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Abstract 

Probabilistic programming provides the means to 
represent and reason about complex probabilistic 
models using programming language constructs. 
Even simple probabilistic programs can produce 
models with infinitely many variables. Factored 
inference algorithms are widely used for 
probabilistic graphical models, but cannot be 
applied to these programs because all the 
variables and factors have to be enumerated. In 
this paper, we present a new inference 
framework, called lazy factored inference (LFI), 
that enables factored algorithms to be used for 
models with infinitely many variables. LFI 
expands the model to a bounded depth and uses 
the structure of the program to precisely quantify 
the effect of the unexpanded part of the model, 
thereby producing lower and upper bounds to the 
probability of the query. 

1. INTRODUCTION 
Probabilistic models are growing in their richness, 

diversity, and widespread usage. One of the challenges to 
using probabilistic models, especially for users without 
deep machine learning expertise, is the need to create 
representations and reasoning algorithms for models. 
Probabilistic programming (PP) (Koller, McAllester, 
Pfeffer et al., 1997) addresses these challenges by 
providing expressive languages to represent models using 
programming language constructs and inference 
algorithms that apply automatically to models written in 
the languages.  

One of the biggest challenges in PP inference is that 
even compact programs can result in models with very 
large or an infinite number of variables. Currently, the 
typical method for performing inference in such models is 
to use Metropolis-Hastings (MH) (Metropolis, 
Rosenbluth, Rosenbluth, 1953; Hastings, 1970), which 

has become a standard algorithm in languages such as 
BLOG (Milch, Marthi, Russell et al., 2005), Church 
(Goodman, Mansinghka, Roy et al., 2008), and Figaro 
(Pfeffer, 2012) for this reason. Unfortunately, MH is 
extremely hard to understand and requires significant 
expertise to achieve convergence at a reasonable rate in 
many applications. 
Factored algorithms, such as variable elimination (VE) 
(Zhang & Poole, 1994; Dechter, 1999) and belief 
propagation (BP) (Pearl, 1988; McEliece, Mackay, 
Cheng, 1998), are alternative and widely used inference 
algorithms and are generally preferred to MH where they 
are applicable. For instance, in the 2010 UAI 
Approximate Inference Competition, many of the entrants 
used factored algorithms, while none used MH. However, 
current factored algorithms require enumerating all the 
variables in the model and creating factors for them, 
which is infeasible for models with a very large number 
of variables, and impossible if there are infinitely many 
variables. Indeed, Infer.NET (Winn, 2008) has achieved 
excellent results on real-world inference tasks (Herbrich, 
Minka, Graepel, 2006)  using expectation propagation 
(Minka, 2001), a factored algorithm, at the cost of 
severely restricting the expressivity of the language to 
avoid recursion, thereby eliminating infinite models. 
We believe that just as factored algorithms have been 
instrumental in the success of probabilistic graphical 
models in general, making factored inference work for PP 
is essential to its eventual success. In this paper we 
describe an inference framework—lazy factored inference 
(LFI)—that achieves this goal, making factored 
algorithms applicable to models with very many or 
infinitely many variables. LFI works by expanding a 
potentially infinite model up to a bounded depth and 
characterizing precisely the effect of the unexpanded part 
of the model on the probability of the query. As we show, 
characterizing the effect of the unexpanded part of the 
model can be performed using standard factored inference 
algorithms as a subroutine with no modification to the 
algorithms, with the addition of preprocessing and 
postprocessing steps. The result of LFI is a pair of lower 
and upper bounds on the probability of the query. By 



 

iteratively expanding the model to increasing depths, we 
obtain an anytime algorithm that can produce 
progressively tighter bounds. Although LFI is a general 
inference framework for graphical models, it works 
particularly well for PP, because PP languages typically 
have the necessary constructs to guide the lazy expansion. 

The remainder of this paper is organized as follows. 
In Section 2 we provide a running example that will be 
used to illustrate the LFI approach. Sections 3 and 4 
present the basic intuition and technical details of LFI. In 
Section 5 we present theoretical results and analysis of the 
LFI approach. In Section 6 we describe an 
implementation of two lazy factored algorithms—VE and 
BP—in the open source Figaro PP language(Pfeffer, 
2012) and present experimental results on reasoning with 
probabilistic context-free grammars, which would 
otherwise be intractable using standard factored 
algorithms. Finally, in Section 7 we discuss related work 
and in Section 8 we conclude. 

