1

In a rational programming language, a program specifes g
situation encountered by an agent; evaluating the progra
amounts to computing what a rational agent would believe o
do in the situation. Rational programming combines the ad
vantages of declarative representations with featuresf p

IBAL: A Probabilistic Rational Programming Language

Avi Pfeffer
Division of Engineering and Applied Sciences
Harvard University
avi@eecs.harvard.edu

Abstract

In a rational programming language, a program
specifies a situation faced by an agent; evaluat-
ing the program amounts to computing what a ra-
tional agent would believe or do in the situation.
This paper presents IBAL, a rational programming
language for probabilistic and decision-theoretic
agents. IBAL provides a rich declarative language
for describing probabilistic models. The expres-
sion language allows the description of arbitrarily
complex generative models. In addition, IBAL's
observation language makes it possible to express
and compose rejective models that result from con-
ditioning on the observations. IBAL also inte-
grates Bayesian parameter estimation and decision-
theoretic utility maximization thoroughly into the
framework. All these are packaged together into a
programming language that has a rich type system
and built-in extensibility. This paper presents a de-
tailed account of the syntax and semantics of IBAL,
as well as an overview of the implementation.

Introduction

of probability-based rational behavior, including proltiab
tic reasoning, Bayesian parameter estimation and deeision
theoretic utility maximization.

IBAL makes four main contributions. The first is a highly
expressive language for representing probability modedd,
is significantly more expressive than previous languages.
Second, IBAL integrates a language for probabilistic mod-
eling, Bayesian learning and decision theory under a single
coherent semantic framework. Third, it provides a unified
inference engine for solving reasoning, learning andtwtili
maximization problems, that generalizes algorithms fonyna
standard kinds of models. Finally, IBAL is packaged togethe
into a usable programming language with features such as a
strong type system and built-in extensibility.

IBAL is designed with three kinds of users in mind. The
first is the system modeler, who may not be an expertin prob-
abilistic reasoning. For this type of user the basics of éme |
guage should be reasonably easy to learn, and it should be
fairly easy to come up with decent models for many domains.
This kind of user will benefit greatly from a good selection
of libraries implementing standard kinds of models. Also, a
good default inference algorithm is needed that can be ex-
pected to do reasonably well on a large number of models.

The second kind of user is a modeling expert, who un-
erstands well the inference algorithms for probabilistig-
oning. For the expert user, the language should provide the
ower to carefully tweak the model being used, and to control

hat inference algorithm is used to evaluate differentait
the model.

gramming languages such as modularity, compositionality, The third kind of user is the Al researcher, who may want
and type systems. A system designer need not reinvent the 4P introduce new kinds of probabilistic models and new in-
gorithms for deciding what the system should do in each posterence algorithms. IBAL makes it easy to introduce new
sible situation it encounters. It is sufficient to declaralty | ar : |
describe the situation, and leave the sophisticated inéere Vides support for building new algorithms and extending the
algorithms to the implementors of the language.

models via libraries, and the implementation framework pro

inference capabilities of the system.

One can think of Prolog as a rational programming lan- Space limitations prevent a full description of both the lan
guage, focused on computing the beliefs of an agent thajuage and the implementation in this paper. The next section
uses logical deduction. In the past few years there has begmovides a fairly detailed account of the language and its se
a shift in Al towards specifications of rational behavior in mantics. Section 4 presents an extended example, showing
terms of probability and decision theory. This paper presen how the various components of IBAL can be used together
IBAL, a probabilistic rational programming language. IBAL to provide a declarative implementation of a fairly complex
pronounced “eyeball”, stands for Integrated Bayesian Agendecision-theoretic agent. Section 5 presents an overview o
Language. As its name suggests, it integrates various expedhe main features of the IBAL implementation.

2 Genealogy and Related Work 3.1 Definitions

A definitionstates how the value associated with a name is

. . generated. Mameis a symbol such as; achainis a se-
et al, 1991, hereinafter referred to as KMP97. KMP97 is quence of names such asy.z. A definition has the form

a Lisp-like language extended withf& i p construct to de- _ i S .
scribe random events. IBAL extends KMP97 in a number ofT(chﬁ;Atlgre]tr)ee 'S %Qeﬁvpggf:;ﬂgvggfmngﬁf the forms:
powerful ways. IBAL's basic definition and expression lan- (Chain) o

guage for describing generative probabilistic modelsris-si (Function) A@1, ..., Tn) = €

lar to KMP97, but significantly richer, particularly in itse (Conditional) i f 6’1 ':’W then e, el se e

The most direct presucrsor to IBAL is the languagéKafller

of higher-order functions. In addition, IBAL uses observa- wherer stands for a pattern, discussed below
tions to condition distributions, which allows it to easds- (Dist) di st [pied,...,puien] '

scribe a much richer class of models. IBAL also integrates where thq;»,are,pr%bgbilities summing to 1
decisions and learning into the framework, which are not pro (Block) (b} Wherebzis a block

vided by KMP97. (Application) eg(eq, ..., ey)

