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Abstract

There has been much interest in recent years in expressive languages for probabilistic
modeling. This paper presents a new approach to developing a powerful, expressive
and general probabilistic modeling language. It presents a language, named IBAL,
that looks like a stochastic functional programming language. A program in the
language is a model of a system; the meaning of the program is the probability
distribution over outputs of the program. After presenting the syntax of IBAL,
the paper presents examples that demonstrate the expressiveness, compositionality,
modularity and ability of the language to represent structure. A declarative seman-
tics is presented that defines the meaning of a program in terms of distributions. A
powerful and general inference algorithm is presented that translates a program into
factors that can be used in variable elimination. When applied to standard frame-
works such as Bayesian networks, hidden Markov models and stochastic context free
grammars, IBAL’s algorithm reduces to standard algorithms for those frameworks.
Thus, when a new framework is modeled in IBAL, an effective inference algorithm
is obtained for free.
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1 Introduction

Generative probabilistic modeling languages, such as Bayesian networks [Pearl,
1988], hidden Markov models [Rabiner, 1989], and stochastic grammars [Char-
niak, 1993], have achieved great success in artificial intelligence. These frame-
works provide structured representation and inference algorithms that allow
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probabilistic models to be represented naturally and compactly, and reasoned
about efficiently. In recent years, there has been much interest in extending
the expressive power of probabilistic modeling languages. New languages have
been developed (e.g. [Koller and Pfeffer, 1998, Kersting and de Raedt, 2000,
Milch et al., 2005, Laskey and Costa, 2005]) that support the representation
of the world in terms of objects and relationships, and merge probabilistic
representations with traditional logical formalisms.

This paper presents a new approach to developing a powerful, expressive and
general probabilistic modeling language. We present a language named IBAL
(pronounced “eyeball”) for representing generative probabilistic models over
discrete variables. IBAL looks like a programming language, but it is not a
programming language in the ordinary sense. A program in the language is
not a sequence of instructions to be executed, but rather a model of how the
world is generated. The meaning of the program is a probability distribution
over the generated world. The key idea is that describing a generative process
by means of a program allows the full power of programming languages to be
harnessed for probabilistic modeling.

IBAL is a functional language: functions are first-class objects in the language,
and a key structuring element. There are many advantages to representing
models as programs, and particularly functional ones. These include:

• Naturalness: a model in IBAL is an explicit representation of a generative
process.
• Expressiveness: IBAL takes a Turing complete programming language and

adds stochastic choice. Any generative process that can be described by a
program with stochasticity can be represented in IBAL.
• Ability to represent structure: programming languages provide many fea-

tures that support structured representations. In particular, IBAL can rep-
resent conditional independence as used in Bayesian networks using vari-
able bindings and references, functional decomposition as used in stochastic
context free grammars using recursive functions, context specific indepen-
dence and causal independence using conditionals, and object structure from
object-oriented Bayesian networks and probabilistic relational models using
structured data types and functions.
• Modularity: a part of a model encapsulated within a function can be mod-

ified without affecting the rest of the model. Similarly, new functions and
data structures can be added to a model at any time.
• Compositionality: individual model components can be combined in well-

defined and meaningful ways to create more complex models. For example,
one can define a function that takes two entities as inputs that themselves
have been defined by functions, and produces a new entity that depends on
both of them.
• Combination functions: Functions can be defined that operate on other
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structures, including functions, to produce very clear and compact spec-
ifications of high level concepts and models. An example of this will be
presented in Section 3.3.
• Uniform treatment: all structures, from the most low level to the high level

are represented as language constructs. Thus they are all handled in the
same way. When new structures are developed, they only need to be coded
in terms of the language constructs; no special mechanisms need to be de-
veloped.
• A rich type system: tuple types can represent objects, and IBAL supports

algebraic data types such as lists and trees. Since functions are first-class
objects, functional types can be used in other types. This allows high level
types such as a Markov model type to be created. IBAL also provides au-
tomatic type inference.

IBAL is a declarative language. An IBAL model is a description of the world.
Once the description has been written, reasoning is taken care of by the in-
ference engine. IBAL’s inference engine combines techniques from a number
of frameworks, together with new techniques of its own. In particular, when
the inference engine is applied to a number of existing frameworks, such as
Bayesian networks, object-oriented Bayesian networks, hidden Markov mod-
els, and stochastic context free grammars, the inference process reduces to
standard inference algorithms for these frameworks.

IBAL is an ideal rapid prototyping language for developing new probabilis-
tic models. Several examples are provided that show how easy it is to express
models in the language. These include well-known models as well as new mod-
els. IBAL has been implemented, and made publicly available at
http:www.eecs.harvard.edu/~avi/IBAL.

The paper is structured as follows. Section 2 formally presents the syntax
of the IBAL language. Section 3 contains a number of examples illustrating
the use and power of the language. Section 4 follows with a specification of
the declarative semantics of the language. Section 5 describes IBAL’s infer-
ence algorithm. Section 6 contains a discussion of related work, and Section 7
concludes.

2 The IBAL language

In this section, we formally define the core of the IBAL language. In the
definitions of the language, we use the following notation:

• a denotes a name, which could be the name of a variable, or the name of a
component of a tuple

3



• c denotes a chain (defined below)
• s denotes a symbolic constant
• x denotes a value (defined below)
• ν denotes an environment (defined below)
• ε denotes an expression (defined below)
• π denotes a pattern (defined below)
• p denotes a probability

The following concepts are defined recursively in terms of each other. A value
is any of

s Symbol

〈a1 : x1, ..., an : xn〉 Tuple

{formals : {a1, ..., an}, body : ε, environment : ν} Closure

Values other than tuples are called simple. Note that functions are first-class
objects in the language. Closures, representing functions, can be components
of tuples, can be passed as arguments to functions, and can be returned from
functions. If x = 〈a1 : x1, ..., an : xn〉, the notation x.ai denotes xi. This can
be extended to chains: a chain is a sequence of names separated by dots. If
c = ai1 ...aim−1

.aim is a chain, x.c denotes the im-th component of x.ai1 ...aim−1
.

If c is empty, x.c is equal to x.

An environment is a mapping from names to values. The notation ν[a] denotes
the value associated with a in ν. The notation ν[a1/x1, ..., an/xn] denotes the
environment formed by extending ν by associating each ai with xi.

A pattern is any of

s Constant pattern

〈a1 : π1, ..., an : πn〉 Tuple pattern

Any (underscore)

The notation π.c is defined in a similar manner to values. A value x matches
a pattern π, denoted x |= π, if and only if one of the following cases holds:

• x is any value, and π is .
• x and π are both equal to a constant s.
• x is 〈a1

1 : x1
1, ..., a

1
n1

: x1
n1
〉 and π is 〈a2

1 : π2
1, ..., a

2
n2

: π2
n2
〉 and ∀a2

i : π2
i ,∃a

1
j : π1

j

such that a1
j = a2

i and x1
j |= π2

i . In this third case, the pattern need not
mention all fields in the value. We only require that for each field mentioned
by the pattern, there is a field in the value such that the corresponding value
matches the corresponding pattern.
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Intuitively, an expression defines a computation that produces a value. In
IBAL, the value produced is stochastic. Thus an expression represents a stochas-
tic experiment. Most of the expression types will be familiar from ordinary
programming languages. The two new ones are dist expressions, which define
stochastic choice, and obs expressions, which allow conditioning on observa-
tions. The different types of IBAL expressions are as follows:

′s Symbolic constant

a.c Variable

〈a1 = ε1, ..., an = εn〉 Tuple construction

if ε1 then ε2 else ε3 Conditional

dist [p1 : ε1, ..., pn : εn] Stochastic choice

let a = ε1 in ε2 Variable binding

fix a0(a1, ..., an) = ε Function definition

ε0(ε1, ..., εn) Function application

ε1 == ε2 Equality test

obs π in ε Observation

The symbolic constant expression ′s represents the experiment that always
evaluates to s.

The variable expression a.c evaluates to x.c, where x is the value of a in the
environment.

A tuple construction expression 〈a1 = ε1, ..., an = εn〉 creates a tuple in which
each component ai has the value of the corresponding subexpression εi.

A conditional expression if ε1 then ε2 else ε3 represents a stochastic experi-
ment in which ε1 is evaluated first. If ε1 evaluates to true, then the value of ε2
is produced, otherwise ε3 is produced.

An expression dist [p1 : ε1, ..., pn : εn] represents stochastic choice. The value
of one of the εi is chosen, each with probability pi.

In a variable binding expression let a = ε1 in ε2, the environment is extended
by binding a to the value of ε1, and the value of ε2 in the extended environment
is produced.

A function definition expression fix a0(a1, ..., an) = ε produces a function
named a0, with the given formal arguments and body. The function name
may appear recursively in the body of the function.
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In the expression ε0(ε1, ..., εn), the functional value of ε0 is applied to the values
of ε1, ..., εn. Note that ε0 may be stochastic, so that there is more than one
possible function to apply.

