

Creating and Manipulating Probabilistic Programs with Figaro

Avi Pfeffer
Charles River Analytics

apfeffer@cra.com

Abstract

Probabilistic programming languages (PPLs)
allow probabilistic models to be represented
using the power of programming languages and
general-purpose reasoning algorithms to be
applied to new applications. This paper presents
an approach to probabilistic programming in
which the program is represented as a set of data
structures using a rich library of model elements.
While the data structures alone have the
representational power of previous programming
languages, the ability to create and manipulate
them from within an ordinary program provides
a number of benefits, including clean and natural
ways to incorporate potentials and undirected
models, represent models with inter-related
objects, creating dynamic probabilistic programs,
reason about multiple models simultaneously,
and compile other languages. Our approach is
implemented in Figaro, which has been released
open-source.

1. GENERAL FORMATTING
INSTRUCTIONS

Probabilistic models are ever growing in richness and
diversity. Creating models for specific applications
presents both representation and reasoning challenges.
Probabilistic programming languages (PPLs) can address
these challenges by allowing models to be represented
using the power of programming languages and by
providing general-purpose reasoning algorithms that
automatically work in new applications. This is an
extremely powerful idea, as it gives you the ability to
create probabilistic models with arbitrary control flow,
including recursion, as represented by a Turing-complete
programming language. It also allows you to create
probabilistic models over structures of arbitrary

complexity, as long as these structures can be represented
in a programming language.

Most existing probabilistic programming languages are
based on either functional or logic programming (see
Section 2). We present an alternative, object-oriented
approach to probabilistic programming, captured in our
probabilistic programming language Figaro. Figaro has
been release open source and is available from
www.cra.com/figaro.

The key idea behind Figaro that differentiates it from
existing languages is that probabilistic models are
represented as data structures built up out of Figaro
elements. These data structures are front and center in the
language. The data structures can be constructed and
manipulated within a program in the host programming
language in a number of ways, such as building up
complex elements out of simpler elements, connecting
elements to each other, or adding constraints to elements.
In Figaro’s case, the host language is Scala, which is a
language that combines functional and object-oriented
styles and compiles to the Java Virtual Machine. A side
benefit of the fact that Figaro programs are objects in
Scala is that Figaro elements can be created, manipulated
and used from the extremely popular Java programming
language.

Figaro’s data structures alone provide all the expressivity
of existing probabilistic programming languages like
Church, in that any Church program can be easily
represented as Figaro data structures. However, it is the
ability to create and manipulate these structures from
within an ordinary program that gives Figaro its power.
This capability has numerous benefits, including:

• Providing a clean and simple way to incorporate
potentials and undirected models.

• Providing a way to represent models with
mutually influencing objects.

• Providing a way to handle uncertainty about the
relationships between objects.

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited)

• Reasoning about multiple models
simultaneously.

• Supporting creating and reasoning about
dynamic probabilistic programs.

• Providing a target for compiling other
probabilistic representations.

In Section 3, we describe the building blocks of Figaro
programs, and show how they are combined to produce a
program. Section 4 goes into details of manipulating
Figaro programs and the benefits thereof. Although
inference is not a major focus of this paper, it is clearly
important for a probabilistic programming language, and
we describe the goals of Figaro’s inference engine and its
approach to achieving them in Section 5. Figaro’s
capabilities make it possible to do things like create cyclic
models that are not obvious in other languages, so we
need to make sure that Figaro programs have a well-
defined semantics, which we describe in Section 6.
Finally, we conclude in Section 7.

2. RELATED WORK
Probabilistic programming languages have typically come
in a variety of flavors. In functional probabilistic
programming languages, like IBAL (Pfeffer, 2007) and
Church (Goodman et al., 2008), a program represents a
generative process that describes the stochastic generation
of a possible world. Evaluating a program involves
computing probability distributions or conditional
distributions over program outputs. In IBAL, a special-
purpose language was used, which was then interpreted in
a host language. In Church, a dialect of Scheme is used
and the program is itself interpreted in Scheme. In these
languages, the approach has generally been to view the
program as a given unit that is then evaluated.

In logic-based probabilistic programming languages, such
as PRISM (Sato, 2008) and ProbLog (De Raedt, Kimmig,
& Toivonen, 2007), an ordinary logic program is
augmented with probabilistic choices; the two together
constitute the probabilistic program. As with functional
languages, this program is then evaluated as a unit.

We are not suggesting that Figaro is the only probabilistic
programming language that provides data structures that
can be manipulated. In particular, in Scheme code is data,
so Church programs could in principle be manipulated.
However, this aspect of probabilistic programming has
not been explored in the past, and Figaro provides a
particularly direct and explicit way to manipulate
programs, as this capability is essential to the design of
the language. In addition, the idioms and benefits of
manipulating probabilistic programs have not been
examined. As a result, the benefits described in the
introduction have not generally been realized in the past.
For example, existing probabilistic programming
languages do not generally support dynamic models

explicitly. In a logic-programming based language, for
example, time can be treated by defining a relation to the
previous time step, but this does not provide support in a
natural way for filtering.

