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SUMMARY
Because dynamic memory management is an important part of a large class of computer programs,
hlgh-performance algorithms for dynamic memory management have been, and will continue to be, of
considerable interest. Experience indicates that for many programs, dynamic storage allocation Is so
important that programmers feel eompeUed to write and use their own domatn-speclflc allocators 10
avoid the overhead of system libraries. As an alternative to explicit storage management techniques,
conservative garbage collection has been suggested as an important algorithm for dynamic storage
management in C programs. In this paper, I evaluate the costs of different dynamic storage management
algorithms, including domain-specific a1locators, widely-used general-purpose alloeators, and a publicly
available conservative garbage collection algorithm. Surprisingly, I find that programmer enhancements
otten have little effect on program performance. I also find that the true cost of conservative garbage
eoUcetion is not the CPU overhead, hut the memory system overhead of the algorithm. I eonclude tbat
conservative garbage collection is a promising alternative to explicit storage management and that the
performance of conservative collection is likely to improve in the future. C programmers should now
seriously consider using conservative garbage collection instead of explicitly calling free in programs
they write.
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INTRODUCfION
Dynamic storage allocation is an important part of many kinds of programs, including
simulators, interpreters, program and logic optimizers, and window systems. The
increasing use of the object-oriented programming paradigm will substantially
increase the number of programs that heavily use dynamic storage allocation, The
importance of dynamic storage allocation has prompted extensive research on the
topic, including design, implementation and evaluation of many different approaches.
Techniques for dynamic storage management can be divided into two broad categor-
ies: explicit storage management, where the user explicitly allocates and deallocates
objects; and automatic storage management, where objects no longer needed are
automatically deallocated. Although automatic storage management has been used
extensively with certain programming languages, such as Lisp, only recently has the
technique been suggested as an extension of C language environments. Automatic
storage management has been greatly beneficial in the languages that support it
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because it eliminates the need for the programmer to correctly maintain information
about all the objects allocated. The only factor preventing this technique from being
adopted in all programming languages is its associated performance cost.
The C language commonly provides library routines maUocand free for explicit

dynamic storage management. Because standard C allows untagged union types and
interconversions of pointer and integer types, the classic garbage collection algor-
ithms, which assume that all program pointers can be correctly identified, cannot
be used in all existing C implementations. Conservative garbage collection, an
approach to garbage collection that conservatively traces pointers, allows C programs
to use automatic storage management. Another common approach to automatic
storage management, reference counting, has not been successfully applied in a
conservative setting and will not be considered further in this paper.
Explicit and automatic storage management algorithms are very similar and many

of the costs present in automatic storage management algorithms are also present
in explicit management algorithms. Likewise, many techniques that improve explicit
management algorithms can be applied to automatic algorithms, and vice versa.
Given that these two approaches to storage management exist, it is important to

compare them and determine their particular strengths and weaknesses. While
implementations of conservative garbage collection for C are publicly available,
many C programmers are currently not aware that they exist, or perhaps, feel that
their performance is inadequate. The purpose of this paper is to increase the
awareness of conservative garbage collection and to present a thorough evaluation
of its performance relative to explicit storage management techniques.
I compare the performance of four explicit storage management algorithms with

the performance of a conservative garbage collection algorithm. A major motivation
for this measurement is the belief that programmers have misperceptions about
the relative performance of different dynamic storage management algorithms. In
particular, there is a widespread belief that garbage collection algorithms are both
slow and memory-intensive and that there is little or no cost to explicit storage
management.
In an effort to clarify the relative costs of different storage management methods,

I have performed a careful and extensive performance evaluation of each algorithm.
I not only measure the CPU overhead of the programs, but also the memory they
used and the locality of reference exhibited by the programs. Only by a thorough
evaluation of all relevant performance metrics can a fair comparison be made.
I evaluate the algorithms' performances in six large C programs that were chosen

because they are both widely-used and they allocate a large amount of dynamic
data. In four of these programs the programmer intentionally avoided using the
system-provided allocators and implemented domain-specific allocation routines for
the most common object types. This extra effort suggests that the programmers
believed that the library storage management routines were slow.
I decided to test the intuition of the programmer by comparing the performance

of the domain-specific enhancements with the general-purpose storage management
algorithms. My results show that programmer intuition about storage management
performance is often poor. In the programs measured, programmer enhancements
had little and sometimes negative effect on the performance of dynamic storage
management.
My results also show that the CPU overhead of conservative garbage collection
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is comparable to that of explicit storage management techniques. I find that the
CPU overhead is more dependent on the application program than the particular
storage management algorithm used. Conservative garbage collection performs faster
than some explicit algorithms and slower than others, the relative performance being
largely dependent on the program. Measurements of memory usage and locality of
reference indicate that conservative garbage collection requires substantially more
memory than explicit storage management, and also interferes significantly with thc
program's locality of reference, increasing the number of cache misses and page faults
dramatically. Nevertheless, the overall results indicate that conservative garbage
collection performs sufficiently well that programmers should strongly consider using
the technique instead of explicit storage allocation.

