

Lazy Factored Inference for Probabilistic Programming

Avi Pfeffer, Brian Ruttenberg, Amy Sliva, Michael Howard, Glenn Takata
Charles River Analytics

Abstract

Probabilistic programming provides the means to
represent and reason about complex probabilistic
models using programming language constructs.
Even simple probabilistic programs can produce
models with infinitely many variables. Factored
inference algorithms are widely used for
probabilistic graphical models, but cannot be
applied to these programs because all the
variables and factors have to be enumerated. In
this paper, we present a new inference
framework, called lazy factored inference (LFI),
that enables factored algorithms to be used for
models with infinitely many variables. LFI
expands the model to a bounded depth and uses
the structure of the program to precisely quantify
the effect of the unexpanded part of the model,
thereby producing lower and upper bounds to the
probability of the query.

1. INTRODUCTION
Probabilistic models are growing in their richness,

diversity, and widespread usage. One of the challenges to
using probabilistic models, especially for users without
deep machine learning expertise, is the need to create
representations and reasoning algorithms for models.
Probabilistic programming (PP) (Koller, McAllester,
Pfeffer et al., 1997) addresses these challenges by
providing expressive languages to represent models using
programming language constructs and inference
algorithms that apply automatically to models written in
the languages.

One of the biggest challenges in PP inference is that
even compact programs can result in models with very
large or an infinite number of variables. Currently, the
typical method for performing inference in such models is
to use Metropolis-Hastings (MH) (Metropolis,
Rosenbluth, Rosenbluth, 1953; Hastings, 1970), which

has become a standard algorithm in languages such as
BLOG (Milch, Marthi, Russell et al., 2005), Church
(Goodman, Mansinghka, Roy et al., 2008), and Figaro
(Pfeffer, 2012) for this reason. Unfortunately, MH is
extremely hard to understand and requires significant
expertise to achieve convergence at a reasonable rate in
many applications.
Factored algorithms, such as variable elimination (VE)
(Zhang & Poole, 1994; Dechter, 1999) and belief
propagation (BP) (Pearl, 1988; McEliece, Mackay,
Cheng, 1998), are alternative and widely used inference
algorithms and are generally preferred to MH where they
are applicable. For instance, in the 2010 UAI
Approximate Inference Competition, many of the entrants
used factored algorithms, while none used MH. However,
current factored algorithms require enumerating all the
variables in the model and creating factors for them,
which is infeasible for models with a very large number
of variables, and impossible if there are infinitely many
variables. Indeed, Infer.NET (Winn, 2008) has achieved
excellent results on real-world inference tasks (Herbrich,
Minka, Graepel, 2006) using expectation propagation
(Minka, 2001), a factored algorithm, at the cost of
severely restricting the expressivity of the language to
avoid recursion, thereby eliminating infinite models.
We believe that just as factored algorithms have been
instrumental in the success of probabilistic graphical
models in general, making factored inference work for PP
is essential to its eventual success. In this paper we
describe an inference framework—lazy factored inference
(LFI)—that achieves this goal, making factored
algorithms applicable to models with very many or
infinitely many variables. LFI works by expanding a
potentially infinite model up to a bounded depth and
characterizing precisely the effect of the unexpanded part
of the model on the probability of the query. As we show,
characterizing the effect of the unexpanded part of the
model can be performed using standard factored inference
algorithms as a subroutine with no modification to the
algorithms, with the addition of preprocessing and
postprocessing steps. The result of LFI is a pair of lower
and upper bounds on the probability of the query. By

iteratively expanding the model to increasing depths, we
obtain an anytime algorithm that can produce
progressively tighter bounds. Although LFI is a general
inference framework for graphical models, it works
particularly well for PP, because PP languages typically
have the necessary constructs to guide the lazy expansion.

The remainder of this paper is organized as follows.
In Section 2 we provide a running example that will be
used to illustrate the LFI approach. Sections 3 and 4
present the basic intuition and technical details of LFI. In
Section 5 we present theoretical results and analysis of the
LFI approach. In Section 6 we describe an
implementation of two lazy factored algorithms—VE and
BP—in the open source Figaro PP language(Pfeffer,
2012) and present experimental results on reasoning with
probabilistic context-free grammars, which would
otherwise be intractable using standard factored
algorithms. Finally, in Section 7 we discuss related work
and in Section 8 we conclude.

2. RANDOM LISTS EXAMPLE
As a simple running example to motivate our approach,
we use a model that generates random lists of unbounded
length. Each list consists of the symbol ‘a or the symbol
‘b at each index. Lists are created by a generator function
that grows the list one symbol at a time. At each step, the
generator terminates with probability 0.5, adds an ‘a with
probability 0.3, or adds a ‘b with probability 0.2. We can
query the list for certain properties, such as whether the
list contains a ‘b.
This list generator and the containment queries can both
be defined in Figaro, a PP language embedded in Scala
and capable of representing and reasoning about a wide
variety of probabilistic models. The following three lines
of code define the random list in Scala using the Figaro
Element construct, which represents random variables.
Line 1 defines a general class of random lists, named L. A
random list consists of two possible cases: either it is
defined to be the Empty list (Line 2), or it is a Cons of
two Elements (random variables) as defined in Lines 3
and 4, where the head is an Element[Symbol] and
the tail is an Element[L] (i.e., a random list).
1 abstract class L