IBAL is also indebted to recent work integrating proba- A patterndefines a condition that may be satisfied by a value.
bilistic and first-order representation languages. Tw@mec The notatiore |= 7 stands for the predicate that is true iff the
strands in that direction are relational probability msdBf- yalue of expression satisfies the patterm. A pattern may
efferetal, 1999, and stochastic logic prograriduggleton, specify equality to a constant, a chain, it may be the negatio
200d. of a pattern, or the conjunction or disjunction of two patter

Other projects have tried to integrate an expressive mod- In addition to the above expression syntax, the language
eling language with at least some aspect of learning or deprovides plenty of syntactic sugar, such as case statements
cision theory. Another project similar in spirit to IBAL is and easier syntax for defining functions. There is also a type
DTGolog [Boutilier et al,, 2004, which integrates decision system, discussion of which will be omitted for lack of space
theory into the Golog action cacululus. It is based on logic- The intuitive meaning of a definitian = e is that it defines
programming rather than the functional programming frame2 stochastic experiment generating the value.dfonsider a
work IBAL uses. Also, its roots can be traced back to MarkovSimple example:
decision processes, while IBAL's roots are in Bayesian netfair() =dist[0.5:'h, 0.5:]
works. As a result, the two systems have quite a differenbiased() =dist [0.9:’h, 0.1:]
approach to inference; for example, there is no notion df var Pick() = dist[0.5 : fair, 0.5 : biased]
able elimination in DTGolog. Also, DTGolog does not inte- €N =pick() .
grate learning into the framework. X ={y=coin() ;z = coin()}

[McAllester, 2000 presents a language based on KMP97 iy _ . .
for describing decision problems and the policies used by INtuitively, fai r andbi ased are functions that return
agents, and for calculating the expected utilities of trenagy ~ €ither’ h or’ t with appropriate probabilities. The function
Unlike IBAL, there is no attempt to solve the decision prob-Pi €k is @ higher-order function that returns either the fair
lem and compute the optimal policie§Cumby and Roth, ©F biased function. The value @foi n is generated by ap-
2004 integrates learning and reasoning in an expressivellyiNg Pick; it is eitherf ai r or bi ased. The expression

compositional language, but one that is not probabilistic. ~ d€finingx is a block expressiorx is a data structure with
componenty andz, both generated by applying the value

of coi n. Chainsx. y andx. z are mutually dependent on
3 The IBAL Language whethercoi n is f ai r or bi ased, but they are condition-

ally independent givenoi n. . . .
IBAL provides a declarative language for describing proba- IBAL inherits from KMP97 the idea of usintazinessto
bility distributions, parameter estimation problems atitity allow infinitely long experiments to be deflne_d, only some of
maximization problems. The top level language componenf/0Se results may be needed. For example:
in IBAL is a block A block consists of a sequencedadcla- real() ={ first =dist [0.5 : 'zero, 0.5 :'one]
rations There are a number of kinds of declarations, includ- rest = real()}
ing definitionsstating how values of things are stochastically 'éssthanhalf = real first= "zero
generatedpbservationsstating that some property holds of Here,r eal defines a uniform distribution over real num-
generated valuegriors describing the prior probability dis- bers between 0 and 1, represented by their binary ex-
tributions over learnable parameteadscisiongdescribing the pansion. Executing eal involves an infinite recursion,
decisions that an agent makes and the information itieas; but only the first bit is needed to determine the value of
wards describing the rewards an agent receives; prad)- | ess_t han_hal f, which is the value of a Boolean predi-
matics containing control knowledge on how to perform in- cate that looks only ateal . fi r st. We can think of exe-
ference in a block. | will describe each of these in turn. Forcutingr eal lazily, to get the single bit needed.
the sake of presentation | will present the semantics of the | will now make these intuitions precise. There are four
language incrementally, as | discuss each kind of dectarati kinds of values in IBAL: (1) Symbols such d®ads and
However, the discussions of semantics are somewhat techrtrue; (2) A specialundefinedralue, denoted by ; (3) Com-
cal, and can be skipped on first reading. plex valuesghat consist of aenvironmentwhich maps names

to values; (4Closuresdenotedz, ..., z,) — e consisting formal parametes; to the value ok;. Formally:

of formal paramaters, , .. ., z,, bodye and environmen. er o v o] "2
H H . . ! 1:%n /UL Un [0 4o
A chain can be viewed as representing a function on values. ep (e) o ,
Formally, if o is a chain and a value, we define(v) as fol- eoler, ... en))"" = if (e0) " mtt = (z1,...,2,) = €
lows: If o is empty,o(v) = v. Otherwise, ifv is not complex, 1 otherwise

o(v) = L. Otherwise, let bex.o’, andv’ be the value asso-
ciated withz in v; theno (v) = ¢'(v'). To determine whether
a value satisfies a pattern, we need an environment assigningNote that the preceding definitions elegantly take care of
values to the variables appearing in the pattern. Forma#ly, the issue of infinite experiments with finite observations}s
definev |=¢ 7, meaning thav satisfiesr in ¢, by v |=¢ 's asthd ess_t han_hal f example above, without needing to
if v is the symbolk; v =€ o, if o(e) = vandv # L; and make explicit use of laziness in the semantics. The rule for
v B¢ —wif v &€ mandv # L. v € & for conjunctive generating the value of an expression only uses the chaihs th
or disjunctiver is defined in the obvious way. Note that appear in it. Furthermore, a block expression always return
cannot satisfy any pattern. a complex value.

