
IBAL: A Probabilistic Rational Programming Language

Avi Pfeffer
Division of Engineering and Applied Sciences

Harvard University
avi@eecs.harvard.edu

Abstract

In a rational programming language, a program
specifies a situation faced by an agent; evaluat-
ing the program amounts to computing what a ra-
tional agent would believe or do in the situation.
This paper presents IBAL, a rational programming
language for probabilistic and decision-theoretic
agents. IBAL provides a rich declarative language
for describing probabilistic models. The expres-
sion language allows the description of arbitrarily
complex generative models. In addition, IBAL’s
observation language makes it possible to express
and compose rejective models that result from con-
ditioning on the observations. IBAL also inte-
grates Bayesian parameter estimation and decision-
theoretic utility maximization thoroughly into the
framework. All these are packaged together into a
programming language that has a rich type system
and built-in extensibility. This paper presents a de-
tailed account of the syntax and semantics of IBAL,
as well as an overview of the implementation.

1 Introduction
In a rational programming language, a program specifes a
situation encountered by an agent; evaluating the program
amounts to computing what a rational agent would believe or
do in the situation. Rational programming combines the ad-
vantages of declarative representations with features of pro-
gramming languages such as modularity, compositionality,
and type systems. A system designer need not reinvent the al-
gorithms for deciding what the system should do in each pos-
sible situation it encounters. It is sufficient to declaratively
describe the situation, and leave the sophisticated inference
algorithms to the implementors of the language.

One can think of Prolog as a rational programming lan-
guage, focused on computing the beliefs of an agent that
uses logical deduction. In the past few years there has been
a shift in AI towards specifications of rational behavior in
terms of probability and decision theory. This paper presents
IBAL, a probabilistic rational programming language. IBAL,
pronounced “eyeball”, stands for Integrated Bayesian Agent
Language. As its name suggests, it integrates various expects

of probability-based rational behavior, including probabilis-
tic reasoning, Bayesian parameter estimation and decision-
theoretic utility maximization.

IBAL makes four main contributions. The first is a highly
expressive language for representing probability models,that
is significantly more expressive than previous languages.
Second, IBAL integrates a language for probabilistic mod-
eling, Bayesian learning and decision theory under a single
coherent semantic framework. Third, it provides a unified
inference engine for solving reasoning, learning and utility
maximization problems, that generalizes algorithms for many
standard kinds of models. Finally, IBAL is packaged together
into a usable programming language with features such as a
strong type system and built-in extensibility.

IBAL is designed with three kinds of users in mind. The
first is the system modeler, who may not be an expert in prob-
abilistic reasoning. For this type of user the basics of the lan-
guage should be reasonably easy to learn, and it should be
fairly easy to come up with decent models for many domains.
This kind of user will benefit greatly from a good selection
of libraries implementing standard kinds of models. Also, a
good default inference algorithm is needed that can be ex-
pected to do reasonably well on a large number of models.

The second kind of user is a modeling expert, who un-
derstands well the inference algorithms for probabilisticrea-
soning. For the expert user, the language should provide the
power to carefully tweak the model being used, and to control
what inference algorithm is used to evaluate different parts of
the model.

The third kind of user is the AI researcher, who may want
to introduce new kinds of probabilistic models and new in-
ference algorithms. IBAL makes it easy to introduce new
models via libraries, and the implementation framework pro-
vides support for building new algorithms and extending the
inference capabilities of the system.

Space limitations prevent a full description of both the lan-
guage and the implementation in this paper. The next section
provides a fairly detailed account of the language and its se-
mantics. Section 4 presents an extended example, showing
how the various components of IBAL can be used together
to provide a declarative implementation of a fairly complex
decision-theoretic agent. Section 5 presents an overview of
the main features of the IBAL implementation.



2 Genealogy and Related Work

The most direct presucrsor to IBAL is the language of[Koller
et al., 1997], hereinafter referred to as KMP97. KMP97 is
a Lisp-like language extended with aflip construct to de-
scribe random events. IBAL extends KMP97 in a number of
powerful ways. IBAL’s basic definition and expression lan-
guage for describing generative probabilistic models is simi-
lar to KMP97, but significantly richer, particularly in its use
of higher-order functions. In addition, IBAL uses observa-
tions to condition distributions, which allows it to easilyde-
scribe a much richer class of models. IBAL also integrates
decisions and learning into the framework, which are not pro-
vided by KMP97.

IBAL is also indebted to recent work integrating proba-
bilistic and first-order representation languages. Two recent
strands in that direction are relational probability models [Pf-
efferet al., 1999], and stochastic logic programs[Muggleton,
2000].

Other projects have tried to integrate an expressive mod-
eling language with at least some aspect of learning or de-
cision theory. Another project similar in spirit to IBAL is
DTGolog [Boutilier et al., 2000], which integrates decision
theory into the Golog action cacululus. It is based on logic-
programming rather than the functional programming frame-
work IBAL uses. Also, its roots can be traced back to Markov
decision processes, while IBAL’s roots are in Bayesian net-
works. As a result, the two systems have quite a different
approach to inference; for example, there is no notion of vari-
able elimination in DTGolog. Also, DTGolog does not inte-
grate learning into the framework.