2 case object Empty extends L

3 case class Cons(head: Element[Symbol],

4 tail: Element[L]) extends L

We now define the random list generator function. The
body of the generate function, which returns an
Element[L] (random list) is found in lines 2-5. First, it
uses Flip(0.5) (Line 3) to generate a random Boolean
that is true with probability 0.5. If the Boolean is true, it
produces the Empty list (Line 3) to terminate the list.
Otherwise, it produces a Cons in which the head is ‘a
with probability 0.6 and ‘b with probability 0.4 (Line 4),
and the tail is the result of a recursive call to
generate() (Line 5). Sampling from this

generate() function could generate lists of unbounded
length, while full expansion of all the possibilities results
in a model with infinitely many variables.

1 def generate(): Element[L] = {

2 Apply(Flip(0.5), (b: Boolean) =>

3 if (b) Empty

4 else Cons(Select(0.6 -> ‘a, 0.4 -> ‘b),

5 generate()))

6 }

Now, suppose we want to know whether this list contains
a particular symbol. We can define a contains
predicate, which takes two arguments: the target
symbol and the random list el we are checking. The
implementation of the contains predicate in Figaro is
shown below.
1 def contains(target: Symbol,
2 el: Element[L]): Element[Boolean] = {
3 Chain(el, (l: L) => {
4 l match {
5 case Empty => Constant(false)
6 case Cons(head, tail) =>
7 If(head === target,
8 Constant(true),
9 contains(target, tail))
10 }})}
The result of the contains predicate is a random
variable denoted by the type Element[Boolean]
(Line 2). Even though contains works
deterministically, the result is random because the list
argument is random. The body of contains is found in
Lines 3-11. It uses Chain, a Figaro construct that chains
random processes together through two arguments: an
Element (random variable) and a function that takes a
value of the Element and produces another Element.
A Chain will first sample a value from the given
Element argument. Then it applies the given function to
this value to produce a new Element. Finally, it samples
a value from this new Element.

In the case of contains, the Element argument is the
random list el. The function argument takes a particular
value of el, which is a list l, and returns an
Element[Boolean]. The body of this function is
found in Lines 4-10 using pattern matching on the type of
l. If l is Empty (Line 5), the function returns
Constant(false), which is the element whose value
is false with probability 1. Otherwise (Lines 6-10), l
must be a Cons. If the value of head is equal to the
target, it returns Constant(true), otherwise it
recursively calls contains on the tail.

Using this model, we want to be able to observe evidence
and ask queries about the contents of a random list. The
Figaro code below generates a random list in Line 1 using
the generate function. Lines 2 and 3 create random
Booleans indicating whether el contains the symbols ‘a

or ‘b, respectively. Now suppose we observe that the
random List contains ‘a. Line 4 sets this observation.
Given this evidence that the list contains ‘a, we want to
determine the probability that the list also contains ‘b.
Although the answer can be determined analytically in
this simple example, a general algorithmic solution would
need to sum over infinitely many sequences of unbounded
length, motivating the need for a lazy solution. The fifth
line creates a lazy version of VE capable of solving this
otherwise intractable query. In the next section we
describe how LFI makes factored analysis of very large or
infinite models possible in PP.

1 val el = generate()

2 val ca = contains('a, el)

3 val cb = contains('b, el)

4 ca.observe(true)

5 val alg = new LazyVariableElimination(cb)

3. LAZY FACTORED INFERENCE
So, how do we make this VE algorithm work without
enumerating the infinitely many variables in the model?
The main intuition is that variables that are far from the
query and evidence have little impact on the query.
However, it is not just the distance from the query and
evidence that matters, it is the fact that other variables
need to take on particular values to make these faraway
variables relevant. In our example, the query to
determine the probability of the symbol ‘b occurring in
the list, given that we have evidence of symbol ‘a, is a
contains function that recursively processes the list
from the beginning. In this case, variables that correspond
to symbols far along the list, or variables determining
whether the list terminates at some point far along the list
are considered less relevant, because they are only
relevant if the list has not terminated earlier.
Because not all variables contribute equally—and in fact
because many variables have only a minor impact—to the
query result of any given model, it is not necessary to
enumerate the entire probability space for accurate
inference. LFI is a new approach that expands the model,
beginning with the query and the evidence, up to a
bounded depth, and characterizes quantitatively the effect
of the unexplored part of the model on the query. This
expansion will only explore relevant parts of the model to
a specified depth, following the definition of (Baker &
Boult, 1990a).
Definition 1 (Relevant Variables). Given a set Q of
query variables and set E of evidence variables in a
Bayesian network, relevant variables w.r.t. Q and E are
variables X in the set Q ∪ E ∪ An(Q ∪ E), such that X is
not d-separated from Q by E, where An(Q ∪ E) contains
all ancestors of Q and E.
In LFI, we expand the model to a bounded depth,
producing a Bayesian network, and only consider relevant
variables in that network. We explore close relevant

