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Abstract 

Probabilistic programming languages (PPLs) 
allow probabilistic models to be represented 
using the power of programming languages and 
general-purpose reasoning algorithms to be 
applied to new applications. This paper presents 
an approach to probabilistic programming in 
which the program is represented as a set of data 
structures using a rich library of model elements. 
While the data structures alone have the 
representational power of previous programming 
languages, the ability to create and manipulate 
them from within an ordinary program provides 
a number of benefits, including clean and natural 
ways to incorporate potentials and undirected 
models, represent models with inter-related 
objects, creating dynamic probabilistic programs, 
reason about multiple models simultaneously, 
and compile other languages. Our approach is 
implemented in Figaro, which has been released 
open-source. 

1. GENERAL FORMATTING 
INSTRUCTIONS 

Probabilistic models are ever growing in richness and 
diversity. Creating models for specific applications 
presents both representation and reasoning challenges. 
Probabilistic programming languages (PPLs) can address 
these challenges by allowing models to be represented 
using the power of programming languages and by 
providing general-purpose reasoning algorithms that 
automatically work in new applications. This is an 
extremely powerful idea, as it gives you the ability to 
create probabilistic models with arbitrary control flow, 
including recursion, as represented by a Turing-complete 
programming language. It also allows you to create 
probabilistic models over structures of arbitrary 

complexity, as long as these structures can be represented 
in a programming language.  

Most existing probabilistic programming languages are 
based on either functional or logic programming (see 
Section 2). We present an alternative, object-oriented 
approach to probabilistic programming, captured in our 
probabilistic programming language Figaro. Figaro has 
been release open source and is available from 
www.cra.com/figaro.  

The key idea behind Figaro that differentiates it from 
existing languages is that probabilistic models are 
represented as data structures built up out of Figaro 
elements. These data structures are front and center in the 
language. The data structures can be constructed and 
manipulated within a program in the host programming 
language in a number of ways, such as building up 
complex elements out of simpler elements, connecting 
elements to each other, or adding constraints to elements. 
In Figaro’s case, the host language is Scala, which is a 
language that combines functional and object-oriented 
styles and compiles to the Java Virtual Machine. A side 
benefit of the fact that Figaro programs are objects in 
Scala is that Figaro elements can be created, manipulated 
and used from the extremely popular Java programming 
language. 

Figaro’s data structures alone provide all the expressivity 
of existing probabilistic programming languages like 
Church, in that any Church program can be easily 
represented as Figaro data structures. However, it is the 
ability to create and manipulate these structures from 
within an ordinary program that gives Figaro its power. 
This capability has numerous benefits, including: 

• Providing a clean and simple way to incorporate 
potentials and undirected models. 

• Providing a way to represent models with 
mutually influencing objects. 

• Providing a way to handle uncertainty about the 
relationships between objects. 
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• Reasoning about multiple models 
simultaneously. 

• Supporting creating and reasoning about 
dynamic probabilistic programs. 

• Providing a target for compiling other 
probabilistic representations. 

In Section 3, we describe the building blocks of Figaro 
programs, and show how they are combined to produce a 
program. Section 4 goes into details of manipulating 
Figaro programs and the benefits thereof. Although 
inference is not a major focus of this paper, it is clearly 
important for a probabilistic programming language, and 
we describe the goals of Figaro’s inference engine and its 
approach to achieving them in Section 5. Figaro’s 
capabilities make it possible to do things like create cyclic 
models that are not obvious in other languages, so we 
need to make sure that Figaro programs have a well-
defined semantics, which we describe in Section 6. 
Finally, we conclude in Section 7. 

2. RELATED WORK 
Probabilistic programming languages have typically come 
in a variety of flavors. In functional probabilistic 
programming languages, like IBAL (Pfeffer, 2007) and 
Church (Goodman et al., 2008), a program represents a 
generative process that describes the stochastic generation 
of a possible world. Evaluating a program involves 
computing probability distributions or conditional 
distributions over program outputs. In IBAL, a special-
purpose language was used, which was then interpreted in 
a host language. In Church, a dialect of Scheme is used 
and the program is itself interpreted in Scheme. In these 
languages, the approach has generally been to view the 
program as a given unit that is then evaluated. 

In logic-based probabilistic programming languages, such 
as PRISM (Sato, 2008) and ProbLog (De Raedt, Kimmig, 
& Toivonen, 2007), an ordinary logic program is 
augmented with probabilistic choices; the two together 
constitute the probabilistic program. As with functional 
languages, this program is then evaluated as a unit. 

We are not suggesting that Figaro is the only probabilistic 
programming language that provides data structures that 
can be manipulated. In particular, in Scheme code is data, 
so Church programs could in principle be manipulated. 
However, this aspect of probabilistic programming has 
not been explored in the past, and Figaro provides a 
particularly direct and explicit way to manipulate 
programs, as this capability is essential to the design of 
the language. In addition, the idioms and benefits of 
manipulating probabilistic programs have not been 
examined. As a result, the benefits described in the 
introduction have not generally been realized in the past. 
For example, existing probabilistic programming 
languages do not generally support dynamic models 

explicitly. In a logic-programming based language, for 
example, time can be treated by defining a relation to the 
previous time step, but this does not provide support in a 
natural way for filtering. 