[McAllester, 2000] presents a language based on KMP97
for describing decision problems and the policies used by
agents, and for calculating the expected utilities of the agents.
Unlike IBAL, there is no attempt to solve the decision prob-
lem and compute the optimal policies.[Cumby and Roth,
2000] integrates learning and reasoning in an expressive,
compositional language, but one that is not probabilistic.

3 The IBAL Language

IBAL provides a declarative language for describing proba-
bility distributions, parameter estimation problems and utility
maximization problems. The top level language component
in IBAL is a block. A block consists of a sequence ofdecla-
rations. There are a number of kinds of declarations, includ-
ing definitionsstating how values of things are stochastically
generated;observationsstating that some property holds of
generated values;priors describing the prior probability dis-
tributions over learnable parameters;decisionsdescribing the
decisions that an agent makes and the information it has;re-
wards describing the rewards an agent receives; andprag-
matics, containing control knowledge on how to perform in-
ference in a block. I will describe each of these in turn. For
the sake of presentation I will present the semantics of the
language incrementally, as I discuss each kind of declaration.
However, the discussions of semantics are somewhat techni-
cal, and can be skipped on first reading.

3.1 Definitions
A definitionstates how the value associated with a name is
generated. Anameis a symbol such asx; a chain is a se-
quence of names such asx:y:z. A definition has the form
x = e, wheree is anexpressionwith one of the forms:

(Constant) ’s wheres is a symbol
(Chain) �

(Function) �(x

1

; : : : ; x

n

) ! e

(Conditional) if e

1

j= � then e

2

else e

3

where� stands for a pattern, discussed below
(Dist) dist [p

1

:e
1

; : : : ; p

n

:e
n

℄

where thep
i

are probabilities summing to 1
(Block) fbg whereb is a block
(Application) e

0

(e

1

; : : : ; e

n

)

A patterndefines a condition that may be satisfied by a value.
The notatione j= � stands for the predicate that is true iff the
value of expressione satisfies the pattern�. A pattern may
specify equality to a constant, a chain, it may be the negation
of a pattern, or the conjunction or disjunction of two patterns.

In addition to the above expression syntax, the language
provides plenty of syntactic sugar, such as case statements
and easier syntax for defining functions. There is also a type
system, discussion of which will be omitted for lack of space.

The intuitive meaning of a definitionx = e is that it defines
a stochastic experiment generating the value ofx. Consider a
simple example:
fair() = dist [0.5 : ’h, 0.5 : ’t]
biased() = dist [0.9 : ’h, 0.1 : ’t]
pick() = dist [0.5 : fair, 0.5 : biased]
coin = pick()
x = f y = coin() ; z = coin()g

Intuitively, fair andbiased are functions that return
either’h or ’t with appropriate probabilities. The function
pick is a higher-order function that returns either the fair
or biased function. The value ofcoin is generated by ap-
plying pick; it is eitherfair or biased. The expression
definingx is a block expression;x is a data structure with
componentsy andz, both generated by applying the value
of coin. Chainsx.y andx.z are mutually dependent on
whethercoin is fair or biased, but they are condition-
ally independent givencoin.

IBAL inherits from KMP97 the idea of usinglazinessto
allow infinitely long experiments to be defined, only some of
whose results may be needed. For example:
real() =f first = dist [0.5 : ’zero, 0.5 :’one]

rest = real()g
lessthan half = real.firstj= ’zero

Here,real defines a uniform distribution over real num-
bers between 0 and 1, represented by their binary ex-
pansion. Executingreal involves an infinite recursion,
but only the first bit is needed to determine the value of
less than half, which is the value of a Boolean predi-
cate that looks only atreal.first. We can think of exe-
cutingreal lazily, to get the single bit needed.

I will now make these intuitions precise. There are four
kinds of values in IBAL: (1) Symbols such asheads and
true; (2) A specialundefinedvalue, denoted by?; (3) Com-
plex valuesthat consist of anenvironment, which maps names



to values; (4)Closures, denoted(x
1

; : : : ; x

n

)

�

! e consisting
of formal paramatersx

1

; : : : ; x

n

, bodye and environment�.

A chain can be viewed as representing a function on values.
Formally, if� is a chain andv a value, we define�(v) as fol-
lows: If � is empty,�(v) = v. Otherwise, ifv is not complex,
�(v) = ?. Otherwise, let� bex:�0, andv0 be the value asso-
ciated withx in v; then�(v) = �

0

(v

0

). To determine whether
a value satisfies a pattern, we need an environment assigning
values to the variables appearing in the pattern. Formally,we
definev j=

�

�, meaning thatv satisfies� in �, by v j=

� 0

s

if v is the symbols; v j=

�

�, if �(�) = v andv 6= ?; and
v j=

�

:� if v 6j=

�

� andv 6= ?. v j=

�

� for conjunctive
or disjunctive� is defined in the obvious way. Note that?
cannot satisfy any pattern.