An equality test ε1 == ε2 produces true if the values of ε1 and ε2 are equal.

An observation obs π in ε produces the value of ε, conditioned on it matching
π. This can be understood most simply as defining a rejection process within
the stochastic experiment. The value of ε is produced repeatedly until a value
that matches π is produced.

Precise semantics for all these expression types will be given in Section 4.

It is important to note that in an expression of the form let a = ε1 in ε2
the variable a is assigned a specific value in the experiment; any stochastic
choices made while evaluating ε1 are resolved, and the result is assigned to a.
For example, consider

let z = dist [ 0.5 : true, 0.5 : false ] in

if z then z else false

The value of z is resolved to be either true or false, and the same value is
used in the two places in which z appears in if z then z else false. Thus
the whole expression evaluates to true with probability 0.5, not 0.25 which
is what the result would be if z was reevaluated each time it appears. Thus
the let construct provides a way to make different parts of an expression
probabilistically dependent, by making them both mention the same variable.

It is important to emphasize that while a program can be readily understood
as defining a stochastic process for computing the value of an expression,
the meaning of the program is not the value produced, but the probability
distribution over the value. When we perform inference on the program, we
will not be generating a single value but a probability distribution over values.
Thus IBAL is a language for representing a probabilistic model by functionally
describing its generative process.

In addition to the core language described above, IBAL provides a good deal
of syntactic sugar to make it easier to represent models. The added features
include easier syntax for function definitions, Boolean and integer values and
operations, error expressions, comments, and support for algebraic data types
such as lists and trees. These extended features can usually be implemented
in terms of the core language. To keep things simple we will only define the
semantics and describe the inference algorithm for the core language. However
we will use the extended features freely in the examples, since they make them
clearer and more readable. For the most part, their meaning will be clear from
context, or will be explained where they occur.
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One feature we will describe here is block notation. In the description above, a
program is an expression, which is composed of subexpressions. A real program
contains a series of definitions and observations in a block. Each definition
consists of a variable name, and an expression defining its value. Optionally,
the definition may define a function, in which case its name, formal arguments,
and body will be provided. Block notation may also include observations about
the variables defined in the block.

Another extended language construct worth pointing out here is the case

expression. The general syntax of case expressions is

case ε0 of

#π1 : ε1

. . .

#πn : εn

where the πi are extended patterns and the εi are expressions. An extended
pattern is like an ordinary pattern described earlier, except that it can also
contain a variable name. A variable name is similar to an “any” pattern, in
that all values match it, except that whan a value is matched to a variable
pattern, the variable is bound to the value, for use inside the expression εi. The
meaning of a case expression, in terms of a stochastic experiment, is to begin
by evaluating ε0, to produce x0. Then x0 is matched to each of the patterns in
turn. If x0 matches π1, the result of the experiment is the result of ε1, where
the environment is extended with any bindings produced while matching x1

to π1. If x0 does not match π1, the process continues with π2, and so one. It
is an error for the value not to match any pattern.

In this paper, we assume that all programs are well typed, that all variables
are defined before they are used, that the same name does not appear more
than once in a tuple, and that all chains refer to actual components that exist.
IBAL is a strongly typed language and the system performs automatic type
inference.

3 Examples

Example 3.1:

Encoding a Bayesian network is easy and natural in IBAL. We include a
definition for each variable in the network. A case expression is used to encode
the conditional probability table for a variable. For example,
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burglary = flip 0.01;

earthquake = flip 0.001;

alarm = case <burglary, earthquake> of

# <false, false> : flip 0.01

# <false, true> : flip 0.1

# <true, false> : flip 0.7

# <true, true> : flip 0.8

flip p is shorthand for a stochastic choice expression that with probability p
produces true, and with remaining probability produces false.

We can also easily encode conditional probability tables with structure. For
example, we may want the alarm variable to have a noisy-or structure:

alarm = flip 0.01 // leak probability

| earthquake & flip 0.1

| burglary & flip 0.7

We may also create variables with context-specific independence. Context-
specific independence is the case where a variable depends on a parent for
some values of the other parents but not other. For example, if we introduce
variables representing whether or not John is at home and John calls, John
calling is dependent on the alarm only in the case that John is at home. IBAL’s
pattern syntax is very convenient for capturing context-specific independence.

john_home = flip 0.5

john_calls = case <john_home, alarm> of

# <false,_> : false

# <true,false> : flip 0.001

# <true,true> : flip 0.7

Example 3.2:

Probabilistic relational models [Koller and Pfeffer, 1998] help bring structure
to large scale Bayesian network models. They talk about the world in terms
of the objects in it and the relationships between them. A model consists of
a set of interconnected objects. Each object belongs to a class. A class has an
associated probabilistic model. Objects have attributes, and the probabilistic
model of a class specifies what the parents and conditional probability table
are of each attribute. A PRM model describes the classes of object, and then
specifies which instances of each class exist, and how they are related to each
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other.

PRMs can be specified in IBAL. The notion of class of object corresponds nat-
urally to a function in IBAL. Each function contains definitions for each of the
attributes of the class represented by the function. The value of an instance
of a class is a tuple containing values for all the attributes. In the following
IBAL program, note how some instances (o_chem and basket_weaving) have
their values specified explicitly, while other instances (field1, prof1, prof2,
course1, course2, student1, student2 and perf1 through perf4) are de-
fined to be the results of applying their class. The distribution over values of
these instances is as specified in the class model. The fact that course1 is
defined as course(prof1, o_chem) means that course1 is related to prof1

and o_chem. The course function represents the relationship that relates a
professor and a field to a particular course object. Similarly, the performance
function relates a student to a course.

field() = { hard = flip 0.5; high_standards = flip 0.3 };

o_chem = { hard = true; high_standards = true };

basket_weaving = { hard = false; high_standards = false };

prof(f) = {

mean = flip 0.1;

tough = mean | (f.high_standards & flip 0.8);

clear = ~ mean & (if f.hard then flip 0.5 else flip 0.8);

area = f

};

course(p, f) = {

well_taught = (p.clear | ~ f.hard) & flip 0.9;

teacher = p;

};

student() = {

smart = flip 0.4;

hard_working = flip 0.7;

good_test_taker = if smart then flip 0.8 else flip 0.3

};

performance(s, c) = {

understands =

if s.hard_working

then case <s.smart, c.well_taught> of

# <true, true> : flip 0.95
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# <false, false> : flip 0.35

# _ : flip 0.7

else case s.smart of

# true : flip 0.7

# false : flip 0.1;

exam_grade =

case <understands, s.good_test_taker> of

# <true, true> : dist [ 0.6 : ’A, 0.3 : ’B, 0.1 : ’C ]

# <true, false> : dist [ 0.4 : ’A, 0.2 : ’B, 0.4 : ’C ]

# <false, true> : dist [ 0.5 : ’A, 0.2 : ’B, 0.3 : ’C ]

# <false, false> : dist [ 0.1 : ’A, 0.4 : ’B, 0.5 : ’C ];

homework_grade =

case <understands, s.hard_working> of

# <true, true> : dist [ 0.6 : ’A, 0.3 : ’B, 0.1 : ’C ]

# <true, false> : dist [ 0.4 : ’A, 0.2 : ’B, 0.4 : ’C ]

# <false, true> : dist [ 0.5 : ’A, 0.2 : ’B, 0.3 : ’C ]

# <false, false> : dist [ 0.1 : ’A, 0.4 : ’B, 0.5 : ’C ];

};

field1 = field();

prof1 = prof(basket_weaving);

prof2 = prof(field1);

course1 = course(prof1, o_chem);

course2 = course(prof2, field1);

student1 = student()

student2 = student()

perf1 = performance(student1, course1)

perf2 = performance(student1, course2)

perf3 = performance(student2, course1)

perf4 = performance(student2, course2)

observe perf1.homework_grade = ’A

observe perf2.exam_grade = ’C

observe perf3.homework_grade = ’B

Example 3.3:
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This example illustrates the power of higher-order functions. A transition
model in a dynamic system can be captured in IBAL by a function from
states to states. Suppose we wish to create a library of transition models,
including ones that create more complex models out of simpler models. We
can write a higher-order function that takes simpler models as its input and
combines them in some way to produce more complex models. For example,
we might try to write a convoy function that will combine transition models
for individual vehicles, to produce a transition model for a convoy of vehicles.

The inputs to the convoy function will be of two kinds. The first will apply to
a vehicle that is at the lead of a convoy, whose new position is determined only
by its own previous position. We will create such a model for each vehicle:

lead_car (prev) = ...

lead_truck (prev) = ...

For a vehicle that is following another vehicle, its new position will be deter-
mined not only by its own previous position but also by the position of the
vehicle in front of it. We create such a model for each type of vehicle:

car (prev, ahead) = ...

truck (prev, ahead) = ...