There is an additional object-oriented language,
FACTORIE (McCallum et al., 2008), incidentally also
written in Scala, that also has the property that elements
of models are data structures. There are two key
differences between FACTORIE and Figaro. First,
FACTORIE’s data structures represent factors in a factor
graph, whereas Figaro’s represent functional probabilistic
programs with a process of generating values
stochastically. Second, a major part of the specification of
FACTORIE objects includes details of how to perform
Metropolis-Hastings inference using those objects, and
this capability is one of the driving forces behind the
design of FACTORIE. Therefore, FACTORIE can be
better viewed as an expressive language for defining
Metropolis-Hastings computations over factor graphs,
rather than declarative probabilistic programs that can be
operated on by a variety of inference algorithms, some of
which involve factor graphs.

3. FIGARO PROGRAMS

3.1 ELEMENTS

The central concept in Figaro is an element. Intuitively, an
element defines a process that stochastically produces a
value, given the values of argument elements. Elements
are instances of the Element class. The Element class
itself is abstract; a particular element will be an instance
of a concrete subclass of Element. The Element class
provides the key ingredients of what it means to be an
element of a Figaro model. We describe the contents of an
element by going through the key part of the definition of
the Element class in Scala:
1 abstract class Element[V] {
2 type Value = V
3 type Randomness
4 def genRand(): Randomness
5 def genValue(rand: Randomness): Value
6 val value: Value
7 }

The notation Element[V] (line 1) indicates that the
Element class takes a type parameter. This is the type of
value produced by the element. Line 2 declares Value to
be a name for this type parameter. In addition to the
value, each element contains an intrinsic randomness,
whose type is captured by the Randomness type (line 3).
The specific Randomness type must be defined in a
concrete subclass of Element.

The process of generating a value for the element has two
stages. In the first stage, the randomness is stochastically
generated using the genRand method defined in a
concrete subclass (line 4). The second stage is a

deterministic function genValue (line 5) that generates
the value of the element given the randomness and
argument elements. The resulting value of the element is
stored in the value field (line 6). The genValue method
can be any purely functional Scala function. It can use the
current value of related elements, but it is not allowed to
have side effects (such as changing another element’s
value). This is a key restriction that allows us to give a
coherent semantics to Figaro programs. The purpose of
separating genRand from genValue is to isolate the
random component of an element from the logic through
which the value of the element is determined based on
values of other elements. Algorithms can focus on
changing the randomness of elements and observing the
deterministic effects of these changes.

A Figaro program is built up out of a number of related
elements, each of which belongs to an element class.
Fortunately, Figaro provides a rich library of element
classes, so much of the time all the programmer needs to
do is stitch elements together. In case an appropriate
library class is not found, it is often straightforward to
create a new one, involving defining the Randomness
and writing genRand and genValue.

3.2 DETERMINISTIC ELEMENTS

A special case of element is a deterministic element
whose randomness is the trivial Null type, and whose
genValue method does not depend on the randomness.
All a programmer needs to do to create a deterministic
element class is describe how the value is generated from
the values of the arguments.

An element can be deterministic even if related elements
on which it depends are not. Although we may have
uncertainty over its value, due to uncertainty over the
values of its arguments, it is deterministic given particular
values of the arguments.

3.3 ATOMIC ELEMENTS

If the genValue method of an element does not depend
on the values of any arguments, the element is called
atomic. There is a single deterministic atomic class of
element, which is the Constant class that always
produces the same value. For example, Constant(8) is
an Element[Int] that always produces 8. This is atomic
because 8 is a fixed integer, not an element.

Other atomic classes implement a probability distribution
over values. An example is Flip, which takes a Double
argument and produces true with probability equal to the
argument. To illustrate the way concrete subclasses of
Element are defined, we show the definition of Flip:
1 class Flip(prob: Double)
2 extends Atomic[Boolean] {
3 type Randomness = Double
4 def genRand() = random.nextDouble()
5 def genValue(rand: Randomness) =

6 rand < prob
7 }

Flip takes a Double argument named prob (line 1) and
an instance of Flip is an atomic element that produces
Boolean values (line 2). Line 3 declares Flip’s
randomness to be a Double, and line 4 says that
generating a value for the randomness is accomplished
simply by getting the next random Double, which is
uniformly distributed between 0 and 1. genValue (lines
5-6) is then a deterministic function that returns true if the
randomness is less than the input argument, which
happens with probability equal to the argument.

Continuous atomic elements are also available, such as
Uniform(x,y). A wide variety of atomic elements are
provided as library classes.

3.4 CHAIN

A chain is the glue that puts things together. Figaro’s
language is based on the probability monad. Monads are
structures used in functional programming to lift
computation from a space of values to a space of concepts
over those values. The probability monad lifts values to
elements that generate those values. Monads are defined
by two functions: unit, and bind. The unit function takes a
value and produces the monad over that value. Figaro’s
unit is defined by the Constant class. Figaro implements
the bind function by the Chain class, which represents
chaining of probabilistic processes. A chain takes two
arguments: p, which is an Element[V], and f, which is a
function that maps a value of type V to an Element[W]. It
defines the process in which it first gets the value v of p
and then gets the value w of f(v). For example,
Chain(Flip(0.7), Uniform(0.0, 1.0),
Constant(0.5)) represents the process that flips a coin
with weight 0.7. If it produces true, it generates an
element uniformly between 0 and 1, otherwise it
generates 0.5 with probability 1.