In order to generate the value of an expressione, we need
an environment� binding the free variables ofe, and a source
of randomness, which is provided by an infinite sequence� of
i.i.d. real numbers2 [0; 1). Formally, we will define a func-
tion hei�;�, meaning the value generated fore in environment
�, given random choices as in�. The notation�n

i

is the sub-
sequence of� of elements with index congruent toi modulo
n. This device allows us to split� into multiple independent
subsequences. Hd[�℄ and Tl[�℄ indicate the head and tail of
�. For constant, chain, function, conditional and dist expres-
sions,hei�;� is defined by:

h

0

si

�;�

= s

h�(x

1

; : : : ; x

n

) ! ei

�;�

= (x

1

; : : : ; x

n

)

�

! e

h�i

�;�

= �(�)

*

if e

1

j= �

then e

2

else e

3

+

�;�

=

8

>

<

>

:

he

2

i

�;�

2

2 if v j=�

�

he

3

i

�;�

2

2 if v j=�

:�

? if v = ?

wherev = he

1

i

�;�

2

1

hdist[p
1

:e
1

; : : : ; p

n

:e
n

℄i

�;�

= he

i

i

�;Tl[�℄

where
P

i�1

j=1

p

i

� Hd[�℄ �
P

i

j=1

p

i

The value of a block expression is complex, and a defini-
tion x

i

= e

i

within the block results in thex
i

component
mapping to the value ofe

i

. Each definition is evaluated in an
environment including bindings for names appearing previ-
ously in the block. Furthermore, ife

i

is a lambda expression,
the binding forx

i

is also added to the environment in which
e

i

is evaluated, so thatx
i

is bound in the resulting closure.
This allows recursive functions to be defined. Formally:

hfx

1

= e

1

; : : : ;x

n

= e

n

gi

�;�

= fx

1

:v
1

; : : : ;x

n

: v

n

g

where v

i

= he

i

i

�

i

;�

n

i

and �

i

=

�

�[x

1

: : : x

i

=v

1

: : : v

i

℄ if e
i

is a lambda
�[x

1

: : : x

i�1

=v

1

: : : v

i�1

℄ otherwise

The final case to define is function application. To deter-
mine the value ofe

0

(e

1

; : : : ; e

n

), we first compute the value
of e

0

. If it is not a closure, the result of the application is un-
defined. Otherwise we evaluate the body in the environment
formed by extending the closure environment by binding each

formal parameterx
i

to the value ofe
i

. Formally:

he

0

(e

1

; : : : ; e

n

)i

�;�

=

8

>

<

>

:

he

0

i

�

0

[x

1

:::x

n

=v

1

:::v

n

℄;�

n+2

n+2

if he
0

i

�;�

n+2

n+1

= (x

1

; : : : ; x

n

)

�

0

! e

0

? otherwise

wherev
i

= he

i

i

�;�

n+2

i

Note that the preceding definitions elegantly take care of
the issue of infinite experiments with finite observations, such
as theless than half example above, without needing to
make explicit use of laziness in the semantics. The rule for
generating the value of an expression only uses the chains that
appear in it. Furthermore, a block expression always returns
a complex value.

The above semantics is anoperational semantics, show-
ing how a program consisting of definitions defines a random
experiment for generating values. We also provide adenota-
tional semanticsin terms of a probability measure over val-
ues. The underlying probability space consists of countable
sequences of i.i.d. real numbers generated uniformly from
[0,1). A programI defines a function from sequences to val-
ues, byI(�) = hfbgi

�

0

;�, where�
0

is the empty environment.
If R is a measurable set of sequences, andS is the image of
R underI, thenS is measurable and Pr(S) = Pr(R).

Natural properties of values that we would like to talk
about are in fact measurable. For example, any property of
the form�(v) = s is measurable. We can see this by defin-
ing adepth-boundedevaluation functionhei�;�

n

. Its definition
is the same as above, except thathi

0

is always?, andhi
n

useshi
n�1

for evaluating the body of function applications.
In other words, values that require a recursion to a depth
greater thann will be undefined. Now, a program defines
a sequence of functionsI

i

(�) = hfbgi

�

0

;�

i

. It is clear that the
setR

i

= f� : �(I

i

(�)) = sg is measurable since it only re-
quires looking at a finite subsequence of� to determine if it
is inR

i

. Therefore the setR = f� : �(I(�)) = sg = [

i

R

i

is
measurable. Furthermore, the above argument also suggests
an anytime approximation algorithm for computing Pr(S).
Since theR

i

are non-decreasing, and their union isR, the
probabilities of theR

i

are a non-decreasing sequence whose
limit is Pr(R) = Pr(S).

3.2 Observations
The language described so far is similar to that of KMP97, al-
beit with a richer syntax and type system, and a more refined
semantics. It can express many common models, such as
Bayesian networks, relational probability models, stochastic
logic programs, hidden Markov models, dynamic Bayesian
networks and stochastic context free grammars. All these
models aregenerativein nature, defining an experiment that
stochastically generates values for variables. The richness of
the model is encoded in the way the values are generated.

Another flavor of probability model is arejectivemodel.
In a rejective model, the data is generated by a very simple
process, e.g. uniformly, but data that fails to satisfy certain
constraints may be rejected. The richness of the model is en-
coded in the rejection process. A good example of a rejective
model is aproduct of experts (POE)[Hinton, 2000]. In a
POE, a datumx is generated uniformly, and then passed to



a set of probabilistic experts. Each experti acceptsx with
some probabilityp

i

(x) that depends on a property ofx. The
data is accepted only if all experts accept it. The probability
of any datumx is proportional to

Q

i

p

i

(x).
IBAL is able to express rejective models by making obser-

vations an integral part of the language. Anobservationis a
declaration of the forme j= �. Recall that this is the syn-
tax used for Boolean predicates. An observation is simply a
statement that a certain predicate is true.