ALGORITHM DESCRIPTIONS

Explicit storage management implementations
There are many different strategies for explicit dynamic storage management,

including first-fit, best-fit, buddy, and segregated-storage algorithms. It is not the
intent of this paper to exhaustively compare all possible algorithms for explicit
storage management. Instead, this paper considers four carefully-crafted and widely-
used implementations in an effort to characterize the variation in performance
exhibited by these implementations. Comparing the performance of conservative
garbage collection with these implementations provides insight into the relative cost
of explicit and automatic storage management. The four explicit implementations
considered are: an implementation of Knuth's boundary-tag first-fit algorithm; a
Cartesian-tree, better-fit algorithm (as implemented in the Sun Operating System);
a fast segregated-storage algorithm (as implemented in BSD Unix); and a hybrid
first-fit, segregated-storage algorithm (the GNU publicly available malloc/free
implementation).

Knuth's boundary-tag first-fit algorithm
This algorithm is a straightforward implementation of a first-fit strategy with

several optimizations. 1 I measured a publicly available implementation of the classic
Knuth algorithm written by Mark Moraes. In this algorithm, free blocks are connec-
ted together in a doubly-linked list. During allocation the list is scanned for the
first free block that is large enough. This block is split into two blocks, one of the
appropriate size, and returned. As an optimization, if the extra piece is too small
(in this case less than 24 bytes), the block is not split. The free list pointer is
implemented as a 'roving' pointer, which eliminates the aggregation of small blocks
at the front of the free list.
In this algorithm, allocated blocks contain two extra words of space overhead,

one word at each end of the block. Each word contains the size of the block and
its current status (allocated or free). These 'boundary-tags' are used to allow efficient
freeing and coalescing of storage. When a block of storage is freed, the algorithm
examines the blocks before and after it to determine if they are also free. It coalesces
the allocated block with these blocks if possible and the freed block is linked into
the free-list data structure. Maintaining the boundary tags reduces deallocation to
a constant time operation.
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In the worst case, this algorithm, while simple, can also be quite slow (O(n),
where n is the length of the free list). Likewise, heap fragmentation associated with
a first-fit approach can be considerable. In practice, however, this algorithm is often
efficient both in time and space. The other algorithms discussed attempt to improve
on this simple, yet effective, approach.

Stephenson's Cartesian tree algorithm

This approach is implemented in the Sun Operating System library routines malloc
and free2 This algorithm, instead of placing the free blocks in a linear list, places
them in a Cartesian tree' (illustrated in Figure I). The numbers in the blocks of
free storage indicate their size, and the numbers in the tree indicate the size of the
largest free block available below that node in the tree. Descendants in this tree
are ordered by address, so that left descendants have lower addresses than right
descendants, which allows adjacent free blocks to be merged. Such an organization
is attractive because the worst-case cost of all operations on the tree (allocation,
deallocation, and moving blocks around) is O(d), where d is the depth of the tree.
This algorithm (sometimes called 'better-fit') allows for more precise allocation

than first-fit because the tree is examined starting at the root until a block that is
close to the necessary size is found. If one of the children of a node is a better fit
than the other, that subtree is used to allocate the storage. The leaf node used for
allocation is split and whatever remains is placed appropriately in the tree. When
an object is deallocated, it is located in the tree based on its address, and coalesced
with adjacent free blocks if possible.
The Cartesian tree algorithm appears attractive, but in practice it can have draw-

backs. The first and most important is that the tree may become unbalanced, in
the worst case degenerating to a linear list of free blocks. Because the objects in
the tree completely determine its shape, no balancing algorithms can eliminate this
worst-case behavior. Also, while the better-fit nature of allocation would appear to
reduce fragmentation, both Stephenson and Knuth warn that under some circum-
stances, a better/best-fit approach may in fact increase fragmentation due to the
algorithm's tendency to increase the occurrence of very small blocks. Empirical
comparisons, however, suggest that the memory overhead of the Stephenson algor-
ithm is close to that of best-fit algorithms'

Cartesian Tree
organizing Free

--..,__ , Storage

Free Storage
/

Allocated Storage

Figure 1. Illustration of how the Cartesian tree organizes free blocks in memory
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Kingsley's powers-of-two segregated-storage algorithm
Chris Kingsley implemented a fast segregated-storage algorithm that was distrib-

uted with the 4.2 BSD Unix release. Kingsley's algorithm allocates objects in a
limited number of different size classes, namely powers of two minus a constant.
Allocation requests are rounded up to the nearest size class and a free list of object
of each size class is maintained. If no objects of a particular size class are available,
more storage is allocated. No attempt is made to coalesce objects.
Because this algorithm is so simple, it is also easy to provide a fast implementation,

and it is consistently the fastest of the algorithms compared. On the other hand, it
also wastes considerable space, especially if the size requests are often slightly larger
than the size classes provided. This algorithm illustrates one extreme of the timel
space trade-offs possible in dynamic storage management. Interestingly, its wide-
spread use would suggest that users often consider CPU performance more important
than memory usage in these systems (or, perhaps, are unaware of the penalty).

Haertel's hybrid algorithm
Mike Haertel has implemented a hybrid of the first-fit and segregated-storage

algorithms. This implementation is available to the public as the Free Software
Foundation implementation of malloc/free. This implementation is available on the
Internet via anonymous FTP from prep.ai.mit.edu in the file pub/gnu/malloc-
O.l.tar.Z. In Haertel's algorithm, requests larger than a specific size (e.g. 4096
bytes) are managed using a linked-list, first-fit strategy, whereas objects smaller
than this are allocated in specific size classes (powers of two), as in the Kingsley
algorithm.
An important goal of Haertel's approach is to improve the locality of reference

during allocation. He does this by dividing allocated storage up into page-sized
chunks and storing information about these chunks in small, highly localized chunk
headers. Instead of traversing the entire heap attempting to find a fit, only the
information in the chunk headers must be traversed. This algorithm also reduces
the per-object space overhead required by other algorithms (such as the boundary-
tags in Knuth's algorithm) in the following way. Chunks are allocated so that all
objects in a chunk are the same size. The address of any object can be used to
locate the chunk header, which contains information about the object size associated
with the chunk. The chunk header also contains a count of the number of free
blocks within a chunk and the algorithm deallocates entire chunks when all the
objects in the chunk have been freed.