2. RANDOM LISTS EXAMPLE 
As a simple running example to motivate our approach, 
we use a model that generates random lists of unbounded 
length. Each list consists of the symbol ‘a or the symbol 
‘b at each index. Lists are created by a generator function 
that grows the list one symbol at a time. At each step, the 
generator terminates with probability 0.5, adds an ‘a with 
probability 0.3, or adds a ‘b with probability 0.2. We can 
query the list for certain properties, such as whether the 
list contains a ‘b.  
This list generator and the containment queries can both 
be defined in Figaro, a PP language embedded in Scala 
and capable of representing and reasoning about a wide 
variety of probabilistic models. The following three lines 
of code define the random list in Scala using the Figaro 
Element construct, which represents random variables. 
Line 1 defines a general class of random lists, named L. A 
random list consists of two possible cases: either it is 
defined to be the Empty list (Line 2), or it is a Cons of 
two Elements (random variables) as defined in Lines 3 
and 4, where  the head is an Element[Symbol] and 
the tail is an Element[L] (i.e., a random list). 
1 abstract class L 

2 case object Empty extends L 

3 case class Cons(head: Element[Symbol], 

4               tail: Element[L]) extends L 

We now define the random list generator function. The 
body of the generate function, which returns an 
Element[L]  (random list) is found in lines 2-5. First, it 
uses Flip(0.5) (Line 3) to generate a random Boolean 
that is true with probability 0.5. If the Boolean is true, it 
produces the Empty list (Line 3) to terminate the list. 
Otherwise, it produces a Cons in which the head is ‘a 
with probability 0.6 and ‘b with probability 0.4 (Line 4), 
and the tail is the result of a recursive call to 
generate() (Line 5). Sampling from this 

generate() function could generate lists of unbounded 
length, while full expansion of all the possibilities results 
in a model with infinitely many variables. 

1 def generate(): Element[L] = { 

2  Apply(Flip(0.5), (b: Boolean) => 

3   if (b) Empty 

4   else Cons(Select(0.6 -> ‘a, 0.4 -> ‘b), 

5             generate())) 

6 } 

Now, suppose we want to know whether this list contains 
a particular symbol. We can define a contains 
predicate, which takes two arguments: the target 
symbol and the random list el we are checking. The 
implementation of the contains predicate in Figaro is 
shown below. 
1 def contains(target: Symbol,  
2  el: Element[L]): Element[Boolean] = { 
3  Chain(el, (l: L) => { 
4    l match { 
5     case Empty => Constant(false) 
6     case Cons(head, tail) =>  
7      If(head === target,  
8         Constant(true),      
9         contains(target, tail)) 
10   }})} 
The result of the contains predicate is a random 
variable denoted by the type Element[Boolean] 
(Line 2). Even though contains works 
deterministically, the result is random because the list 
argument is random. The body of contains is found in 
Lines 3-11. It uses Chain, a Figaro construct that chains 
random processes together through two arguments: an 
Element (random variable) and a function that takes a 
value of the Element and produces another Element. 
A Chain will first sample a value from the given 
Element argument. Then it applies the given function to 
this value to produce a new Element. Finally, it samples 
a value from this new Element. 

In the case of  contains, the Element argument is the 
random list el. The function argument takes a particular 
value of el, which is a list l, and returns an 
Element[Boolean]. The body of this function is 
found in Lines 4-10 using pattern matching on the type of 
l. If l is Empty (Line 5), the function returns 
Constant(false), which is the element whose value 
is false with probability 1. Otherwise (Lines 6-10), l 
must be a Cons. If the value of head is equal to the 
target, it returns Constant(true), otherwise it 
recursively calls contains on the tail.  

Using this model, we want to be able to observe evidence 
and ask queries about the contents of a random list. The 
Figaro code below generates a random list in Line 1 using 
the generate function. Lines 2 and 3 create random 
Booleans indicating whether el contains the symbols ‘a 



 

or ‘b, respectively. Now suppose we observe that the 
random List contains ‘a. Line 4 sets this observation. 
Given this evidence that the list contains ‘a, we want to 
determine the probability that the list also contains ‘b. 
Although the answer can be determined analytically in 
this simple example, a general algorithmic solution would 
need to sum over infinitely many sequences of unbounded 
length, motivating the need for a lazy solution. The fifth 
line creates a lazy version of VE capable of solving this 
otherwise intractable query. In the next section we 
describe how LFI makes factored analysis of very large or 
infinite models possible in PP.  

1 val el = generate() 

2 val ca = contains('a, el) 

3 val cb = contains('b, el) 

4 ca.observe(true) 

5 val alg = new LazyVariableElimination(cb) 