There is an additional object-oriented language, 
FACTORIE (McCallum et al., 2008), incidentally also 
written in Scala, that also has the property that elements 
of models are data structures. There are two key 
differences between FACTORIE and Figaro. First, 
FACTORIE’s data structures represent factors in a factor 
graph, whereas Figaro’s represent functional probabilistic 
programs with a process of generating values 
stochastically. Second, a major part of the specification of 
FACTORIE objects includes details of how to perform 
Metropolis-Hastings inference using those objects, and 
this capability is one of the driving forces behind the 
design of FACTORIE. Therefore, FACTORIE can be 
better viewed as an expressive language for defining 
Metropolis-Hastings computations over factor graphs, 
rather than declarative probabilistic programs that can be 
operated on by a variety of inference algorithms, some of 
which involve factor graphs. 

3. FIGARO PROGRAMS 

3.1 ELEMENTS 

The central concept in Figaro is an element. Intuitively, an 
element defines a process that stochastically produces a 
value, given the values of argument elements. Elements 
are instances of the Element class. The Element class 
itself is abstract; a particular element will be an instance 
of a concrete subclass of Element. The Element class 
provides the key ingredients of what it means to be an 
element of a Figaro model. We describe the contents of an 
element by going through the key part of the definition of 
the Element class in Scala: 
1 abstract class Element[V] { 
2   type Value = V 
3   type Randomness 
4   def genRand(): Randomness 
5   def genValue(rand: Randomness): Value 
6   val value: Value 
7 } 

The notation Element[V] (line 1) indicates that the 
Element class takes a type parameter. This is the type of 
value produced by the element. Line 2 declares Value to 
be a name for this type parameter. In addition to the 
value, each element contains an intrinsic randomness, 
whose type is captured by the Randomness type (line 3). 
The specific Randomness type must be defined in a 
concrete subclass of Element. 

The process of generating a value for the element has two 
stages. In the first stage, the randomness is stochastically 
generated using the genRand method defined in a 
concrete subclass (line 4). The second stage is a 



 

deterministic function genValue (line 5) that generates 
the value of the element given the randomness and 
argument elements. The resulting value of the element is 
stored in the value field (line 6). The genValue method 
can be any purely functional Scala function. It can use the 
current value of related elements, but it is not allowed to 
have side effects (such as changing another element’s 
value). This is a key restriction that allows us to give a 
coherent semantics to Figaro programs. The purpose of 
separating genRand from genValue is to isolate the 
random component of an element from the logic through 
which the value of the element is determined based on 
values of other elements. Algorithms can focus on 
changing the randomness of elements and observing the 
deterministic effects of these changes. 

A Figaro program is built up out of a number of related 
elements, each of which belongs to an element class. 
Fortunately, Figaro provides a rich library of element 
classes, so much of the time all the programmer needs to 
do is stitch elements together. In case an appropriate 
library class is not found, it is often straightforward to 
create a new one, involving defining the Randomness 
and writing genRand and genValue. 

3.2 DETERMINISTIC ELEMENTS 

A special case of element is a deterministic element 
whose randomness is the trivial Null type, and whose 
genValue method does not depend on the randomness. 
All a programmer needs to do to create a deterministic 
element class is describe how the value is generated from 
the values of the arguments. 

An element can be deterministic even if related elements 
on which it depends are not. Although we may have 
uncertainty over its value, due to uncertainty over the 
values of its arguments, it is deterministic given particular 
values of the arguments. 

3.3 ATOMIC ELEMENTS 

If the genValue method of an element does not depend 
on the values of any arguments, the element is called 
atomic. There is a single deterministic atomic class of 
element, which is the Constant class that always 
produces the same value. For example, Constant(8) is 
an Element[Int] that always produces 8. This is atomic 
because 8 is a fixed integer, not an element. 

Other atomic classes implement a probability distribution 
over values. An example is Flip, which takes a Double 
argument and produces true with probability equal to the 
argument. To illustrate the way concrete subclasses of 
Element are defined, we show the definition of Flip: 
1 class Flip(prob: Double)  
2 extends Atomic[Boolean] { 
3   type Randomness = Double 
4   def genRand() = random.nextDouble() 
5   def genValue(rand: Randomness) = 

6 rand < prob 
7 } 

Flip takes a Double argument named prob (line 1) and 
an instance of Flip is an atomic element that produces 
Boolean values (line 2). Line 3 declares Flip’s 
randomness to be a Double, and line 4 says that 
generating a value for the randomness is accomplished 
simply by getting the next random Double, which is 
uniformly distributed between 0 and 1. genValue (lines 
5-6) is then a deterministic function that returns true if the 
randomness is less than the input argument, which 
happens with probability equal to the argument. 