Now, we have to specify how to combine these models to produce a convoy
model. The convoy function will take two inputs: a lead vehicle, and a list
of subsequent vehicles (all of which are functions). It produces a transition
function that takes a list of states of all vehicles and produces a list of states
of all vehicles. The function is defined as follows: 1

convoy(leadVehicle, restVehicles) =

fun states ->

let process(ahead, states, vehicles) =

case <states, vehicles> of

# < [], [] > -> []

# < firstState :: restStates, firstVehicle :: restVehicles > ->

let pos = firstVehicle(firstState, ahead) in

pos :: process(pos, restStates, restVehicles)

# _ -> error "length mismatch"

in

let firstPos = leadVehicle(head(states)) in

firstPos :: process(firstPos, tail(states), restVehicles)

1 fun a -> ε defines the function whose formal argument is a and whose body is ε.
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In this example we use standard syntax for lists: [] denotes the empty list,
x::` denotes the list in which x is consed onto `, and [x1,...,xn] denotes the
list consisting of x1, ..., xn. We assume that head and tail have been defined.

The heart of the convoy function is a recursive process function that takes
the position of a vehicle ahead of the vehicles to be processed, a list of states
of vehicles to be processed, and the vehicles themselves. In the base case, both
lists are empty, and the result is the empty list of states. A case in which
one list is empty produces an error; we assume that the length of the states

list equals the number of vehicles. In the remaining case, we apply the first
vehicle function to the first state, and the position of the vehicle ahead, to get
a new position for the first vehicle. We then call process recursively, using
this position as the position ahead of the remaining sequence of vehicles. In
the result, we just tack on the new position obtained to the result of the
recursive call to process. Once process has been defined, convoy can be
defined easily. We simply apply the lead vehicle function to the first state to
get the first new position, and tack it on to the result of calling process on
the remaining vehicles, using the first new position as ahead in process.

Once convoy has been written, creating instances of convoy models for par-
ticular sequences of vehicles is tremendously easy. For example, you only have
to write

convoy(leadCar, [ car, truck, truck, truck ])

for one convoy, and

convoy(leadTruck, [ car, car, truck ])

for another. There is a nice division of labor here. The convoy function needs
to be written by someone who understands functional programming, but it
is relatively easy to write, and the programmer does not need to know about
how individual vehicles are modeled. Furthermore, this is a one-time cost. The
individual vehicle functions need to be written by someone who knows about
their transition models, but the functions themselves are straightforward and
the modeler does not need to be a sophisticated programmer or know about
higher order functions. In addition, new types of vehicles can easily be added
modularly by writing their leading and following functions. Finally, once the
vehicle functions have been developed, anyone, even a non-programmer, can
use them to instantiate new convoy models on the fly.

Example 3.4:

The next example illustrates IBAL’s power to model first-order structures and
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relationships. It concerns a stochastic blocks world. A robot may perform three
actions: try pickup, which tries to pick a block up off the table, try puton,
which tries to put a block the robot is holding on top of another block, and
try drop, which tries to drop the block the robot is holding on the table. The
effects of the actions are stochastic. Blocks are represented by integers from
0 to n-1. The state of the world has two components: on, which is a list of
length n in which component i is the block on which block i is sitting (−1, if
block i is on the table, and −2 if it is currently being held by the robot); and
holding, which is the current block being held (−1 if no block is being held).

The code begins by definining two useful list utilities: set, which changes the
value of one element of a list, and for all, which checks if a property holds
for every element of a list.

set (n, x, xs) =

case xs of

# [] : error "range error"

# y :: ys :

if n == 0

then x :: ys

else y :: set (n - 1, x, ys)

for_all (f, xs) =

case xs of

# [] : true

# y :: ys : f (y) & for_all (f, ys)

Whether or not a block is clear is not stored as part of the state. Instead it is
derived from the state using the following function:

clear (block, state) =

~ (state.holding == block) &

for_all (fun x -> ~ (x == block), state.on)

We can now define the different operations. For each operation, we will define
a successful version and one or more failed versions. We will then define the
function for trying the operation. If the preconditions of the operation are not
met, the state stays the same, otherwise it is a stochastic choice between the
successful and failed versions. 2

successful_pickup (block, state) =

{ on = set (block, -2, state.on); holding = block; }

2 A failed pickup drops the block being picked up on the table. puton can fail in
two ways: it can miss, in which case the block being held is dropped on the table,
or it can completely fail, in which case nothing changes.
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failed_pickup (block, state) =

{ on = set (block, -1, state.on); holding = -1; }

try_pickup (block, state) =

if ~(state.holding == -1) | ~(clear (block, state))

then state

else dist [ 0.1 : failed_pickup (block, state),

0.9 : successful_pickup (block, state) ]

successful_puton (target_block, state) =

{ on = set (state.holding, target_block, state.on);

holding = -1; }

missed_puton (state) =

{ on = set (state.holding, -1, state.on);

holding = -1; }

failed_puton (state) = state

try_puton (target_block, state) =

if (state.holding == -1) | ~(clear (target_block, state))

then state

else dist [ 0.09 : missed_puton(state),

0.06 : failed_puton(state),

0.85 : successful_puton(target_block, state) ]

successful_drop (state) =

{ on = set (state.holding, -1, state.on);

holding = -1; }

failed_drop (state) = state

try_drop (state) =

if state.holding == -1

then state

else dist [ 0.08 : failed_drop(state),

0.92 : successful_drop(state) ]
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4 Semantics

An intuitive semantics for IBAL can be obtained from the idea that an IBAL
program defines a sampling process, that will either fail because an observation
is violated, or else succeed and produce a value. The meaning of the program
is then the distribution over the value produced. It is easy to define a sampling
process to capture this. However, it is more satisfying to provide a declarative
semantics, in which the meaning of a program is directly specified in terms
of a probability distribution, without resorting to the idea of executing a
process. In this section we provide such a semantics. Nevertheless, keeping the
sampling process in mind will help ground our intuitions when defining the
distributional semantics.

Note that the semantics has changed from previous incarnations of IBAL. In
the old semantics, the meaning of an expression was defined to be the proba-
bility distribution over its output given the observations inside the expression.
In the new semantics, the meaning of an expression is defined by two func-
tions. Both functions take an expression ε and an environment ν as arguments.
An environment is simply a function from chains to values. The first function,
denoted Pe[ε, ν], represents the probability of the observations within the ex-
pression, given that the variables in the environment take on their given values.
The second function, denoted P [ε, ν], denotes the probability distribution over
values produced by the expression, conditioned on the observations within the
expression holding. The notation P [ε, ν](x) will denote the probability of x
under this distribution. Similarly, P [ε, ν](π) will denote the probability that a
value drawn from this distribution matches pattern π. These two components
are defined recursively in terms of each other. Separating things out into these
two components results in a much cleaner and clearer semantics.

The semantics is defined by equations. In the base cases, such as a constant
or variable expression, the functions are defined directly. For expressions that
are defined in terms of other expressions, the meaning of the expression is
produced from the meanings of its subexpressions, which are combined in a
particular way. The semantics is defined by the following equations. In the
definition of P [ε, ν], only those values with positive probability will be men-
tioned.

A constant expression has no observations, so trivially the probability of the
observations is 1. The expression produces the constant itself with probability
1.

Pe[
′s, ν] = 1

P [′s, ν](s) = 1

In a variable expression the observations have probability 1 of being satisfied.
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(We assume the program is well typed, so the variable always exists in the
environment.) The distribution defined by the expression assigns probability
1 to the value of the variable in the environment.

Pe[a, ν] = 1

P [a.c, ν](ν[a].c) = 1

For a tuple expression, the different components are produced independently
given the environment. They may be dependent on each other, but only if they
share variables present in the environment.