3. LAZY FACTORED INFERENCE 
So, how do we make this VE algorithm work without 
enumerating the infinitely many variables in the model? 
The main intuition is that variables that are far from the 
query and evidence have little impact on the query. 
However, it is not just the distance from the query and 
evidence that matters, it is the fact that other variables 
need to take on particular values to make these faraway 
variables relevant.  In our example, the query to 
determine the probability of the symbol ‘b occurring in 
the list, given that we have evidence of symbol ‘a, is a 
contains function that recursively processes the list 
from the beginning. In this case, variables that correspond 
to symbols far along the list, or variables determining 
whether the list terminates at some point far along the list 
are considered less relevant, because they are only 
relevant if the list has not terminated earlier.  
Because not all variables contribute equally—and in fact 
because many variables have only a minor impact—to the 
query result of any given model, it is not necessary to 
enumerate the entire probability space for accurate 
inference. LFI is a new approach that  expands the model, 
beginning with the query and the evidence, up to a 
bounded depth, and characterizes quantitatively the effect 
of the unexplored part of the model on the query. This 
expansion will only explore relevant parts of the model to 
a specified depth, following the definition of (Baker & 
Boult, 1990a). 
Definition 1 (Relevant Variables).  Given a set Q of 
query variables and set E of evidence variables in a 
Bayesian network, relevant variables w.r.t. Q and E are 
variables X in the set Q ∪ E ∪ An(Q ∪ E), such that X  is 
not d-separated from Q by E, where An(Q ∪ E) contains 
all ancestors of Q and E. 
In LFI, we expand the model to a bounded depth, 
producing a Bayesian network, and only consider relevant 
variables in that network. We explore close relevant 

variables first—those that are closest to the query and 
evidence variables along non blocked paths—ignoring 
nodes that are either distant from the query or “barren” in 
that their distributions supply no information to the beliefs 
of the query variables(Shachter, 1988; Baker & Boult, 
1990b).  
For the variables Y that is distant from the query, we 
determine values x of the expanded variables X that 
render Y irrelevant, in the sense that the probability of the 
query is independent of Y when X = x. In other words, the 
query is fully determined by x. We can then assign the 
probability mass P(X = x) to different possible query 
outcomes. This contributes to a lower bound for the query 
outcomes. For any value x’ that does not render Y 
irrelevant, the query is undetermined, and the probability 
mass P(X = x’) could potentially be added to any of the 
query outcomes. As a result, through this limited 
expansion of the model, we will be able to apply factored 
inference algorithms to a reduced, tractable number of 
variables to compute lower and upper bounds on the 
query result.  
For example, from a partial expansion of our model to the 
first n elements of a list el, we can compute: 
• p1 = P(el has length ≤ n and does not contain ‘b) 
• p2 = P(el contains ‘b in the first n elements) 
• p3 = P(el has length > n and does not contain ‘b in 

the first n elements) 
In the first case, the query for whether the list contains ‘b  
is definitely false, in the second case it is definitely true, 
and in the third case the query is not yet determined. So 
(p2, p2 + p3) are lower and upper bounds on the 
probability that the list contains ‘b. When we have 
evidence that the list contains ‘a, we get more cases, but 
the principle is similar.  

Of course, since we are only partially exploring the model 
along relevant paths, we cannot guarantee that all 
unexplored portions are irrelevant to the query. To 
represent the unexplored probability mass in LFI, we 
extended the range of values a variable can take.  

Definition 2 (Extended Variable Range). A variable 
with an extended variable range can take a regular value, 
or it can take the special value * (pronounced “star”).  
For example, the possible extended values of a Boolean 
are { false, true, * }. Intuitively, * stands for “unknown 
result of the rest of the computation,” and the probability 
associated with * represents the amount of probability 
mass resulting from the unexplored part of the 
computation. If we quantify this, we know how much 
remaining probability mass could be added to each of the 
regular values.  

 As will be discussed in Section 4, by computing sums 
and products involving extended values in the ordinary 
way, we can keep track of this probability mass. 



 

The above concepts can be formalized into a LFI 
algorithm consisting of four steps: 

1. Expand the model to the desired depth and compute 
the extended ranges of relevant elements 

2. Produce factors for the relevant elements 
3. Apply a factored inference algorithm to the factors 
4. Finalize the result to produce bounds on the query 

The LFI algorithm naturally lends itself to an iterative 
deepening approach, where we gradually increase the 
depth and improve the resulting bounds on the query 
(given that all evidence is known). This produces an 
anytime algorithm for factored inference on very large or 
infinitely large models using PP. In the following section, 
we discuss each step of the LFI algorithm in detail. 

4. THE LFI ALGORITHM FOR PP 
We now provide details on the four steps of the LFI 
algorithm for PP and its implementation using Figaro. 

4.1 STEP 1: EXPAND THE MODEL 

The first step of the LFI algorithm is to expand the model, 
beginning with the query and evidence, up to a depth d. 
This step must determine which variables are relevant 
when the model is expanded to this depth and the range of 
each relevant variable, which is a set of extended values 
(possibly including *). We present two approaches to the 
expansion, a basic algorithm (Section 4.1.1) suitable for 
simple queries, and a backtracking version (Section 4.1.2) 
that can be used to compute more complex queries and 
evidence. Section 4.1.3 specifically addresses lazy 
expansion of evidence.  