variables first—those that are closest to the query and
evidence variables along non blocked paths—ignoring
nodes that are either distant from the query or “barren” in
that their distributions supply no information to the beliefs
of the query variables(Shachter, 1988; Baker & Boult,
1990b).
For the variables Y that is distant from the query, we
determine values x of the expanded variables X that
render Y irrelevant, in the sense that the probability of the
query is independent of Y when X = x. In other words, the
query is fully determined by x. We can then assign the
probability mass P(X = x) to different possible query
outcomes. This contributes to a lower bound for the query
outcomes. For any value x’ that does not render Y
irrelevant, the query is undetermined, and the probability
mass P(X = x’) could potentially be added to any of the
query outcomes. As a result, through this limited
expansion of the model, we will be able to apply factored
inference algorithms to a reduced, tractable number of
variables to compute lower and upper bounds on the
query result.
For example, from a partial expansion of our model to the
first n elements of a list el, we can compute:
• p1 = P(el has length ≤ n and does not contain ‘b)
• p2 = P(el contains ‘b in the first n elements)
• p3 = P(el has length > n and does not contain ‘b in

the first n elements)
In the first case, the query for whether the list contains ‘b
is definitely false, in the second case it is definitely true,
and in the third case the query is not yet determined. So
(p2, p2 + p3) are lower and upper bounds on the
probability that the list contains ‘b. When we have
evidence that the list contains ‘a, we get more cases, but
the principle is similar.

Of course, since we are only partially exploring the model
along relevant paths, we cannot guarantee that all
unexplored portions are irrelevant to the query. To
represent the unexplored probability mass in LFI, we
extended the range of values a variable can take.

Definition 2 (Extended Variable Range). A variable
with an extended variable range can take a regular value,
or it can take the special value * (pronounced “star”).
For example, the possible extended values of a Boolean
are { false, true, * }. Intuitively, * stands for “unknown
result of the rest of the computation,” and the probability
associated with * represents the amount of probability
mass resulting from the unexplored part of the
computation. If we quantify this, we know how much
remaining probability mass could be added to each of the
regular values.

 As will be discussed in Section 4, by computing sums
and products involving extended values in the ordinary
way, we can keep track of this probability mass.

The above concepts can be formalized into a LFI
algorithm consisting of four steps:

1. Expand the model to the desired depth and compute
the extended ranges of relevant elements

2. Produce factors for the relevant elements
3. Apply a factored inference algorithm to the factors
4. Finalize the result to produce bounds on the query

The LFI algorithm naturally lends itself to an iterative
deepening approach, where we gradually increase the
depth and improve the resulting bounds on the query
(given that all evidence is known). This produces an
anytime algorithm for factored inference on very large or
infinitely large models using PP. In the following section,
we discuss each step of the LFI algorithm in detail.

4. THE LFI ALGORITHM FOR PP
We now provide details on the four steps of the LFI
algorithm for PP and its implementation using Figaro.

4.1 STEP 1: EXPAND THE MODEL

The first step of the LFI algorithm is to expand the model,
beginning with the query and evidence, up to a depth d.
This step must determine which variables are relevant
when the model is expanded to this depth and the range of
each relevant variable, which is a set of extended values
(possibly including *). We present two approaches to the
expansion, a basic algorithm (Section 4.1.1) suitable for
simple queries, and a backtracking version (Section 4.1.2)
that can be used to compute more complex queries and
evidence. Section 4.1.3 specifically addresses lazy
expansion of evidence.

We explain these algorithms using Figaro constructs, but
they are all generalizable to other PP languages. Recall
from Section 2 that in Figaro a random variables is
represented by an Element. Some elements are atomic,
meaning they do not depend on any arguments (e.g.,
Select(0.6 -> ‘a, 0.4 -> ‘b)is the
probabilistic model that produces ‘a with probability 0.6
and ‘b with probability 0.4). An element can also consist
of the more complex Chain structure for chaining
random processes together (see Section 2). As we will see
in Section 4.2, the Chain construct helps to control and
limit the impact of the unexplored part of the computation
on the query. Most functional probabilistic programming
languages have a structure similar to Chain that can be
used in this manner. Finally, an element can have the
form Apply(arguments, function), in which the
arguments are elements, and the Apply element
corresponds to the random variable produced by applying
the deterministic function to the arguments. Since Figaro
constructs can in general be expressed in terms of atomic
elements, Chain, and Apply, it suffices to define the
algorithm for these element classes.

4.1.1 Basic expansion algorithm

The basic expansion algorithm begins with a list of
relevant elements consisting of the query and evidence,
represented as Figaro elements, and proceeds recursively
to depth d as follows.

For a relevant element E:

1. If d < 0, return { * } for the range of E
2. If E is atomic, return its known range of regular

values.
3. If E is a Chain(X,F), where X is an element and

F is a function that maps a value of X to another
element:

a. Expand X to depth d - 1.
b. For each regular value x in the range of X:

i. Compute Y = F(x).
ii. Expand Y to depth d - 1.

iii. Each value, regular or *, in the
range of Y is added to the range of
E .

c. If the range of X includes *, the range of E
also includes *.

4. If E is Apply(X,F), where X is a sequence of
argument elements and F is a deterministic function
of values of X:

a. Expand each X in X to depth d - 1.
b. For each combination x of regular values of

X, the range of E contains F(x).
c. If any argument in X contains * in its range,

the range of E also contains *.