Thus, for example, the general schematic form of a POE
model is expressed as follows.

generate() = : : : (* produce a uniform datum *)
x = generate()
(* for each experti, the following code *)
expert

i

(x) = . . . (* return ’accept or ’reject *)
expert

i

(x) j= ’accept
Another kind of model that can be expressed using obser-

vation declarations is aMarkov random field (MRF). An MRF
is an undirected analogue of a Bayesian network, but it can
also be viewed as a type of POE. An interesting effect is at
work here. IBAL’s expression language defines directed, gen-
erative models, but the observation language implements the
undirected notion of a constraint. As a result, IBAL is able
to express both directed and undirected models, and combi-
nations of the two. It is important to stress that observations
are an integral part of the language, and not something pasted
onto a model after the fact in order to condition it. They can
occur within blocks and functions, and therefore they can be
composed together, just like generative definitions. All the
power of a modular, functional language is thereby extended
to rejective models. Of course, IBAL also allows rejective
models to be combined with generative models. For example,
one natural way to build a language model is to use a stochas-
tic context free grammar as the initial generator of sentences,
and then use probabilistic constraints to express global prop-
erties like agreement and sentence length.

In defining the semantics of observations in IBAL, one sub-
tle point must be stressed. An observation in a block can only
condition variables defined within the block, not free vari-
ables. As far as a containing block is concerned, the defini-
tion of a contained block is considered to be a black box. It
simply defines a distribution over the value of the block, given
values for the free variables. The containing block need not
concern itself with whether this distribution is defined gener-
atively or rejectively. Failure to enforce this rule would be a
serious violation of modularity.

We get the right effect simply by modifying the definition
of hfbgi�;� for the case of block expressions. Now, in addition
to defining values for each of the components of the block, it
will also make sure that all the observations in the block are
satisfied. If they are not, the generated values for the block
are rejected, and the process is repeated. The resulting dis-
tribution defined by the block is conditioned on the observa-
tions being satisfied. It is, of course, possible to define a set
of observations that fail with probability 1, in which case the
attempt to generate a value for the block will go on for ever.
In that case, the value of the block is?. Note that because
the rejection/repetition process is contained within the block
itself, only the value of the block itself is conditioned by the

observations, not the free variables.

3.3 Learning

Observations provide the basis for integrating learning, in
the form of Bayesian parameter estimation, into the IBAL
framework. Unknown probability parameters are specified
usingprior declarations, which have the formlearn x =

dirichlet [�

1

: e

1

; : : : ; �

n

: e

n

℄.
A prior declaration of this form achieves two things. First,

it defines a probabilistic parameter�x = �

x

1

; : : : ; �

x

n

, and
specifies a Dirichlet prior over the parameter. The�

i

are pos-
itive real numbers, specifying the the hyperparameters of the
Dirichlet. Second, a prior declaration also creates a definition
for x, equivalent tox = dist [�

x

1

: e

1

; : : : ; �

x

n

: e

n

℄.
We can view an IBAL program with prior declarations as

specifying a joint model, that defines a joint probability distri-
bution over the model parameters and the value returned by
the program. Observations condition the joint model in the
standard Bayesian way. Let us refine the coins example from
earlier by adding priors and observations.

fair() = f result = dist [0.5 : ’h, 0.5 : ’t]g
biased() = f learn result = dirichlet [90 : ’h, 10 : ’t]g
pick() = f learn result = dirichlet [1 : fair, 1 : biased]g
coin = pick().result
x = f y = coin().result ; z = coin().resultg
x.y j= ’h

A fair coin is known to produce’h with probability 0.5. The
probability of’h for a biased coin is unknown, but its prior
is peaked around 0.9, while the prior over which coin gets
picked is uniform. As before,coin is the result of picking a
coin, andx.y andx.z are two tosses ofcoin. We also have
an observation thatx.y came out’h. This observation has
multiple effects. First, because’h is more likely for a biased
coin, the probability thatcoin is biased is increased, which
in turn increases the probability thatx.z is ’h. The obser-
vation also conditions the probability parameters. Because
coin, a result of applyingpick, is likely to have turned
out biased, we will get a posterior over thepick parameter
that is more weighted towards a biased result. Furthermore,
becausecoin may have been biased, and because a toss of
coin came out’h, the posterior for thebiased parameter
is also weighed slightly more strongly towards heads.

With its learning component, IBAL is able to do param-
eter estimation for many common models, including hidden
Markov models, stochastic context free grammars and prob-
abilistic relational models. Furthermore, learning in IBAL
is not just “added on” to the probabilistic representation lan-
guage, but is thoroughly integrated into the language. As
a result, the benefits of compositionality and modularity are
obtained for representing learning tasks. In particular, IBAL
is good at representing a cumulative learning framework, in
which smaller models are learned and then used as compo-
nents of larger learning problems. Just as observations
only condition values within their scope, they are only used
to learn about model parameters within their scope. Thus a
compositional learning process can be specified by provid-
ing a nested scope containing all the data and parameters for
a learning subproblem, and a containing scope that uses the
results of the subproblem.



