
0 7 4 0 - 7 4 5 9 / 0 7 / $ 2 5 . 0 0 © 2 0 0 7 I E E E S e p t e m b e r / O c t o b e r 2 0 0 7 I E E E S O F T W A R E 3 1

focus

We’ve used Lua to create software ranging
from small in-house tools, to highly dynamic
desktop systems, to a browser-based platform
for designing and deploying complex Web ap-
plications. Lua extended the range of solutions
we offer. But it also helped us drastically reduce
the time and effort needed to finish our projects.

In this article, I’ll share some of our experi-
ences, a few of the lessons we’ve learned, and
talk about changes we’ve made to our systems
and the way we develop solutions.

Getting started
Starting a software company is a bit like set-

ting out on a long journey. So, when our small
band of developers at Reflexis headed out, we
did our homework. For this trip, we knew
what we wanted to do and packed accordingly.

Unsurprisingly, a few years down the road,
reality kicked in. For one thing, being small
means bigger fish are swimming in the pond.
Bigger companies tend to have bigger budgets.
Often these budgets translate into much
louder shouting when it comes to attracting
customers to your services.

Once you find yourself pondering how to
keep paying the rent, several options present
themselves. Panicking might be the natural
choice. Rethinking your business model is a
good alternative (especially if you’re bent on
surviving or the panicking starts to wear you
down).

But our situation drove home another les-
son as well. It taught us to not waste energy
and to make sure we get the most out of the
time we spend creating our software. And at
the risk of stating the obvious, here are some
of the reasons.

First, the more easily you can put together
an exciting demo, the more interested a possi-
ble client will be. Getting prospective cus-
tomers really interested is good; they’ll listen
longer to whatever you want to tell them.

Second, the less development time you spend
on juggling technical details, the more effort you
can pour into truly fitting a solution to your cus-
tomer’s needs. A fully satisfied customer is a fine
thing to have; they tend to tell their friends.

Finally, the faster you can deliver what-
ever solution you want to develop, the sooner

focus 1
Traveling Light,
the Lua Way

F
ive years ago, our team at Reflexis ran into a little language from
Brazil. Lua (pronounced loo-ah) changed the way we work pro-
foundly. It lets us create hybrid solutions that combine the strengths
of statically typed software with the flexibility of a dynamically

typed environment. In short, with Lua, we get the best of both worlds.

dynamically typed languages

Ashwin Hirschi, Reflexis

Lua can help
you become
more productive
by extending
your C/C++
creations with the
expressive power
and flexibility
of a dynamically
typed language.

you can move on to your next project. You
could charge your client less or simply earn
your pay more effectively. Having choices
like these is nice.

Now, if outshouting the competition isn’t
your cup of tea, why not try to put some dis-
tance between them by becoming quicker on
your feet? Think of rapid application develop-
ment as a way to survive. The accelerate out of
problems approach (AooP?), if you will.

So, at this juncture, we took a long, hard
look not only at our business model but also—
and perhaps more important—at how we build
our software. Our expertise centered on C++/C
and a handful of dynamically typed languages
such as Tcl, Python, and Perl. These were the
tools of our trade. They served us well and let
us deliver desktop and Web applications.

However, despite having used many of
these tools for more than a decade, we felt that
they didn’t help us move as quickly as we
wanted to. Progressing rapidly in C++ almost
felt like a contradiction in terms. Creating
scripts to flesh out an idea often meant feeling
frustrated when we had to redo everything for
the actual deliverable.

But while some might think that the grass is
much greener on the other side, be it a platform
such as Java or .NET, we were happy with our
products and libraries in C and C++. The soft-
ware we used, mostly homegrown or open
source, worked well. Why drop everything and
leave for pastures unknown? Perhaps the only
thing missing was something to bridge the gap
between the advantages of our existing C/C++
systems and the pleasures of doodling in a more
dynamic environment.

The answer to our predicament came in the
form of a little language from Brazil. Portuguese
for “moon,” Lua is a portable, lightweight, and
dynamically typed scripting language that wraps
a wealth of state-of-the-art mechanisms in an el-
egant syntax. Designed for extending applica-
tions, it also sports an intuitive C API, making
integration into existing software extremely easy.

As a direct result of adopting Lua, we left
behind a lot of technical baggage that we’d
deemed essential when we set out. In its place
is something much lighter and more powerful,
making our working lives more efficient, and
the road much more pleasant to travel. I hope
to show that as long as you’re in the business
of writing software, less can indeed be much
more if you do it the Lua way.