All the elements that are expanded in this way, including
those that are expanded to a depth of -1 and so have the
range { * }, are relevant. At the end of this step, we create
a variable for each such element whose range is the
computed range of extended values of the element. These
variables are later used to produce factors for the
inference algorithms.

Figure 1 shows an example of the basic expansion
algorithm for our random list example. Each node in the
graph in Figure 1 corresponds to an element whose values
are to be computed, and the shaded box beneath shows
the resulting values. The numbers in parentheses to the
left of the elements and the resulting values indicates the
order in which the elements were expanded and their
values were determined. The small superscript number to
the right of the element represents the depth to which the
element is expanded.

In this example, we want to determine which variables are
relevant to our query—whether the list el contains the
symbol ‘b—by looking to a target depth of d = 3. The
first step is to expand the top-level query,
contains(‘b, el) to d = 3. This query is a
compound element, so will expand its arguments in Step
(2) to depth d-1 = 2. The algorithm first looks at the value
of el, which is defined by a call to generate(), and

expands generate() to d = 2. Again, we have a
compound element, so the arguments of the
generate() element are expanded to depth d = 1. Step
(3) first looks at Flip(0.5), which immediately
produces the values {F, T} in Step (4). There are then
two possible outcomes, depending on the value of the
Flip: Empty, and Cons(Select(0.6 -> ‘a,
0.4 -> ‘b), generate()), which produce the
value sets {Empty} and {Cons} respectively in Steps
(5)-(8) as they are expanded and their ranges computed.
Note that even though Cons contains two random
elements, Cons itself is just a value. So, in Step (9), we
determine that the possible values of generate() are
{Empty, Cons}. If generate() is Empty, the top
level query is Constant(false), whose value set is
{F} (Steps (10)-(11)), so F will become a possible value
for the top level query.

In this depth 3 expansion, so far we have found the case
where the generated list is empty. Otherwise, the top level
query is the result of If(head === ‘b,
Constant(true),contains(target, tail)).

In Step (13), we expand this compound element starting
with expanding head, which we get out of the previously
computed Cons. The range of values for head are {‘a,
‘b} (Step (14)), so the values of head === ‘b are
{F, T}. Since the test for ‘b in the head could be
either T or F, we expand both consequences. In the first
consequence (Step (17)), the head of the list is ‘b, so we
have found a case where the top level query has value T.
In the other consequence, we have a recursive call to
contains(‘b, tail) at depth d = 1 in Step 19. This
results in an expansion of generate() at depth 0,
which in turn results in expansion of Flip(0.5) at d =
-1 in Step (21). Since the depth is negative, we
immediately get the result {*}for the range of
Flip(0.5). Since the Flip has no regular values, we do
not expand either of the two outcomes Empty or Cons.
Instead, we immediately return the value set {*} for
generate(), and in turn for contains(‘b,
tail). This corresponds to a possible value of * for the
top level query. In the end in Step (26), we get the value
set {F,T,*} for the top level query.

4.1.2 Backtracking Expansion

The above algorithm is sufficient when we are only
expanding a single query with no evidence, and when the
expansion forms a tree such that no element occurs in
more than one path. However, if the same element is used
both by the query and some evidence, or is reachable
from the query by more than one path, this basic
expansion algorithm encounters a subtle problem where it
may compute inconsistent ranges for the same elements.

Suppose we have a query element X and an evidence
element Y, and the target depth is 1. Suppose also that Y is
an argument of an argument of X. If we expand X first, we
will eventually expand Y to depth -1, resulting in a range
of { * }. However, because Y is an evidence element, we
will eventually expand it to depth 1, resulting in a
different range. The computed range of Y will be
incompatible with the range of X, which can cause trouble
for factored computation later on.

One possible solution is to stipulate in advance that
whenever an important (query or evidence) element is
encountered, it is always expanded to the maximum
desired depth d. However, this does not completely solve
the problem, because X and Y might both depend, at
different depths, on some other element Z that is not a
query or evidence element.

Our solution uses backtracking to keep track of
dependencies at various depths and adjust previous
computations once new dependencies are revealed by the
expansion algorithm. Failure to make this optimization
can lead to exponential blowup as the same elements get
recursively expanded again and again. Consider a case
where X and Y both depend on an element Z. Suppose Y is
expanded first, resulting in Z being expanded to some
depth d1. After Z has been expanded, we record a back
pointer from Z to Y. When X is later expanded, it will
result in a request to expand Z to depth d2. If d2 ≤ d1, we
have already computed an equal or better set of values for
Z, so we do not expand Z again. If, however d2> d1, we
need to expand Z to a greater depth. After doing so and
computing a new set of values for Z, we know from the
back pointer that Z was previously expanded from Y to a
lesser depth than d2, so Y might use an inconsistent set of
values of Z. Therefore, we backtrack and re-expand Y. We
will also have back pointers from Y so we can re-expand
other elements that depend on Y.

Using backtracking, we can ensure that the last time the
values of an element are computed by Steps 2-4 in the
basic expansion algorithm occurs after the last time values
have been computed for all elements on which it depends.