In defining the semantics of learning in IBAL, we need to
get a subtle point correct. If a prior declaration appears in
the body of a function, the same parameter values should be
used every time the function is applied. This is fundamental
to learning — different observations of the same function are
all observations about the same parameter! This means that
in terms of the generative semantics, the parameter value is
not returned by each application of the function, but ratherit
is generated when the function is defined, and stored as part
of the closure representing the value of the function object.

To achieve this effect, we make the following definition.
The parametersdirectly insidea block are the parameters of
prior declarations defined in the block, that are not nested
in the body of a lambda expression. In the generative pro-
cess, the values of the parameters directly inside the body of
a lambda are generated at the time the closure is created, and
these values are used for all future applications of the closure.

The remainder of the semantics stays basically the same as
before. When a definition resulting from a prior declaration
is encountered, the relevant parameter values are looked upin
the environment and used to choose which branch is taken, in
the same way as for adist expression.

3.4 Decisions and Utilities
The representation of decision problems in IBAL is geared
towards two popular models: influence diagrams (IDs) and
Markov decision problems (MDPs). IBAL can easily rep-
resent these and other models, including various kinds of
structured MDPs. A decision declaration in IBAL has the
form choose x from s

1

; : : : ; s

n

given �

1

; : : : ; �

m

:

This specifies the namex of the decision variable, its
ranges

1

; : : : ; s

n

, and the information available to the de-
cision maker, the chains�

1

; : : : ; �

m

(called the informa-
tional parentsof x). A block may contain multiple de-
cision declarations, in which case we enforce the no-
forgetting rule of IDs, that the informational parents of
later decisions always include those of earlier decisions,as
well as the decisions themselves. A reward declaration
is either receive case e of [�

1

: r

1

; : : : ; �

n

: r

n

℄ or
receive ��. The first form states that the reward depends
on the value ofe, and it is the real numberr

i

associated with
the first pattern�

i

that the value satisfies. The second states
that the reward is� times the reward of�, where� is a pos-
itive real number. A block may have multiple reward decla-
rations, in which case the total reward is the sum of the indi-
vidual rewards. For example, a typical MDP is schematically
represented as follows:

MDP(s) =f (* takes current state as argument *)
transition(s,a) = . . . (* returns next state *)
reward(s,a) =f reward case (s,a) of [(’s1,’a1) : 3, . . . ]g
choose a from a1,a2 given s
next state = transition(s,a)
currentreward = reward(s,a)
future reward = MDP(nextstate)
reward 1 currentreward
reward 0.9 futurerewardg

Three points must be made about the representation of de-
cision problems in IBAL. The first is that each block consti-
tutes a distinct decision problem. A block with decisions is
viewed as identifying an implicit agent who makes the deci-
sions and receives the rewards mentioned in the block itself.

Decisions and rewards in nested blocks implement the notion
of delegation; decisions in the nested block do not consider
their effects on the containing block. The reason for enforcing
this interpretation is similar to the reason observations don’t
condition values outside their scope; the alternative would re-
sult in a serious loss of modularity. If an agent in a nested
block had to be concerned about rewards in the calling block,
the decisions for the nested block would no longer be deter-
mined solely by its free variables. Therefore a program call-
ing the nested block could no longer treat it as a black box.

The second point to clarify is that it is assumed that the
values of free variables are always known to an agent mak-
ing the decisions in a block. Once again, failure to enforce
this restriction would result in a modularity problem. If the
agent does not know the values of the free variables, it must
know the distribution over those values in order to make a ra-
tional decision. But then, the distribution defined by a block
depends not only on the values of the free variables, but on
their distribution. This is an unfortunate restriction, since it
prevents IBAL from being capable of representing POMDPs.
The situation can perhaps be salvaged, by borrowing the idea
of belief state from POMDPs, and adding it as an extra im-
plicit input to the block.

The third point is the relationship between observations
and decisions in a block. We assume that all observations are
known to the decision maker, even if they appear lexically
subsequent to the decision. The reason is that the observa-
tions are viewed simply as part of the definition of the prob-
ability distribution over the block’s values, and we make the
assumption that the decision maker knows the correct distri-
bution. A result of this assumption is that we disallow obser-
vations statement to mention variables that depend (directly
or indirectly) on the decisions in a block. This restrictionpre-
vents the semantics of learning and decisions from interfering
with each other.

In defining the semantics, we begin with utilities. With
every valuev we associate a utilityU(v). For non-complex
valuesU(v) = 0. For complex valuesU(v) is determined by
the reward declarations in the block in whichv was created.
Recall that a complex value is created byhfbgi�;�. We ex-
tend the definition ofhfbgi�;� so that it also producesU(v)

after producingv. We setU(v) to be the sum over reward
declarationsR in b of U

R

(v), defined as follows. IfR is
reward case � of �

1

: r

1

; : : : ; �

n

: r

n

,

U

R

(v) =

�

r

i

if �(v) j=�

0

�

i

and�(v) 6j=�

0

�

j

for j < i

0 if �(v) 6j=�

0

�

i

for i = 1; : : : ; n

where�0 is the environment resulting from extending� with
the bindings inv. If R isreward ��,U

R

(v) = ��U(�(v)).
Now for decisions. Astrategyd for block b is a decision

d

D;w

for each decision statementD and each valuew of the
informational parents ofD. Given an environment� in which
to evaluateb, and a particular strategyd, we define a function
U(b)

�;�

d

, whose meaning is the utility forb, given strategyd,
bindings of free variables in�, and random choices specified
by �. Holding �, b and d fixed, this function is a random
variable on the space of sequences. Taking the expectation
of this function over sequences produces the expected utility;
the optimal strategy forb is then the one that maximizes this



expected utility. The definition ofhfbgi�;� now proceeds by
first choosingd� = argmax

d

E

�

[U(b)

�;�

d

℄,and then process-
ing the block as before, usingd� to choose the values of each
decision variable given its informational parents.