The Boehm-Weiser conservative collection algorithm
Any garbage collection algorithm (as distinguished from reference counting

algorithms-for a complete discussion of the two approaches to automatic storage
management, see the survey article by Cohen") identifies garbage objects by first
visiting all objects still in use by the program (or some subset of all objects if
generation collection is used). These objects are defined as still in use if they are
reachable by a pointer traversal starting from the root set of pointers (typically
those on the run-time stack and in registers).
Adding garbage collection to C introduces the difficult problem of identifying
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heap pointers without run-time type information. While the ANSI C standard is
sufficiently lenient that precise tracking of pointers may be possible within the
standard, current C compiler practice prevents precise collection for the following
reasons. Because C is weakly typed, a pointer to an object can be stored in an
integer variable. Thus, even if the locations of all pointer variables were known to
a garbage collector, the collector would be unable to identify all heap pointers
precisely. Furthermore, there is no way for a collector to distinguish an integer
variable that 'appears' to contain a heap pointer (i.e. has a value that is an address
in the heap) from one that really does. Such an integer variable is called an
ambiguous pointer. The existence of ambiguous pointers leads to conservative collec-
tion algorithms, which treat the root set as a series of potential pointers (ignoring
type information present in the source program), and assume that any memory
location whose value is an address in the heap is a pointer. Furthermore, because
these ambiguous pointers could potentially be integer variables, objects they point
to cannot be relocated by the collector since doing so would require modifying the
variable's value.
Several different conservative collection algorithms have been implemented and

described. These include early work by Caplinger" an unpublished implementation
similar to the Boehm-Weiser collector by Doug McIlroy, another unpublished
implementation by Paul Hilfinger, and a mostly-copying garbage collector by Bart-
lett. 7.8 The conservative collection algorithm that is considered in this paper is the
one described by Boehm and Weiser? (version 1.6 of the software). Alan Demers
also played a major role in implementing this collector. Of the implementations
mentioned, this implementation is easy to obtain and requires the least effort to
use. This implementation is available on the Internet via anonymous FI'P from
arisia.xerox.com in the file pub/russell/gc.tar.Z.
The Boehm-Weiser conservative collector is similar in many ways to explicit

management algorithms, and in particular to Haertel's malloc/free implementation.
Both algorithms use different approaches for small and large objects; both algorithms
allocate smaller objects in distinct size classes; both algorithms allocate similarly
sized objects in aligned, page-sized chunks; and both algorithms reclaim entire
chunks if all objects in them are free.
There are also notable differences between Haertel's and Boehm and Weiser's

algorithms. Unlike the BSD algorithm described above, the size classes take on
values that are not powers of two, but range from 8 to 2048 bytes, concentrating
on a variety of smaller sizes (including 16, 24, 32 and 48 byte objects). Chunk
headers in the Boehm-Weiser algorithm include bitmaps used to mark which objects
are allocated and free in each chunk.
Because of the similarities, allocation proceeds in the Boehm-Weiser algorithm

much as it does in the Haertel algorithm: a free list of objects in each size class is
maintained, and an object is removed from the appropriate free list when it is
allocated. If the free list is empty, the Boehm-Weiser collector can either request
more memory from the operating system, or more commonly, can invoke a garbage
collection to reclaim unused space.
When a collection is required, objects are visited transitively, starting from the

root set, and marked. For this algorithm, the root set includes all data in the stack,
static data, and registers. Any potential pointer is followed and the object pointed
to is marked (details about how ambiguous pointers are resolved are included in
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Reference 9). After visiting reachable objects, the sweep phase reclaims objects
that are no longer in use and places them on the appropriate free list.
One of the biggest differences between an explicit storage management algorithm

and a garbage collection algorithm is the size and structure of the heap. Garbage
collection, because it visits all the live data, is a time-consuming operation. The
efficiency of collection is increased if more garbage can be collected during each
collection phase. The obvious way to allow more garbage to be collected is to wait
longer between collection phases, which results in more data having a chance to
become garbage. If collection efficiency were the only consideration, this line of
reasoning would suggest that collections should take place infrequently. Unfortu-
nately, the longer one waits between collections, the more address space is required
to hold all the allocated and not yet collected garbage. Thus, the prime trade-off
in collection algorithm design is between efficiency of collection (how much garbage
is reclaimed per collection) and program address space size.
The Boehm-Weiser collector seeks to balance these concerns: one heuristic it

uses is that if a collection phase reclaims less than 25 per cent of the heap, then
the heap is expanded by 50 per cent. Thus, in these collection algorithms, the heap
will grow until each collection phase consistently reclaims more than 25 per cent of
the heap. Of course, these percentages are quite heuristic and in many collectors
are tunable by the programmer. The heap configuration used in the experiments
presented started the heap at 256 kilobytes and allowed the heap to expand based
on this heuristic.