In order to generate the value of an expressgiowe need The above semantics IS mperaﬂqqayl semarjtlcshow-
an environment binding the free variables ef and a source N9 oW a program consisting of definitions defines a random
of randomness, which is provided by an infinite sequgnme ~ €XPeriment for generating values. We also providierota-
i.i.d. real numberg [0,1). Formally, we will define a func- tional semanticsn terms of a probability measure over val-
tion (), meaning the value generated fdn environment ues. The unde_r!ylng probability space consists _of coustabl
¢, given random choices as jn The notatiorp? is the sub- ~ S€guences of i.i.d. real numbers generated uniformly from
sequence op of elements with index congruenttanodulo [0:1) A programi d€e0f|pnes a function from sequences to val-
n. This device allows us to splitinto multiple independent U€S: PYZ(p) = ({b})"*", wherex, is the empty environment.
subsequences. g and TIy] indicate the head and tail of !f 12 iS @ measurable set of sequences, girisl the image of
p. For constant, chain, function, conditional and dist espre £t UnderZ, thens is measurable and £%) = Pr(L).

n+2
wherev; = (e;)“"

sions,(e)” is defined by: Natural properties of values that we would like to talk
about are in fact measurable. For example, any property of
L Nep the formo(v) = s is measurable. We can see this by defin-
('s) . = 5 . ing adepth-boundeavaluation functior{e):”. Its definition
M@y, ...,) =)" = (z1,...,20) e is the same as above, except tkigt is always L, and (),
(0)* = o(e) uses(), , for evaluating the body of function applications.
if e f=m\ (e2)6703 if v =< In other words, values that require a recursion to a depth
< then e, > — (e >€7pg if v =< greater tham will be undefined. Now, a program defines
el se ey LB o | a sequence of functio§(p) = ({b});"”. Itis clear that the
N setR; = {p : 0(Zi(p)) = s} is measurable since it only re-
wherev = (e;)“"! quires looking at a finite subsequencepab determine if it
(di st [prier, ..., puien])” = (e) Tl isin R;. Therefore the sek = {p: 0(Z(p)) = s} = U;R; is
wherez;;ll pi < Hd[p] < 23—1 s measurable. Furthermore, the above argument also suggests

an anytime approximation algorithm for computing(#.
Since theR; are non-decreasing, and their unionAs the

The value of a block expression is complex, and a definiprobabilities of theR; are a non-decreasing sequence whose
tion z; = e; within the block results in the:; component limitis Pr(R) = Pr(S).
mapping to the value af;. Each definition is evaluated in an]
environment including bindings for names appearing previ3.2 Observations
ously in the block. Furthermore, éf is a lambda expression, The language described so far is similar to that of KMP97, al-
the binding forz; is also added to the environment in which beit with a richer syntax and type system, and a more refined
e; is evaluated, so that; is bound in the resulting closure. semantics. It can express many common models, such as

This allows recursive functions to be defined. Formally: Bayesian networks, relational probability models, statica
logic programs, hidden Markov models, dynamic Bayesian
U1 = e i2n = en)P = {21015 .3 Tn : U} networks and stochastic context free grammars. All these
L o \EPY models aregenerativan nature, defining an experiment that
where v; = (e;) ; : ;
e stochastically generates values for variables. The righoé
and ¢; = elor...ifon .. v if e; Is a lambda the model is encoded in the way the values are generated
"7 €[wy...mi—1/v1...v;—1] otherwise y 9 .

Another flavor of probability model is eejectivemodel.
In a rejective model, the data is generated by a very simple
The final case to define is function application. To deter-process, e.g. uniformly, but data that fails to satisfy aiert
mine the value oég(eq, .. ., e,,), we first compute the value constraints may be rejected. The richness of the model is en-
of eg. Ifitis not a closure, the result of the application is un- coded in the rejection process. A good example of a rejective
defined. Otherwise we evaluate the body in the environmenhodel is aproduct of experts (POE)Hinton, 2000. In a
formed by extending the closure environment by binding eaciPOE, a datunx is generated uniformly, and then passed to

a set of probabilistic experts. Each expegcceptsr with observations, not the free variables.
some probability; (x) that depends on a property of The
data is accepted only if all experts accept it. The probgbili 3.3 Learning
of any datumz is proportional to[|, p;(z).