First steps
Our initial steps with Lua were quick and

painless. Lua comes in the shape of an open
source library written in clean ANSI C. It
compiles out-of-the-box on many different
platforms and operating systems. The distri-
bution includes a concise, well-written refer-
ence manual that details both the language
and the C API exposed by the library.

An excellent way to get to know Lua in
depth is by reading Programming in Lua,1 by
Roberto Ierusalimschy (chief architect of the
language and part of the Lua team). Although
a first edition of the book is available online,
a newer edition describes the latest features
and adds a substantial amount of useful ex-
amples and new material.

After reading the book (or manual2), a
good way to come to grips with Lua is to write
a few simple scripts and try them out using the
interpreter (included in the distribution). Any
errors, either during compilation or execution,
will prompt the interpreter to display an alert,
consisting of a helpful message and a call stack
indicating where the mishap occurred.

I won’t discuss particular language details
here. Those are best left for another, more tech-
nical article but can also easily be gleaned from
other sources, such as the official Lua site
(www.lua.org). Suffice it to say that Lua is an el-
egant, easy-to-learn language with a mostly pro-
cedural syntax, featuring automatic memory
management, full lexical scoping, closures, itera-
tors, coroutines, proper tail calls, and extremely
practical data-handling using associative arrays.

Although Lua isn’t an object-oriented lan-
guage, it provides powerful metamechanisms
that let you implement classes and inheritance.
But while these metamechanisms let you
change the language’s semantics in all sort of
unorthodox ways, Lua’s extensibility goes
much further: from the ground up, Lua was
designed to extend other applications. So, if
you really want to grasp Lua’s full potential,
you need to look into bindings.

Bindings
A binding is basically a layer of glue code

that sits between Lua and another piece of
software. For instance, creating a binding to a
C/C++ library exposes that library’s function-
ality to the Lua environment. This lets you use
the library in Lua scripts without needing to
compile and link C programs.

3 2 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Lua is
an elegant,

easy-to-learn
language with

a mostly
procedural

syntax.

You can create bindings in numerous ways,
such as writing them by hand or using tools (see
http://lua-users.org/wiki) to generate them from
header files. I prefer the former because it allows
for much greater control of how functionality is
exposed to scripts. This makes it possible to
come up with a higher-level interface than the
original library might provide, resulting in a sys-
tem that’s far more convenient to use.

Figure 1 shows an example of a tiny binding,
exposing Windows Graphics Device Interface
functions to get or set the color of text output by
adding one function to the Lua environment.

The first Lua binding I wrote was for an
XML handling library I’d developed a few
years earlier. The library ended up in several of
our products, and because it had a straightfor-
ward C++ interface, I thought it would make
a good candidate for my little experiment.
Somewhat to my surprise, I came up with a
full, working binding in just a handful of
hours, courtesy of the well-documented,
stack-based API Lua exposes to (binding) pro-
grammers. The surprise was all the more
pleasant because it didn’t take long for us to
realize we could now use our library by simply
composing scripts in a text editor and running
them through the Lua interpreter.

Reading XML data, manipulating the struc-
ture, and producing some relevant output had

become a mere matter of writing concise Lua
code. Not only did the endless write/compile/
link/debug sessions in top-heavy C/C++ IDEs
start to feel like a complete waste of time, but
our existing products, with their fixed, hard-
coded C++ data manipulations, suddenly
seemed wholly old-fashioned! Needless to say,
my little Lua and XML experiment proved
very encouraging and helped us decide to in-
vest more time and energy in Lua.

Embedding
As the previous example has shown, it can

be worth your while to integrate Lua with
your libraries. Embedding is another way of
using Lua to your advantage. Instead of using
the basic (command line) interpreter to access
your libraries, you can enhance an entire sys-
tem, such as an existing product, by incorpo-
rating Lua into it. Once you’ve embedded
Lua, its host program gains a mature, power-
ful scripting facility and can create and control
as many Lua virtual machines as required.
You can load both data or code into any vir-
tual machine (VM) at any time. The result is
flexible, fine-grained control over what hap-
pens where and when.

Possibly the most basic scenario is simply
using Lua to maintain system configuration
data. Configuration data can mean many

Figure 1. A binding
that exposes Windows
Graphics Device
Interface functions
to get or set the color
of text output by adding
one function to the Lua
environment.