Continuous atomic elements are also available, such as 
Uniform(x,y). A wide variety of atomic elements are 
provided as library classes. 

3.4 CHAIN 

A chain is the glue that puts things together. Figaro’s 
language is based on the probability monad. Monads are 
structures used in functional programming to lift 
computation from a space of values to a space of concepts 
over those values. The probability monad lifts values to 
elements that generate those values. Monads are defined 
by two functions: unit, and bind. The unit function takes a 
value and produces the monad over that value. Figaro’s 
unit is defined by the Constant class. Figaro implements 
the bind function by the Chain class, which represents 
chaining of probabilistic processes. A chain takes two 
arguments: p, which is an Element[V], and f, which is a 
function that maps a value of type V to an Element[W]. It 
defines the process in which it first gets the value v of p 
and then gets the value w of f(v). For example, 
Chain(Flip(0.7), Uniform(0.0, 1.0), 
Constant(0.5)) represents the process that flips a coin 
with weight 0.7. If it produces true, it generates an 
element uniformly between 0 and 1, otherwise it 
generates 0.5 with probability 1. 

The essential definition of Chain is 
abstract class Chain[T,U]( 
  p: Element[T], 
  f: T => Element[U] 
) extends Deterministic[U] { 
  def genValue() = f(p.value).value 
} 

Given the machinery we have developed for deterministic 
elements, the only thing we need to define is genValue, 
and its definition is very simple: we get the value of p, 
apply f to it, and get the value of the result. Note that the 
process of applying f happens as part of genValue, so f 
must be purely functional. 

3.5 SYNTACTIC SUGAR 

All Figaro elements can be implemented using atomic 
elements and chain. However, it is useful to provide other 
element classes, both for convenience of building models 



 

and because particular common types of element can be 
optimized. Figaro provides a variety of such element 
classes. For example, If(test, thn, els) is the 
deterministic element whose generation involves getting 
the value of test, and if it is true getting the value of 
thn, otherwise getting the value of els.  

The Dist element class provides a very general way to 
describe discrete probabilistic dependency. A Dist 
element D takes a list of clauses as its argument, where 
each clause consists of a probability element and an 
outcome element. The randomness of D is a Double 
uniformly distributed between 0 and 1. The meaning of D 
is as follows: First, get the values of the probability 
elements. When normalized, these define a multinomial 
over the outcome elements. Use the randomness to select 
an outcome element from the multinomial. Finally, get the 
value of this outcome element; it becomes the value of D. 

An important element class is Apply, which takes an 
Element[V] and a function f from V to W, and produces 
an Element[W]. Its meaning is to take the value of its 
element argument and apply f to it. Apply serves to lift 
functions from the space of values (V → W) to the space of 
elements (Element[V] → Element[W]). Other versions 
of Apply lift functions of more than one argument, or of a 
list of arguments. Likewise, there are extensions of Chain 
to more than one argument or a list of arguments. 
Standard functions can be defined using Apply. For 
example, === tests for equality between the values of two 
elements, while Duo(e1,e2) forms the element whose 
value is the pair of the values of its inputs.  

Another useful element class is Inject, which takes a 
list of elements and produces an element of lists. For 
example, the element Inject(List(Dist(0.2 -> 2, 
0.8 -> 3), Constant(1))) produces the list (2,1) 
with probability 0.2 and (3,1) with probability 0.8. 

To illustrate the power of combining these concepts in an 
example, let us create a MakeList element class that 
creates a list of a stochastic number of items, each item 
generated according to a particular process. MakeList 
will take two arguments: numItems, which is an 
Element[Int], and itemMaker, which is a function of 
0 arguments that produces an item according to the 
process. For example, MakeList(Geometric(0.9), 
() => Flip(0.5)) will generate a list of a 
geometrically distributed number of independent coin 
tosses. MakeList can be defined directly using Chain 
and Inject as follows.  
Chain(numItems, (n: Int) => 
  Inject(List.fill(n)(itemMaker()))) 
In this code, List.fill is Scala’s library function for 
creating a list with a given number of elements. It has two 
argument lists: the first is the number of items, and the 
second is the code to create each item. 

3.6 VARIABLES AND PROGRAMS 

A probabilistic program in Figaro consists of a set of 
elements that can depend on each other in arbitrary ways. 
Unlike IBAL and Church, Figaro does not provide its own 
variable binding mechanism. Instead, it piggybacks on top 
of Scala’s variables. If the same Scala object is used 
multiple times, it must have the same value every time, 
while two distinct objects with the same definition may 
have different values. For example, in the program 
val x = Flip(0.9) 
val y = x === x 

y will always have the value true. In contrast, the element 
Flip(0.9) === Flip(0.9) will have value true with 
probability 0.9 * 0.9 + 0.1 * 0.1 = 0.82. 