The essential definition of Chain is
abstract class Chain[T,U](
 p: Element[T],
 f: T => Element[U]
) extends Deterministic[U] {
 def genValue() = f(p.value).value
}

Given the machinery we have developed for deterministic
elements, the only thing we need to define is genValue,
and its definition is very simple: we get the value of p,
apply f to it, and get the value of the result. Note that the
process of applying f happens as part of genValue, so f
must be purely functional.

3.5 SYNTACTIC SUGAR

All Figaro elements can be implemented using atomic
elements and chain. However, it is useful to provide other
element classes, both for convenience of building models

and because particular common types of element can be
optimized. Figaro provides a variety of such element
classes. For example, If(test, thn, els) is the
deterministic element whose generation involves getting
the value of test, and if it is true getting the value of
thn, otherwise getting the value of els.

The Dist element class provides a very general way to
describe discrete probabilistic dependency. A Dist
element D takes a list of clauses as its argument, where
each clause consists of a probability element and an
outcome element. The randomness of D is a Double
uniformly distributed between 0 and 1. The meaning of D
is as follows: First, get the values of the probability
elements. When normalized, these define a multinomial
over the outcome elements. Use the randomness to select
an outcome element from the multinomial. Finally, get the
value of this outcome element; it becomes the value of D.

An important element class is Apply, which takes an
Element[V] and a function f from V to W, and produces
an Element[W]. Its meaning is to take the value of its
element argument and apply f to it. Apply serves to lift
functions from the space of values (V → W) to the space of
elements (Element[V] → Element[W]). Other versions
of Apply lift functions of more than one argument, or of a
list of arguments. Likewise, there are extensions of Chain
to more than one argument or a list of arguments.
Standard functions can be defined using Apply. For
example, === tests for equality between the values of two
elements, while Duo(e1,e2) forms the element whose
value is the pair of the values of its inputs.

Another useful element class is Inject, which takes a
list of elements and produces an element of lists. For
example, the element Inject(List(Dist(0.2 -> 2,
0.8 -> 3), Constant(1))) produces the list (2,1)
with probability 0.2 and (3,1) with probability 0.8.

To illustrate the power of combining these concepts in an
example, let us create a MakeList element class that
creates a list of a stochastic number of items, each item
generated according to a particular process. MakeList
will take two arguments: numItems, which is an
Element[Int], and itemMaker, which is a function of
0 arguments that produces an item according to the
process. For example, MakeList(Geometric(0.9),
() => Flip(0.5)) will generate a list of a
geometrically distributed number of independent coin
tosses. MakeList can be defined directly using Chain
and Inject as follows.
Chain(numItems, (n: Int) =>
 Inject(List.fill(n)(itemMaker())))
In this code, List.fill is Scala’s library function for
creating a list with a given number of elements. It has two
argument lists: the first is the number of items, and the
second is the code to create each item.

3.6 VARIABLES AND PROGRAMS

A probabilistic program in Figaro consists of a set of
elements that can depend on each other in arbitrary ways.
Unlike IBAL and Church, Figaro does not provide its own
variable binding mechanism. Instead, it piggybacks on top
of Scala’s variables. If the same Scala object is used
multiple times, it must have the same value every time,
while two distinct objects with the same definition may
have different values. For example, in the program
val x = Flip(0.9)
val y = x === x

y will always have the value true. In contrast, the element
Flip(0.9) === Flip(0.9) will have value true with
probability 0.9 * 0.9 + 0.1 * 0.1 = 0.82.

Using the ability to create atomic elements of a wide
variety, chain together elements, and apply arbitrary
functions, which can produce any data type, Figaro can
implement any control flow in its programs. Since Chain
applies a function to determine its result element,
recursive models can easily be created. For example:
def f(n: Int): Element[Int] =
 Chain(Flip(0.9), Constant(n), f(n+1))
val i = f(0)
In this example, def is Scala’s keyword for a function
definition. The function f takes an integer argument and
returns an element over integers that is itself defined
using f. By changing the example slightly, we can also
see how Figaro programs can represent probability
distributions over arbitrary data structures:
abstract class Tree
case class Branch(left: Tree, right: Tree)
 extends Tree
case class Leaf(n: Int) extends Tree
def f(n: Int): Element[Tree] =
 Chain(Flip(0.9), Constant(Leaf(n)),
 Apply(f(n+1), f(n+2),
 (l: Tree, r: Tree) => Branch(l,r)))
In this code, we define a Tree class with two subclasses,
Branch and Leaf. The recursive case now creates two
subtrees, which are combined into a branch using Apply.

4. PROGRAMS AS DATA STRUCTURES

4.1 CONDITIONS AND CONSTRAINTS

Since Figaro is embedded in Scala, a Scala program can
be written to generate a Figaro program and manipulate
its elements. The Scala program can be an arbitrary
computation and need not be purely functional. In
particular, it can have side effects. This ability to apply
side effects to a probabilistic program in a controlled,
programmatic way is one of the main reasons representing
programs as data structures is useful.