Pe[〈a1 = ε1, ..., an = εn〉, ν] =
∏n

i=1 Pe[εi, ν]

P [〈a1 = ε1, ..., an = εn〉, ν](〈a1 = x1, ..., an = xn〉) =
∏n

i=1 P [εi, ν]xi

For if expressions we have

Pe[if ε1 then ε2 else ε3, ν] =

Pe[ε1, ν] {P [ε1, ν](true)Pe[ε2, ν] + P [ε1, ν](false)Pe[ε3, ν]}

The intuition behind this is that we want to know the probability that all the
observations encountered during evaluation of the program are satisfied. For
that to happen, first of all observations in the test must be satisfied, so we
have a Pe[ε1, ν] term. Then, if the value of the test is true, ε2 is evaluated and
all observations encountered in it must be satisfied. This happens with prob-
ability P [ε1, ν](true), and when it happens we have a Pe[ε2, ν] term. Similar
considerations apply to the case where the ε3 is evaluated. We also have

P [if ε1 then ε2 else ε3, ν](x) =

1
Z
{P [ε1, ν](true)Pe[ε2, ν]P [ε2, ν](x) + P [ε1, ν](false)Pe[ε3, ν]P [ε3, ν](x)}

where Z is a normalizing factor. The reasoning behind this is that Pe[ε2, ν]P [ε2, ν](x)
is the joint probability that the evidence in ε2 is satisfied, and evaluating ε2 in
ν produces x. Thus P [ε1, ν](true)Pe[ε2, ν]P [ε2, ν](x) is the probability, given
that the evidence in ε1 is satisfied, that ε1 evaluates to true, ε2 evaluates to
x, and the evidence in ε2 is satisfied. Therefore the term in curly braces is
the total probability that the if expression evaluates to x and the evidence
in whichever part is evaluated is satisfied, given that the evidence in ε1 is
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satisfied. Note that the normalizing factor Z is equal to

∑

x {P [ε1, ν](true)Pe[ε2, ν]P [ε2, ν](x) + P [ε1, ν](false)Pe[ε3, ν]P [ε3, ν](x)}

= P [ε1, ν](true)Pe[ε2, ν] + P [ε1, ν](false)Pe[ε3, ν]

= Pe[if ε1 then ε2 else ε3,ν]
Pe[ε1,ν]

Similar reasoning applies to many of the other expression forms. For example,
for dist expressions we have

Pe[dist [p1 : ε1, ..., pn : εn], ν] =
∑n

i=1 piPe[εi, ν]

P [dist [p1 : ε1, ..., pn : εn], ν](x) = 1
Z

∑n
i=1 piPe[εi, ν]P [εi, ν](x)

where Z = Pe[dist [p1 : ε1, ..., pn : εn], ν].

For a let expression let a = ε1 in ε2, for the probability of observations
we need the probability that the observations in ε1 are satisfied, and then
the probability that the observations in ε2 are satisfied in the environment
produced by extending the original environment by binding a to whatever
value ε1 evaluated to. Therefore we need to sum over all possible values x1 that
ε1 could evaluate to. Similar considerations apply to specifying the distribution
defined by the expression.

Pe[let a = ε1 in ε2, ν] = Pe[ε1, ν]
∑

x1
P [ε1, ν](x1)Pe[ε2, ν[a/x1]]

P [let a = ε1 in ε2, ν](x) = 1
Z

∑

x1
P [ε1, ν](x1)Pe[ε2, ν[a/x1]]P [ε2, ν[a/x1]](x)

where Z = Pe[let a=ε1 in ε2,ν]
Pe[ε1,ν]

.

When we define a function, the meaning of the defined function is a closure,
specifying formal arguments, a function body, and an environment in which to
evaluate the function. This environment is the current environment extended
by binding the function name to the closure itself.

Pe[fix a0(a1, ..., an) = ε, ν] = 1

P [fix a0(a1, ..., an) = ε, ν](x) = 1

where x = {formals: {a1, ..., an}, body: ε, env: ν[a0/x]}

Recall that in a function application, the function to be applied may itself be
stochastic. We therefore have to sum over all its possible values. We also have
to sum over all possible values of the function arguments. Once those have to

17



be specified, we examine the body of the function being applied, in the new
environment produced by extending the closure environment by binding the
arguments to their specified values.

Pe[ε0(ε1, ..., εn), ν] =

Pe[ε0, ν]
∏n

i=1 Pe[εi, ν]
∑

x0
P [ε0, ν](x0)

∑

x1
...

∑

xn

∏n
i=1 P [εi, ν](xi)Pe[x0.body, ν ′]

where ν ′ = x0.env[x0.formals1/x1, ..., x0.formalsn/xn]

P [ε0(ε1, ..., εn), ν](x) =

1
Z

∑

x0
P [ε0, ν](x0)

∑

x1
...

∑

xn
P [εi, ν](xi)Pe[x0.body, ν ′]P [x0.body, ν ′](x)

where ν ′ is as above, and Z = Pe[ε0(ε1,...,εn),ν]
∏

n

i=0
Pe[εi,ν]

.

The semantics of equality tests is straightforward, given the above.

Pe[ε1 == ε2, ν] = Pe[ε1, ν]Pe[ε2, ν]

P [ε1 == ε2, ν](true) =
∑

x P [ε1, ν](x)P [ε2, ν](x)

P [ε1 == ε2, ν](false) = 1− P [ε1 == ε2, ν](true)

Finally, we have the meaning of an observation expression obs π in ε. The
probability of observations in the entire expression is the probability of the
observation in the embedded expression, times the probability that the value
produced matches the given pattern π. The distribution defined by the entire
expression is the distribution defined by the embedded expression, conditioned
on the value satisfying π. If the probability that the value satisfies π is zero,
the meaning is not well defined.

Pe[obs π in ε, ν] = Pe[ε, ν]P [ε, ν](π)

P [obs π in ε, ν](x) =











1
P [ε,ν](π)

P [ε, ν](x) if x |= π

0 otherwise

The semantics as presented here assumes that the program terminates under
all possible stochastic choices. We can extend the semantics to cover situations
in which a program terminates with probability one, but there exist stochastic
choices under which it does not terminate. For example, consider a stochastic
grammar that produces arbitrarily long strings, but produces a finite string
with probability one. To capture these models, we can define a fixpoint se-
mantics. On level 0, P 0

e [ε, ν] would be 1, and P 0[ε, ν] would assign probability
zero to every value. Recursively, we would define P i

e and P i using the above
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equations, with P i−1
e and P i−1 appearing on the right hand side. The meaning

of the program would be the limit as n→∞ of P n
e and P n.

5 Inference

The goal of probabilistic inference in IBAL is to compute the joint probabil-
ity of the evidence within a program and the output of the program. That
is, given a program ε, the goal is to compute Pe[ε, []]P [ε, []], where [] is the
empty environment. The reasons this is computed rather than simply P [ε, []]
are that it makes for a cleaner inference algorithm with no normalization re-
quired, and that sometimes one might be interested to know the probability
of observations.

At its heart, IBAL uses variable elimination (VE) [Zhang and Poole, 1994,
Dechter, 1999]. The core of the algorithm is a set of functions that can trans-
form expressions into factors used in VE. We will first review VE, then describe
the particular representation of factors used, and then present the transfor-
mation functions for converting programs into factors.

5.1 Variable Elimination

VE is a widely used algorithm using in Bayesian network inference, constraint
satisfaction, and other applications. VE works with a sum-of-products expres-
sion of the form

∑

c1

∑

c2 ...
∑

cn

∏m
i=1 Fi. Each Fi is a factor from some set of

variables to a domain. In probabilistic inference a factor is a function from the
values of a set of variables to real numbers. We say that the factor mentions
this set of variables. A factor may mention variables in c1, ..., cn and other
variables. c1, ..., cn are the variables to be eliminated. The goal is to manipu-
late the sum-of-products expression until all of c1, ..., cn have been eliminated,
and we are left with a factor that mentions only the remaining variables. The
algorithm works as follows:

F = the set of factors.
c1, ..., cn = the variables to eliminate, in some order.
For i = 1 to n:

Let G = {G1, ..., Gk} be the elements of F that mention ci.
Compute H =

∑

ci

∏k
j=1Gk.

F← (F−G) ∪ {H}.
Let {F1, ..., F`} be the factors remaining in F.
Return

∏`
j=1 Fj.
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The choice of elimination ordering is important and can greatly influence the
cost of inference. In our implementation we use the commonly used minfill
heuristic [Kjaerulff, 1990], but any method for computing elimination order-
ings can be used, including heuristics such as maximum cardinality [Tarjan
and Yannakakis, 1984], exact methods [Shoikhet and Geiger, 1997] and approx-
imate methods [Becker and Geiger, 2001]. However, since we use a different
representation of factors to the standard one as described below, it may be that
another method is more appropriate for our purposes. Developing algorithms
for finding good elimination orderings using our representation of factors is a
subject for future research.

The key operations in the algorithm are multiplying two factors, and summing
over a variable in a factor. Let F1 be a factor mentioning c1 and F2 be a factor
mentioning c2, where c1 and c2 may share variables. Then the product F1 ·F2

is a factor F such that F (c1 ∪ c2) = F1(c1) · F2(c2). For summation, let F be
a factor mentioning ci and other variables d. Then

∑

ci
F is a factor G such

that G(d) =
∑

ci
F (ci,d).

5.2 Representation of Factors

The standard representation used for factors in BN inference is a table. A table
explicitly enumerates every combination of values of the variables, and assigns
to each a real number. This is unsuitable for IBAL for two reasons. First, fac-
tors in IBAL exhibit a great deal of context-specific independence [Boutilier
et al., 1996]. In context-specific independence, whether or not a variable affects
the value of the function may depend on the values of context variables. In
some contexts we care about the value of the variable, but in others we don’t. A
table representation requires to enumerate all cases explicitly, even when many
of them are the same. Second, IBAL factors exhibit great sparsity. Many, if
not most, of the combinations map to zero. In a table representation, all com-
binations must be listed. Poole and Zhang [2003] have developed a VE-based
inference algorithm for networks with context-specific independence. Here we
present a representation that is geared specifically to the structure of IBAL
programs. We view the representation of factors as a minor contribution of
this paper. While it is different from previous approaches, we do not show that
it is better than the approach of Poole and Zhang. However, it is important to
present this representation as it will be required to understand the functions
that transform expressions into factors, which are the heart of the algorithm.