Using the ability to create atomic elements of a wide 
variety, chain together elements, and apply arbitrary 
functions, which can produce any data type, Figaro can 
implement any control flow in its programs. Since Chain 
applies a function to determine its result element, 
recursive models can easily be created. For example: 
def f(n: Int): Element[Int] = 
  Chain(Flip(0.9), Constant(n), f(n+1)) 
val i = f(0) 
In this example, def is Scala’s keyword for a function 
definition. The function f takes an integer argument and 
returns an element over integers that is itself defined 
using f. By changing the example slightly, we can also 
see how Figaro programs can represent probability 
distributions over arbitrary data structures: 
abstract class Tree 
case class Branch(left: Tree, right: Tree) 
  extends Tree 
case class Leaf(n: Int) extends Tree 
def f(n: Int): Element[Tree] = 
  Chain(Flip(0.9), Constant(Leaf(n)), 
    Apply(f(n+1), f(n+2),  
     (l: Tree, r: Tree) => Branch(l,r)))  
In this code, we define a Tree class with two subclasses, 
Branch and Leaf. The recursive case now creates two 
subtrees, which are combined into a branch using Apply. 

4. PROGRAMS AS DATA STRUCTURES 

4.1 CONDITIONS AND CONSTRAINTS 

Since Figaro is embedded in Scala, a Scala program can 
be written to generate a Figaro program and manipulate 
its elements. The Scala program can be an arbitrary 
computation and need not be purely functional. In 
particular, it can have side effects. This ability to apply 
side effects to a probabilistic program in a controlled, 
programmatic way is one of the main reasons representing 
programs as data structures is useful.  

An immediate application of this idea is in Figaro’s 
method for stipulating conditions and constraints on the 



 

values of elements. In Figaro, a condition represents a 
hard condition that must be satisfied by the value of an 
element, while a constraint represents a soft constraint, 
i.e., a potential on the value. In other words, constraints 
represent a rescaling of the probability distribution over 
values of elements described by the elements’ generative 
process, which is normalized across all possible values.  

• Conditions and constraints can be defined on 
elements over any data structure. In addition, we can 
create conditions or potentials over multiple elements 
by combining them in tuple elements. 

• Conditions and constraints are arbitrary Scala 
functions and have the resulting expressivity. For 
example, we can have an element over trees and 
define a constraint that is logarithmic in its size. 

• We can accumulate conditions and constraints on an 
element without having to know which already exist. 
For example, we can separately specify that a tree’s 
size be even and that it have at least five elements. 

• Conditions and constraints can be applied 
systematically to a set of elements. We illustrate this 
with the following example, based on the Smokers 
and Friends example from Markov Logic Networks 
(Domingos & Richardson, 2007). 

1 class Person { val smk = Flip(0.6) } 
2 val x, y, z = new Person 
3 val friends = List((x, y), (y, z)) 
4 def c(pair: (Boolean, Boolean)) =  
5   if (pair._1 == pair._2) 3.0; else 1.0 
6 for { (p1,p2) ← friends } { 
7   Duo(p1.smk,p2.smk).constraint = c 
8 } 

Line 1 defines the Person class with the smk attribute. 
Line 2 defines three instances of this class, while line 3 
indicates which people are friends. Lines 4-5 encode the 
constraint that friends are three times more likely to have 
the same smoking habits than non-friends. Finally, lines 
6-8 apply the constraint to the pair of smk attributes of 
each pair of friends. In line 7, a new Duo element is 
created to hold the constraint. In this way, we constrain all 
the pairs of friends as specified by a Scala list, which 
could easily be passed as an argument to the program. 

4.2 MUTUALLY INFLUENCING OBJECTS 

A principle of functional probabilistic programs is that 
there is a flow of generation through the program. Object-
oriented models, on the other hand, often encapsulate a 
number of variables within an object. There can be a 
conflict between the two styles when two objects 
mutually influence each other, e.g., variable X in object 1 
influences variable Y in object 2, which in turn influences 
variable Z in object 1. To capture this pattern, a functional 
probabilistic programming language would ordinarily 
have to expose variables X, Y, and Z outside the objects to 
which they belong, thereby breaking encapsulation. 

An example representation affected by this issue is 
probabilistic relational models (PRMs) (Koller & Pfeffer, 
1998), which are a representation used for statistical 
relational learning. PRMs are object-oriented models in 
which probability models are associated with classes. A 
class probability model defines a number of attributes of 
the class and their probabilistic behavior. Instances derive 
their probabilistic model from the class to which they 
belong, and attributes of an instance may depend 
probabilistically on attributes of both the same instance 
and related instances. Instances can be inter-connected in 
arbitrary ways, including mutually influencing ways.  