We explain these algorithms using Figaro constructs, but 
they are all generalizable to other PP languages. Recall 
from Section 2 that in Figaro a random variables is 
represented by an Element. Some elements are atomic, 
meaning they do not depend on any arguments (e.g., 
Select(0.6 -> ‘a, 0.4 -> ‘b)is the 
probabilistic model that produces ‘a with probability 0.6 
and ‘b with probability 0.4). An element can also consist 
of the more complex Chain structure for chaining 
random processes together (see Section 2). As we will see 
in Section 4.2, the Chain construct helps to control and 
limit the impact of the unexplored part of the computation 
on the query. Most functional probabilistic programming 
languages have a structure similar to Chain that can be 
used in this manner. Finally, an element can have the 
form Apply(arguments, function), in which the 
arguments are elements, and the Apply element 
corresponds to the random variable produced by applying 
the deterministic function to the arguments. Since Figaro 
constructs can in general be expressed in terms of atomic 
elements, Chain, and Apply, it suffices to define the 
algorithm for these element classes. 

4.1.1 Basic expansion algorithm 

The basic expansion algorithm begins with a list of 
relevant elements consisting of the query and evidence, 
represented as Figaro elements, and proceeds recursively 
to depth d as follows. 

For a relevant element E:  

1. If d < 0, return { * } for the range of E 
2. If E is atomic,  return its known range of regular 

values. 
3. If E is a Chain(X,F), where X is an element and 

F is a function that maps a value of  X to another 
element: 

a. Expand  X to depth d - 1. 
b. For each regular value x in the range of X: 

i. Compute Y = F(x).  
ii. Expand  Y to depth d - 1.  

iii. Each value, regular or *, in the 
range of Y is added to the range of 
E . 

c. If the range of X includes *, the range of E 
also includes *. 

4. If E is Apply(X,F), where X is a sequence of 
argument elements and F is a deterministic function 
of values of X: 

a. Expand each X in X to depth d - 1.  
b. For each combination x of regular values of 

X, the range of E contains F(x).  
c. If any argument in X contains * in its range, 

the range of E also contains *.  

All the elements that are expanded in this way, including 
those that are expanded to a depth of -1 and so have the 
range { * }, are relevant. At the end of this step, we create 
a variable for each such element whose range is the 
computed range of extended values of the element. These 
variables are later used to produce factors for the 
inference algorithms.  

Figure 1 shows an example of the basic expansion 
algorithm for our random list example. Each node in the 
graph in Figure 1 corresponds to an element whose values 
are to be computed, and the shaded box beneath shows 
the resulting values. The numbers in parentheses to the 
left of the elements and the resulting values indicates the 
order in which the elements were expanded and their 
values were determined. The small superscript number to 
the right of the element represents the depth to which the 
element is expanded. 

In this example, we want to determine which variables are 
relevant to our query—whether the list el contains the 
symbol ‘b—by looking to a target depth of d = 3. The 
first step is to expand the top-level query, 
contains(‘b, el) to d = 3. This query is a 
compound element, so will expand its arguments in Step 
(2) to depth d-1 = 2. The algorithm first looks at the value 
of el, which is defined by a call to generate(), and 



 

expands generate() to d = 2. Again, we have a 
compound element, so the arguments of the 
generate() element are expanded to depth d = 1. Step 
(3) first looks at Flip(0.5), which immediately 
produces the values {F, T} in Step (4). There are then 
two possible outcomes, depending on the value of the 
Flip: Empty, and Cons(Select(0.6 -> ‘a, 
0.4 -> ‘b), generate()), which produce the 
value sets {Empty} and {Cons} respectively in Steps 
(5)-(8) as they are expanded and their ranges computed. 
Note that even though Cons contains two random 
elements, Cons itself is just a value. So, in Step (9), we 
determine that the possible values of generate() are 
{Empty, Cons}. If generate() is Empty, the top 
level query is Constant(false), whose value set is 
{F} (Steps (10)-(11)), so F will become a possible value 
for the top level query.  

In this depth 3 expansion, so far we have found the case 
where the generated list is empty. Otherwise, the top level 
query is the result of If(head === ‘b, 
Constant(true),contains(target, tail)). 

In Step (13), we expand this compound element starting 
with expanding head, which we get out of the previously 
computed Cons. The range of values for head are {‘a, 
‘b} (Step (14)), so the values of head === ‘b are 
{F, T}. Since the test for ‘b in the head could be 
either T or F, we expand both consequences. In the first 
consequence (Step (17)), the head of the list is ‘b, so we 
have found a case where the top level query has value T. 
In the other consequence, we have a recursive call to 
contains(‘b, tail) at depth d = 1 in Step 19. This 
results in an expansion of generate() at depth 0, 
which in turn results in expansion of Flip(0.5) at d = 
-1 in Step (21). Since the depth is negative, we 
immediately get the result {*}for the range of 
Flip(0.5). Since the Flip has no regular values, we do 
not expand either of the two outcomes Empty or Cons. 
Instead, we immediately return the value set {*} for 
generate(), and in turn for contains(‘b, 
tail). This corresponds to a possible value of * for the 
top level query. In the end in Step (26), we get the value 
set {F,T,*} for the top level query. 