IBAL is able to express rejective models by making obser
vations an integral part of the language. élpservations a
declaration of the forne = n. Recall that this is the syn-

Observations provide the basis for integrating learnimg, i

‘the form of Bayesian parameter estimation, into the IBAL
framework. Unknown probability parameters are specified
usingprior declarations, which have the forlearn z =

tax used for Boolean predicates. An observation is simply & i’ ch| et o1 : €1 X : €n]
' ; : D1, .,y ep).
statement that a certain predicate is true. . A prior declaration of this form achieves two things. First,
Thus, for example, the general schematic form of a POE gefines a probabilistic parametéf = 6%....,6%, and
model . IS *expgessed . da? .. follows. shecifies a Dirichlet prior over the parameter. Fhare pos-
senera e0 _ é’éne(rapt);c(’) uce a uniform datum *) itive real numbers, specifying the the hyperparametersef t
gxgnerr?ggh expert, the(io:leq[nv:?‘q ;&i% :)0 et E)lrrlgh:aec;uﬁ::::nrﬂ ,0? gr:;)ir gtEd[zrfa-tKe)ln alsoec;rgitjs a difimi
= . ’ . yrrco Yt '
expert(r) ['accept We can view an IBAL program with prior declarations as

Another kind of model that can be expressed using obseSPecifying a joint model, that defines a joint probabilitytei
vation declarations isilarkov random field (MRF)An MRF ~ bution over the model parameters and the value returned by
is an undirected analogue of a Bayesian network, but it caf® program. Observations condition the joint model in the
also be viewed as a type of POE. An interesting effect is aftandard Bayesian way. Let us refine the coins example from
work here. IBAL's expression language defines directed; genearlier by adding priors and observations.
erative models, but the observation language implemeats th fir0 = {result=dist[0.5:°h,05:)
undirected notion of a constraint. As a result, IBAL is able b!aied() {:earn resu:i = g!r!cmei [iof h, 10 b't}
to express both directed and undirected models, and combi-g'ocino E)i(?l?(r)nr;iilljt = dirichlet [1 - fair, 1 - biaseq]
nations of the two. Itis importantto stress that obs_erva;tlo {'y = coin().result ; z = coin().result
are an integral part of the language, and not somethinggbaste x y h

onto a model after the fact in order to condition it. They cana fair coin is known to produceh with probability 0.5. The
occur within blocks and functions, and therefore they can beyrobability of’ h for a biased coin is unknown, but its prior
composed together, just like generative definitions. Al th js peaked around 0.9, while the prior over which coin gets
power of a modular, functional language is thereby extendegicked is uniform. As before;oi n is the result of picking a
to rejective models. Of course, IBAL also allows rejective coin, andk. y andx. z are two tosses afoi n. We also have
models to be combined with generative models. For examplean observation that. y came out h. This observation has
one natural way to build a language model is to use a stochagyltiple effects. First, becausé is more likely for a biased
tic context free grammar as the initial generator of ser#enc coin, the probability thatoi n is biased is increased, which
and then use probabilistic constraints to express glolegl-pr in turn increases the probability that z is’ h. The obser-
erties like agreement and sentence length. vation also conditions the probability parameters. Beeaus
In defining the semantics of observationsin IBAL, one sub-coi n, a result of applyingi ck, is likely to have turned
tle point must be stressed. An observation in a block can onlput biased, we will get a posterior over theck parameter
condition variables defined within the block, not free vari- that is more weighted towards a biased result. Furthermore,
ables. As far as a containing block is concerned, the definibecauseoi n may have been biased, and because a toss of
tion of a contained block is considered to be a black box. licoi n came out h, the posterior for th&i ased parameter
simply defines a distribution over the value of the blockegiv is also weighed slightly more strongly towards heads.
values for the free variables. The containing block need not \ith its learning component, IBAL is able to do param-
concern itself with whether this distribution is defined gen eter estimation for many common models, including hidden
atively or rejectively. Failure to enforce this rule would & Markov models, stochastic context free grammars and prob-
serious violation of modularity. abilistic relational models. Furthermore, learning in IBA
We get the right effect simply by modifying the definition is not just “added on” to the probabilistic representatiam |
of ({b})“* for the case of block expressions. Now, in additionguage, but is thoroughly integrated into the language. As
to defining values for each of the components of the block, ifa result, the benefits of compositionality and modularigy ar
will also make sure that all the observations in the block areobtained for representing learning tasks. In particuBAL
satisfied. If they are not, the generated values for the blocks good at representing a cumulative learning framework, in
are rejected, and the process is repeated. The resulting dighich smaller models are learned and then used as compo-
tribution defined by the block is conditioned on the observanents of larger learning problems. Just as observations
tions being satisfied. Itis, of course, possible to defineta seonly condition values within their scope, they are only used
of observations that fail with probability 1, in which ca$et to learn about model parameters within their scope. Thus a
attempt to generate a value for the block will go on for ever.compositional learning process can be specified by provid-
In that case, the value of the blockis Note that because ing a nested scope containing all the data and parameters for
the rejection/repetition process is contained within tleck a learning subproblem, and a containing scope that uses the
itself, only the value of the block itself is conditioned et results of the subproblem.

In defining the semantics of learning in IBAL, we need to Decisions and rewards in nested blocks implement the notion
get a subtle point correct. If a prior declaration appears irof delegation; decisions in the nested block do not consider
the body of a function, the same parameter values should téeir effects on the containing block. The reason for enfarc
used every time the function is applied. This is fundamentathis interpretation is similar to the reason observatiomstd
to learning — different observations of the same functian ar condition values outside their scope; the alternative doed
all observations about the same parameter! This means thatilt in a serious loss of modularity. If an agent in a nested
in terms of the generative semantics, the parameter value [Hock had to be concerned about rewards in the calling block,
not returned by each application of the function, but rather the decisions for the nested block would no longer be deter-
is generated when the function is defined, and stored as pantined solely by its free variables. Therefore a program call
of the closure representing the value of the function object ing the nested block could no longer treat it as a black box.