RELATED WORK
There have been several substantial efforts to compare a broad range of dynamic
storage management algorithms, but none of the existing performance surveys has
also evaluated a conservative collection algorithm.
In Knuth's Fundamental Algorithms text,' he compares the time and space over-

heads of first-fit, best-fit and buddy system methods. The performance evaluation
is based on a simulation where the object sizes and object lifetimes were calculated
using probability distributions. Knuth concludes that the first-fit method, with optimi-
zations, works surprisingly well and in all cases better than the best-fit method. The
buddy system algorithm he defines also does well in comparison with the other
methods. Knuth also compares the expected overhead of a mark-and-sweep algor-
ithm, and concludes that under the best circumstances, garbage collection can be
competitive with the other algorithms (an observation confirmed here).
A more recent comparison of explicit management algorithms was conducted by

Korn and Vo." They implemented and tested 11 different storage management
algorithms, including a doubly-linked first-fit algorithm, the BSD malloc and the
Stephenson Cartesian tree algorithm. Their results indicate that the BSD algorithm
consistently used the most space and the least time of all the algorithms compared.
The Stephenson algorithm, although approaching the best-fit algorithms in space
wasted, also had an execution time that was higher than many of the other algorithms.
Bozman et al. measured the object allocation behavior of the operating system

on two large IBM mainframes with hundreds of users.'? In their paper, they compare
a variety of algorithms, including several variations of buddy systems, first-fit,
Cartesian tree algorithms, and subpool caching algorithms. Subpool algorithms are
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much like Haertel's hybrid algorithm-pools of specific object sizes are maintained,
and requests for larger objects are handled as free-list searches. Bozman et at.
investigate a variety of subpool algorithms and identify a two-level subpool algorithm
that is most appropriate for their multi-user operating systems environment.
The Bozman et at. paper contains complete information about the observed

interarrival and holding times of objects in the systems measured. Empirical infor-
mation from actual systems has since been used by other researchers to investigate
and compare the performance of their algorithms. In particular, Brent uses their
data to compare the performance of a first-fit, balanced binary tree algorithm with
Knuth's first-fit boundary tag algorithm.'! and Oldehoeft and Allan also use empirical
data to study the performance of an adaptive enhancement to standard storage
management algorithms.'?
The research presented in this paper differs substantially from the related work

in several ways. First, none. of the papers discusses or compares the performance
of a conservative garbage collection algorithm with explicit storage management
algorithms. Secondly, like the Bozman et at. study, this paper measures the perform-
ance of the algorithms in actual programs; however, this work differs from Bozman
et al's in that we investigate the performance of individual programs and not multi-
user operating systems. Thirdly, this paper presents not only the gross performance
measures of execution time and memory used, but also presents detailed information
about the reference locality of different algorithms. Finally, this paper considers the
performance effect of programmer-written, domain-specific enhancements to gen-
eral-purpose allocation routines.

METHODS
I evaluate the effect of the storage management algorithms on the performance of
six large C programs. Although this approach has been taken in countless perform-
ance studies, including the empirical studies mentioned above, the use of actual
programs to compare performance has the drawback that only a small sample of
the actual space of programs is investigated. Ideally, hundreds of programs would
be measured in this study, but such a complete sampling of the space of programs
is impractical. Another approach taken in related work is to compare performance
based on synthetic benchmarks that use standard distributions of object lifespan,
size, and birth rate. Synthetic benchmarks have the drawback that they may be
completely unrepresentative of actual program execution. My view is that algorithms
are mainly of interest if they improve the performance of programs that people
actually use. As such, I have collected a group of programs that are in widespread
use and that allocate large amounts of dynamic memory.
The programs considered, presented in Table I, are drawn from different appli-

cation areas, including language interpreters, number factoring, logic optimization,
and VLSI layout tools. Table II shows the fraction of time each program spent
doing dynamic storage management, with numbers ranging from 23-38 per cent. In
general, the programs spent more time freeing objects than allocating them, except
in the case of yacr, where the program seldom called free. Yacr is a special case
among these programs because, in this version, the programmer made almost no
attempt to deallocate dead objects.
In four other programs (cfrac, gawk, ghostscript, and perl), the programmer wrote
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cfrac

Table I. General information about the test programs

espresso

gawk

ghostscript

perl

yacr

Cfrac, version 2.00, is a program that factors large integers using the continued
fraction method. The input is a 33-digit number that is the product of two
primes.

Espresso, version 2.3, is a logic optimization program. The input file was one of
the larger example inputs provided with the release code.

Gnu Awk, version 2.11, is a publicly available interpreter for the AWK report
and extraction language. The input script formats the words in a dictionary into
filled paragraphs.

GhostScript, version 2.1, is a publicly available interpreter for the PostScript
page-description language. The input used is a large system documentation
manual. For this study, GhostScript did not run as an interactive application as it
is often used, but instead was executed with the NODISPLA Y option that simply
forces the interpretation of the Postscript without displaying the results.

Perl 4.10, is a publicly available report extraction and printing language,
commonly used on UNIX systems. The input script formats the words in a
dictionary into filled paragraphs.

YACR (yet another channel router), version 2.1, is a channel router for printed
circuit boards. The input file was one of the larger example inputs provided with
the release code.