4.1.2 Backtracking Expansion 

The above algorithm is sufficient when we are only 
expanding a single query with no evidence, and when the 
expansion forms a tree such that no element occurs in 
more than one path. However, if the same element is used 
both by the query and some evidence, or is reachable 
from the query by more than one path, this basic 
expansion algorithm encounters a subtle problem where it 
may compute inconsistent ranges for the same elements. 

Suppose we have a query element X and an evidence 
element Y, and the target depth is 1. Suppose also that Y is 
an argument of an argument of X. If we expand X first, we 
will eventually expand Y to depth -1, resulting in a range 
of { * }. However, because Y is an evidence element, we 
will eventually expand it to depth 1, resulting in a 
different range. The computed range of Y will be 
incompatible with the range of X, which can cause trouble 
for factored computation later on.  

One possible solution is to stipulate in advance that 
whenever an important (query or evidence) element is 
encountered, it is always expanded to the maximum 
desired depth d. However, this does not completely solve 
the problem, because X and Y might both depend, at 
different depths, on some other element Z that is not a 
query or evidence element. 

Our solution uses backtracking to keep track of 
dependencies at various depths and adjust previous 
computations once new dependencies are revealed by the 
expansion algorithm. Failure to make this optimization 
can lead to exponential blowup as the same elements get 
recursively expanded again and again. Consider a case 
where X and Y both depend on an element Z. Suppose Y is 
expanded first, resulting in Z being expanded to some 
depth d1. After Z has been expanded, we record a back 
pointer from Z to Y. When X is later expanded, it will 
result in a request to expand Z to depth d2. If d2 ≤ d1, we 
have already computed an equal or better set of values for 
Z, so we do not expand Z again. If, however d2> d1, we 
need to expand Z to a greater depth. After doing so and 
computing a new set of values for Z, we know from the 
back pointer that Z was previously expanded from Y to a 
lesser depth than d2, so Y might use an inconsistent set of 
values of Z. Therefore, we backtrack and re-expand Y. We 
will also have back pointers from Y so we can re-expand 
other elements that depend on Y. 

Using backtracking, we can ensure that the last time the 
values of an element are computed by Steps 2-4 in the 
basic expansion algorithm occurs after the last time values 
have been computed for all elements on which it depends.  

Proposition 1. For all elements Y that have been 
expanded by the LFI expansion algorithm with 
backtracking, the last expansion for Y occurs after the last 
expansion of all elements on which it depends. 

Please see the supplement for all proofs. This fact ensures 
that the value sets will be consistent. 

Figure 1: Basic LFI expansion on a random list. 



 

4.1.3 Lazily Expanding Evidence 

There is an additional optimization we can make to the 
expansion phase of LFI. Consider a large model with 
many evidence elements and a single query. 
Implementing the above expansion algorithm will require 
us to expand all the evidence variables regardless of their 
distance from the query, resulting in a large number of 
elements. However, as with irrelevant parts of the model 
that are represented by *, distant evidence may not be 
relevant to the query (i.e., there will be no path from the 
evidence variables to a query variable within depth d of 
the query). Ideally, we will only expand evidence that is 
close to the query and can actually contribute to the 
probability bounds computation. 

We can accomplish this by modifying the basic expansion 
algorithm to lazily expand in multiple iterations, 
beginning with only the query elements Q.  

1. Set ExpandList = Q with depth d 
2. For each element E in ExpandList, expand E to 

specified depth d as described in Section 4.1.1 
3.  For each iteration where d ≥ 0  

a. Identify all elements X that use the current 
element E and have not be expanded to d - 1 

b. If X is an evidence element, then add to 
ExpandList with depth d - 1 

c. Recursively expand X until d < 0 
4. Continue until ExpandList = Empty 
After this process has completed, we guarantee that all 
elements relevant to the query within a distance of d have 
been expanded. 

Theorem 1. Let Q denote a set of query variables and E a 
set of evidence variables with known values in a 
probabilistic graphical model G. Lazy expansion of G to 
depth d will expand all variables relevant to Q and E 
within depth d of Q.  

4.2 STEP 2: PRODUCE FACTORS FOR THE 
RELEVANT ELEMENTS 

Once the model has been lazily expanded to the desired 
depth to identify the relevant elements and their possible 
values, the next step is to produce factors for these 
elements so they can be used in a factored inference 
algorithm. Figaro already contains an algorithm for 
producing factors for a finite set of elements whose 
corresponding variables have ordinary (not extended) 
ranges. Producing factors for elements whose variables 
have extended ranges extends this procedure in a 
straightforward way. 

In general, there are two kinds of factors produced by 
Figaro. The first encodes the relationship between an 
element and its arguments resulting from the definition of 

the element’s generative model. The second encodes 
conditions and constraints on a variable.  