Scala’s object-oriented nature is a good match for PRMs; 
in addition, Figaro solves the mutual dependence problem 
using side effects. Consider an Actors and Movies 
example. Movies have a quality attribute, while actors 
have skill and fame attributes. The quality of a movie 
depends on the skill of its actors, while the fame of an 
actor depends on the quality of the movies in which he or 
she appears. The following Scala program creates a 
Figaro model for this situation while maintaining 
encapsulation of the attributes within their respective 
classes.  For simplicity, let these attributes be Booleans, 
and let fraction be a function that takes a list of 
Booleans and returns the fraction that are true. We can 
represent this situation as follows: 
1 class Actor { 
2   var movies: List[Movie] = List() 
3   val skill = Flip(0.2) 
4   val fame = 
5     Chain(movies map quality, 
6           (l: List[Boolean]) => 
7             Flip(fraction(l)) 
8 } 
9 class Movie { 
10  var actors: List[Actor] = List() 
11  val quality = 
12    Chain(actors map skill, 
13          (l: List[Boolean]) => 
14            Flip(fraction(l)) 
15} 
16def connect(actor: Actor, movie: Movie) { 
17  actor.movies ::= movie 
18  movie.actors ::= actor 
19} 
20val chaplin = new Actor 
21val modernTimes = new Movie 
22connect(chaplin, modernTimes) 

Lines 1-8 define the Actor class. Line 2 defines the 
movies variable representing the movies the actor played 
in. The Scala keyword var defines a mutable variable 
whose value can be changed. movies starts out as an 
empty list and is added to later. Lines 4-7 define a model 
for the fame of an actor that is defined to be a Flip 
whose probability of being true is the fraction of the 
actor’s movies that are of high quality. The definition of 
Movie is similar to that of Actor. The key feature of this 
example is connect (lines 16-19), which is a function 



 

that connects an actor to a movie by prepending the movie 
to the list of movies of the actor (line 17) and vice versa 
(line 18). A PRM for a specific situation is defined by 
creating instances of the classes (lines 20-21) and 
connecting them (line 22). At the time that inference is 
applied to the PRM, the correct movies and actors are 
used with the correct dependencies. 

4.3 NAMING AND REFERENCE UNCERTAINTY 

It is important to point out that in the above example, the 
object-orientation is only present in the Scala program, 
not in the constructed Figaro program. This makes it 
challenging to handle situations in which we want to refer 
to a specific element, but we do not know which element 
it is. This is called reference uncertainty in PRMs. For 
example, suppose an actor has a favorite movie, which is 
uniformly distributed from amongst the actor’s movies. 
We could create a favorite element with the 
appropriate distribution. Suppose now that we want to 
make the actor’s happiness depend on the quality of the 
actor’s favorite movie. We cannot do this using the 
current design. We cannot refer to favorite.quality 
because favorite is an element, not a movie. 

Figaro solves this problem in two steps. First, it gives 
elements optional names by which they can be referred. 
Second, it provides the ability to lift the object-oriented 
nature of Scala programs into Figaro programs by 
creating element collections. An element collection, as its 
name describes, is simply a collection of elements in one 
container. The key point is that we can make an element 
collection the value of an element. For example, we can 
make Movie an element collection, and make the value of 
favorite be a Movie. If we then give quality and 
favorite appropriate names, we should be able to refer 
to the quality of the favorite movie of an Actor using 
something like “favorite.quality”. 

Some extra machinery is needed to make this work, but it 
is not too difficult. Although there is uncertainty over to 
which specific element favorite.quality refers, 
favorite has a specific value in any possible world. We 
can create a deterministic element representing the value 
of favorite.quality, and write its genValue function 
to first look at the value of favorite which is a 
particular movie, and then get the value of the quality 
of that specific movie. This is implemented by the get 
method of an element collection; we use actor.get 
(“favorite.quality”) to create the appropriate 
element. The relevant part of the example is as follows: 
1 class Actor extends ElementCollection { 
2   var movies: List[Movie] = List() 
3   val favorite =  
4     Uniform(movies)(“favorite”, this) 
5   val happy = 
6     If(get(“favorite.quality”), 
7        Flip(0.9), 
8        Flip(0.3)) 
9 } 

10 class Movie extends ElementCollection { 
11  var actors: List[Actor] = List() 
12  val quality = 
13    Chain(actors map skill, 
14          (l: List[Boolean]) => 
15            Flip(fraction(l)) 
16       (“quality”, this) 
17} 
Lines 1 and 10 define instances of Actor and Movie to 
be element collections. Now, every element has a name 
and belongs to an element collection, but there are default 
arguments for these so they do not usually need to be 
specified. In previous examples, we used the default name 
and element collection. In this example, we supply the 
name and element collection for favorite and 
quality. In both cases, the element collection is defined 
to be “this”, which means the Scala object in which 
these elements are contained (i.e., the instances of Actor 
and Movie, respectively.) This means that within the 
actor class we can say get(“favorite.quality”), 
which means get the element named favorite defined in 
the actor, get its value, which is a movie, and then get the 
element named quality in that movie. 

4.4 UNIVERSES 

Figaro defines the notion of universe, which is a set of 
elements that are operated on by an inference algorithm. 
A universe is an element collection; there is always a 
default universe (which can be changed). The default 
universe is also the default element collection, as 
described in the previous section. It is possible to work 
with multiple universes at the same time. 