Table II. Test program performance information. Execution times were measured on a Solbourne
S4000 Desktop Workstation computer (SPARC architecture) with 13 SPECMarks performance and
16 megabytes of memory. Execution times provided are for the SunOS implementation of malloe/free
including programmer enhancements, which is used as a base case throughout this paper. The fraction
of time spent in malloe/free was measured with the Sun OS manoe/free and programmer allocator

enhancements removed. The fraction of time in free includes time spent in realloc

Program

cfrac
espresso
gawk
ghostscript
perl
yacr

Lines of Objects Bytes Execution Percentage of Percentage of
code allocated allocated time time in time in

(x 10') (x 10') (seconds) rnauoc free

6000 3-81 65·0 216 10·9 14-4
15,500 1-66 105 237 8·0 16·4
8500 4·47 170 144 12·0 26·7

29,500 0·92 89 147 9·7 20·6
34,500 0·36 8·3 174 8·7 14·7

9000 0·88 28·8 92 28·0 0·1

domain-specific allocation routines for the most common object types allocated by
the program. 1 call programs that use special routines to allocate certain object
types the 'optimized' versions of the programs. In performing this research, each
program was modified so that it no longer made use of these special-purpose routines
but instead always called the general-purpose allocator, and I call this form of the
program the 'unoptimized' version. The unoptimized programs were also modified
so that calls to malloc invoked the Boehm-Weiser conservative garbage collection
implementation and calls to free became null calls, resulting in the garbage-collected
version of the programs.
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It is important to note that the programs needed to be changed very little to use
the Boehm-Weiser collector instead of malloclfree, for which they were written. The
program requiring the most complex conversion to garbage collection was cfrac, in
which the programmer had implemented a version of reference counting. The
reference counting code becomes unnecessary when garbage collection is used, and
the removal of that code from cfrac required less than 30 minutes. The ease with
which programs can be converted to use garbage collection suggests that program-
mers should at least experiment with this approach, since the experiment is easy to
perform.
To collect the data for this paper, each program was executed in optimized and

unoptimized form with each of the four different explicit storage management
implementations and also with garbage collection. To ensure repeatability, five
executions of each program were performed, the results averaged, and a high
consistency was observed (the range of values observed was less than 5 per cent of
the mean in all cases).
In addition to executing the programs and observing the CPU overhead and

memory usage, the programs were instrumented with an address-trace extraction
tool. The tool, AE, 13 extracts all memory references the programs perform, allowing
the memory system performance of the programs (and storage management
implementations) to be studied using trace-driven simulation. Among other metrics,
this approach allows me to collect information about the cache miss rate and virtual
memory page fault rate for all cache and memory sizes.

RESULTS

Performance comparison
Figure 2 (numeric data in Table III) shows the CPU performance of the four

explicit management algorithms and the conservative collection algorithm in each
of the six test programs. From the Figure we see that the CPU performance of the
algorithms varies widely. The Figure illustrates that the CPU performance of the
conservative garbage collection algorithm is often comparable and sometimes better
than the performance of the explicit storage management algorithms. In cfrac, the
conservative collector did better than all explicit management algorithms by about
20 per cent because the reference counting code, necessary to perform explicit
deallocation in the program, was disabled. The Figure also shows that the CPU
performance among explicit management algorithms varies widely. Furthermore,
the relative performance of algorithms depends on the application. For example, in
four cases the BSD algorithm performs substantially better than the SunOS algor-
ithm, whereas in the other two cases it performs worse (up to 28 per cent worse in
the ghostscript program).
The most important conclusion to draw from this comparison is that the cost of

conservative garbage collection is comparable to that of explicit memory manage-
ment. Also, the CPU performance of different dynamic storage management algor-
ithms is highly program dependent-unless there is prior knowledge that garbage
collection will show much worse performance than explicit management, potential
CPU performance should not be a factor in choosing between explicit and automatic
algorithms.
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CPU lime (seconds)

50

Sun OS

200
WWde (256)
GNU
Knuth

150 6gb

100

o
Program

efrac espresso gawk ghostscript perl yacr

Figure 2. CPU overhead of explicit and automatic forms of storage management

Table III. Absolute and relative CPU performance of five different dynamic storage management
algorithms for the six programs measured. For each measurement, the absolute time (user time
plus system time) and the time relative to the SUD OS implementation is given (smaller is faster).
Execution times were measured on a Solbourne 54000 Desktop Workstation computer (SPARe

architecture) with 13 SPECMarks performance and 16 megabytes of memory

Program SunOS B-W GC GNU Knuth BSD
(seconds)1 (seconds)1 (seconds)1 (seconds)1 (seconds)/
SunOS ~ 1 Sun OS ~ 1 Sun OS = 1 SunOS = 1 SunOS ~ I

216·2/1·00 175·910·81 217·211 ·00 225·3/1·04 221·6/1·03
236·9/1·00 165·9/0·70 206·910·87 170·4/0·72 158·8/0·67
144·011·00 156·611·09 147·811·03 117-8/0·82 105·2/0·73
147·111·00 187·3/1·27 176·111·20 178·3/1·21 187·8/1·28
173·7/1·00 165·6/0·95 149·2/0·86 145·1/0·84 137·7/0·79
91·6/1·00 91·2/1·00 99·2/1·08 78·5/0·86 85·010·93

cfrac
espresso
gawk
ghostscript
perl
yacr

Figure 3 (numeric data in Table IV) shows the memory usage of the six test
programs using the different storage management techniques. The Figure shows that
conservative garbage collection does not come without cost. In programs where
memory is correctly deallocated by the programmer (i.e. all but yacr), the conserva-
tive garbage collection algorithm requires 30 to 150 per cent more memory than
the Sunas implementation. Of course, in the case where the programmer did not
correctly deallocate free storage, the garbage collected implementation performs
better than the explicit algorithms.
There are three reasons why the conservative collector requires more space: there