An immediate application of this idea is in Figaro’s
method for stipulating conditions and constraints on the

values of elements. In Figaro, a condition represents a
hard condition that must be satisfied by the value of an
element, while a constraint represents a soft constraint,
i.e., a potential on the value. In other words, constraints
represent a rescaling of the probability distribution over
values of elements described by the elements’ generative
process, which is normalized across all possible values.

• Conditions and constraints can be defined on
elements over any data structure. In addition, we can
create conditions or potentials over multiple elements
by combining them in tuple elements.

• Conditions and constraints are arbitrary Scala
functions and have the resulting expressivity. For
example, we can have an element over trees and
define a constraint that is logarithmic in its size.

• We can accumulate conditions and constraints on an
element without having to know which already exist.
For example, we can separately specify that a tree’s
size be even and that it have at least five elements.

• Conditions and constraints can be applied
systematically to a set of elements. We illustrate this
with the following example, based on the Smokers
and Friends example from Markov Logic Networks
(Domingos & Richardson, 2007).

1 class Person { val smk = Flip(0.6) }
2 val x, y, z = new Person
3 val friends = List((x, y), (y, z))
4 def c(pair: (Boolean, Boolean)) =
5 if (pair._1 == pair._2) 3.0; else 1.0
6 for { (p1,p2) ← friends } {
7 Duo(p1.smk,p2.smk).constraint = c
8 }

Line 1 defines the Person class with the smk attribute.
Line 2 defines three instances of this class, while line 3
indicates which people are friends. Lines 4-5 encode the
constraint that friends are three times more likely to have
the same smoking habits than non-friends. Finally, lines
6-8 apply the constraint to the pair of smk attributes of
each pair of friends. In line 7, a new Duo element is
created to hold the constraint. In this way, we constrain all
the pairs of friends as specified by a Scala list, which
could easily be passed as an argument to the program.

4.2 MUTUALLY INFLUENCING OBJECTS

A principle of functional probabilistic programs is that
there is a flow of generation through the program. Object-
oriented models, on the other hand, often encapsulate a
number of variables within an object. There can be a
conflict between the two styles when two objects
mutually influence each other, e.g., variable X in object 1
influences variable Y in object 2, which in turn influences
variable Z in object 1. To capture this pattern, a functional
probabilistic programming language would ordinarily
have to expose variables X, Y, and Z outside the objects to
which they belong, thereby breaking encapsulation.

An example representation affected by this issue is
probabilistic relational models (PRMs) (Koller & Pfeffer,
1998), which are a representation used for statistical
relational learning. PRMs are object-oriented models in
which probability models are associated with classes. A
class probability model defines a number of attributes of
the class and their probabilistic behavior. Instances derive
their probabilistic model from the class to which they
belong, and attributes of an instance may depend
probabilistically on attributes of both the same instance
and related instances. Instances can be inter-connected in
arbitrary ways, including mutually influencing ways.

Scala’s object-oriented nature is a good match for PRMs;
in addition, Figaro solves the mutual dependence problem
using side effects. Consider an Actors and Movies
example. Movies have a quality attribute, while actors
have skill and fame attributes. The quality of a movie
depends on the skill of its actors, while the fame of an
actor depends on the quality of the movies in which he or
she appears. The following Scala program creates a
Figaro model for this situation while maintaining
encapsulation of the attributes within their respective
classes. For simplicity, let these attributes be Booleans,
and let fraction be a function that takes a list of
Booleans and returns the fraction that are true. We can
represent this situation as follows:
1 class Actor {
2 var movies: List[Movie] = List()
3 val skill = Flip(0.2)
4 val fame =
5 Chain(movies map quality,
6 (l: List[Boolean]) =>
7 Flip(fraction(l))
8 }
9 class Movie {
10 var actors: List[Actor] = List()
11 val quality =
12 Chain(actors map skill,
13 (l: List[Boolean]) =>
14 Flip(fraction(l))
15}
16def connect(actor: Actor, movie: Movie) {
17 actor.movies ::= movie
18 movie.actors ::= actor
19}
20val chaplin = new Actor
21val modernTimes = new Movie
22connect(chaplin, modernTimes)

Lines 1-8 define the Actor class. Line 2 defines the
movies variable representing the movies the actor played
in. The Scala keyword var defines a mutable variable
whose value can be changed. movies starts out as an
empty list and is added to later. Lines 4-7 define a model
for the fame of an actor that is defined to be a Flip
whose probability of being true is the fraction of the
actor’s movies that are of high quality. The definition of
Movie is similar to that of Actor. The key feature of this
example is connect (lines 16-19), which is a function

that connects an actor to a movie by prepending the movie
to the list of movies of the actor (line 17) and vice versa
(line 18). A PRM for a specific situation is defined by
creating instances of the classes (lines 20-21) and
connecting them (line 22). At the time that inference is
applied to the PRM, the correct movies and actors are
used with the correct dependencies.