The IBAL representation of factors is defined as follows:

Definition 5.1: A domain is a finite set of values {x1, ..., xn}.

A test is either [∈ S] or [6∈ {S}], where S is a domain.
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A key is a set of chains {c1, ..., cm}.

A constraint for a key is a function mapping each chain in the key to a test.

A row for a key is a pair (φ, p) where φ is a constraint for the key, and p is a
real number.

A factor is a triple (c,S, r), where c is a key, S is a function mapping chains
in c to domains, and r is a set of rows for c.

Note that the rows in the factor are not required to be mutually exclusive
or exhaustive. The reason for the lack of exhaustivity is sparseness. We don’t
want the factor to have to include rows that map to zero. The reason for
the lack of mutual exclusivity will be explained shortly. A factor represents a
function on the chains in the key as follows.

Definition 5.2: Let F = (c,S, r) be a factor. Let x be an assignment of values
to the chains in c, i.e. a function that maps each chain to a value.. We say
that x satisfies a constraint φ if for each chain c ∈ c, either (1) φ(c) = [∈ T ]
and x(c) ∈ T , or (2) φ(c) = [6∈ T ] and x(c) ∈ S(c)− T . We view φ as defining
a set and write x ∈ φ.

The factor F then defines the following function:

F (x) =
∑

ρ=(φ,p)∈r:x∈φ

p.

We need to define product and summation operations for factors. We first
need the intersection of tests and constraints.

Definition 5.3: The intersection of two tests is defined as

[∈ S1] ∩ [∈ S2] = [∈ S1 ∩ S2]

[∈ S1] ∩ [6∈ S2] = [∈ S1 − S2]

[6∈ S1] ∩ [∈ S2] = [∈ S2 − S1]

[6∈ S1] ∩ [6∈ S2] = [6∈ S1 ∪ S2]

Let c1 and c2 be two keys, and let c be c1 ∪ c2. If φ1 is a constraint for
c1, the extension of φ1 to c, denoted E(φ1), is a constraint for c in which
E(φ1)(c) = φ1(c) if c ∈ c1, and E(φ1)(c) = [6∈ ∅] if c 6∈ c1. We similarly define
E(φ2) for a constraint φ2 on c2. We then define φ1 ∩ φ2 to be the constraint φ
on c in which φ(c) = E(φ1)(c) ∩ E(φ2)(c).
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Using this, the product of two factors can now be defined.

Definition 5.4: Let F1 = (c1,S1, r1) and F2 = (c2,S2, r2) be two factors. The
product F1 · F2 is a factor F = (c,S, r), defined as follows:

c = c1 ∪ c2

S(c) =



























S1(c) if c ∈ c1 − c2

S2(c) if c ∈ c2 − c1

S1(c) ∩ S2(c) if c ∈ c1 ∩ c2

r = {(φ1 ∩ φ2, p1 ∗ p2) : (φ1, p1) ∈ r1, (φ2, p2) ∈ r2, φ1 ∩ φ2 6= ∅}

In words, the rows of the product are formed from taking the cross product of
the rows in the arguments. For each pair of rows, we multiply the associated
probabilities. However we throw out all pairs of rows whose constraints are
inconsistent. This helps keep the resulting factor reasonably small. In fact, we
have observed that in some cases the product has fewer rows than one of the
arguments. When applied to factors in which each combination of values is
enumerated as in a table, this reduces to the standard product operation for
the table representation.

Summation is less straightforward. Previously we used a summation operation
which preserved mutual exclusivity. Implementing this operation required tak-
ing differences between constraints. Unfortunately the difference between two
constraints cannot necessarily be expressed as a single constraint but must be
a list of constraints. Furthermore, this operation was quadratic in the number
of rows in the factor, and was a major bottleneck. Therefore we have aban-
doned this approach in favor of a linear time operation that does not preserve
mutual exclusivity. Even though this operation tends to produce larger factors,
we have found inference using it to be much more efficient. Our summation
operation is defined as follows.

Definition 5.5: Let F1 = (c1,S1, r1) be a factor, and let c be the chain that
we are summing over.

∑

c F1 is the factor F = (c,S, r) defined as follows: c is
c1 − {c}. S is the restriction of S1 to c. Let R(r1) be

{(φ, p) : (φ1, p) ∈ r1 and φ is the restriction of φ1 to c}.

Then r is

{(φ,
∑

ρ=(φ,p)∈R(r1)

p) : φ appears in some row in R(r1)}
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More operationally, in order to sum c out of F1, we first delete c from the key,
delete its domain from the domain function, and for each row in F1, delete
its test from the row constraint. We then take all the constraints that appear
in the resulting rows, ignoring what they used to say about c. For each such
constraint, we create a row in the new factor that associates the constraint
with the sum of the numbers in all the rows containing that constraint. When
applied to a factor in which all possible combinations of values are enumerated
as in a tabular representation, this exactly reduces to the ordinary summation
operation.

For illustrative purposes, we will present factors using a table. The first row
of the table will be the key. The second row will show the domain for each
chain. The table will contain a row for each row in the factor. The entry in
the column belonging to a chain will be the test for that chain. On the right
hand side will appear the probability associated with the row.

5.3 Factor-Producing Functions

The main task of the inference algorithm is to take an expression and trans-
form it into a set of factors, together with a set of temporary variables, such
that performing variable elimination on the factors, eliminating the temporary
variables, produces the required answer.

The inference algorithm reasons about the possible values a variable or an
expression can take. A support of a variable is a domain of values that includes
all values that the variable can take with positive probability. (It may contain
other values in some cases, but in general we would like the support to be as
small as possible.) The support of an expression is defined similarly. A support
environment maps chains to supports. An instance of a support environment
σ is an environment ν such that for each chain c associated with a support
in σ, ν(c) ∈ σ(c). The support is used to streamline the computation. Instead
of having to consider all conceivable values for a variable, we only have to
consider those that actually have positive probability. The value of this will
be illustrated below.

We introduce the following notation for different kinds of chains. The notation
? denotes a variable representing the outcome of the expression. Any chain
beginning with ? represents a component of the value of the expression. ??
will denote the set of all chains beginning with ? mentioned in a set of factors.
a.c (where c is possibly empty) will denote a chain beginning with program
variable a, and a will denote the set of all chains beginning with a program
variable in a set of factors. z will denote a temporary variable introduced by
the algorithm that does not appear in the program, and z will denote the set of
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all chains in a set of factors beginning with temporary variables. Whenever we
introduce a temporary variable, we introduce a fresh variable that is distinct
from all other variables, to avoid conflicts.

If F is a set of factors mentioning temporary chains z, we let QF(? ? |a) =
∑

z

∏

F. This denotes the joint probability distribution produced by the pro-
gram over the result of the program ??, and the evidence appearing in the
program, conditioned on the chains a. If a has a support environment σ, and
ν is an instance of σ, QF(?? |ν) denotes the probability of ?? and the evidence
conditioned on a taking on the values assigned by ν.

The task of the algorithm can be formally stated as follows: We seek a function
Ω from expressions ε and support environments σ such that

Ω(ε, σ) = (S,F) where

S is a support for ε in σ, i.e. S ⊇
⋃

instances ν of σ{x : P [ε, ν](x) > 0}

for every instance ν of σ, Pe[ε, ν]P [ε, ν] = QF(ε|ν)

We now present the definition of Ω for the different types of expression in the
core language. For constants, we simply create a factor in which ? takes on the
given value with probability one, and all other values have zero probability.
The support is the singleton containing the given value.

Ω(s, σ) =















{s},

?

{s}

[∈ {s}] 1















For a variable a the simplest approach is to create a single factor with two
columns, one for a and one for ?. The factor would contain a row for every
possible value of a, assigning probability one if both a and ? have the same
value. All cases in which a and ? have different values would have probability
zero and not be listed. The support environment is useful here. We only need
to enumerate those values for which the variable has positive probability, as
listed in the support. Thus the size of the factor is linear in the number of
values in the support of a.

Unfortunately this approach runs into trouble when we consider the fact that
variables might be compound, i.e. their values might be tuples. In such a case,
the possible values of the variable may be the cross product of the values
of each of the components. If there are many components, or the variable
represents a deeply nested data structure, there will be a huge number of
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values in this cross product. The same goes for the support environment. If
we map compound variables to their possible values, their supports will be
huge.

