a which is ordered before L in <po, S′ must have been
executed in processor i in the operational model. Therefore, S′ must be already in <mo-i2e. The
way we find L ensures that for any store S′′ for a that is ordered before L in <mo, S′′ must be in
<mo-i2e. Thus, all stores that are visible to L according to the Load-Value axiom are all in <mo-i2e

now. Invariants 5 and refi2e:mo-prefix both say that the orderings between all such S′ and S′′ are
the same in <mo-i2e and <mo. Since the Execute-Load rule uses the same way as the Load-Value
axiom to determine the load value, invariant 3 must hold.

39

	Introduction
	Contributions

	Memory Model Background
	Atomic versus Non-atomic Memory
	Instruction Reorderings and Single-thread Semantics
	Fences for Writing Multithreaded Programs

	Related Work
	General Atomic Memory Model (GAM)
	Axiomatic Definition of GAM
	Definition of Preserved Program Order <ppo for GAM
	Memory Axioms of GAM

	An Operational Definition of GAM
	Soundness: GAM Operational model GAM Axiomatic Model
	Completeness: GAM Axiomatic model GAM Operational Model

	COM: an Alternative Axiomatic Model
	The COM Axioms
	Equivalence of GAM and COM
	COM GAM
	Empirical Validation

	Comparing GAM with Existing Atomic Memory Models
	SC
	TSO
	SPARC RMO
	WMM
	ARM v8.2
	Alpha
	RISC-V

	GAM-I2E: Parameterizing Dependency Ordering
	Axiomatic Model of GAM-I2E
	Operational Model of GAM-I2E
	Soundness: GAM-I2E Operational Model GAM-I2E Axiomatic Model
	Completeness: GAM-I2E Axiomatic Model GAM-I2E Operational Model

	Conclusion
	GAM Operational model GAM Axiomatic Model
	GAM Axiomatic model GAM Operational Model
	Equivalence of COM and GAM
	GAM COM

	Alloy Model for Empirical Validation
	Completeness: GAM-I2E Axiomatic Model GAM-I2E Operational Model