/* Holds the handle to the device context of the active window */

static HDC current_dc;

/* A simple wrapper to set or get text color output */

int rfx_textcolor(lua_State *L)

{

int old_color;

/* Was a number passed in? */

if (lua_isnumber(L, 1))

old_color = SetTextColor(current_dc, lua_tonumber(L, 1));

else

old_color = GetTextColor(current_dc);

/* Pass back a single (number) result */

lua_pushnumber(L, old_color);

return 1;

}

/* How to register this function in your Lua state */

lua_register(L, “textcolor”, rfx_textcolor);

S e p t e m b e r / O c t o b e r 2 0 0 7 I E E E S O F T W A R E 3 3

things, ranging from user settings and inter-
face definitions to small structured databases
and raw application data. Handling data
through Lua is especially convenient because
its tables (think efficient, associative arrays)
are a clean but powerful data description
mechanism. Once you’ve structured the infor-
mation correctly, actually loading data struc-
tures and accessing them is trivial and fast.

In a second, more elaborate usage scenario,
you might embed Lua to provide hooks for be-
havior. For instance, you can integrate Lua into
your product to give end users the means to
script or change your application. The prod-
uct’s developers decide what can be scripted be-
cause they control which product functions are
available to the scripting environment.

As an interesting variation on this scenario,
you might use dynamic scripting to define and
drive parts of the base product. Once you ex-
pose sufficient functions to the Lua scripting
side, there’s often little need to keep an appli-
cation’s behavior on the statically typed side of
the implementation fence.

In fact, moving product behavior to the Lua
side offers manifold advantages: you can de-
velop code more easily, load logic on demand,
set up tests faster, and identify and catch bugs
sooner. Additionally, behavior becomes more
accessible and thus more convenient to review,
and the overall product is easier to evolve.

Although many of the points I’ve mentioned
might also apply to developing in other dy-
namic scripting languages, Lua distinguishes it-
self by letting you actually mix and match your
existing C/C++ technology with the qualities of
dynamic scripting as (and when) you see fit. In
short, you keep the strengths of (and invest-
ments in) your existing software while Lua
opens a pathway to reaping the benefits of a
dynamically typed language at your leisure.

Desktop solutions
At this point, it’s clear that you can use dy-

namic Lua scripting to complement your exist-
ing statically typed systems. There are many
ways to create these “hybrid solutions” in an
elegant, effective manner. But sometimes, the
proof of the pudding is in the producing of use-
ful products. So, after a few weeks of initial in-
vestigation, our team decided to take the
plunge and incorporate Lua into our next big
project, a client-server-based information man-
agement system.

A key component for this new system was
a lightweight, dynamic front end. We wanted
something that could act as a richer client
than browsers could, with features such as ex-
cellent keyboard navigation, context menu
support, and good state management. Be-
cause the system had to be readily available to
a potentially large number of end users, we
also needed to ensure this front end required
no installation but would be small enough to
run off our client’s network.

Lua to the rescue
Fortunately, in between actual work, we’d

been experimenting with compact desktop
runtimes. We were able to create applications
with tiny footprints by avoiding the usual
route of big and bulky GUI libraries and pretty
much doing everything ourselves instead. This
approach works surprisingly well but shares an
important downside with other, more tradi-
tional techniques: the static nature of the im-
plementation language doesn’t really lend itself
well to creating flexible user interfaces. In
other words, this looked like the perfect op-
portunity for Lua to come to the rescue!

Because we didn’t have an existing product
to integrate Lua into, we started with a nice
clean slate. So, we chose to develop a generic
Lua-driven runtime that could support a wide
range of GUI applications. Perhaps the best
way to picture this “platform” is as a GUI al-
ternative to the standard interpreter, albeit
with a lot of extra goodies built in.

We started by integrating Lua with the mini-
malistic technology prototyped for our tiny foot-
print runtime. Because Lua is itself very small
(the library weighs in at approximately 100
Kbytes), it added relatively little to the code size.
Soon, we had something up and running, with
Lua code able to draw on a window canvas.

Because GUI applications are mostly event
driven, the next step was wiring windows
message events to handlers registered (that is,
functions loaded) in a Lua VM. For instance,
if the user moves the mouse or presses a key,
the runtime is notified and tries to look up the
Lua function that should handle that event. If
the function is present, the runtime calls it, ef-
fectively dispatching the message. If the run-
time can’t find a handler, it simply provides
default behavior (usually a “no operation”).