Figure 3. Memory usage of explicit and automatic forms of storage management. For clarity of exposition,
the memory usage numbers for the yacr program have been scaled down by a factor of ten

Table IV. Absolute and relative memory overhead of five different dynamic storage management
algorithms for the six programs measured. For each measurement, the absolute memory overhead and

the overhead relative to the SunOS implementation are given

Program SunOS
(kilobytes)/
SunOS ~ 1

B-W GC
(kilobytes)/
SunOS ~ 1

GNU
(kilobytes)/
SunOS ~ 1

Knuth
(kilobytes)/
SunOS = 1

BSD
(kilobytes)/
SunOS ~ 1

cfrac
espresso
gawk
ghostscript
perl
yacr

736/1·00
1387/1·00
1006/1·00
4053/1·00
1422/1·00

13,841/1·00

1807/2-45
3166/2·28
158111·57
9167/226
190111·34

10,944/0·79

748/1·02
1315/0·95
1086/1·08
4206/1-04
1469/1·03

14,148/1·02

760/1·03
1448/1·04
1018/1·01
4908/1·21
1470/1·03

13,697/0·99

76111·03
1974/1·42
1134/113
4756/1·/7
1597/1·12

14,245/1·03

is additional internal fragmentation caused by rounding object sizes, the heap size
is increased to decrease the frequency of collection (and increase CPU performance),
and the conservative aspect of the collector is retaining more data than necessary.
Measurements of the rounding algorithm used by the conservative collector indicate
that internal fragmentation typically accounts for less than 5 per cent of the space
allocated by the algorithm. This fragmentation is comparable and often better than
that of the other allocators measured. Additional measurements show that increasing
the frequency of collection can reduce the total memory usage of the conservative
collector, but even with more frequent collections the conservative collector often
requires twice as much total memory. Unfortunately, measuring the amount of
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additional data retained due to conservatism is difficult because the behavior is not
easily reproducible. Later studies will attempt to quantify this effect.
The Figure shows that the fast BSD algorithm also requires more space (up to

42 per cent) than the SunOS algorithm, which showed the best memory performance.
In any event, the memory overhead of even the worst explicit storage managemenl
algorithm is substantially lower than the conservative garbage collection algorithm.
Given that the memory overhead of conservative garbage collection is so large,

it is important to understand the implications of this measurement. Assuming that
a program uses virtual memory, the actual program performance cost of such a
large address space depends on the locality of reference in accessing it. Before
investigating this aspect of performance, however, I present results showing the
effect of programmer-written, domain-specific enhancements to the general-purpose
allocation algorithms.

Domain-specific allocator enhancements
In four of the programs investigated, the programmer felt compelled to avoid using

the general-purpose storage allocator by writing type-specific allocation routines for
the most common object types in the program. In this section, I compare the CPU
performance and the memory size of the optimized (enhanced) and unoptimized
versions of these programs.
Figure 4 (numeric data in Table V) shows the relative performance of the optimized

and unoptimized versions of the four programs using each of the explicit storage
management algorithms. For example, the BSD optimized bar shows the perform-
ance of the program using domain-specific allocation routines for the most common
object types and the BSD allocation routines for the rest. The BSD unoptimized
bar shows what the performance is when all allocations are performed using the
general-purpose BSD allocator. The Figure shows that in some programs, such
as cfrac, programmer tuning did improve performance over the standard storage
management algorithms, sometimes by as much as 60 per cent. In the ghostscript
application, however, the optimized BSD algorithm is much slower than the optim-

Table V. Relative CPU performance of programs using domain-specific allocators for the most common
object types (optimized) versus using a general-purpose allocator for all objects (unoptimized). All
measurements are relative to the performance of the optimized SunGS implementation of the program

(smaller is faster)

Relative CPU overhead (SunOS, optimized = t ·0)
cfrac gawk ghostscript perl

Sun OS, optimized
Sun OS, unoptimized

GNU, optimized
GNU, unoptimized

Knuth, optimized
Knuth, unoptimized

BSD, optimized
BSD, unoptimized

\·00
\·62

\·00
\·26

\·04
\·32

\·03
\.\0

1·00
\·22

\·03
\·\0

0·82
0·91

0·73
0·75

\·00
l-l5
\·20
0·93

\·2\
1·04
\·28
0·85

1·00
\·24

0·86
0·95

0·84
0·9\

0·79
082
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ized version. The next section shows that this behavior is caused by cache miss
anomalies in the optimized version that are part of the measured CPU cost.
The general conclusion that must be reached from the Figure is that programmer

optimizations in these programs were mostly unnecessary. Although the programmer
optimizations can improve the performance of the program for a particular storage
management algorithm, simply using a different algorithm (and especially the BSD
algorithm) appears to improve performance even more. In three of the applications,
programmer enhancements affected the performance of the BSD algorithm only
minimally (2-7 per cent). In the fourth application, ghostscript, programmer
enhancements actually decreased the program performance in most cases.
Given that the CPU performance of the programs was not significantly improved

by programmer optimizations, the possibility exists that the programmer's intent in
optimizing was to reduce the storage required by the program. Table VI shows the
relative memory sizes required in the optimized and unoptimized versions of the
programs for each of the algorithms considered. The table shows that optimizations
had little (and sometimes negative) effect on the memory requirements of the
programs. Because little space was actually saved in the optimized storage allocators,
the results in the table suggest that space savings were not the intent of program
optimizations.
The strongest argument one can make for the optimizations is that they reduce

the program overhead most when the SunOS algorithm is used. Because the SunOS
algorithm often required the least memory overhead of the algorithms considered,
optimizing the CPU performance of that algorithm provides both CPU and memory
efficiency. Thus the program optimizations sometimes provide performance compara-
ble to the fast BSD algorithm with only the space requirements of the SunOS
algorithm. Such a benefit did not always occur, and the BSD algorithm, even without
optimization, sometimes reduced program execution time by 20 per cent, with an
average 10 per cent additional memory overhead.