Proposition 1. For all elements Y that have been
expanded by the LFI expansion algorithm with
backtracking, the last expansion for Y occurs after the last
expansion of all elements on which it depends.

Please see the supplement for all proofs. This fact ensures
that the value sets will be consistent.

Figure 1: Basic LFI expansion on a random list.

4.1.3 Lazily Expanding Evidence

There is an additional optimization we can make to the
expansion phase of LFI. Consider a large model with
many evidence elements and a single query.
Implementing the above expansion algorithm will require
us to expand all the evidence variables regardless of their
distance from the query, resulting in a large number of
elements. However, as with irrelevant parts of the model
that are represented by *, distant evidence may not be
relevant to the query (i.e., there will be no path from the
evidence variables to a query variable within depth d of
the query). Ideally, we will only expand evidence that is
close to the query and can actually contribute to the
probability bounds computation.

We can accomplish this by modifying the basic expansion
algorithm to lazily expand in multiple iterations,
beginning with only the query elements Q.

1. Set ExpandList = Q with depth d
2. For each element E in ExpandList, expand E to

specified depth d as described in Section 4.1.1
3. For each iteration where d ≥ 0

a. Identify all elements X that use the current
element E and have not be expanded to d - 1

b. If X is an evidence element, then add to
ExpandList with depth d - 1

c. Recursively expand X until d < 0
4. Continue until ExpandList = Empty
After this process has completed, we guarantee that all
elements relevant to the query within a distance of d have
been expanded.

Theorem 1. Let Q denote a set of query variables and E a
set of evidence variables with known values in a
probabilistic graphical model G. Lazy expansion of G to
depth d will expand all variables relevant to Q and E
within depth d of Q.

4.2 STEP 2: PRODUCE FACTORS FOR THE
RELEVANT ELEMENTS

Once the model has been lazily expanded to the desired
depth to identify the relevant elements and their possible
values, the next step is to produce factors for these
elements so they can be used in a factored inference
algorithm. Figaro already contains an algorithm for
producing factors for a finite set of elements whose
corresponding variables have ordinary (not extended)
ranges. Producing factors for elements whose variables
have extended ranges extends this procedure in a
straightforward way.

In general, there are two kinds of factors produced by
Figaro. The first encodes the relationship between an
element and its arguments resulting from the definition of

the element’s generative model. The second encodes
conditions and constraints on a variable.

For the first kind of factor for an element E:

1. If E is atomic, it’s factor is the usual factor over its
regular values

2. If E is Apply(X,F), then the factor assigns a
probability to each assignment x to the arguments
and y to the result, as follows:

a. If none of the arguments are *, and y = F(x),
the probability is 1.

b. If any of the arguments is *, and y = *, the
probability is 1.

c. Otherwise, the probability is 0.
3. If E is Chain(X,F), then we build off a technique

used in Figaro for constructing factors for a chain
without extended values. Since every value of X
results in a different element, a naïve factor would
include a variable for each such element, potentially
resulting in extremely large factors if X has many
values. Instead, many three variable factors are
constructed. For each regular value x of X, we
construct a factor ϕx over X, the specific element Y =
F(x) for some value x of X, and E. Without extended
values, these factors are defined so that their product
equals the single naïve factor. We extend this
construction to extended values as follows.

a. For each regular value x of X, we define a
factor ϕx that specifies a probability for
each value x’ of X, y of F(x), and e of E, as
follows:

i. If x’ ≠ x, the probability is 1. This
is a “don’t care” case.

ii. If x’ = x and e = y, the probability is
1. This also applies if e = y = *.

iii. Otherwise the probability is 0.
b. We also create a binary factor ϕ* that

specifies a probability for each value x of X
and e of E, as follows:

i. If x ≠ *, the probability is 1 (don’t
care).

ii. If x = * and e = *, the probability is
1.

iii. Otherwise the probability is 0.

To see how this construction for chains helps control the
effect of *, consider the following element from our
random list:

If(head == target, Constant(true),
contains(target, tail))

If is actually syntactic sugar for Chain, in which the
first argument is the test, and the function maps the result
of the test to the appropriate consequence. Here, if the test
is true (i.e., the value of head is equal to the target
symbol), only the then clause Constant(true) is
relevant, so the factor ϕtrue will not include the variable

for the else clause, while the factor ϕfalse will have a
don’t care case. Therefore, even if the value of the else
clause is *, the value true for the entire If expression
will have probability 1 in each factor. This is the essential
insight that prevents * contaminating the entire
computation.

The second kind of factor corresponds to a condition or
constraint. First we consider conditions, which are
predicates on elements that are either satisfied or not
satisfied. To produce a factor for an element E and
condition C:

1. If E has a regular value, we can determine if C is
satisfied and compute an entry of 0 or 1 as usual.

2. If the value of E is *, we do not know whether C
would be satisfied by the eventual value * would
resolve to if we expanded it fully, so we create
bounds of [0, 1] on the entry.

Factors representing soft constraints, which are functions
from the value of a variable to a real number, are similar.
In this case, bounds must be specified on the value of the
constraint. Bounds of [0, 1] are the default, but different
or more precise bounds can be provided as necessary.