Besides the general usefulness of being able to create, 
store, and manipulate multiple probabilistic programs at 
once, working with multiple universes has a specific use 
in allowing different algorithms to be used for different 
parts of a program, as represented by different universes. 
One example of this principle is Rao-Blackwellization 
(Doucet et al., 2000), in which sampling is used for one 
part of a model while a dependent part is marginalized out 
exactly. This can easily be represented by putting the 
variables to be marginalized in a separate universe.  

An example of the opposite flavor is implemented in 
Figaro. If a model is generally tractable and amenable to 
variable elimination, but it involves some difficult 
evidential parts, it is possible to put the evidential parts in 
dependent universes and use a sampling algorithm for 
those parts, while using variable elimination for the core 
model. The sampling is conditioned on possible values of 
variables in the main universe that influence the 
dependent universe directly. The result of sampling is the 
probability of the evidence in the dependent universe, and 
is used to condition the elements in the main universe on 
which the dependent universe depends. If there are 
multiple dependent universes, the algorithm can sample 



 

them independently and appropriately condition elements 
in the main universe. 

4.5 DYNAMIC MODELS 

Most previous probabilistic programming languages do 
not support dynamic reasoning explicitly. Thanks to the 
concept of a universe, this is quite easy in Figaro. A 
dynamic model in Figaro consists of an initial model, 
which is a universe, and a transition model, which is a 
function that takes a universe (representing the previous 
time step) and returns a universe (representing the current 
time step). Beginning with the initial model and iterating 
the transition model results in a stream of universes, one 
for every time step. 

Because a universe is an element collection, we can refer 
to elements within a universe by their name. This is 
important, because when the transition model is written 
we don’t know the specific elements on which it is 
operating, only the universe itself, and we have to get the 
elements through the universe. Referring to elements by 
name is also useful for setting evidence by applying 
conditions and constraints to elements. The following 
code shows a simple example of a dynamic model: 
1 val u1 = Universe.createNew() 
2 val f = Flip(0.2)("f", u1) 
3 def trans(previousUniverse: Universe):  
4  Universe = { 
5   val u2 = Universe.createNew() 
6   val b: Element[Boolean] =  
7     previousUniverse.get("f") 
8   val i =  
9     If(b, Flip(0.8), Flip(0.3)) 
10      ("f", u2) 
11  u2 
12} 
Line 1 creates a new universe for the initial state, and line 
2 adds an element named “f” to it. Lines 3 to 12 define the 
transition function, which takes the previous universe as 
input and returns a universe. First, it creates the new 
universe. Lines 6-7 get at the element named “f”. For the 
dynamic model to work, it is necessary that an element 
named “f” appear both in the initial universe and the 
result of the transition model. In the transition model, this 
element is created in lines 8-10. Finally, the transition 
function returns the new universe in line 11. 

4.6 FIGARO AS A COMPILATION TARGET 

Since the goal of probabilistic programming is to make it 
easier to construct new probabilistic models and to reason 
about them, it is natural to use a probabilistic 
programming language as a compilation target for another 
probabilistic modeling language. Figaro’s data-structures 
approach to probabilistic programming makes it 
particularly well-suited to this task. It is not necessary to 
generate a probabilistic program from whole cloth; 
instead, a piecemeal approach where a program is 
constructed bit by bit can be used. 

Scala’s lazy evaluation mechanism is helpful here. In 
Scala, a field can be defined using lazy val. Instead of 
its value being computed as soon as it is encountered, it is 
not computed until it is needed. The benefit of this in a 
compiler is that we can define fields for all the program 
structures to be lazy, begin construction of the program at 
any point, and automatically make sure that all the 
necessary structures are created.  

We are currently taking this approach to developing a 
compiler for PRMs into Figaro. The compiler first works 
in “PRM world,” resolving classes and inheritance and 
generating all the instances that appear in the model. It 
then lazily defines all the needed elements, corresponding 
to all the attributes of all the instances. 

In a different project, we have used Figaro as a 
compilation target for probabilistic models for 
intelligence analysis. These models, which could be 
applied to a variety of situations, depended on the specific 
features of each situation. So, for example, a situation 
involving a certain kind of aircraft would have elements 
corresponding to that aircraft. While each situation model 
was simply a Bayesian network, there was much sharing 
of knowledge, both between situations (the same aircraft 
appearing in multiple situations) and within situations 
(different aircraft using similar logic). Figaro’s ability to 
represent model elements as data structures made 
constructing the network for each situation easy. In 
particular, Figaro elements for each of the objects that can 
appear were stored in a hash table that could be accessed 
by name of the object, making it simple to assemble the 
right elements according to the configuration of a 
situation. As this example shows, Figaro’s approach 
makes it easy to embed Figaro models in a program that 
does more than probabilistic reasoning. 

5. INFERENCE 
Inference in probabilistic programming languages is 
challenging because of the ability the languages provide 
to create models of significant complexity. Previous 
languages have often taken the approach of optimizing a 
particular inference algorithm, with the design of the 
Figaro being guided by the needs of the algorithm. In 
reality, many algorithms and variations thereof can be 
appropriate in different circumstances. 