Table VI. Relative memory overhead of programs using domain-specific allocators for the most common
object types (optimized) versus using a general-purpose allocator for all objects (unoptimized). All
measurements are relative to the performance of the optimized SonaS implementation of the program

Relative memory overhead (SunOS, optimized = I-D)
cfrac gawk ghostscript perl

Sun as, optimized
Sun as, unoptimized
GNU, optimized
GNU, unoptimized

Knuth, optimized
Knuth, unoptimized

BSD, optimized
BSD, unoptimized

1·00
1·01
1·02
1·01
1·03
1·09
1·03
1·03

1·00
1·00
1·08
1·05
1·10
1·03
1·13
1·09

1·00
0·92
1·04
1·05
1·21
1·56

1·17
l-15

1·00
1·00
1·03
1·03
1-03
1-03

l-12
1·12
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Reference locality

In this section, I investigate the program locality of reference in three cases:
the BSD algorithm with programmer enhancements, the BSD algorithm without
enhancements, and the Boehm-Weiser conservative garbage collection algorithm.
Using trace-driven simulation in combination with cache and virtual memory simul-
ation tools, I compare the page fault rate and the cache miss rate of these three
cases for each of the test programs. In these measurements, the cache miss rates
are calculated using the all-associativity cache simulator tycho.!" Page fault rates
were computed using a modified stack simulation algorithm,'> in which an LRU
page replacement policy is assumed. For these measurements, only data references
were measured because the dynamic memory management algorithm used has little
effect on instruction reference locality. In all cases over 100 million data references
were used to measure the miss rate and page fault rate of the programs.
I have already shown that conservative garbage collection increases the memory

requirements of the programs measured from 30-150 per cent. In this section, I
show that the increased memory requirements translate to a decrease in the locality
of reference.
Figures 5 and 6 compare the virtual memory localities of the BSD and garbage

collection algorithms. Figure 5 compares the total page faults of the different algor-
ithms in each of the test programs, assuming a fixed memory size of two megabytes.
Two megabytes was chosen because it represents a memory size for which there is
a significant difference between the allocators in the applications chosen. If smaller
memory sizes are measured, all allocators show higher fault rates; if larger memory
sizes are chosen, all allocators show low fault rates (illustrated in Figure 6).
Figure 5 shows conclusively that conservative garbage collection significantly

decreases the locality of reference in all the programs, typically causing one to two
orders of magnitude more page faults for the given memory size. Interestingly, even
in the yacr program, where conservative garbage collection reduced the total memory
requirements by 20 per cent, the garbage collection algorithm still showed far less
locality of reference. This can be attributed to the non-locality of this gargage
collection algorithm: the mark phase visits all reachable objects and the sweep phase
sequentially references substantial parts of the heap.
Figure 6 shows the page fault rate (faults per reference) as a function of the

memory size for the gawk program. This Figure better illustrates the relative refer-
ence localities of the optimized and unoptimized versions of the BSD algorithm.
The page fault rates of the unoptimized algorithm are slightly higher than those of
the optimized BSD algorithm, for all memory sizes. The fault rate of the garbage
collection algorithm is substantially higher than either BSD algorithm for memories
up to two megabytes.
Figures 7 and 8 compare the total cache miss rate of the three algorithms assuming

a direct-mapped cache with 32-byte blocks. Just as the previous figures showed that
garbage collection has much worse locality of reference at the page level, these figures
show that the cache locality of the Boehm-Weiser garbage collection algorithm is
also much worse than the BSD algorithm, except in the ghostscript and yacr appli-
cations. Ghostscript shows anomalous behavior when the programmer enhancements
are combined with the BSD algorithm, resulting in extremely high cache miss rates.
This overhead is also reflected in the measured CPU time of this implementation,
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Total Page Faults
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Figure 5. Page fault rates for a memory size of two megabytes in the six test programs. For several of
the programs (e.g. perl) and allocators, the address space required was less than two megabytes. and

no page faults were required
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Figure 6. Page fault rates for different memory sizes in the gawk application

as shown in Table III, where the BSD algorithm uncharacteristically takes longer
to execute than the SunOS algorithm. Although I have not investigated the source
of this cache contention, I surmise that it results from access conflicts between the
domain-specific allocator and the underlying general-purpose allocator.
In four of the applications, however, the Boehm-Weiser collector results in much

higher miss rates than the other algorithms. Boehm and Weiser note that their
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Figure 7. Cache miss rates for a 128-kilobyte direct-mapped cache in the six test programs. The BSD
(opt) value for the ghostscript program is shown in the graph as 15-0 per cent, but is actually 25·9 per

cent
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Figure8. Cache miss rates for different direct-mapped cache sizes in the gawk application
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collector may result in extra cache misses because chunk headers, which are fre-
quently accessed, are also page aligned, and thus contain the same least significant
bits in their addresses." My measurements confirm their observation.
Figure 7 shows the miss rates of the algorithms and programs in a direct-mapped,

128-kilobytecache with a block-size of 32 bytes. In practice, the miss rate of the
conservative algorithm appears to be 3--10 times higher than that of the BSD
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algorithm. Figure 8 shows the cache miss rate as a function of cache size in the gawk
application, assuming a direct-mapped cache. The conservative garbage collection
algorithm shows a relatively high miss rate for cache sizes as large as two megabytes.
Based on these measures of reference locality, I reach two important conclusions.