Using these modifications to Figaro’s factor generation
algorithm to account for unexpanded parts of the
computation represented by *, Step 2 will produce a set of
factors over variables with extended ranges. Only factors
for relevant variables within the desired depth will be
produced.

4.3 STEP 3: APPLYING A FACTORED
ALGORITHM

Using the factors produced by Step 2, we can now
determine an answer to the query, which is defined as a
sum-of-products expression over these factors. The goal is
to reduce this sum-of-products expression to a single
factor over the query variables. Factored algorithms such
as VE and BP produce solutions or approximations to this
factor.
For LFI, standard factored inference algorithms can be
applied with no modification; however, now they are only
being computed over factors representative of the relevant
parts of the computation for answering the query to the
desired depth, rather than the entire model. The standard
algorithm is called once using the lower bounds and once
using the upper bounds specified in the factors.

4.4 STEP 4: FINALIZING THE RESULT

By applying a factored inference algorithm in the
previous step, we acquire two factors over the query, one
for the lower bounds, and one for the upper bounds. These
factors will, in general, be unnormalized, and * might
have positive probability mass. In this finalization step of
the LFI algorithm, we need to normalize the results and
absorb the probability mass of * into the regular values.

Let the unnormalized lower bound of value i (regular or
*) of the query be li and let the unnormalized upper bound
be ui. Standard normalization takes a set of unnormalized
probabilities qi, computes their sum Z = Σqi , and then
computes pi = qi / Z to obtain the normalized probabilities.
In our case, U = Σui is an upper bound on the normalizing
factor. Therefore Li = li / U is a lower bound on the
normalized probability of value i. Meanwhile, for a
regular value j of the query, any probability assigned to
the regular value i ≠ j cannot be assigned to j, so 1 –
Σregular i ≠ j Li is an upper bound on the probability of j.
Since any probability mass associated with * will not be
subtracted in this upper bound, that probability mass is
absorbed into the upper bounds of each of the regular
values.

5. ANALYSIS
Our main result is that the process of lazily expanding the
program to increasing depths results in increasingly better
bounds on the probability distribution over the query. Our
analysis assumes there is a single variable, and in fact
multiple query variables can break the result if query
variables only become connected after some depth has
been expanded. If multiple query variables are desired,
that can easily be achieved by defining a single variable to
be a tuple of the query variables, and making that the
query variable instead.

In addition, our result assumes that all evidence variables
have already been included before the bounds start to
converge. If new evidence variables are introduced after a
certain depth, they might change the query distribution. In
many applications, such as the probabilistic context free
grammar example we present later, this is not a problem
as the evidence is reached at a shallow depth.

Also, our result assumes that the factored algorithm used
to compute the bounds is exact. For an approximate
algorithm like BP, we cannot provide the same
guarantees.

Our main result is as follows:

Theorem 2: Let 𝑄 be a query variable, 𝑬 a set of
evidence variables, and 𝑞 a regular value of 𝑄. Assume
that expanding to depth 𝑑 + 1 does not produce any new
evidence variables. Let 𝑙𝑑(𝑞) and 𝑢𝑑(𝑞) denote the lower
and upper bounds produced by LFI expanded to depth 𝑑.
Then 𝑙𝑑+1(𝑞) ≥ 𝑙𝑑(𝑞) and 𝑢𝑑+1(𝑞) ≤ 𝑢𝑑(𝑞).

For finite models, at some depth d all variables will be
expanded, and the bounds will be equal to the true
probability. Therefore, the true probability lies between
the bounds at every depth for finite models. For infinite
models, the bounds do not necessarily converge. For
example, consider the probabilistic program:

def f() = Apply(f(), (x: Boolean) => x)

val query = f()

This program defines an infinite chain such that each
Boolean variable in the chain is equal to its predecessor.
The bounds at any depth will be (0,1). This example
illustrates the limits of our approach.

6. IMPLEMENTATION AND
EXPERIMENTATION

We have produced two initial implementations of the LFI
algorithm in Figaro, using VE and BP as the factored

inference algorithms. Since BP does not provide
guarantees, we have evaluated the VE implementation.
Our experiments were conducted using a probabilistic
context-free grammar (PCFG). Encoding PCFGs in a PP
language is straightforward, yet can present significant
computational challenges when attempting to apply
evidence to the PCFG and make inferences based on
recognizing strings. First, all non-trivial PCFGs are
unbounded, enabling generation of arbitrarily long strings
that are difficult to parse and may not provide more
query-relevant information than shorter strings. Second,
some PCFGs are infinite, producing infinitely longs string
with non-zero probability. Standard natural language
parsing algorithms assume that a finite string is given as
evidence, which is use to control the computation and
limit the number of non-terminals that can be created.
However, this technique does not work when the query is
whether a string contains a particular substring, as in
principle, arbitrarily long and even infinitely long strings
may need to be examined to determine if the substring is
present. Clearly, non-lazy factored algorithms cannot
answer these queries, and sampling algorithms, such as
importance sampling, can infinitely expand on certain
samples. As such, we tested our LFI algorithm on both
unbounded and infinite PCFGs to evaluate the algorithm's
ability to reason on these otherwise intractable models.