A better approach is to make all the embedded components separate variables.
Let the simple chains defined on the variable be those chains whose values
are simple. The support environment only maps simple chains to domains,
not compound variables. The notation σ(a) will still be used to denote the
supports of all the simple chains on a. For the translation function, we create
a factor for each simple chain a.c, with one column for a.c and one for ?.c. As
before, we enumerate the possible values for a.c as specified in the support,
and create a row for each value x asserting that if both take the same value
x, the probability is one.

Ω(a, σ) =





























σ(a),























































a.c ?.c

{xc
1, ...x

c
n} {x

c
1, ...x

c
n}

[∈ {xc
1}] [∈ {xc

1}] 1

. . .

[∈ {xc
n}] [∈ {xc

n}] 1

: c is a simple chain on a



















































































where xc
1, ..., x

c
n = σ(a.c)

It should be clear that the values of a and c are equal if and only if the
values of all simple chains on a and c are equal, so the probability distribution
produced by the two approaches are the same. The second approach may
yield an exponential reduction in the size of the factors. Whether or not this
translates into savings in inference depends on whether variable elimination
has to join the factors later.

To define the translation function for tuples, we will need a notion of substi-
tuting one chain for another. The substitution of a chain for another chain in
a third chain, denoted subst〈c, d〉(e), is either c.e′, if e = d.e′, or e, otherwise.
The notation subst〈c, d〉 will also be used for factors and sets of factors, mean-
ing substituting c for d in every chain in the keys of the factors. We will also
use subst〈{c1, ..., cn}, {d1, ..., dn}〉 to indicate the substitution of each ci for di,
respectively.

Now the translation for tuples is straightforward. Since all the component
expressions generate their values independently given the environment, we
can produce factors for each of the components independently. All we have to
do is substitute ?.a for ? in component a. For the support, the support of the
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entire expression is the cross-product of the supports of the components, but
as above, we don’t represent it explicitly, but rather maintain the supports of
the simple chains.

Ω(〈a1 = ε1, ..., an = εn〉, σ) =
(

〈a1 : S1, ..., an : Sn〉,
⋃n

i=1 subst〈?.ai, ?〉(Fi)

)

where(Si,Fi) = Ω(εi, σ)

The translation for if expressions requires the notion of a conditional factor.
Intuitively, making a factor conditional on a chain taking a given value, with
its given domain, means saying that the factor only matters when the chain
takes on the specified value; when it takes on any other value in its domain
the factor is immaterial. This is achieved by creating a new factor as follows.
The key of the new factor is the key of the original factor together with the
chain. (We assume that the chain was not mentioned by the original factor.)
The domains of all chains other than the given chain are the same as in the
original factor, and the domain of the new chain is as specified. The new
factor consists of a row for every row in the original factor, and one additional
row. For every row in the original factor, we create a new row with the same
associated probability, in which we have the added test saying that the given
chain takes on the given value. This has the effect of saying that the row
only holds when the chain has the given value. In the additional row, the
given chain can take anything except the given value, while the chains in the
original factor can take on any value. This is saying that when the given chain
takes any other value, anything goes for the chains in the original factor. Thus
the factor becomes the identity when the given chain takes on a value other
than the given value, which is another way of saying that the factor does not
matter. Formally, we define a conditional factor as follows.

cond〈c, T, x〉((c1,S1, r1)) = (c,S, {(φi, p
1
i ) : (φ1

i , p
1
i ) ∈ r1} ∪ {(ψ, 1)})

where c = c1 ∪ {c}

S(c′) =











T if c′ = c

S1(c′) if c′ ∈ c1

φi(c
′) =











[∈ {x}] if c′ = c

φ1
i c

′ if c′ ∈ c1

ψ(c′) =











[6∈ {x}] if c′ = c

[6∈ ∅] if c′ ∈ c1

In table form,
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cond〈c, T, x〉





























c1 ... cm

S1 ... Sm

β1
1 ... β

m
1 p1

. . .

β1
n ... β

m
n pn





























=

c c1 ... cm

T S1 ... Sm

[∈ {x}] β1
1 ... βm

1 p1

. . .

[∈ {x}] β1
n ... βm

n pn

[6∈ {x}] [6∈ ∅] ... [6∈ ∅] 1

The cond〈c, T, x〉 notation is extended to apply to a set of factors, meaning
making every factor in the set conditional. We can now present the translation
function for if. A temporary variable z is created to represent the outcome
of the test. The test subexpression is solved, and z is substituted for ? in its
factors. Assuming that both true and false are in the support of the test, we
then solve the then and else subexpressions. Now, the then subexpression
will only be evaluated when the test is true, so its factors only matter when
z is true. We therefore make the factors conditional on z taking the value
true, with the domain {false, true}. Similarly we make the factors for the
else subexpression conditional on z being false. The support of the entire
expression is the union of the supports of the then and else subexpressions.
(I.e., a function mapping each chain to the union of its supports in the then

and else subexpressions.)

Ω(if ε1 then ε2 else ε3, σ) =















S2 ∪ S3,

subst〈z, ?〉(F1)∪

cond〈z, {false, true}, true〉(F2)∪

cond〈z, {false, true}, false〉(F3)















where (Si,Fi) = Ω(εi, σ)

When the support of the test subexpression contains only one of true and
false, we can make the computation more efficient. We only have to solve
one of the consequent subexpressions, and we do not need to introduce a test
variable or make the resulting factors conditional. However, we do have to
keep the factors from the test subexpression, because the probability of the
evidence within the test may be less than one, and we need to account for
that.

With the current machinery, the translation of a dist expression dist [p1 :
ε1, ..., pn : εn] is straightforward. We create a temporary variable z to represent
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the outcome of the stochastic choice, and introduce the factor

G =

z

{1, ..., n}

[∈ {1}] p1

. . .

[∈ {n}] pn

We then evaluate each of the subexpressions. Now, the i-th subexpression is
only relevant if the i-th outcome is chosen, so we make it conditional on z
having value i.

Ω(dist [p1 : ε1, ..., pn : εn], σ) =
(

∪n
i=1Si, G ∪ {cond〈z, {1, ..., n}, i〉(Fi) : i ∈ 1, ..., n}

)

where (Si,Fi) = Ω(εi, σ)

For an expression let a = ε1 in ε2, we first solve ε1. We then extend the
support environment by associating a with the support of ε1, and solve ε2. The
solution to ε2 will contain references to a. After we exit the let expression, at
some point we would like to eliminate a. Because we only eliminate temporary
variables, we need to create a temporary variable z and substitute it for a in
the factors for ε2. Furthermore, when we solve ε1 the factors will mention ?,
but in reality the result of ε1 is bound to a. Since z is replacing a, we substitute
z for ? in the factors for ε1. The support of the entire let expression is simply
the support of ε2.

Ω(let a = ε1 in ε2, σ) =
(

S2, subst〈z, ?〉(F1) ∪ subst〈z, a〉(F2)

)

where (S1,F1) = Ω(ε1, σ)

(S2,F2) = Ω(ε2, σ[a/S1])

Defining the translation function for function definitions (fix expressions)
reveals a subtle issue. A closure is defined to include an ordinary environment,
but we are using support environments. Every possible instance of the support
environment defines a different function. Trying to enumerate all these possible
functions would be horrendous. Fortunately, we don’t have to do that. We
can create a single object containing the formal variables, the body, and the
support environment. This will represent all functions in which the closure
environment is an instance of the support environment.
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The reason we can do that is that if different instances have different proba-
bilities, that will be captured by the factors for the expressions defining those
variables. In addition, solving the body of the function will produce factors
that mention the free variables used in the function. The result of applying
the function will be a distribution conditioned on the values of those free vari-
ables. Multiplying the factors for the expressions defining the free variables
with the result of the function will effectively be taking the expectation of the
result of the function, taken over the distribution over the free variables. This
will produce exactly the same effect as if we had enumerated all the possi-
ble functions and solved each one using a particular set of values for the free
variables.

Ω(fix a0(a1, ..., an) = ε, σ) =















{x},

?

{x}

[∈ {x}] 1















where x = {formals: {a1, ..., an}, body: ε, env: σ[a0/{x}]}

To understand this further, consider the role the support environment is play-
ing. It is different from the role of the environment in ordinary programming
language evaluation, where we look up the values of variables in the environ-
ment and use those values. Here, when we have a variable expression, we create
a factor equating the value of the variable to the value of ?. The support is
used only to restrict the possible values that have to be enumerated. As long
as the support is a superset of those values that have positive probability,
the result will be correct. A larger support will resultive in a more expensive
computation, but not affect the correctness. When we use the closure with
the support environment, this will result in solving the function body with a
support environment that includes all the possible values of the free variables.
So the computation will be correct.