In Figaro, the main goal behind the inference engine is 
extensibility. Ideally, Figaro would include as wide a 
range of algorithms as possible, and we plan to continue 
building its repertoire. For this to be accomplished, it 
should be relatively easy to add new algorithms. Figaro 
provides a rich class hierarchy of algorithms. Algorithms 
are distinguished along a number of lines, such as the goal 
of the algorithm (e.g. computing the marginal 
probabilities of query variables or computing the 
probability of evidence—of course, an algorithm can have 
multiple goals); whether the algorithm is one-shot or 



 

anytime; and the approach taken by the algorithm, such as 
factor-based or sampling.  

To create a new algorithm, you inherit from the 
appropriate Scala interfaces, and much of the mechanics 
of the algorithm is automatically taken care of. For 
example, if you create an anytime algorithm, Figaro 
automatically takes care of spawning a thread and 
listening for queries. To create a new MCMC algorithm, 
you only have to describe how to generate the next state 
from the previous state; everything else is handled 
automatically, and you get both a one-shot and anytime 
algorithm for free. Similarly, mechanics for constructing 
factor graphs, creating elimination orders, and eliminating 
variables using appropriate sum and product operations is 
provided and can be used by any algorithm. 

Currently, Figaro’s algorithm library includes variable 
elimination for both conditional probability and most 
probable explanation, importance sampling, Metropolis-
Hastings (MH), dependent universe reasoning, reasoning 
with abstraction and discretization, and particle filtering 
for dynamic models. MH in particular can be tricky to get 
right for a probabilistic program. While we have not 
solved the problem of automatically generating a good 
proposal distribution, Figaro’s MH algorithm is designed 
to help the modeler by providing a rich language for 
specifying proposal distributions and tools for debugging 
the MH process. One tool we have found to be 
particularly useful allows you to set any state and observe 
the probabilities of properties of subsequent states 
reached by a single MH step. This can help detect when 
certain important state transitions are very unlikely. 
Another tool shows you exactly which elements are being 
proposed during the MH process. As far as we know, 
there is not a large literature on debugging MH (there are 
statistical tests for correctness (Geweke, 2004)). R 
(http://www.r-project.org/) also includes tests that verify 
the correctness of MH. However, an MH process is often 
correct but extremely slow, and these tests do not help 
make your MH algorithm correct and fast. We hope that 
our tools can make a practical difference. 

6. SEMANTICS 
Our insistence that Figaro models be side-effect free is 
crucial to the semantics. While side-effects are allowed in 
the Scala program that creates the Figaro model,   
Figaro’s semantics is defined at the point of inference. 
When an inference algorithm is invoked, the Figaro 
model must already have been constructed. The process 
of constructing this model can be an arbitrary complex 
execution in Scala, but it must terminate to reach the point 
of inference. Therefore, at the time of inference, the 
model consists of a finite set of elements.  

One issue that complicates the semantics is that it is 
possible in Scala to create cyclic models in which Figaro 
elements mutually influence each other. This is a novel 
feature of Figaro, and it may be useful, but we are not 

claiming it as a key feature because we are unsure about 
its benefits. Nevertheless, it is important to make sure the 
semantics cleanly handles such models. Since Figaro is 
designed to support many inference algorithms, we want 
to develop a declarative semantics that is not dependent 
on a particular inference algorithm. Since the entire 
Figaro library can be defined using atomic elements and 
chains, we focus on those. 

Our semantics is specified by associating a function PE(v | 
Q) with each element E where v is a possible value of the 
element and Q is the set of free variables in E. After 
constructing the function, we will show that, under the 
right assumptions, it naturally defines a conditional 
probability distribution (CPD) over values of E given Q.  

Atomic elements have no free variables and the function 
for an atomic element A is given by  

 
: .genValue( )

( ) ( .genRand() )A

r A r v
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=
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Thus, atomic elements naturally correspond to 
unconditional distributions with the expected semantics. 

6.1 CPDS FOR CHAINS 

Consider a chain C with parent R and function f. 
Generating the value of the chain involves applying f to 
R’s value to produce an element E, and then getting E’s 
value. Applying f might involve the generation of a 
number of other elements S1,…,Sn, in that order, which 
might be used by E. These elements S1,…,Sn are bound in 
C. These elements and E might also use free variables Q.  
Marginalizing over temporary variables, PC is given by 

1 2

1 2

1 2 1 1
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∑ ∑
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Elements created by applying the function f of a chain are 
called temporary. This is in contrast with elements that 
are created before inference is begun, which are called 
permanent. As we stipulated earlier, f can have no side 
effects. As a result of this restriction, any elements 
created by f cannot have conditions or constraints, and 
there can be no cycles in the above equations for 
temporary elements. Therefore, expanding C through 
Equation (2) leads to a sequence of recursive definitions 
that sometimes terminate in atomic elements and contain 
no cycles. A complete expansion can be fully 
characterized by the outcomes of its atomic elements.  