To achieve this effect, we make the following definition. The second point to clarify is that it is assumed that the
The parameterdirectly insidea block are the parameters of values of free variables are always known to an agent mak-
prior declarations defined in the block, that are not nestedhg the decisions in a block. Once again, failure to enforce
in the body of a lambda expression. In the generative prothis restriction would result in a modularity problem. lith
cess, the values of the parameters directly inside the bbdy @gent does not know the values of the free variables, it must
a lambda are generated at the time the closure is created, akdow the distribution over those values in order to make a ra-
these values are used for all future applications of theuctos tional decision. But then, the distribution defined by a kloc

The remainder of the semantics stays basically the same &&pends not only on the values of the free variables, but on
before. When a definition resulting from a prior declarationtheir distribution. This is an unfortunate restrictiomes it
is encountered, the relevant parameter values are lookiad up prevents IBAL from being capable of representing POMDPs.
the environment and used to choose which branch is taken, ifihe situation can perhaps be salvaged, by borrowing the idea

the same way as fordi st expression. of belief state from POMDPs, and adding it as an extra im-
o o plicit input to the block.
3.4 Decisions and Utilities The third point is the relationship between observations

The representaﬂon of decision pr0b|ems in IBAL is gearecﬁnd decisions in a block. We assume that all observations are
towards two popular models: influence diagrams (IDs) andnown to the decision maker, even if they appear lexically
Markov decision problems (MDPs). IBAL can easily rep- subsequent to the decision. The reason is that the observa-
resent these and other models, including various kinds ofions are viewed simply as part of the definition of the prob-
structured MDPs. A decision declaration in IBAL has the ability distribution over the block’s values, and we make th
form choose z froms,,...,s, given oy,...,0m. assumption that the decision maker knows the correct distri
;ra?rllz ei?ec'f'e: thaen dn?rﬁr(]aein?cf)rmgtigﬁg\slg)ilr;\b\llgntgbtlﬁé Iéi?a _ bution. A result of this assumption is that we disallow obser
cision maker, the chains,...,on (called theinforma- VAUons statement to mention variables that depend (grrect
or indirectly) on the decisions in a block. This restrictjme-

tional parentsof z). A block may contain multiple de- ; ; L o
cision declarations, in which case we enforce the novents the semantics of learning and decisions from intexger

forgetting rule of IDs, that the informational parents of With each other.

later decisions always include those of earlier decisiags, In defining the semantics, we begin with utilities. With
well as the decisions themselves. A reward declaratiorvery valuev we associate a utility/(v). For non-complex
is eitherrecei ve case e of [m: ry,...,m,! r,] OF valuesU(v) = 0. For complex value# (v) is determined by

recei ve ao. The first form states that the reward dependshe reward declarations in the block in whictwas created.
on the value ot, and itis the real number; associated with Recall that a complex value is created {p})*. We ex-
the first patternr; that the value satisfies. The second statesanq the definition of {b})*” so that it also produces(v)
that the reward is times the reward of, wherea is a pos- after producing.. We setU(v) to be the sum over reward

itive real number. A block may have multiple reward decla- . . ' .
rations, in which case the total reward is the sum of the indid€clarationsit in b of Ug(v), defined as follows. I is

vidual rewards. For example, a typical MDP is schematicallyf eward case o of my :ry,..., 7 2 1y,

represented as follows: [i ifo() B mando(v) < mforj <

MDP(s) ={ (*takes current state as argument *) Ur(v) 0 ifo(v) bée’ mfori=1,...,n
transition(s,a) =... (*returns next state *)) . . .
reward(s,a) 5 reward case (s,a) of [(s1,al): 3, ..}] where¢’ is the environment resulting from extendiagvith
choose a from al,a2 given s the bindingsin. If Risreward ao, Ug(v) = a-U(o(v)).
nextstate = transition(s,a) Now for decisions. Astrategyd for block b is a decision
currentreward = reward(s,a) dp.., for each decision statemeft and each value of the
futurereward = MDP(nexistate) informational parents ab. Given an environmertin which

reward 1 currenteward

to evaluateh, and a particular strategy we define a function
reward 0.9 futurereward} @ b gy

U(b)3”, whose meaning is the utility fdr, given strategyl,
Three points must be made about the representation of d&indings of free variables ia, and random choices specified
cision problems in IBAL. The first is that each block consti- by p. Holding ¢, b andd fixed, this function is a random
tutes a distinct decision problem. A block with decisions isvariable on the space of sequences. Taking the expectation
viewed as identifying an implicit agent who makes the deci-of this function over sequences produces the expectetyutili
sions and receives the rewards mentioned in the block.itselthe optimal strategy fob is then the one that maximizes this

expected utility. The definition of{6})“” now proceeds by model. The results of the language model are fed into the
first choosing?* = arg maxy E,[U(b);;”],and then process- influence diagram. The overall result may not be a coherent
ing the block as before, usinj to choose the values of each probabilistic model. Furthermore, it may be hard to taitee t

decision variable given its informational parents. components for their use in this application. For example,
_ getting the speech recognizer to recognize unusual names of
3.5 Pragmatics individuals in the company might require an extra engineer-