4.3 NAMING AND REFERENCE UNCERTAINTY

It is important to point out that in the above example, the
object-orientation is only present in the Scala program,
not in the constructed Figaro program. This makes it
challenging to handle situations in which we want to refer
to a specific element, but we do not know which element
it is. This is called reference uncertainty in PRMs. For
example, suppose an actor has a favorite movie, which is
uniformly distributed from amongst the actor’s movies.
We could create a favorite element with the
appropriate distribution. Suppose now that we want to
make the actor’s happiness depend on the quality of the
actor’s favorite movie. We cannot do this using the
current design. We cannot refer to favorite.quality
because favorite is an element, not a movie.

Figaro solves this problem in two steps. First, it gives
elements optional names by which they can be referred.
Second, it provides the ability to lift the object-oriented
nature of Scala programs into Figaro programs by
creating element collections. An element collection, as its
name describes, is simply a collection of elements in one
container. The key point is that we can make an element
collection the value of an element. For example, we can
make Movie an element collection, and make the value of
favorite be a Movie. If we then give quality and
favorite appropriate names, we should be able to refer
to the quality of the favorite movie of an Actor using
something like “favorite.quality”.

Some extra machinery is needed to make this work, but it
is not too difficult. Although there is uncertainty over to
which specific element favorite.quality refers,
favorite has a specific value in any possible world. We
can create a deterministic element representing the value
of favorite.quality, and write its genValue function
to first look at the value of favorite which is a
particular movie, and then get the value of the quality
of that specific movie. This is implemented by the get
method of an element collection; we use actor.get
(“favorite.quality”) to create the appropriate
element. The relevant part of the example is as follows:
1 class Actor extends ElementCollection {
2 var movies: List[Movie] = List()
3 val favorite =
4 Uniform(movies)(“favorite”, this)
5 val happy =
6 If(get(“favorite.quality”),
7 Flip(0.9),
8 Flip(0.3))
9 }

10 class Movie extends ElementCollection {
11 var actors: List[Actor] = List()
12 val quality =
13 Chain(actors map skill,
14 (l: List[Boolean]) =>
15 Flip(fraction(l))
16 (“quality”, this)
17}
Lines 1 and 10 define instances of Actor and Movie to
be element collections. Now, every element has a name
and belongs to an element collection, but there are default
arguments for these so they do not usually need to be
specified. In previous examples, we used the default name
and element collection. In this example, we supply the
name and element collection for favorite and
quality. In both cases, the element collection is defined
to be “this”, which means the Scala object in which
these elements are contained (i.e., the instances of Actor
and Movie, respectively.) This means that within the
actor class we can say get(“favorite.quality”),
which means get the element named favorite defined in
the actor, get its value, which is a movie, and then get the
element named quality in that movie.

4.4 UNIVERSES

Figaro defines the notion of universe, which is a set of
elements that are operated on by an inference algorithm.
A universe is an element collection; there is always a
default universe (which can be changed). The default
universe is also the default element collection, as
described in the previous section. It is possible to work
with multiple universes at the same time.

Besides the general usefulness of being able to create,
store, and manipulate multiple probabilistic programs at
once, working with multiple universes has a specific use
in allowing different algorithms to be used for different
parts of a program, as represented by different universes.
One example of this principle is Rao-Blackwellization
(Doucet et al., 2000), in which sampling is used for one
part of a model while a dependent part is marginalized out
exactly. This can easily be represented by putting the
variables to be marginalized in a separate universe.

An example of the opposite flavor is implemented in
Figaro. If a model is generally tractable and amenable to
variable elimination, but it involves some difficult
evidential parts, it is possible to put the evidential parts in
dependent universes and use a sampling algorithm for
those parts, while using variable elimination for the core
model. The sampling is conditioned on possible values of
variables in the main universe that influence the
dependent universe directly. The result of sampling is the
probability of the evidence in the dependent universe, and
is used to condition the elements in the main universe on
which the dependent universe depends. If there are
multiple dependent universes, the algorithm can sample

them independently and appropriately condition elements
in the main universe.

4.5 DYNAMIC MODELS

Most previous probabilistic programming languages do
not support dynamic reasoning explicitly. Thanks to the
concept of a universe, this is quite easy in Figaro. A
dynamic model in Figaro consists of an initial model,
which is a universe, and a transition model, which is a
function that takes a universe (representing the previous
time step) and returns a universe (representing the current
time step). Beginning with the initial model and iterating
the transition model results in a stream of universes, one
for every time step.

Because a universe is an element collection, we can refer
to elements within a universe by their name. This is
important, because when the transition model is written
we don’t know the specific elements on which it is
operating, only the universe itself, and we have to get the
elements through the universe. Referring to elements by
name is also useful for setting evidence by applying
conditions and constraints to elements. The following
code shows a simple example of a dynamic model:
1 val u1 = Universe.createNew()
2 val f = Flip(0.2)("f", u1)
3 def trans(previousUniverse: Universe):
4 Universe = {
5 val u2 = Universe.createNew()
6 val b: Element[Boolean] =
7 previousUniverse.get("f")
8 val i =
9 If(b, Flip(0.8), Flip(0.3))
10 ("f", u2)
11 u2
12}
Line 1 creates a new universe for the initial state, and line
2 adds an element named “f” to it. Lines 3 to 12 define the
transition function, which takes the previous universe as
input and returns a universe. First, it creates the new
universe. Lines 6-7 get at the element named “f”. For the
dynamic model to work, it is necessary that an element
named “f” appear both in the initial universe and the
result of the transition model. In the transition model, this
element is created in lines 8-10. Finally, the transition
function returns the new universe in line 11.