3.5 Pragmatics
The IBAL language allows a wide variety of different kinds
of models to be expressed. There is no single best inference
algorithm to use for all models. While IBAL implements a
good default algorithm that should work well in many situ-
ations, it also allows the possibility of using other methods.
The programmer can specify control knowledge on how to
solve a program in the form ofpragmatic declarations. These
could either specify what algorithm to use, or details of how
to use a particular algorithm, such as specific elimination or-
derings for variable elimination.

Because pragmatic declarations are part of a block, they
only specify how to do inference in that block and its nested
blocks. Furthermore, pragmatic declarations in a nested block
can override those in a containing block. These features al-
low fine, modular, control over how inference is done, allow-
ing complex models to be built in which different inference
methods are used for different components.

It is anticipated that pragmatic declarations will often be
used by library designers. The user of a library is shielded
from thinking about how the library models will be solved.
This modularity of inference methods may turn out to be as
important as modularity of representation in building com-
plex probabilistic agents.

4 Example
In this section, I illustrate how a declarative high-level rep-
resentation language that unifies probabilistic reasoning, de-
cision theory and parameter estimation can simplify and in-
tegrate the implementation of sophisticated rational agents.
Consider the task of implementing an automated receptionist
agent. The job of the agent is to receive spoken requests over
the phone and to respond to them appropriately. Requests in-
clude asking for directions and talking to a particular person;
responses include giving directions, connecting to an exten-
sion, and asking the caller to repeat the request.

In a decision-theoretic design for this agent, the agent re-
ceives a utility based on how well its response matches the ac-
tual request of the user. Of course, the agent does not observe
the actual user request, but only a sequence of signals. In the
decision model, there will be a prior distribution over requests
and a conditional distribution of signals given requests.

With existing tools, it is difficult to implement this
decision-theoretic design using a single, coherent model.
Instead, a typical implementation might consist of several
components, each of which is probabilistic, but which are
stitched together in an ad-hoc manner. There will typically
be a speech-recognition component that determines the likely
words that generated the received signal; a language model
that can determine the probability that a particular request
generated a particular sentence; and a high-level influence
diagram for deciding what to do. The results of the speech-
recognizer and request generator are fed into the language

model. The results of the language model are fed into the
influence diagram. The overall result may not be a coherent
probabilistic model. Furthermore, it may be hard to tailor the
components for their use in this application. For example,
getting the speech recognizer to recognize unusual names of
individuals in the company might require an extra engineer-
ing effort.

With IBAL, the whole application can be described using
a single declarative model. At a high-level, the generative
model consists of three steps: a request generation function,
a function that generates sentences based on requests, and a
function that generates phoneme sequences from sentences.
For the decision-making component, the agent is given the
phoneme sequence, and chooses a response. The agent’s util-
ity is determined from the request and the response. The high-
level code looks like this:
request = makerequest()
sentence = makesentence(request)
phonemes = makephonemes(sentence)
choose response.type from GiveDirections, Connect, Repeat
choose response.who from fred, wilma
receive match(request, response)

I will now describe, in turn, the three generative steps and
the utility computation. The functionmake request pro-
duces a request. A request has atype field, whose value is
eitherGetDirections orTalk. A Talk request also has
awho field, whose value is a person. A person is a complex
value with three fields:name, title andextension. In
a typical programming language, the type ofname would be
string, because what we typically want to do with names is
compare them, read them and print them. In this applica-
tion, however, the most important thing about a name is how
it tends to be pronounced. Therefore the type ofname is a
function that stochastically generates a phoneme sequence.
The same is true fortitle. Themake request function
is as follows:
makerequest() =f

learn who = [1 : fred, 1 : wilma]
learn type = [20 : GetDirections; 80 : Talk]

g

Generating the request involves choosing two things: the
type of the request, and the person, if the request is to talk
to a person. Both choices are made learnable. The agent has
lots of past experience about what kinds of requests tend to
be generated. These are expressed by observation statements
as follows:
r1 = makerequest()
r1:type j= GetDirections
r2 = makerequest()
r2:type j= Talk
r2:who j= wilma
...