Odd though this might seem, we got things
off the ground amazingly well with this simple

3 4 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

You can
use dynamic
Lua scripting

to complement
your existing

statically typed
systems.

setup. Given that Lua scripts have a decent set
of graphical (and textual) primitives available
to them, you can comfortably control the en-
tire look and feel of an application hosted in
such a runtime through dynamic scripting.

At this point, we also noticed that Lua is
fast—very fast. Initially I had doubts about,
for example, being able to drive the rendering
of the entire user interface. But these doubts
evaporated when we found that we could
smoothly render even complex GUIs through
Lua logic while resizing application windows
on our ancient (pre-2000) laptops.

Final touches
Obviously, a devil or two always lurks in

the details. So I won’t hide the fact that a lot
of water passed under a nearby bridge before
we were reasonably satisfied with how, for in-
stance, controls and widgets looked and be-
haved. But while the runtime’s open-ended,
completely scripted GUI system started out
with some rough edges, Lua’s dynamic nature
ensured that we could always implement new
insights at a moment’s notice. And because
Lua has its own integrated compiler, we never
needed elaborate IDE-hosted edit/compile/link
cycles. Although you can precompile scripts,
this is entirely optional: a Lua VM will quickly
parse loaded, noncompiled code.

In short, once you’re set up, all you really
need is a text editor, a clear mind, and a save
button. Restarting the application runtime or,
better yet, simply keeping it running and reload-
ing the Lua logic (using a reserved command
key) does the rest and was enough to check our
changes and move on. Furthermore, because
everything was soft-scripted, we came up with
all sorts of neat features that we probably could-
n’t have easily added otherwise.

For example, you can load user interface def-
initions on demand and automatically size and
position controls. Listviews can contain any
type as well as any (large) number of items.
Adding new types of controls is easy. Font usage
adapts to available font files, and you can easily
resize texts at runtime (to accommodate differ-
ent resolution settings and so on).

One of the more unconventional features
we added is a booklets mechanism. Basically,
it lets us run several different GUI “applets” in
the same runtime. So, we can split larger ap-
plications into logical parts, which maintain
their own user interface, letting users switch

between them without losing state in any of
the subsystems.

To ensure a smooth user experience, we
added support for multithreading as one of
the final touches. This way, operations that
take longer to complete, such as exchanging
data with a remote back end, don’t force users
to stare at frozen screens. Because we wanted
an easy-to-program threading model, we de-
cided to hand each thread its own VM. That
way Lua logic can run in parallel without
needing additional orchestration, because Lua
VMs are completely isolated from each other.

Thread-safe, asynchronous message queues
handle information exchange between code in
different VMs, using a simple event-driven par-
adigm to complete the picture. This threading
scheme worked out so nicely that even though
we developed this Lua-driven runtime for our
client-server front end, we ended up using it as
the platform for the application server as well.

I have a lot more I could tell about our plat-
form, especially because Lua makes program-
ming such a pleasure. But for now, I’ll just say
that we’ve been using it for several years as the
basis for all our desktop solutions, and I sim-
ply can’t imagine ever going back. The details
of this platform aren’t the point here, though.
What’s important is that Lua lets you create
hybrid solutions like these by implementing
bits in statically checked systems where neces-
sary and by putting pieces in dynamic script-
ing where possible.

Rapid development
As you can see, Lua plays a large part in how

we produce software. We’ve talked about the
lightweight Lua-driven platform we developed
for desktop solutions, but make no mistake—Lua
is just as well suited to developing for the Web.

Lua’s small footprint and excellent perform-
ance make it ideal as a scripting language for
dynamic Web sites. In fact, we found Lua so ef-
ficient that we deploy many of our Web ap-
plications using a basic CGI (Common Gate-
way Interface) setup.

Incorporating Lua into both our desktop
and Web development had interesting advan-
tages too. For starters, we can share and reuse
script libraries, bindings, and tooling across
these platforms. As an example, the SQLite
(www.sqlite.org) binding that we originally de-
veloped to drive Web applications also ended
up in our desktop runtime.

S e p t e m b e r / O c t o b e r 2 0 0 7 I E E E S O F T W A R E 3 5

Figure 2 shows a somewhat simplified Lua
snippet using our SQLite binding (for a more
detailed version, see www.reflexis.com/ieee).
The prepare and finalize calls are wired
almost directly to their SQLite counterparts.
But the next method wraps a SQLite step op-
eration and several subsequent column access
calls. We could have implemented the sql.eval
function in the binding C code. But having it
on the Lua side makes it easier to experiment
with its behavior.