For the first kind of factor for an element E:  

1. If E is atomic, it’s factor is the usual factor over its 
regular values 

2. If E is Apply(X,F), then the factor assigns a 
probability to each assignment x to the arguments 
and y to the result, as follows:  

a. If none of the arguments are *, and y = F(x), 
the probability is 1. 

b. If any of the arguments is *, and y = *, the 
probability is 1. 

c. Otherwise, the probability is 0.  
3. If E is Chain(X,F), then we build off a technique 

used in Figaro for constructing factors for a chain 
without extended values. Since every value of X 
results in a different element, a naïve factor would 
include a variable for each such element, potentially 
resulting in extremely large factors if X has many 
values. Instead, many three variable factors are 
constructed. For each regular value x of X, we 
construct a factor ϕx over X, the specific element Y = 
F(x) for some value x of X, and E. Without extended 
values, these factors are defined so that their product 
equals the single naïve factor. We extend this 
construction to extended values as follows. 

a. For each regular value x of X, we define a 
factor ϕx   that specifies a probability for 
each value x’ of X, y of F(x), and e of E, as 
follows: 

i. If  x’ ≠ x, the probability is 1. This 
is a “don’t care” case. 

ii. If x’ = x and e = y, the probability is 
1. This also applies if e = y = *. 

iii. Otherwise the probability is 0. 
b. We also create a binary factor ϕ* that 

specifies a probability for each value x of X 
and e of E, as follows: 

i. If x ≠ *, the probability is 1 (don’t 
care). 

ii. If x = * and e = *, the probability is 
1. 

iii. Otherwise the probability is 0. 

To see how this construction for chains helps control the 
effect of *, consider the following element from our 
random list: 

If(head == target, Constant(true), 
contains(target, tail)) 

If is actually syntactic sugar for Chain, in which the 
first argument is the test, and the function maps the result 
of the test to the appropriate consequence. Here, if the test 
is true (i.e., the value of head is equal to the target 
symbol), only the then clause Constant(true) is 
relevant, so the factor ϕtrue will not include the variable 



 

for the else clause, while the factor ϕfalse will have a 
don’t care case. Therefore, even if the value of the else 
clause is *, the value true for the entire If expression 
will have probability 1 in each factor. This is the essential 
insight that prevents * contaminating the entire 
computation. 

The second kind of factor corresponds to a condition or 
constraint. First we consider conditions, which are 
predicates on elements that are either satisfied or not 
satisfied. To produce a factor for an element E and 
condition C: 

1. If E has a regular value, we can determine if C is 
satisfied and compute an entry of 0 or 1  as usual.  

2. If the value of E is *, we do not know whether C 
would be satisfied by the eventual value * would 
resolve to if we expanded it fully, so we create 
bounds of [0, 1] on the entry.  

Factors representing soft constraints, which are functions 
from the value of a variable to a real number, are similar. 
In this case, bounds must be specified on the value of the 
constraint. Bounds of [0, 1] are the default, but different 
or more precise bounds can be provided as necessary. 

Using these modifications to Figaro’s factor generation 
algorithm to account for unexpanded parts of the 
computation represented by *, Step 2 will produce a set of 
factors over variables with extended ranges. Only factors 
for relevant variables within the desired depth will be 
produced. 

4.3 STEP 3: APPLYING A FACTORED 
ALGORITHM 

Using the factors produced by Step 2, we can now 
determine an answer to the query, which is defined as a 
sum-of-products expression over these factors. The goal is 
to reduce this sum-of-products expression to a single 
factor over the query variables. Factored algorithms such 
as VE and BP produce solutions or approximations to this 
factor.  
For LFI, standard factored inference algorithms can be 
applied with no modification; however, now they are only 
being computed over factors representative of the relevant 
parts of the computation for answering the query to the 
desired depth, rather than the entire model. The standard 
algorithm is called once using the lower bounds and once 
using the upper bounds specified in the factors. 

4.4 STEP 4: FINALIZING THE RESULT 

By applying a factored inference algorithm in the 
previous step, we acquire two factors over the query, one 
for the lower bounds, and one for the upper bounds. These 
factors will, in general, be unnormalized, and * might 
have positive probability mass. In this finalization step of 
the LFI algorithm, we need to normalize the results and 
absorb the probability mass of * into the regular values. 

Let the unnormalized lower bound of value i (regular or 
*) of the query be li and let the unnormalized upper bound 
be ui. Standard normalization takes a set of unnormalized 
probabilities qi, computes their sum Z = Σqi , and then 
computes pi = qi / Z to obtain the normalized probabilities.  
In our case, U = Σui is an upper bound on the normalizing 
factor. Therefore Li = li / U is a lower bound on the 
normalized probability of value i. Meanwhile, for a 
regular value j of the query, any probability assigned to 
the regular value i ≠ j cannot be assigned to j, so 1 – 
Σregular i ≠ j Li is an upper bound on the probability of j. 
Since any probability mass associated with * will not be 
subtracted in this upper bound, that probability mass is 
absorbed into the upper bounds of each of the regular 
values. 