Themake sentence function produces a sentence from
a request. A sentence is a list of words, each of which is a
function that stochastically produces a list of phonemes when
activated. Here I illustrate with an extremely simple sen-
tence generation model; in a real application, a more com-
plex grammar model might be used. Even this simple ex-
ample illustrates the power of passing around data structures
that contain functions in fields. The sentence generator sim-
ply slots the given person’s name or title in the appropriate
place. ([x

1

; : : : ;x

n

℄ is the list containingx
1

; : : : ; x

n

, and�
is the list concatenation operator.)



makesentence(request) =
if request:type j= GetDirections

then [can;you;give;me;directions]
else [connect;me;to]�

[dist [0.5:request.who.name, 0.5:request.who.title]]

The make phonemes function takes a sentence and
produces a list of phonemes. Since each word in the
sentence is a function that generates phoneme sequences,
make phonemes just executes each of the words in the sen-
tence, and concatenates the results. The individual word mod-
els would probably be hidden Markov Models, and may be
part of a speech recognition library. Unusual names of people
may not be in the generic hMM library, but the library may
provide a function that creates a new, trainable hMM that can
be learned for a particular name.

makephonemes(sentence) =
if sentence:is empty

then []
else head(sentence)() @ makephonemes(tail(sentence))

Finally, the utility model takes the request and response,
and produces a utility of 1 if the request matches the response.
If the response is RepeatPlease, the utility is 0. An incorrect
response has utility -5.

match(request,response) =f
correct =

(request:type j= GetDirectionŝ
response:type j= GiveDirections)_

(request:type j= Talk^
response:type j= Connect̂
request:who j= response:who)

receive
if correct

then 1
else if response:type j= Repeat

then 0
else -5

g

5 Implementation Overview
The inference tasks in IBAL are to estimate the learnable pa-
rameters, to compute the utility maximizing decisions, and
to solve for the conditional distribution over various chains,
given values for other chains. The tasks are accomplished
in that order. Since decisions cannot influence observations,
they are irrelevant to the learning task. Once the parameters
have been learned, the expected utility for any strategy can
be computed and the decision task can be solved. Once the
decisions have been fixed, the distribution over all values is
known and the probabilistic reasoning task can be solved.

IBAL is implemented in Objective CAML, a variant of
ML. The design of the implementation is divided into four
parts. The first component is afrontendconsisting of a parser,
type checker, and translator, whose job is to produce code in
shallow form. In shallow form, nested subexpressions are re-
placed by chains, and only simple patterns are allowed. The
second component is a set ofsupport modules. These include
a ubiquitous polymorphic container type implementing effi-
cient maps from chains to values of any kind, as well as a
general implementation ofevents, which are measurable sets
of values, andfactors, which are measurable functions from

values to elements of a ring. Events and factors support a very
generalized version of the variable elimination algorithm.

The third component implements themain line of infer-
ence. The main line begins with code in shallow form, and
proceeds through a sequence of steps. The first step isdo-
main generationin which the supportD(�) of each chain
used in the program is computed. Domain generation uses
rules such as the following: for a definitionw = dist [p

1

:

�

1

; : : : ; p

n

: �

n

℄, D(w) is the union of theD(�

i

). Domain
generation also uses observations to restrict the domains.Do-
main generation may be followed by an optionalconstraint
propagationstep, which further restricts the domains, by
propagating observations back through the definitions in the
program. Constraint propagation may be worthwhile since
it is cheaper than the full-scale variable elimination process
performed later.

The second step is to compute theneeded chainsthat are
actually relevant to answering a query. These include all
chains that influence query variables or observed variables,
directly or indirectly. This computation step is particularly
important in recursive models such as stochastic grammars.It
deduces, for example, that in order to determine whether the
first word of a sentence is “the”, only the first non-terminal
need be expanded at any stage (assuming there are no� pro-
ductions).

The key step in the main line,factor production, converts
each definition in the program into a set of factors. The goal
is to produce factors that are as simple as possible; dummy
variables may be introduced to achieve this. For example, for
a definitionx = y, supposex andy are complex, withx:a
andx:b needed. Two separate factors will be produced, one
enforcing thatx:a andy:a are equal, and the other forx:b and
y:b. For a definitionx = dist [p

1

: �

1

; : : : ; p

n

: �

n

℄, a
dummy variabled is introduced, to represent which branch is
actually taken. The dummy variable serves to separate the�

i

from each other; without the dummy variable, they would all
have to appear in the same factor. A set of factors is produced
for each branchi, saying that ifd takes the valuei, then the
components ofx and�

i

must have the same value, but ifd
takes any other value this branch is irrelevant and there is no
constraint onx and�

i

. An additional factor saying thatd
takes value 1 with probabilityp

1

, . . . ,n with probabilityp
n

is also produced.
The final solution step isvariable elimination, as is com-

monly used for BN inference. The set of factors computed
by factor production represents a sum of products expression.
All variables except for query variables and free variablesin
a block are eliminated from the factors, and the result is the
conditional probability of the query variables given the free
variables. All solution steps except for the final variable elim-
ination are recursive; a recursive call is used to process nested
blocks and function applications.

The final component of the implementation is thegluethat
holds everything together. Each of the solution steps is turned
into a dynamic programming algorithm, where all recursive
calls are looked up in a cache before solving them explic-
itly. Also, an iterative deepening strategy is used to provide
an anytime approximation algorithm for queries that may not
terminate. These recursion strategies are implemented in a



generic, modular way. For example, adynamic function is
provided that takes a recursive algorithm and produces a dy-
namic programming version of the same algorithm. The glue
is also responsible for handling pragmatics.