But it gets better. Our Lua-based Web run-
time has a lot in common with its desktop
cousin. So, we can deploy any Web applica-
tion we develop offline, by simply hosting its
logic in our desktop runtime and adding a
small (Lua scripted) HTTP server to establish

connections with browsers.
All we need to deploy these portable Web

applications, or indeed our regular desktop so-
lutions, is one compact (220 Kbytes) runtime
executable plus an application package. We
implement these packages using an archive
(ZIP) or database (SQLite) format. So, we can
easily bundle an application’s Lua logic and
data into single files. For deployment, no in-
stall is needed: just copy both the runtime and
package and run.

If there’s a secret ingredient here, it’s sim-
plicity. Calling simplicity a secret might sound
paradoxical. But it often seems the software
industry is trying to kill complexity by club-
bing it over the head with more complexity
(thus completely defeating the purpose).

3 6 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Figure 2. A Lua snippet
using an SQLite
binding.

-- how to “evaluate” select statements...

function sql.eval(db, query, fun, ctx)

if type(fun) ~= ‘function’ then return nil, ‘no fun’ end

if type(ctx) ~= ‘table’ then ctx = {} end

local sm, err = db:prepare(query)

if not sm then return nil, err end

while 1 do

local row = sm:next()

if not row or fun(row, ctx) then break end

end

sm:finalize()

return ctx

end

-- open a database and print & collect data

local db = sqlite “accounts.db”

if db then

local persons = sql.eval(db, “select id, name, birthday from

person;”, function(row, ctx)

local name, birthday = row[2], row[3]

print(“person: ”, name, “birthday:”, birthday)

ctx[row[1]] = { name = name, birthday = birthday }

end)

-- persons now holds a mapping from IDs to names & birthdays

db:close()

end

Unfortunately, many things don’t start out
simple, and it takes serious effort to make
them so. Goethe wasn’t kidding when he
wrote “In der Beschränkung zeigt sich erst der
Meister.” Loosely translated, that means “It’s
by restriction that the master shows himself”
(also known as “Less is more”).

A similar philosophy, called economy of
concepts, runs throughout Lua’s history. In-
stead of hardwiring all kinds of features into
the language, the Lua team often designed
metamechanisms to let developers program
the features they require.3

In this respect, Lua can be a bit misleading.
Although its straightforward syntax makes it
easy to get into for beginner and expert pro-
grammers alike, it takes a while for people to
grasp the possibilities hidden beneath its easy-
going exterior.

As an example, one of Lua’s features I treas-
ure most is allowing the use of functions as
first-class values. Combine them with the ele-
gant syntax and available metamechanisms,
and you can blend a procedural style with
functional-programming techniques and ob-
ject-oriented structuring. It’s not something
many people pick up on first contact. But once
they do, it becomes quite hard to let go.

You also shouldn’t underestimate the effect
of Lua’s ease of extensibility. Once you have
bindings in place and a hybrid system starts to
take shape, Lua becomes the glue between dif-
ferent pieces of software. This triggers an in-
teresting dynamic: you realize you need to find
a balance and decide what code goes where.

We found that with the right balance, the
whole indeed becomes more than the sum of
its parts. Scripting makes the pieces of the
puzzle more accessible but also lets you
quickly make parts interact in new and inter-
esting ways. And so, Lua helps you simplify
your solutions.

And this brings me to my final point. Lua
helps you simplify how you work. It helps do
away with the many technical details that
plague developers but are often of little actual
concern to the solutions they want to build.
Removing this noise from the development
process results in a newfound focus. And with
this focus comes the ability to observe, think,
and learn while you develop.

In the end, this ability to learn while you
develop is the true key to rapid application
development.

Smooth sailing
Driven to optimizing our development to be

more competitive, our team stumbled upon
Lua. Like many other dynamically typed lan-
guages, Lua provides a convenient syntax and
a comfortable, forgiving runtime environment.
But it was Lua’s simplicity, speed, small foot-
print, and extensibility that impressed us most.
Working with Lua has taught us several things:

Lua’s ease of integration showed us that
static and dynamic type checking aren’t mutu-
ally exclusive. Together, they can become a
killer combo. Better still, together they let you
develop rapidly without dropping your previ-
ous efforts and investing in an entirely new
platform.