4.6 FIGARO AS A COMPILATION TARGET

Since the goal of probabilistic programming is to make it
easier to construct new probabilistic models and to reason
about them, it is natural to use a probabilistic
programming language as a compilation target for another
probabilistic modeling language. Figaro’s data-structures
approach to probabilistic programming makes it
particularly well-suited to this task. It is not necessary to
generate a probabilistic program from whole cloth;
instead, a piecemeal approach where a program is
constructed bit by bit can be used.

Scala’s lazy evaluation mechanism is helpful here. In
Scala, a field can be defined using lazy val. Instead of
its value being computed as soon as it is encountered, it is
not computed until it is needed. The benefit of this in a
compiler is that we can define fields for all the program
structures to be lazy, begin construction of the program at
any point, and automatically make sure that all the
necessary structures are created.

We are currently taking this approach to developing a
compiler for PRMs into Figaro. The compiler first works
in “PRM world,” resolving classes and inheritance and
generating all the instances that appear in the model. It
then lazily defines all the needed elements, corresponding
to all the attributes of all the instances.

In a different project, we have used Figaro as a
compilation target for probabilistic models for
intelligence analysis. These models, which could be
applied to a variety of situations, depended on the specific
features of each situation. So, for example, a situation
involving a certain kind of aircraft would have elements
corresponding to that aircraft. While each situation model
was simply a Bayesian network, there was much sharing
of knowledge, both between situations (the same aircraft
appearing in multiple situations) and within situations
(different aircraft using similar logic). Figaro’s ability to
represent model elements as data structures made
constructing the network for each situation easy. In
particular, Figaro elements for each of the objects that can
appear were stored in a hash table that could be accessed
by name of the object, making it simple to assemble the
right elements according to the configuration of a
situation. As this example shows, Figaro’s approach
makes it easy to embed Figaro models in a program that
does more than probabilistic reasoning.

5. INFERENCE
Inference in probabilistic programming languages is
challenging because of the ability the languages provide
to create models of significant complexity. Previous
languages have often taken the approach of optimizing a
particular inference algorithm, with the design of the
Figaro being guided by the needs of the algorithm. In
reality, many algorithms and variations thereof can be
appropriate in different circumstances.

In Figaro, the main goal behind the inference engine is
extensibility. Ideally, Figaro would include as wide a
range of algorithms as possible, and we plan to continue
building its repertoire. For this to be accomplished, it
should be relatively easy to add new algorithms. Figaro
provides a rich class hierarchy of algorithms. Algorithms
are distinguished along a number of lines, such as the goal
of the algorithm (e.g. computing the marginal
probabilities of query variables or computing the
probability of evidence—of course, an algorithm can have
multiple goals); whether the algorithm is one-shot or

anytime; and the approach taken by the algorithm, such as
factor-based or sampling.

To create a new algorithm, you inherit from the
appropriate Scala interfaces, and much of the mechanics
of the algorithm is automatically taken care of. For
example, if you create an anytime algorithm, Figaro
automatically takes care of spawning a thread and
listening for queries. To create a new MCMC algorithm,
you only have to describe how to generate the next state
from the previous state; everything else is handled
automatically, and you get both a one-shot and anytime
algorithm for free. Similarly, mechanics for constructing
factor graphs, creating elimination orders, and eliminating
variables using appropriate sum and product operations is
provided and can be used by any algorithm.

Currently, Figaro’s algorithm library includes variable
elimination for both conditional probability and most
probable explanation, importance sampling, Metropolis-
Hastings (MH), dependent universe reasoning, reasoning
with abstraction and discretization, and particle filtering
for dynamic models. MH in particular can be tricky to get
right for a probabilistic program. While we have not
solved the problem of automatically generating a good
proposal distribution, Figaro’s MH algorithm is designed
to help the modeler by providing a rich language for
specifying proposal distributions and tools for debugging
the MH process. One tool we have found to be
particularly useful allows you to set any state and observe
the probabilities of properties of subsequent states
reached by a single MH step. This can help detect when
certain important state transitions are very unlikely.
Another tool shows you exactly which elements are being
proposed during the MH process. As far as we know,
there is not a large literature on debugging MH (there are
statistical tests for correctness (Geweke, 2004)). R
(http://www.r-project.org/) also includes tests that verify
the correctness of MH. However, an MH process is often
correct but extremely slow, and these tests do not help
make your MH algorithm correct and fast. We hope that
our tools can make a practical difference.

6. SEMANTICS
Our insistence that Figaro models be side-effect free is
crucial to the semantics. While side-effects are allowed in
the Scala program that creates the Figaro model,
Figaro’s semantics is defined at the point of inference.
When an inference algorithm is invoked, the Figaro
model must already have been constructed. The process
of constructing this model can be an arbitrary complex
execution in Scala, but it must terminate to reach the point
of inference. Therefore, at the time of inference, the
model consists of a finite set of elements.