The IBAL language allows a wide variety of different kinds ing effort.

of models to be expressed. There is no single best inference mtghlelBéA\elglgr]:ti\\yg?‘rl]%Seplp"(,:A\attgnhicg%rllg\?ecljetshceriggﬂgrggge
algorithm to use for all models. While IBAL implements a model consists of three steps: a request geﬁeration fumctio

good default algorithm that should work well in many situ- 5 fnction that generates sentences based on requests, and a
ations, it also allows the possibility of using other metfod fynction that generates phoneme sequences from sentences.
The programmer can specify control knowledge on how toFor the decision-making component, the agent is given the
solve a program in the form @iragmatic declarationsThese phoneme sequence, and chooses a response. The agent’s util-
could either specify what algorithm to use, or details of howity is determined from the request and the response. The high
to use a particular algorithm, such as specific eliminatien o level code looks like this:
derings for variable elimination. request = makeequest()

Because pragmatic declarations are part of a block, thegentence = maksentence(request)
only specify how to do inference in that block and its nested’honemes = makphonemes(sentence)
blocks. Furthermore, pragmatic declarations in a nestezkbl Choose response.type from GiveDirections, Connect, Repea
can override those in a containing block. These features afhoose response.who from fred, wilma
low fine, modular, control over how inference is done, allow-"¢¢¢'V® match(request, response)

ing complex models to be built in which different inference thelVlﬂlillit?/ogvo?nesgtg?i%nin'lt'wenhﬁrr]\gtgggl?aekgepg(rqautgsetsﬁr%? and
methods are used for different components. duces a request. A request hasyge field, whose value is

It is anticipated that pragmatic declarations will often be(githerGet Di rections orTal k. A Tal k request also has

used by library designers. The user of a library is shieldeywho field, whose value is a person. A person is a complex
from thinking about how the library models will be solved. value with three fieldsname, ti t | e andext ensi on. In

This modularity of inference methods may turn out to be asa typical programming language, the typenafire would be

important as modularity of representation in building com-string, because what we typically want to do with names is

plex probabilistic agents. compare them, read them and print them. In this applica-
tion, however, the most important thing about a name is how
it tends to be pronounced. Therefore the typaafre is a

4 Example function that stochastically generates a phoneme sequence

In this section, | illustrate how a declarative high-leveps ~ The same is true fari t | e. Themake.r equest function

resentation language that unifies probabilistic reasqriag 'S @S follows:

cision theory and parameter estimation can simplify and inmakerequest() 5)

tegrate the implementation of sophisticated rational tgen ~ !€armwho=[1:fred, 1: wilma]

Consider the task of implementing an automated receptionis €& type = [20 - GetDirections; 80 : Talk]

agent. The job of the agent is to receive spoken requests ovér

the phone and to respond to them appropriately. Requests in- G€nérating the request involves choosing two things: the
clude asking for directions and talking to a particular pers type of the request, and the person, if the request is to talk

; e o ; to a person. Both choices are made learnable. The agent has
responses include giving directions, connecting to anrexte |ot5 of past experience about what kinds of requests tend to

sion, and asking the caller to repeat the request. be generated. These are expressed by observation stasement
In a decision-theoretic design for this agent, the agent reas follows:

ceives a utility based on how well its response matches the a¢; = makerequest()
tual request of the user. Of course, the agent does not abser type |= GetDirections
the actual user request, but only a sequence of signalseIn th2 = makerequest()
decision model, there will be a prior distribution over reqts r2.type = Talk
and a conditional distribution of signals given requests. r2.who = wilma

With existing tools, it is difficult to implement this
decision-theoretic design using a single, coherent model. Themake _sent ence function produces a sentence from
Instead, a typical implementation might consist of severap request. A sentence is a list of words, each of which is a
components, each of which is probabilistic, but which arefunction that stochastically produces a list of phonemesiwh
stitched together in an ad-hoc manner. There will typicallyaCt'Vated- Here | illustrate with an extremely simple sen-

be a speech-recognition component that determines tHg like'ENCE generation model; in a real application, a more com-

ds that red th ved sianal: a | dgﬁx grammar model might be used. Even this simple ex-
words that generated the received signal; a language modgmpje jjlustrates the power of passing around data strestur

that can determine the probability that a particular reuesihat contain functions in fields. The sentence generator sim
generated a particular sentence; and a high-level influenggly siots the given person’s name or title in the appropriate
diagram for deciding what to do. The results of the speechplace. (z;...;z,] is the list containing, ... ,z,, and@

recognizer and request generator are fed into the languagethe list concatenation operator.)

makesentence(request) = values to elements of a ring. Events and factors supporta ver

if requesttype |= GetDirections: generalized version of the variable elimination algorithm
then [can;you;give;me;directions] The third component implements timeain line of infer-
else [connect; me;to ence. The main line begins with code in shallow form, and