For this experiment, we constructed a simple unbounded
PCFG with three non-terminals, where the only difference
between the finite and infinite grammars is the production
probabilities. The grammar is encoded in Greibach
Normal Form (GNF) (Greibach, 1965), which only has
right-hand recursion. In other words, every production
contains a terminal at the beginning, which serves to drive
the generation of the string forward. This works well with
LFI. Since this expansion is recursive, expanding to a
fixed depth in the LFI algorithm will bound the length of
the possible strings that can be generated, and thus
produce bounds on the probability of the query string.
Evidence can also be applied in the same manner by
simply observing that the element returned by
contains is either true or false. We refer the reader to
the supplement for more details on the grammar.

Figure 2 shows the results of a query for the probability
that a string produced by the PCFG contains the sub-
string “de”, given the observation that the string contains
the sub-string “a”. We show the results for both the finite
and infinite versions of the grammar, expanding using
LFI to a target depth ranging from d = 1 to d = 25, and
using VE as the factored algorithm. As can be seen, the
probability bounds on the queries in both grammars start
to converge, and in the case of the finite grammar, do so
quickly (at a depth of ~21). Observe that the bounds of
the infinite grammar tend to stabilize for several depths
(e.g., between 17 and 19), and then tighten at other depths
(e.g., 19). This is an artifact of the grammar generation;
increasing the depth of the lazy expansion does not
always result in an increase in the possible string lengths.

Figure 2: Probability bounds on the ‘contains’ query
for the finite and infinite grammars.

Figure 3: Running times of querying the infinite
grammar for different depth expansions.

Figure 4: Probability bounds on the infinite grammar
as a function ion of the query and evidence lengths.
The points represent the mid-point of the bounds and
the error bars show the upper and lower bounds.

For instance, expanding a non-terminal one additional
depth may produce two non-terminals, which does not
increase the possible size of the string until the two non-
terminals are later expanded.

In Figure 3 we also show the running times of the model
expansion and inference for the infinite grammar. The
running times are dominated by the factored inference and
not the lazy expansion of the model. Given the known
limitations of VE, this result is expected but still
reasonable considering that factored inference on an
infinite grammar is otherwise impossible. As a
comparison, we also queried the infinite PCFG using the
MH and importance sampling algorithms. After 100
seconds of sampling via MH, the estimated probability of
the query string is 0.001, well outside the probability
bounds computed using the same amount of time for the
lazy VE (~depth of 21). MH had also created more than 5
million elements, and we expect it would eventually run
out of memory. The importance sampler did not even
produce an estimate, as once the sampler generates a
world with infinite expansion, it will never terminate.

Finally, we show how the length of the evidence and the
query can affect the performance of LFI. In Figure 4, we
varied the length of the query and evidence strings from
one to four while keeping the expanded depth of the
model fixed at 25 (the length of the query was fixed at
one when the evidence was varied and vice--versa). As
the query length increases, the bounds increase for the
infinite grammar, with no noticable change in the finite
grammar bounds. On the contrary, when the length of the
evidence increases, the bounds on the query significantly
increase for both the finite and infinite grammar. When
the depth of the expansion is fixed, it becomes
increasingly unlikely that the evidence is found in the
possible generated strings at that depth, and therefore,
more probability mass is assigned to unexpanded
possibilities resulting in loose bounds.

7. RELATED WORK
Though lazy evaluation and execution has a long history
in computation, particularly as a feature of functional
programming, there is little prior work that applies this
method to inference in probabilistic graphical models. For
example, lazy evaluation of game trees using the alpha-
beta algorithm allows computation of a potentially infinite
search space (Hughes, 1989). In (Kiselyov & Shan, 2009),
a domain specific language for probabilistic programming
is embedded in OCaml, using continuations to represent a
stochastic computation as a lazy search tree. The tree is
traversed depth first and the probabilities of query values
accumulated in a table used by the inference algorithms.
IBAL (Pfeffer, 2001) provides an algorithm for solving
infinite probabilistic models in PP with finite observations
and also makes use of laziness to evaluate queries on
infinitely large models. However, IBAL’s approach only
works if the evidence guarantees that only a finite part of

the model can be constructed, working in a manner
similar to natural language algorithms on finite strings.
(Pfeffer & Koller, 2000) propose a scheme for inference
with recursive probabilistic models, but it is not
computationally expressed. None of these approaches use
the structure of the model to determine the relevance of
unexpanded variables and provide bounds on queries.

There is also a body of work related to achieving more
efficient inference in Bayesian networks by exploiting the
structure of the graphical models to prune irrelevant nodes
and manipulate the possible factorizations (Pearl, 1988;
Shachter, 1988; Zhang & Poole, 1994; Baker & Boult,
1990b). As we have discussed, our LFI approach builds
on and extends these concepts in a lazy way.

Our work is also related to methods for providing bounds
to BP algorithms (Mooij & Kappen, 2008; Ihler, 2012).
However, the methods are very different, as they use (0,1)
bounds on messages at the leaves whereas we use the
structure of the program to determine when the
unexplored computation is relevant. Finally, computation
of probability bounds in probabilistic graphical models
has also been explored through other approaches. For
example, in (Wexler & Meek, 2008), the multiplicative
approximate inference scheme (MAS) is presented as a
bounding algorithm for probability of evidence.