We find ourselves scripting in Lua wherever
possible and only coding statically (in C/C++)
when occasionally needed. With more logic on
the Lua side, we find our systems more flexi-
ble and much easier to evolve.

When doubting how to strike the right bal-
ance, it’s best to benchmark and see for your-
self. We built a high-resolution profiler into
our desktop runtime. It lets us monitor and
benchmark real-world solutions. But as a tes-
tament to Lua’s speed, I haven’t used the pro-
filer for several years now.

Developing rapidly is one thing, but how
about rapid deployment? Again, Lua helped
us out. While its small code size helped us de-
vise our compact desktop runtime, we use
Lua’s dynamic nature to load and run both
data and script logic from single application
packages on demand.

Application packages might seem like a
silly technical detail. But we’ve found our
clients very appreciative (as well as a little
stunned) when product updates come in tiny,
single files that they can simply download and
save to their machines.

Sometimes people familiar with our hybrid
approach ask me about the downsides to us-
ing Lua. Surely, traveling with Lua can’t have
been smooth sailing all the way? I have a hard
time answering them. The simple fact is, we
haven’t had any difficulties.

When we started to use Lua seriously back
in 2002, the language lacked support for weak
references. But because Lua is open source and
well written, we easily added the support (and
weak tables have since been incorporated into
Lua 5).

The biggest bump we encountered as rela-

S e p t e m b e r / O c t o b e r 2 0 0 7 I E E E S O F T W A R E 3 7

Lua’s ease
of integration

showed us
that static

and dynamic
type checking

aren’t mutually
exclusive.

tively early adopters were the changes the Lua
team made when releasing Lua 5. Although
the language gained many interesting new fea-
tures, the underlying changes to the C API
meant that we needed to rewrite our runtimes
and bindings for compatibility.

Fortunately, this doesn’t really affect any-
one getting on the Lua train today. Also, once
you’ve incorporated Lua into your systems, no
one is forcing you to track new developments.
In fact, many of our products still use Lua 4
because there’s simply no need to switch.

One thing newcomers should consider is
that Lua doesn’t (yet) come in a “batteries in-
cluded” flavor. Compared to other dynami-
cally typed languages such as Python and Tcl,
which feature extensive library support, the
Lua distribution is decidedly bare bones. So,
yes, some assembly might be required.

The Lua team has intentionally kept things
clean and simple by releasing Lua mostly as a
language library. Other initiatives, such as the
Kepler project (www.keplerproject.org) and
LuaForge (http://luaforge.net), focus more on
making binaries, tools, bindings, and add-
ons available. Anyone looking for a more
fleshed-out environment would do well to
check them out.

L ua offers all the benefits of dynamic
scripting in a small, speedy package. If
you’re living in a C/C++ world, as we

did way back when, its elegant extensibility lets
you evolve the fruit of your labors by adding
dynamic features if and when you need them.

Lua has helped us transform our products
and reorganize our libraries and tools, strip-
ping out the pointless, technical overhead and
making them considerably more accessible
and lightweight. Freed from the need for IDEs
or high-end machines, we can work wherever
we go. And without any noise to distract, we
find it much easier to concentrate on building
the solutions we want to create.

Let’s not forget, people make software. So
when you’re developing solutions, what you
want most is a clear state of mind. Lua has
helped us get there, and I sincerely hope this
story will point the way for others as well.

In the meantime, I’m looking forward to
the road ahead. Life with Lua is good.

References
1. R. Ierusalimschy, Programming in Lua, 2nd ed., Lua.

org, 2006.
2. R. Ierusalimschy, L.H. de Figueiredo, and W. Celes, Lua

5.1 Reference Manual, Lua.org, 2006.
3. R. Ierusalimschy, L.H. de Figueiredo, and W. Celes,

“The Evolution of Lua”; www.tecgraf.puc-rio.br/~lhf/
ftp/doc/hopl.pdf.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

3 8 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

About the Author

Ashwin Hirschi founded Reflexis, an independent group of software developers and
consultants that provides R&D services around the globe. His interests include rapid develop-
ment and deployment, task-based systems, knowledge management, and generally finding
better ways to match information technology to people’s needs. Contact him at ahirschi@
reflexis.com.

Software
Engineering
Radio
The Podcast for Professional Software Developers
every 10 days a new tutorial or interview episode

se-radio.net