[dist [0.5:request.who.name, 0.5:request.who.title]] proceeds through a sequence of steps. The first stép-is

The make_phonenes function takes a sentence and main generationin which the supportD(o) of each chain
produces a list of phonemes. Since each word in thgsed in the program is computed. Domain generation uses
sentence is a function that generates phoneme sequencfgies such as the following: for a definitian= di st [p; :
rrake_phcc)jnenes just exeﬁutes e?ch_?rf]th_e (\]/I\(o_réjs ||n thgjsen—a1 Pn : o], D(w) is the union of theD(s;). Domain
tence, and concatenates the results. The individualwoddmo _ ’ """ ° ' . :) .
els would probably be hidden Markov Models, and may bed€neration also uses observations to restrict the domas.
part of a speech recognition library. Unusual names of eopl™Man generafion may be followed by an optlonahst(alnt
may not be in the generic hMM library, but the library may Propagationstep, which further restricts the domains, by
provide a function that creates a new, trainable hMM that caPropagating observations back through the definitionsen th
be learned for a particular name. program. Constraint propagation may be worthwhile since

makephonemes(sentence) = it is cheaper than the full-scale variable elimination mex

if sentencds_empty performed later. .
then [] The second step is to compute theeded chainthat are

else head(sentence)() @ mabeonemes(tail(sentence)) actually relevant to answering a query. These include all

Finally, the utility model takes the request and reSIOOnsechains that influence query variables or observed variables

and produces a utility of 1 if the request matches the regponsdiréctly or indirectly. This computation step is partialja

If the response is RepeatPlease, the utility is 0. An in@orre importantin recursive mode_ls such as stochas.tic gramrtars.
response has utility -5. deduces, for example, that in order to determine whether the

first word of a sentence is “the”, only the first non-terminal

match(request,response) = need be expanded at any stage (assuming there arenoe

correct = .
(requestype = GetDirectionsA ductions). . o)
responsgype = GiveDirections)/ The key step in the main linéactor production converts
(requestype = Talk A each definition in the program into a set of factors. The goal
responsgype |= ConnectA is to produce factors that are as simple as possible; dummy
requesivho = responsavho) variables may be introduced to achieve this. For exampte, fo
receive a definitionz = y, supposer andy are complex, withr.a
if correct andz.b needed. Two separate factors will be produced, one
then 1 enforcing thatr.a andy.a are equal, and the other forb and
e'iﬁ if rgsponswpe|: Repeat y.b. For a definitionz = di st [p; : 01,...,pn : 0,), @
e|§Q-5 dummy variablel is introduced, to represent which branch is
} actually taken. The dummy variable serves to separate;the

from each other; without the dummy variable, they would all
5 1mol tation O . have to appear in the same factor. A set of factors is produced
mplementafion Lverview for each brancli, saying that ifd takes the valug, then the
The inference tasks in IBAL are to estimate the learnable pasomponents of: ando; must have the same value, butdif
rameters, to compute the utility maximizing decisions, andiakes any other value this branch is irrelevant and there is n
to solve for the conditional distribution over various aigi constraint onz ando;. An additional factor saying that
given values for other chains. The tasks are accomplishethkes value 1 with probability,, ..., n with probability p,,
in that order. Since decisions cannot influence observgtionis also produced.
they are irrelevant to the learning task. Once the parameter The final solution step igariable elimination as is com-
have been learned, the expected utility for any strategy camonly used for BN inference. The set of factors computed
be computed and the decision task can be solved. Once thy factor production represents a sum of products expnessio
decisions have been fixed, the distribution over all valses i All variables except for query variables and free varialites
known and the probabilistic reasoning task can be solved. a block are eliminated from the factors, and the result is the
IBAL is implemented in Objective CAML, a variant of conditional probability of the query variables given thedr
ML. The design of the implementation is divided into four variables. All solution steps except for the final variabime
parts. The first componentif@ntendconsisting of a parser, ination are recursive; a recursive call is used to procestede
type checker, and translator, whose job is to produce code iblocks and function applications.
shallow form In shallow form, nested subexpressions are re- The final component of the implementation is tleethat
placed by chains, and only simple patterns are allowed. Thholds everything together. Each of the solution steps restir
second component is a setafpport modulesThese include into a dynamic programming algorithm, where all recursive
a ubiquitous polymorphic container type implementing effi-calls are looked up in a cache before solving them explic-
cient maps from chains to values of any kind, as well as atly. Also, an iterative deepening strategy is used to pevi
general implementation @ventswhich are measurable sets an anytime approximation algorithm for queries that may not
of values, andactors which are measurable functions from terminate. These recursion strategies are implemented in a

generic, modular way. For exampledgnami c functionis widely used methods, and thereby provides a good default
provided that takes a recursive algorithm and produces a dylgorithm. Furthermore, the support modules and glue make
namic programming version of the same algorithm. The gluet easier to extend the system with alternative methods.
is also responsible for handling pragmatics.