5. ANALYSIS 
Our main result is that the process of lazily expanding the 
program to increasing depths results in increasingly better 
bounds on the probability distribution over the query. Our 
analysis assumes there is a single variable, and in fact 
multiple query variables can break the result if query 
variables only become connected after some depth has 
been expanded. If multiple query variables are desired, 
that can easily be achieved by defining a single variable to 
be a tuple of the query variables, and making that the 
query variable instead.  

In addition, our result assumes that all evidence variables 
have already been included before the bounds start to 
converge. If new evidence variables are introduced after a 
certain depth, they might change the query distribution. In 
many applications, such as the probabilistic context free 
grammar example we present later, this is not a problem 
as the evidence is reached at a shallow depth. 

Also, our result assumes that the factored algorithm used 
to compute the bounds is exact. For an approximate 
algorithm like BP, we cannot provide the same 
guarantees.  

Our main result is as follows: 

Theorem 2: Let 𝑄 be a query variable, 𝑬 a set of 
evidence variables, and 𝑞 a regular value of 𝑄. Assume 
that expanding to depth 𝑑 + 1 does not produce any new 
evidence variables. Let 𝑙𝑑(𝑞) and 𝑢𝑑(𝑞) denote the lower 
and upper bounds produced by LFI expanded to depth 𝑑. 
Then 𝑙𝑑+1(𝑞) ≥ 𝑙𝑑(𝑞) and 𝑢𝑑+1(𝑞) ≤ 𝑢𝑑(𝑞). 

For finite models, at some depth d all variables will be 
expanded, and the bounds will be equal to the true 
probability. Therefore, the true probability lies between 
the bounds at every depth for finite models. For infinite 
models, the bounds do not necessarily converge. For 
example, consider the probabilistic program:  

def f() = Apply(f(), (x: Boolean) => x) 

val query = f() 

 



 

This program defines an infinite chain such that each 
Boolean variable in the chain is equal to its predecessor. 
The bounds at any depth will be (0,1). This example 
illustrates the limits of our approach. 

6. IMPLEMENTATION AND 
EXPERIMENTATION 

We have produced two initial implementations of the LFI 
algorithm in Figaro, using VE and BP as the factored 

inference algorithms. Since BP does not provide 
guarantees, we have evaluated the VE implementation.  
Our experiments were conducted using a probabilistic 
context-free grammar (PCFG). Encoding PCFGs in a PP 
language is straightforward, yet can present significant 
computational challenges when attempting to apply 
evidence to the PCFG and make inferences based on 
recognizing strings. First, all non-trivial PCFGs are 
unbounded, enabling generation of arbitrarily long strings 
that are difficult to parse and may not provide more 
query-relevant information than shorter strings. Second, 
some PCFGs are infinite, producing infinitely longs string 
with non-zero probability. Standard natural language 
parsing algorithms assume that a finite string is given as 
evidence, which is use to control the computation and 
limit the number of non-terminals that can be created. 
However, this technique does not work when the query is 
whether a string contains a particular substring, as in 
principle, arbitrarily long and even infinitely long strings 
may need to be examined to determine if the substring is 
present. Clearly, non-lazy factored algorithms cannot 
answer these queries, and sampling algorithms, such as 
importance sampling, can infinitely expand on certain 
samples. As such, we tested our LFI algorithm on both 
unbounded and infinite PCFGs to evaluate the algorithm's 
ability to reason on these otherwise intractable models. 

For this experiment, we constructed a simple unbounded 
PCFG with three non-terminals, where the only difference 
between the finite and infinite grammars is the production 
probabilities. The grammar is encoded in Greibach 
Normal Form (GNF) (Greibach, 1965), which only has 
right-hand recursion. In other words, every production 
contains a terminal at the beginning, which serves to drive 
the generation of the string forward. This works well with 
LFI. Since this expansion is recursive, expanding to a 
fixed depth in the LFI algorithm will bound the length of 
the possible strings that can be generated, and thus 
produce bounds on the probability of the query string. 
Evidence can also be applied in the same manner by 
simply observing that the element returned by 
contains is either true or false. We refer the reader to 
the supplement for more details on the grammar.  

Figure 2 shows the results of a query for the probability 
that a string produced by the PCFG contains the sub-
string “de”, given the observation that the string contains 
the sub-string “a”. We show the results for both the finite 
and infinite versions of the grammar, expanding using 
LFI to a target depth ranging from d = 1 to d = 25, and 
using VE as the factored algorithm. As can be seen, the 
probability bounds on the queries in both grammars start 
to converge, and in the case of the finite grammar, do so 
quickly (at a depth of ~21). Observe that the bounds of 
the infinite grammar tend to stabilize for several depths 
(e.g., between 17 and 19), and then tighten at other depths 
(e.g., 19). This is an artifact of the grammar generation; 
increasing the depth of the lazy expansion does not 
always result in an increase in the possible string lengths. 

 

 

 

Figure 2: Probability bounds on the ‘contains’ query 
for the finite and infinite grammars. 