The support plays a key role in solving function applications (again, only in
terms of making the solution more efficient). When translating ε0(ε1, ..., εn),
we first solve ε0, ..., εn to obtain their factors and support. Since we may have
functional uncertainty, the expression to be applied may result in multiple
distinct functions. By using the support, we only have to consider those func-
tions that actually have positive probability. For each possible function, we
solve the function body, in the environment formed from extending the closure
environment by binding each formal argument ai with the support computed
for εi. Similar to let expressions, we then need to substitute a temporary
variable zi for each formal argument ai in the result of solving the body. We
also substitute zi for ? in the result of solving εi. We also create another tem-
porary variable z0 and substitute it for ? in the result of solving ε0. Finally, the
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result of solving the body of a particular function is only relevant when the
function to apply is actually that function, so we make the result conditional
on z0 actually being that function. The support of a function application is
the union of the supports for the different possible functions to apply.

Ω(ε0(ε1, ..., εn), σ) =







⋃

x∈S0
Tx,

⋃n
i=0 subst〈zi, ?〉(Fi)

⋃

x∈S0
cond〈z0, S0, x〉(Gx)







where (Si,Fi) = Ω(εi, σ)

Gx = subst〈{z1, ..., zn}, {x.formals1, ..., x.formalsn}〉(Hx)

(Tx,Hx) = Ω(x.body, x.env[x.formals1/S1, ..., x.formalsn/Sn])

In the common case that the function to apply can only have one value, we do
not need to make the result of evaluating the body conditional on that value.
We do however need to keep the factors obtained from solving ε0, in case the
probability of observations in them is less than one.

Next, we have equality tests ε1 == ε2. The support in general will be {true,
false} but may not always be. It is important to determine the actual support
because this allows us to do short-circuiting for if expressions as described
earlier. We first solve ε1 and ε2, and create temporary variables z1 and z2

to express their results. By assumption the program is well typed and the
resulting supports have the same set of chains. The result of the equality test
can only be true if each corresponding pair of supports overlaps. The result
can only be false if there is some pair of corresponding supports such that
the size of one of the supports is not exactly one, or the supports are different.
If the test must be true (respectively, must be false), we keep the factors
from evaluating the subexpressions, and add a factor asserting that ? is the
constant true (resp. false).

In the more general case, the test could be either true or false. Here we
use a comparison factor to test for equality between two chains. This has two
rows for each possible value of the first chain. The first row says the if the first
chain is x and the second chain is x, the test is true. The second says that if
the first chain is x and the second chain is anything other than x, the test is
false. In table form,
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comp〈{c1, S1}, {c2, S2}〉 =

c1 c2 ?

S1 S2 {false, true}

[∈ {x1}] [∈ {x1}] [∈ {true}] 1

. . .

[∈ {xn}] [∈ {xn}] [∈ {true}] 1

[∈ {x1}] [6∈ {x1}] [∈ {false}] 1

. . .

[∈ {xn}] [6∈ {xn}] [∈ {false}] 1

where {x1, ..., xn} = S1.

This is sufficient if ε1 and ε2 are simple expressions, i.e. they evaluate to simple
values. If however they are compound, we do not want to enumerate all the
possible values of ε1, for the same reason as was explained earlier for variable
expressions. We therefore create separate comparison factors for each simple
chain c, and make the result of each a temporary variable wc. We then need
to make the result of the test the conjunction of all these temporary vari-
ables. Conjunction is a form of causal independence [Heckerman and Breese,
1994]. It is handled here using the same decomposition as presented there.
The conjunction of a set of chains is a set of factors that will be denoted by
conj 〈c1, ..., cn〉. In the most general case,

Ω(ε1 == ε2, σ) =














{false, true},

{subst〈z1, ?〉(F1), subst〈z2, ?〉(F2)}

∪conj 〈wc1 , ..., wcn
〉

⋃n
i=1 subst〈wci

, ?〉comp〈{z1.ci, S1i
}, {z2.ci, S2i

}〉















where (Si,Fi) = Ω(εi, σ)

S1i
denotes the ci component in S1

S2i
denotes the ci component in S2

Lastly, we have an observation expression obs π in ε. This is handled very sim-
ply. The pattern π defines a set of tests on simple chains on ?. We say that these
chains are covered by the pattern. For example, the pattern 〈 a : ’h, b :

〈 c : , d : ’j 〉 〉 defines the test [∈ {’h}] on ?.a and [∈ {’j}] on ?.b.d.
For each such test β on chain c with domain S, we create a factor Gc asserting
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that the value of the result satisfies the test:

Gc =

c

S

β 1

We also include the factors from solving ε.

Ω(obs π in ε, ν) = ∪chains c covered by πGc ∪ Ω(ε, ν)

5.4 Efficiency Enhancing Techniques

Two techniques that greatly improve the efficiency of IBAL’s inference al-
gorithm are memoization and structured variable elimination (SVE). With
memoization, when we try to compute the solution for an expression and en-
vironment, we look in a cache to see if it has already been computed and if so
reuse the solution. If not, we compute the solution and store it in the cache.
In practice, memoization is only performed for function applications — this
appears to be sufficient. Memoization is the foundation of dynamic program-
ming. Using it in IBAL allows IBAL to replicate the inference algorithms of
frameworks that use dynamic programming, such as stochastic context free
grammars.

SVE [Pfeffer, 2000] was introduced in the context of object-oriented Bayesian
networks and probabilistic relational models. In SVE, each object has an in-
terface to the rest of the model, consisting of variables that influence variables
in the object, and variables in the object that influence other variables. When
performing inference, all variables internal to the object are eliminated, and
a factor over the interface is produced and communicated to the rest of the
model. A similar idea is used in IBAL. Each function has an interface, con-
sisting of the formal variables of the function and the result of the function.
After solving the body of the function and computing its factors, all variables
that are internal to the function are immediately eliminated. The result is a
set of factors that mention only variables in the interface.

The benefits of SVE are threefold. First, using interfaces often leads to good
elimination orders for VE. If all factors were sent to the top level of the program
and VE only performed at the end, it might be hard to find such a good
elimination order. Second, performing elimination early keeps the number of
factors present at any point in the program manageable, and reduces the cost
of computing elimination orderings. Third and most important, SVE together
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with memoization are a powerful combination. When we memoize with SVE,
we cache not only the set of factors produced when solving an expression, but
also the result of the VE process on those factors. This saves us from having
to perform the same VE process many times.

5.5 On Laziness

Earlier versions of IBAL used lazy evaluation, in which function arguments
and variable assignments are only computed if they are actually needed to
determine the value of an expression. This has been abandoned in favor of
an eager approach. As a result, the supports of variables, and the factors
for the expressions defining them, are always readily available when they are
needed, but sometimes they will be computed when it is not necessary to do
so. A strong argument can be made for lazy evaluation [Hughes, 1989] in that
it greatly increases the declarativeness of the language. For example, when
creating a model defining a stochastic context free grammar, one can write
the model without worrying about the fact that it can produce large or even
infinite sentences. When given a particular string of finite length, only the
part of the process necessary for generating the string will be evaluated. With
an eager approach, the model has to be “eagerified” so that a bound on the
length of the produced sentence is included in every non-terminal function.
The function defining the concatenation of strings becomes more complex and
ugly.

Nevertheless, lazy evaluation has been discarded for two reasons. The first
is that it makes the semantics very tricky to define, and non-compositional.
The meaning of a function can no longer be simply a conditional probability
distribution from inputs to outputs, but depends on what part of the output
is needed. More seriously, laziness severely impacts the efficiency of inference.

One particular problem with lazy evaluation is that it does not work well with
memoization. The reason is that in memoizing, the arguments to a function
are looked up in a cache before evaluating the function. With lazy evaluation,
the arguments are not available at the time the function is first evaluated. A
complex scheme involving speculative evaluation was developed to handle this
problem, but it imposed great overhead on the function evaluation mechanism.

5.6 Performance

When designing a language and algorithm as general as IBAL’s it is impossible
to expect the same performance as hand-written code specially tailored for
an application. Rather, the goal has been for IBAL to be able to handle
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moderately sized problems reasonably quickly. For the most part, our results
are encouraging. For example, IBAL is able to solve the PRM model from
Section 3.2, with the query perf4.exam grade, and the observations as shown
in the example, in 0.09 seconds. 3

IBAL does reasonably well on the blocks example from Section 3.4. It is able to
solve 10 blocks over 50 time steps in 7.2 seconds, when the initial configuration
has all the blocks in a tower. 20 blocks over 100 time steps takes a little under
2.5 minutes. There is an exponential growth in the number of states possible
as the number of time steps increases. However this growth is very slow since
most actions are illegal in most states. An initial configuration in which all
the blocks are on the table is much more difficult, since many more actions
are legal. Here, IBAL is able to solve 10 blocks over 10 steps in 11 seconds,
but 20 time steps does not terminate within 15 minutes. A special-purpose
engine would have done better, but would still be limited by the inherent
difficulty of the task. This illustrates that it is easy to encode models that
are too complex to reason with in IBAL, and the importance of developing
approximate inference algorithms.