The glue is implemented using a programming techniqué® Conclusion and Future Work

in which a recursive functiorf takes a special argument |ga| is a rich declarative programming language for de-
When f recurses, rather than calling itself directly, it calls seriping probabilistic models, decision theoretic siias,

g. Thus f is a function with a *hole”, which needs to be 5,4 Bayesian parameter estimation problems. This paper has
filled in. All the recursion strategies can be mplementedmesented a syntax and semantics for the language, and an

as ways of filling in the hole. The simplest way to fill in oyerview of an implementation with probabilistic reasapin
the hole is to plugf into itself, which gives the basic recur- utility maximization and parameter learning.

sion pattern. But another possibility is to define a function £ +ure work on IBAL is divided into implementation en-

cached(f) which looks for a result in a cache before call- hancements that are practically useful but not too theoreti
ing f, calls f if the result is not found, and stores the result c5)y challenging, and more significant extensions to the ex
of calling f in the cache. Itached(f) is plugged into it- hressive power of the language. Plans in the first categery in
self, the result is a dynamic programming algorithm based O'EIude implementing a variety of approximate solution meth-
f. Similarly, dept h- bounded(n, d, f) produces a version o4s: providing libraries to implement common kinds of mod-
of f that stops recursing after a recursion depth0feturn- |5 “and useful structures such as sets of objects; anddexten

ing d instead. Recursion strategies can be composed Usingq the type system to include alaebraic data tvpes and polv-
the method of functions with holes. This provides a ”ice'm%rphic)@pesy modeled on ML. g yP POy

modular way to deal with multiple inference methods. Each one of the main future tasks in the second category, is to

inference method is invoked by a pragmatics handler thag, 51t the learning of model structure as well as parame-
recognizes a particular type of pragmatic declaration. Thggrs |n keeping with the philosophy that everything that ca
pragmatic handlers can be installed on top of each other, sge qone in IBAL should be thoroughly integrated, this will

that every recursive call results in the all the handlersidpei require a much richer language with which to express priors,

checked. The inference methods themselves do not need {Qq|,ding priors over structure. Another important exiens
know what handlers are used for the recursive calls.

k : . isto provide a way to describe how an IBAL agent interacts
All three inference problems use dynamic programmingyith its environment; in other words, to provide a declamti

with the main line of inference described above. Decisiongescription of the 1/0 capaboilities of the agent. A finaktas
making is based on ID algorithms, using backward inducis to allow multiple agents into the IBAL framework. Not
tion to solve the de<_:|5|ons in a block from the_bottom Up-only would this allow IBAL to be used for modeling game-
For MDPs, the algorithm reduces to value iteration (becausgheoretic situations, it would also provide a way to deserib

of the dynamic programming component) with reachability aggents’ models of other agents. While these tasks present a
analysis (because of the domain generation). For the probange of interesting and challenging issues, IBAL provides

abilistic reasoning task, all reasoning is directed towaad o0d foundation with which to begin tackling them.
particular query; pruning of the problem to those variables

required for_ the query is aqgor_nplished _by computing theReferences

needed chains. For probabilistic reasoning tasks, the alg o - :

rithm reduces to regular variable elimination for standard Boutilier etal, 200q C. Boutilier, R. Reiter, M. Soutchan-
BNs, while the dynamic programming makes it equivalent SKi» @nd S. Thrun. Decision-theoretic, high-level agent
to forward-backward for HMMs and the inside algorithm for ~ Pregramming in the situation calculus. AAAI, 2000.
SCFGs. Finally, parameter estimation uses a general versidCumby and Roth, 20d0C. Cumby and D. Roth. Relational
of the EM algorithm to compute maximum a-posteriori pa- representations that facilitate learning.KR, 2000.

rameter values.. This is only an approximati(_)n to thg trUgHinton, 2000 G. Hinton. Training products of experts
Bayesian posterior, of course. The E step consists of UsS&\gt py minimizing contrastive divergence. Technical report,
main inference line to compute how many times each branch Gatsby Computational Neuroscience Unit, 2000.

was taken for each prior declaration. These are the expect
sufficient statistics. The M step combines the expected—suﬁﬁ%(éﬁ’éggva;"é:ygezi; ﬁ?g?er’ng'e'\fgrAs”teoitﬁ;s%gdp%g::gg’ n

cient statistics with the Dirichlet hyperparameters toduwe

new parameter values that have maximum posterior probabil- AAA, 1997.
ity given the expected sufficient statistics. Again, the eom [McAllester, 2000 D. McAllester. Bellman equations for
bination of variable elimination with dynamic programming stochastic programs. Revision of talk at LPNMR-99, 2000.

results in the algorithm reducing to the typical EM used for[muggleton, 200D S. Muggleton. Stochastic logic pro-
BNs, Baum-Welch for HMMs, and the outside algorithm for grams. Journal of Logic Programming2000. Accepted
SCFGs. subject to revision.

| do not claim that IBAL will be an efficient inference al-)JPfefferet al, 1999 A. Pfeffer, D. Koller, B. Milch, and
gorithm for all applications. Some problems are inherentl K.T. Takusagawa. SPOOK: A system for probabilistic

hard, or require special methods, and a variety of algosthm PO :
is needed. | do believe that IBAL integrates a number of object-oriented knowledge representationUl, 1999.