Figure 3: Running times of querying the infinite 
grammar for different depth expansions. 

Figure 4: Probability bounds on the infinite grammar 
as a function ion of the query and evidence lengths. 
The points represent the mid-point of the bounds and 
the error bars show the upper and lower bounds. 



 

For instance, expanding a non-terminal one additional 
depth may produce two non-terminals, which does not 
increase the possible size of the string until the two non-
terminals are later expanded. 

In Figure 3 we also show the running times of the model 
expansion and inference for the infinite grammar. The 
running times are dominated by the factored inference and 
not the lazy expansion of the model. Given the known 
limitations of VE, this result is expected but still 
reasonable considering that factored inference on an 
infinite grammar is otherwise impossible. As a 
comparison, we also queried the infinite PCFG using the 
MH and importance sampling algorithms. After 100 
seconds of sampling via MH, the estimated probability of 
the query string is 0.001, well outside the probability 
bounds computed using the same amount of time for the 
lazy VE (~depth of 21). MH had also created more than 5 
million elements, and we expect it would eventually run 
out of memory. The importance sampler did not even 
produce an estimate, as once the sampler generates a 
world with infinite expansion, it will never terminate.  

Finally, we show how the length of the evidence and the 
query can affect the performance of LFI. In Figure 4, we 
varied the length of the query and evidence strings from 
one to four while keeping the expanded depth of the 
model fixed at 25 (the length of the query was fixed at 
one when the evidence was varied and vice--versa). As 
the query length increases, the bounds increase for the 
infinite grammar, with no noticable change in the finite 
grammar bounds. On the contrary, when the length of the 
evidence increases, the bounds on the query significantly 
increase for both the finite and infinite grammar. When 
the depth of the expansion is fixed, it becomes 
increasingly unlikely that the evidence is found in the 
possible generated strings at that depth, and therefore, 
more probability mass is assigned to unexpanded 
possibilities resulting in loose bounds. 

7. RELATED WORK 
Though lazy evaluation and execution has a long history 
in computation, particularly as a feature of functional 
programming, there is little prior work that applies this 
method to inference in probabilistic graphical models. For 
example, lazy evaluation of game trees using the alpha-
beta algorithm allows computation of a potentially infinite 
search space (Hughes, 1989). In (Kiselyov & Shan, 2009), 
a domain specific language for probabilistic programming 
is embedded in OCaml, using continuations to represent a 
stochastic computation as a lazy search tree. The tree is 
traversed depth first and the probabilities of query values 
accumulated in a table used by the inference algorithms. 
IBAL (Pfeffer, 2001) provides an algorithm for solving 
infinite probabilistic models in PP with finite observations 
and also makes use of laziness to evaluate queries on 
infinitely large models. However, IBAL’s approach only 
works if the evidence guarantees that only a finite part of 

the model can be constructed, working in a manner 
similar to natural language algorithms on finite strings.  
(Pfeffer & Koller, 2000) propose a scheme for inference 
with recursive probabilistic models, but it is not 
computationally expressed. None of these approaches use 
the structure of the model to determine the relevance of 
unexpanded variables and provide bounds on queries. 

There is also a body of work related to achieving more 
efficient inference in Bayesian networks by exploiting the 
structure of the graphical models to prune irrelevant nodes 
and manipulate the possible factorizations (Pearl, 1988; 
Shachter, 1988; Zhang & Poole, 1994; Baker & Boult, 
1990b). As we have discussed, our LFI approach builds 
on and extends these concepts in a lazy way. 

Our work is also related to methods for providing bounds 
to BP algorithms  (Mooij & Kappen, 2008; Ihler, 2012). 
However, the methods are very different, as they use (0,1) 
bounds on messages at the leaves whereas we use the 
structure of the program to determine when the 
unexplored computation is relevant.  Finally, computation 
of probability bounds in probabilistic graphical models 
has also been explored through other approaches. For 
example, in (Wexler & Meek, 2008), the multiplicative 
approximate inference scheme (MAS) is presented as a 
bounding algorithm for probability of evidence.  

8. CONCLUSIONS 
In this paper, we have presented an algorithm for LFI in 
PP, making factored inference a viable framework for 
full-fledged PP. LFI leverages the fact that not all 
variables in a probabilistic model are relevant to a 
particular query and provides bounds on the query 
probability by only exploring the most relevant portions 
of the model. We have provided a basic algorithm, and 
several optimizations to improve efficiency and accuracy.  
Experimental results using an implementation of LFI in 
Figaro demonstrate the potential of this approach for 
providing tractable, factored algorithms for PP. 
One optimization is to reuse work between iterations of 
expansione, since most of the factors are the same in 
successive iterations. Also, we would like to explore the 
BP implementation more fully. First, can we provide any 
bounds, e.g., of convergence to the Bethe free energy? 
Second, how does the algorithm behave in practice? Our 
work is a starting point, and we hope many optimizations 
and refinements will come in the years ahead. 
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