We tested the function call mechanism of IBAL using a noisy-or like model.
The recursive decomposition is implemented using nested function calls, using
the function

f(n) =

if n == 0

then false

else dist [ 0.01 : true, 0.99 : f(n-1) ]

IBAL is able to compute f(1000) in 0.24 seconds, and the running time is
linear in n on this problem. This shows that IBAL’s function call mechanism
is very efficient.

We also tested the ability of IBAL’s representation of factors to handle a simple
case of context specific independence. This involved a Bayesian network with
n + 1 nodes, in which n nodes were roots, and the final node depended on
all n of its predecessors. The conditional probability model for the final node
exhibited a good deal of context specific independence. It was defined by a
model of the form

if x0

then dist [ p0 : true, 1− p0 : false]
else if x1

then dist [ p1 : true, 1− p1 : false]
...

3 All times are on a Linux box with 3.2 GHz processor and 1.5GB of RAM.
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else if xn−1

then dist [ pn−1 : true, 1− pn−1 : false]
else dist [ pn : true, 1− pn : false]

Here IBAL was able to compute the resulting distribution in 0.744 seconds
for n = 50, and 7.124 seconds for n = 100. The running time displayed cubic
growth on this problem. This is to be expected. The number of variables
mentioned by the largest factor is linear in n. The number of rows in the
largest factor is also linear in n — note that it would have been exponential in
n if a table representation had been used. Finally the number of elimination
steps is also linear in n. It would be interesting to find out whether a special-
purpose implementation could have performed better on this problem.

We tested IBAL’s ability to keep the components of a tuple separate if they
do not need to be joined during the process of computation. We defined a
model in which a tuple of n fields was constructed, and then the final result
depended on only one of those fields. The running time grew linearly in this
case, and IBAL solved a problem with n = 100 in 0.12 seconds. Note that
an engine with lazy evaluation would have done even better. It would have
recognized that the final result only depends on one attribute, and would only
have created a factor to compute that attribute, and probably achieved near
constant time performance.

IBAL’s representation and inference algorithm can serve as the basis for a
learning system. We have implemented a parameter estimation algorithm
based on Expectation-Maximization (EM) [Dempster et al., 1977] on top of
the inference algorithm. When run on the PRM model with 1024 observations,
it takes on average 30 minutes to reach convergence. 4 The inference time for
each iteration of EM grows linearly with the number of objects and obser-
vations in the model, but the number of iterations required also grows with
the number of observations, so overall performance is worse than linear. The
linear growth in run time per iteration is a result of the simple connectivity
structure of the model. In general, as more objects are added they might be-
come more and more interconnected, rendering exact inference infeasible for
any algorithm.

6 Related Approaches

Approaches to developing expressive frameworks for probabilistic modeling
can be characterized along two dimensions: the style of the representation lan-

4 Convergence was determined to be achieved when the difference between param-
eter values on successive iterations was less than 0.0001.
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guage, and the type of inference algorithm used. Along the first dimension, ap-
proaches can roughly be divided into four kinds: rule-based approaches, object-
based approaches, undirected languages and programming language-like ap-
proaches. The different types of inference algorithms are generally knowledge-
based model construction (KBMC) of a large Bayesian network, object-based
methods, recursive descent on program structure, and approximate inference
algorithms such as Markov chain Monte Carlo (MCMC).

In the rule-based approaches (e.g. [Poole, 1993, Ngo and Haddawy, 1996, Ker-
sting and de Raedt, 2000]), relationships about first-order predicates are en-
coded by Horn clauses with uncertainty parameters. The various clauses con-
cerning a predicate are combined together using some combination rule. The
clauses, together with the combination rules, can be used in a KBMC al-
gorithm to define a large Bayesian network representing a joint probability
distribution over all ground atoms. Any BN inference algorithm can then be
used to answer queries. The KBMC approach has the advantage that standard
BN algorithms with their optimizations can be applied, and independence in
the domain can be taken advantage of. But constructing a single large BN
loses any structure that exists between high-level objects, and the same struc-
ture may be repeated many times. Sato and Kameya [2001] present a more
advanced inference method that uses a tabling procedure to avoid performing
redundant computations. More recently, Poole [2003] has developed a first-
order variable elimination algorithm that reasons in a lifted manner, and his
algorithm has been refined by R. de Salvo Braz [2005]. From the language
perspective, one drawback of the rule-based approaches is that the combina-
tion rules can be hard to understand, and make the language less modular.
In addition, it lacks compositional structuring elements such as objects or
functions.

A second type of language uses some concept of structural elements, which are
combined together to create a model. These include object-based approaches
such as PRMs [Koller and Pfeffer, 1998, Pfeffer et al., 1999] and DAPER [Heck-
erman et al., 2004], and network-fragment based approaches such as Laskey
and Mahoney [1997]. The recent MEBN language Laskey and Costa [2005]
is an example of this approach that has full first-order power. PRMs use a
structured, object-based inference algorithm, while MEBNs use KBMC. While
these representations are very expressive, it can be hard to use them to define
new kinds of models. For example, one of the features of PRMs is structural
uncertainty, i.e. uncertainty about the relational structure of the domain. One
form of structural uncertainty is number uncertainty, which is uncertainty
about the number of elements of some kind that are related to another ele-
ment. Number uncertainty cannot be easily expressed using the basic PRM
representation. When the SPOOK system Pfeffer et al. [1999] was developed,
it required a completely new representation infrastructure and new inference
technique implemented from scratch. With IBAL, it can be expressed simply
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as a language construct and an inference algorithm is automatically obtained.

Examples of undirected frameworks include relational Markov networks [Taskar
et al., 2002], which can be viewed as an undirected version of PRMs, and
Markov logic networks [Richardson and Domingos, 2006], in which probabil-
ity weights are attached to logical clauses. These are quite distinct from the
approach in this paper in that they are not generative, and thus have quite
different applicability.

The programming language approaches are diverse. BUGS [Spiegelhalter et al.,
1995], which uses MCMC for inference, has the appearance of an imperative
language for constructing models, but as the documentation makes clear, the
meaning of a program is the constructed model, not the model construction
process. The expressive power of the language is not clear from the available
documentation. For example, the language does not appear to have condition-
als. Stochastic logic programming [Muggleton, 2001], looks at first sight like
a rule-based approach, but in fact a program does not define a probability
distribution over atoms in the same way as the rule-based approaches, but
rather a probability distribution over proofs.

The most closely related work to this paper is [Pless and Luger, 2001], which
presents a stochastic lambda calculus. The language in that paper is quite
abstract. The inference algorithm is based on recursive descent over program
structure, and does not fully exploit independencies that hold in the domain.

The work in this paper originated in early work in [Koller et al., 1997]. That
paper introduced the idea of representing probabilistic models as programs in
a functional language. The language was simpler than the one in this paper.
The inference algorithm, which was based on recursive descent, was not fully
worked out. It partially exploited independence, but was equivalent to forcing
a bottom up variable elimination order. It proposed using lazy evaluation and
memoization, without realizing that the combination of both is very difficult.
It did not use the idea of converting programs into factors and then supplying
them to variable elimination.

7 Conclusion

We have presented a new approach to developing expressive high-level prob-
abilistic representation languages. The key idea is that a model can be ex-
pressed as a program describing the generative process. The meaning of the
program is the probability distribution over values generated by the process.
We have presented a language named IBAL that follows this idea using the
functional programming paradigm. We have presented the language frame-
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work and demonstrated some of the power of the language through examples.
These examples show that IBAL allows for natural specification of models, is
very expressive in what it can represent, makes it possible to capture model
structure, is modular and compositional, and allows high-level concepts to be
expressed in a very declarative way.

In addition, we have presented a semantics for IBAL in terms of a distribution
defined by a program. We have also presented a powerful inference algorithm
that exploits many kinds of structure. The inference algorithm exploits inde-
pendence, low-level structure of models, high-level object structure, repetition
in models, and utilizes the support of expressions to limit the amount of com-
putation that needs to be performed. The algorithm implements several tech-
niques to keep the factors used in variable elimination small. As a result, the
algorithm is quite general, and captures a number of specific frameworks. For
example, it reduces to the standard algorithm for Bayesian networks, hidden
Markov models, and stochastic context free grammars, when those frameworks
are represented in the language. In addition, it allows these structural features
to be exploited when they are found in a new framework.

There are several natural directions for future work. One is to allow continuous
variables, which will greatly expand the applicability of the language. Another
is to introduce approximate inference, which is quite necessary given how easy
it is to create complex models for which exact inference does not work. A
more specific language enhancement would be to provide a pass by reference
mechanism for function applications. In the current implementation, factors
are created matching entire function arguments to their values. This can be
inefficient when the function arguments are large, as for example in lists. A
mechanism that would allow the body of a function to refer to its arguments
without having to entirely match the arguments could provide great speedup
in some cases.
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