One issue that complicates the semantics is that it is
possible in Scala to create cyclic models in which Figaro
elements mutually influence each other. This is a novel
feature of Figaro, and it may be useful, but we are not

claiming it as a key feature because we are unsure about
its benefits. Nevertheless, it is important to make sure the
semantics cleanly handles such models. Since Figaro is
designed to support many inference algorithms, we want
to develop a declarative semantics that is not dependent
on a particular inference algorithm. Since the entire
Figaro library can be defined using atomic elements and
chains, we focus on those.

Our semantics is specified by associating a function PE(v |
Q) with each element E where v is a possible value of the
element and Q is the set of free variables in E. After
constructing the function, we will show that, under the
right assumptions, it naturally defines a conditional
probability distribution (CPD) over values of E given Q.

Atomic elements have no free variables and the function
for an atomic element A is given by

: .genValue()

() (.genRand())A

r A r v
P v P A r

=

= =∑ (1)

Thus, atomic elements naturally correspond to
unconditional distributions with the expected semantics.

6.1 CPDS FOR CHAINS

Consider a chain C with parent R and function f.
Generating the value of the chain involves applying f to
R’s value to produce an element E, and then getting E’s
value. Applying f might involve the generation of a
number of other elements S1,…,Sn, in that order, which
might be used by E. These elements S1,…,Sn are bound in
C. These elements and E might also use free variables Q.
Marginalizing over temporary variables, PC is given by

1 2

1 2

1 2 1 1

(| ,)
(|) (| ,)... (| ,..., ,)

C

S S E
n

s s

P v R
P s P s s P v s s

=

∑ ∑
Q
Q Q Q (2)

Elements created by applying the function f of a chain are
called temporary. This is in contrast with elements that
are created before inference is begun, which are called
permanent. As we stipulated earlier, f can have no side
effects. As a result of this restriction, any elements
created by f cannot have conditions or constraints, and
there can be no cycles in the above equations for
temporary elements. Therefore, expanding C through
Equation (2) leads to a sequence of recursive definitions
that sometimes terminate in atomic elements and contain
no cycles. A complete expansion can be fully
characterized by the outcomes of its atomic elements.

We stipulate that the process of expansions terminate with
probability 1 for the program to be well defined. This is a
standard assumption that has been made by all previous
functional PPLs. This assumption implies that with
probability 1, the resulting value v of C will be finite.
Now consider the sample space F of all possible
expansions of C, equipped with the σ-algebra generated

http://www.r-project.org/�

by finite sub-expansions. For fixed R and Q, the above
equations define a probability measure over F. Note that R
and Q must be permanent elements, since temporary
elements are not in scope outside the chain that created
them. Therefore the number of elements in Q must be
finite. We can therefore interpret PC(v | R, Q) as a
conditional probability distribution over the value of C
given the parent R and free variables Q that appear inside
elements generated by the function.

6.2 DEFINING THE JOINT DISTRIBUTION

So far, we have shown that all permanent elementsare
associated with a CPD. Unlike temporary elements, the
number of permanent elements is guaranteed to be finite.
However, also unlike temporary elements, permanent
elements can have conditions and constraints, and there
can be cycles among the permanent elements. To start
with, we will ignore the issue of cycles and deal with
conditions and constraints. Let the permanent elements be
E1,…,EN. Let the parents of Ei be Qi. (|)iE

i iP v Q is the
local CPD of Ei as defined previously, not taking into
account conditions and constraints. We define

 0 1 1
1

(,...,) (|)i

N
E

N N i i
i

P E v E v P v
=

= = =∏ Q (3)

We stipulate that the conditions be satisfiable by some
assignment of values to the elements that has non-zero
probability under P0 and that the constraints be positive
everywhere. We now define

 1(|) (|) () ()iE
i i i i i i i i iP E v P v v vφ ψ= =Q Q (4)

where ()i ivφ denotes the indicator function of the
conditions on Ei and ψi(vi) denotes the product of values
of the constraints. In the acyclic case, the probability of a
joint assignment to all the elements is given by

 1 1 1
1

(,...,) (|)
N

N N i i i
i

P E v E v P E v
=

= = ∝ =∏ Q (5)

Now, once we introduce cycles, we have a cyclic model
defined by CPDs, which is just like a dependency
network, so the obvious approach is to base our semantics
on dependency networks. Heckerman et al. (2000)
defined the semantics of dependency networks through a
pseudo-Gibbs sampling method that visits each node in
turn and samples a value for the node using the local
conditional distribution of the node. We could use such a
pseudo-Gibbs method that samples each element Ei from

(|)iE
i iP v Q . Heckerman et al. showed that under the

assumption that the distributions are positive, the pseudo-
Gibbs sampler converges to a unique stationary
distribution, and used that distribution to define the
meaning of the network. Unfortunately, the distribution to
which this process converges depends on the order in
which nodes are sampled. Furthermore, in the stationary
distribution, the local CPD of a node given its parents is

not necessarily equal to the local CPD that was used to
sample the node. In addition, in our case the CPDs for
deterministic elements are generally not positive. Finally,
we seek to develop a declarative semantics for Figaro that
is not tied to a particular inference algorithm.