We stipulate that the process of expansions terminate with 
probability 1 for the program to be well defined. This is a 
standard assumption that has been made by all previous 
functional PPLs. This assumption implies that with 
probability 1, the resulting value v of C will be finite. 
Now consider the sample space F of all possible 
expansions of C, equipped with the σ-algebra generated 
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by finite sub-expansions. For fixed R and Q, the above 
equations define a probability measure over F. Note that R 
and Q must be permanent elements, since temporary 
elements are not in scope outside the chain that created 
them. Therefore the number of elements in Q must be 
finite. We can therefore interpret PC(v | R, Q) as a 
conditional probability distribution over the value of C 
given the parent R and free variables Q that appear inside 
elements generated by the function. 

6.2 DEFINING THE JOINT DISTRIBUTION 

So far, we have shown that all permanent elementsare 
associated with a CPD. Unlike temporary elements, the 
number of permanent elements is guaranteed to be finite. 
However, also unlike temporary elements, permanent 
elements can have conditions and constraints, and there 
can be cycles among the permanent elements. To start 
with, we will ignore the issue of cycles and deal with 
conditions and constraints. Let the permanent elements be 
E1,…,EN. Let the parents of Ei be Qi. ( | )iE

i iP v Q  is the 
local CPD of Ei as defined previously, not taking into 
account conditions and constraints. We define 

 0 1 1
1

( ,..., ) ( | )i

N
E

N N i i
i

P E v E v P v
=

= = =∏ Q  (3) 

We stipulate that the conditions be satisfiable by some 
assignment of values to the elements that has non-zero 
probability under P0 and that the constraints be positive 
everywhere. We now define 

  1( | ) ( | ) ( ) ( )iE
i i i i i i i i iP E v P v v vφ ψ= =Q Q  (4) 

where  ( )i ivφ  denotes the indicator function of the 
conditions on Ei and ψi(vi) denotes the product of values 
of the constraints. In the acyclic case, the probability of a 
joint assignment to all the elements is given by 

 1 1 1
1
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N

N N i i i
i

P E v E v P E v
=

= = ∝ =∏ Q  (5) 

Now, once we introduce cycles, we have a cyclic model 
defined by CPDs, which is just like a dependency 
network, so the obvious approach is to base our semantics 
on dependency networks. Heckerman et al. (2000) 
defined the semantics of dependency networks through a 
pseudo-Gibbs sampling method that visits each node in 
turn and samples a value for the node using the local 
conditional distribution of the node. We could use such a 
pseudo-Gibbs method that samples each element Ei from

( | )iE
i iP v Q . Heckerman et al. showed that under the 

assumption that the distributions are positive, the pseudo-
Gibbs sampler converges to a unique stationary 
distribution, and used that distribution to define the 
meaning of the network. Unfortunately, the distribution to 
which this process converges depends on the order in 
which nodes are sampled. Furthermore, in the stationary 
distribution, the local CPD of a node given its parents is 

not necessarily equal to the local CPD that was used to 
sample the node. In addition, in our case the CPDs for 
deterministic elements are generally not positive. Finally, 
we seek to develop a declarative semantics for Figaro that 
is not tied to a particular inference algorithm.  

Our approach, instead, is to define the semantics of such a 
model as a Markov network in which the CPD of each 
node specifies a potential over that node. We use 
Equation (4) to define the potential at each node, and use 
Equation (5) to define the semantics of the model as a 
whole, with no change from the acyclic case.  

There are subtleties, which are handled well by our 
semantics. First, it is possible using cycles to define 
contradictory models. For example, consider an element X 
whose parent is X and is defined to be the negation of its 
parent. In such a case, all assignments will have zero 
probability. This case is ruled out by the requirement that 
there exists a satisfying assignment that has positive 
probability under P0. Second, it is possible for a particular 
setting of the randomness of all elements to have more 
than one consistent assignment of values. For example, 
suppose X is its own parent and is the same as its parent. 
In this case, the semantics is exactly as in Equation (5). 
Because P1 is uniquely defined using Equation (4), 
Equation (5) always has a unique solution. In this 
example, all values of X would have uniform probability. 

We note that although we have defined semantics for a 
general class of models, a particular inference algorithm 
may only work for a subclass. This is consistent with 
Figaro’s approach of employing a library of algorithms, 
each of which is suitable for particular programs. 

7. CONCLUSION AND FUTURE WORK 
We have described the probabilistic programming 
language Figaro, whose most fundamental contribution is 
to introduce the data-structures approach to probabilistic 
programming. We have shown a number of benefits of 
this approach, and also described Figaro’s extensible 
inference framework and presented a formal semantics. 
As we have described, Figaro is already being used in real 
applications and its benefits are becoming apparent. 

The main design of the language is complete, and Figaro 
has been released open source. However, there are a 
number of areas in which we are seeking to improve 
Figaro, most importantly in developing algorithms to 
learn parameters and structure of programs. We are also 
seeking to introduce a wider variety of algorithms and to 
identify design patterns for probabilistic programming. 
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