8. CONCLUSIONS
In this paper, we have presented an algorithm for LFI in
PP, making factored inference a viable framework for
full-fledged PP. LFI leverages the fact that not all
variables in a probabilistic model are relevant to a
particular query and provides bounds on the query
probability by only exploring the most relevant portions
of the model. We have provided a basic algorithm, and
several optimizations to improve efficiency and accuracy.
Experimental results using an implementation of LFI in
Figaro demonstrate the potential of this approach for
providing tractable, factored algorithms for PP.
One optimization is to reuse work between iterations of
expansione, since most of the factors are the same in
successive iterations. Also, we would like to explore the
BP implementation more fully. First, can we provide any
bounds, e.g., of convergence to the Bethe free energy?
Second, how does the algorithm behave in practice? Our
work is a starting point, and we hope many optimizations
and refinements will come in the years ahead.

References:

Baker, M.& Boult, T. E. (1990a). Pruning bayesian

networks for efficient computation. In
Uncertainty in Artificial Intelligence (UAI).

Baker, M.& Boult, T. E. (1990b). Pruning bayesian
networks for efficient computation. In UAI, 225-
232.

Dechter, R. (1999). Bucket elimination: A unifying
framework for reasoning. Artificial Intelligence,
113, 41-85.

Goodman, N. D., Mansinghka, V. K., Roy, D., Bonawitz,
K., and Tenenbaum, J. B. (2008). Church: A
language for generative models. In Uncertainty
in Artificial Intelligence.

Greibach, S. A. (1965). A new normal-form theorem for
context-free phrase structure grammars. Journal
of the ACM (JACM), 12, 42-52.

Hastings, W. K. (1970). Monte carlo sampling methods
using markov chains and their applications.
Biometrika, 57, 97-109.

Herbrich, R., Minka, T., and Graepel, T. (2006).
Trueskill# 8482;: A bayesian skill rating system.
Advances in Neural Information Processing
Systems (NIPS), 569-576.

Hughes, J. (1989). Why functional programming matters.
The computer journal, 32, 98-107.

Ihler, A. T. (2012). Accuracy bounds for belief
propagation. arXiv preprint arXiv:1206.5277.

Kiselyov, O.& Shan, C.-c. (2009). Embedded
probabilistic programming. In Domain-Specific
Languages, 360-384.

Koller, D., McAllester, D., and Pfeffer, A. (1997).
Effective bayesian inference for stochastic
programs. In National Conference on Artificial
Intelligence (AAAI).

McEliece, R. J., Mackay, D. J., and Cheng, J. F. (1998).
Turbo decoding as an instance of pearl's belief
propagation algorithm. IEEE Journal on Selected
Areas in Communication, 16, 140-152.

Metropolis, N., Rosenbluth, A. W., and Rosenbluth, M.
N. (1953). Equations of state calculations by fast
computing machines. Chemistry and Physics, 21.

Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D. L.,
and Kolobov, A. (2005). Blog: Probabilistic
models with unknown objects. In Proc.~19th

International Joint Conference on Artificial
Intelligence, 1352-1359.

Minka, T. P. (2001). Expectation propagation for
approximate bayesian inference. In Proceedings
of the Seventeenth Conference on Uncertainty in
Artificial Intelligence, 362-369.

Mooij, J. M.& Kappen, H. J. (2008). Bounds on marginal
probability distributions. In NIPS, 4, 3.

Pearl, J. (1988). Probabilistic reasoning in intelligent
systems: Networks of plausible inference. San
Mateo, CA: Morgan Kaufmann.

Pfeffer, A. (2001). Ibal: A probabilistic rational
programming language. In International Joint
Conference on Artificial Intelligence.

Pfeffer, A. (2012). Creating and manipulating
probabilistic programs with figaro. In Workshop
on Statistical Relational Artificial Intelligence
(StarAI).

Pfeffer, A.& Koller, D. (2000). Semantics and inference
for recursive probability models. In AAAI/IAAI,
538-544.

Shachter, R. D. (1988). Probabilistic inference and
influence diagrams. Operations Research, 36,
589-604.

Wexler, Y.& Meek, C. (2008). Mas: A multiplicative
approximation scheme for probabilistic
inference. In NIPS, 1761-1768.

Winn, J. (2008). Infer.net and csoft. In NIPS 2008
Workshop on Probabilistic Programming.

Zhang, N. L.& Poole, D. (1994). A simple approach to
bayesian network computations. In The 10th
Canadian Conference on Artificial Intelligence,
171-178.

	1. Introduction
	2. Random Lists Example
	3. Lazy Factored Inference
	4. The LFI Algorithm for Pp
	4.1 Step 1: Expand the model
	4.1.1 Basic expansion algorithm
	4.1.2 Backtracking Expansion
	4.1.3 Lazily Expanding Evidence

	4.2 Step 2: Produce factors for the relevant elements
	4.3 Step 3: Applying a factored algorithm
	4.4 Step 4: Finalizing the result

	5. Analysis
	6. Implementation and Experimentation
	7. Related work
	8. Conclusions