The glue is implemented using a programming technique
in which a recursive functionf takes a special argumentg.
When f recurses, rather than calling itself directly, it calls
g. Thusf is a function with a “hole”, which needs to be
filled in. All the recursion strategies can be implemented
as ways of filling in the hole. The simplest way to fill in
the hole is to plugf into itself, which gives the basic recur-
sion pattern. But another possibility is to define a function
cached(f) which looks for a result in a cache before call-
ing f , callsf if the result is not found, and stores the result
of calling f in the cache. Ifcached(f) is plugged into it-
self, the result is a dynamic programming algorithm based on
f . Similarly,depth-bounded(n; d; f) produces a version
of f that stops recursing after a recursion depth ofn, return-
ing d instead. Recursion strategies can be composed using
the method of functions with holes. This provides a nice,
modular way to deal with multiple inference methods. Each
inference method is invoked by a pragmatics handler that
recognizes a particular type of pragmatic declaration. The
pragmatic handlers can be installed on top of each other, so
that every recursive call results in the all the handlers being
checked. The inference methods themselves do not need to
know what handlers are used for the recursive calls.

All three inference problems use dynamic programming
with the main line of inference described above. Decision
making is based on ID algorithms, using backward induc-
tion to solve the decisions in a block from the bottom up.
For MDPs, the algorithm reduces to value iteration (because
of the dynamic programming component) with reachability
analysis (because of the domain generation). For the prob-
abilistic reasoning task, all reasoning is directed towards a
particular query; pruning of the problem to those variables
required for the query is accomplished by computing the
needed chains. For probabilistic reasoning tasks, the algo-
rithm reduces to regular variable elimination for standard
BNs, while the dynamic programming makes it equivalent
to forward-backward for HMMs and the inside algorithm for
SCFGs. Finally, parameter estimation uses a general version
of the EM algorithm to compute maximum a-posteriori pa-
rameter values. This is only an approximation to the true
Bayesian posterior, of course. The E step consists of using the
main inference line to compute how many times each branch
was taken for each prior declaration. These are the expected
sufficient statistics. The M step combines the expected suffi-
cient statistics with the Dirichlet hyperparameters to produce
new parameter values that have maximum posterior probabil-
ity given the expected sufficient statistics. Again, the com-
bination of variable elimination with dynamic programming
results in the algorithm reducing to the typical EM used for
BNs, Baum-Welch for HMMs, and the outside algorithm for
SCFGs.

I do not claim that IBAL will be an efficient inference al-
gorithm for all applications. Some problems are inherently
hard, or require special methods, and a variety of algorithms
is needed. I do believe that IBAL integrates a number of

widely used methods, and thereby provides a good default
algorithm. Furthermore, the support modules and glue make
it easier to extend the system with alternative methods.

6 Conclusion and Future Work
IBAL is a rich declarative programming language for de-
scribing probabilistic models, decision theoretic situations,
and Bayesian parameter estimation problems. This paper has
presented a syntax and semantics for the language, and an
overview of an implementation with probabilistic reasoning,
utility maximization and parameter learning.

Future work on IBAL is divided into implementation en-
hancements that are practically useful but not too theoreti-
cally challenging, and more significant extensions to the ex-
pressive power of the language. Plans in the first category in-
clude implementing a variety of approximate solution meth-
ods; providing libraries to implement common kinds of mod-
els, and useful structures such as sets of objects; and extend-
ing the type system to include algebraic data types and poly-
morphic types, modeled on ML.

One of the main future tasks in the second category, is to
support the learning of model structure as well as parame-
ters. In keeping with the philosophy that everything that can
be done in IBAL should be thoroughly integrated, this will
require a much richer language with which to express priors,
including priors over structure. Another important extension
is to provide a way to describe how an IBAL agent interacts
with its environment; in other words, to provide a declarative
description of the I/O capaboilities of the agent. A final task
is to allow multiple agents into the IBAL framework. Not
only would this allow IBAL to be used for modeling game-
theoretic situations, it would also provide a way to describe
agents’ models of other agents. While these tasks present a
range of interesting and challenging issues, IBAL providesa
good foundation with which to begin tackling them.

References
[Boutilier et al., 2000] C. Boutilier, R. Reiter, M. Soutchan-

ski, and S. Thrun. Decision-theoretic, high-level agent
programming in the situation calculus. InAAAI, 2000.

[Cumby and Roth, 2000] C. Cumby and D. Roth. Relational
representations that facilitate learning. InKR, 2000.

[Hinton, 2000] G. Hinton. Training products of experts
by minimizing contrastive divergence. Technical report,
Gatsby Computational Neuroscience Unit, 2000.

[Koller et al., 1997] D. Koller, D. McAllester, and A. Pfeffer.
Effective Bayesian inference for stochastic programs. In
AAAI, 1997.

[McAllester, 2000] D. McAllester. Bellman equations for
stochastic programs. Revision of talk at LPNMR-99, 2000.

[Muggleton, 2000] S. Muggleton. Stochastic logic pro-
grams. Journal of Logic Programming, 2000. Accepted
subject to revision.

[Pfefferet al., 1999] A. Pfeffer, D. Koller, B. Milch, and
K.T. Takusagawa. SPOOK: A system for probabilistic
object-oriented knowledge representation. InUAI, 1999.