Our approach, instead, is to define the semantics of such a
model as a Markov network in which the CPD of each
node specifies a potential over that node. We use
Equation (4) to define the potential at each node, and use
Equation (5) to define the semantics of the model as a
whole, with no change from the acyclic case.

There are subtleties, which are handled well by our
semantics. First, it is possible using cycles to define
contradictory models. For example, consider an element X
whose parent is X and is defined to be the negation of its
parent. In such a case, all assignments will have zero
probability. This case is ruled out by the requirement that
there exists a satisfying assignment that has positive
probability under P0. Second, it is possible for a particular
setting of the randomness of all elements to have more
than one consistent assignment of values. For example,
suppose X is its own parent and is the same as its parent.
In this case, the semantics is exactly as in Equation (5).
Because P1 is uniquely defined using Equation (4),
Equation (5) always has a unique solution. In this
example, all values of X would have uniform probability.

We note that although we have defined semantics for a
general class of models, a particular inference algorithm
may only work for a subclass. This is consistent with
Figaro’s approach of employing a library of algorithms,
each of which is suitable for particular programs.

7. CONCLUSION AND FUTURE WORK
We have described the probabilistic programming
language Figaro, whose most fundamental contribution is
to introduce the data-structures approach to probabilistic
programming. We have shown a number of benefits of
this approach, and also described Figaro’s extensible
inference framework and presented a formal semantics.
As we have described, Figaro is already being used in real
applications and its benefits are becoming apparent.

The main design of the language is complete, and Figaro
has been released open source. However, there are a
number of areas in which we are seeking to improve
Figaro, most importantly in developing algorithms to
learn parameters and structure of programs. We are also
seeking to introduce a wider variety of algorithms and to
identify design patterns for probabilistic programming.

ACKNOWLEDGEMENTS
This work was supported by DARPA contract W31P4Q-
11-C-0083, with thanks to Dr. Robert Kohout and Dr.
Anthony Falcone. The views expressed are those of the
author and do not reflect the official policy or position of
the Department of Defense or the U.S. Government.

References

De Raedt, L., Kimmig, A., & Toivonen, H. (2007).
ProbLog: A Probabilistic Prolog and Its Application
in Link Discovery. In Proceedings of International
Joint Conference on Artificial Intelligence.

Domingos, P. & Richardson, M. (2007). Markov Logic: A
Unifying Framework for Statistical Relational
Learning. In L. Getoor & B. Taskar (Eds.),
Introduction to Statistical Relational Learning (pp.
339-371). Cambridge, MA: MIT Press.

Doucet, A., de Freitas, N., Murphy, K., & Russell, S.
(2000). Rao-Blackwellised Particle Filtering for
Dynamic Bayesian Networks. In Proceedings of
Uncertainty in Artificial Intelligence.

Geweke, J. (2004). Getting It Right. Journal of the
American Statistical Association, 99(467), 799-804.

Goodman, N. D., Mansinghka, V. K., Roy, D., Bonawitz,
K., & Tenenbaum, J. B. (2008). Church: a Language
for Generative Models. In Proceedings of
Uncertainty in Artificial Intelligence.

Koller, D. & Pfeffer, A. (1998). Probabilistic Frame-
Based Systems. In Proceedings of National
Conference on Artificial Intelligence (AAAI).

McCallum, A., Rohanemanesh, K., Wick, M., Schultz, K.,
& Singh, S. (2008). FACTORIE: Efficient
Probabilistic Programming for Relational Factor
Graphs Via Imperative Declarations of Structure,
Inference and Learning. In Proceedings of NIPS
Workshop on Probabilistic Programming.

Pfeffer, A. (2007). The Design and Implementation of
IBAL: A General-Purpose Probabilistic Language. In
L. Getoor & B. Taskar (Eds.), Statistical Relational
Learning. MIT Press.

Sato, T. (2008). A Glimpse of Symbolic-Statistical
Modeling in PRISM. Journal of Intelligent
Information Systems.

	1. GENERAL FORMATTING INSTRUCTIONS
	2. RELATED WORK
	3. FIGARO PROGRAMS
	3.1 ELEMENTS
	3.2 DETERMINISTIC ELEMENTS
	3.3 ATOMIC ELEMENTS
	3.4 CHAIN
	3.5 SYNTACTIC SUGAR
	3.6 VARIABLES AND PROGRAMS

	4. PROGRAMS AS DATA STRUCTURES
	4.1 CONDITIONS AND CONSTRAINTS
	4.2 MUTUALLY INFLUENCING OBJECTS
	4.3 NAMING AND REFERENCE UNCERTAINTY
	4.4 UNIVERSES
	4.5 DYNAMIC MODELS
	4.6 FIGARO AS A COMPILATION TARGET

	5. INFERENCE
	6. SEMANTICS
	6.1 CPDS FOR CHAINS
	6.2 DEFINING THE JOINT DISTRIBUTION

	7. CONCLUSION AND FUTURE WORK
	ACKNOWLEDGEMENTS