First, the Boehm-Weiser conservative garbage collection algorithm not only requires
a larger address space, but also disrupts the memory reference locality of the test
programs far more than explicit storage management methods. Secondly, I conclude
that programmer optimizations do not significantly increase the reference locality
of the programs studied in the Solbourne system I have used to compare perform-
ance. In computer systems with smaller caches and main memories the impact of
programmer optimizations may be more significant.

SUMMARY
In this paper, I have compared a conservative garbage collection algorithm with
four explicit storage management algorithms. I have compared CPU performance,
memory overhead, and reference locality of the different algorithms to fully evaluate
the effect of algorithm choice on program performance. To perform the comparison,
I used six widely-used, memory-intensive test programs. In four of these programs,
the programmers implemented domain-specific allocators for the most common
object types in their programs. I measured the impact of programmer enhancements
to determine what programmers consider to be a substantial performance improve-
ment (at least substantial enough to warrant the extra effort of coding the
optimizations).
From these measurements, I reach the following conclusions. First, the CPU

overhead of conservative garbage collection is often not significantly higher than
that of different explicit storage management algorithms. The CPU overhead of
storage management is application dependent, and conservative garbage collection
compares well with other explicit storage management algorithms. These test pro-
grams, which spend up to 30 per cent of their total execution time in storage
management, represent the worst case overhead that might be expected to be
associated with garbage collection. Even so, the Boehm-Weiser conservative garbage
collection algorithm, when compared with four well-implemented, widely-used allo-
cator implementations, was the slowest allocator in only one of the six programs,
and the faster allocator in one other.
Conservative garbage collection does not come without a cost. In the programs

measured, the garbage collection algorithm used 30-150 per cent more address
space than the most space efficient explicit management algorithm. In addition, the
conservative garbage collection algorithm significantly reduced the reference locality
of the programs, greatly increasing the page fault rate and cache miss rate of the
applications for a large range of cache and memory sizes. This result suggests that
not only does the conservative garbage collection algorithm increase the size of the
address space, but also frequently references the entire space it requires. For systems
with enough cache and memory, this disadvantage of the conservative garbage
collection algorithm does not significantly degrade its performance, but in systems
with smaller caches and memories, some performance degradation is inevitable.
Finally, I have evaluated the effect of domain-specific allocator enhancements in

four of the test programs. With some algorithms, programmer enhancements increase
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performance significantly, whereas with other algorithms (and most notably the BSD
algorithm), enhancements have little, and sometimes negative effect. I conclude that
programmers, instead of spending time writing domain-specific storage allocators,
should consider using other publicly available implementations of storage manage-
ment algorithms if the one they are using performs poorly. It appears that choice
of algorithm has more impact on performance than programmer enhancement of a
particular algorithm. Perhaps operating systems should provide users with a variety
of dynamic storage management algorithms instead of providing a single choice. A
colleague and I have investigated the possibility of automatically generating an
appropriate allocator."
Given that conservative garbage collection has a cost, when should it be considered

as an alternative to explicit storage management? This paper has compared conserva-
tive garbage collection head-to-head with explicit storage management, until now
treating them as if they are equally desirable alternatives. Garbage collection,
however, has a tremendous advantage over explicit management methods because
it is far easier for a programmer to use. With programs that do substantial explicit
storage management, programmers spend a significant amount of time finding and
eliminating storage management bugs (memory leaks and duplicate frees). Rovner
estimates that developers using the Mesa language spent 40 per cent of the develop-
ment time implementing memory management procedures and finding bugs related
to explicit storage reclamation.I" In addition, storage management bugs that are not
found can greatly contribute to the unreliability of software. Bartlett has noted that
a large fraction of software-caused total system failures are caused by memory
management errors.
Although the advantages of freeing the programmer from explicit storage manage-

ment are difficult to quantify, they are obvious and substantial. Keeping this in
mind, along with the result that the CPU overhead of conservative garbage collection
is not significant, I would recommend that conservative garbage collection be used
in almost every case. As a default, the algorithm has low overhead and is far easier
to use. In cases where the memory available is known to be quite limited, explicit
storage management may be necessary, but should only be considered if garbage
collection has been shown to require excessive memory or CPU overhead.

Algorithm improvements
Explicit storage management algorithms have had decades to be tuned and

improved, whereas conservative garbage collection algorithms have only been
implemented in the past few years. Trends in garbage collection technology suggest
that improvements to the Boehm-Weiser conservative collection algorithm are poss-
ible and likely in the near future. In particular generation techniques, already
successfully applied in Lisp environments, can be applied to conservative collection
algorithms.
Generation techniques'S focus the attention of garbage collection on the most

recently allocated objects, which empirical evidence shows are the objects most
likely to become garbage. Focusing garbage collection on these younger objects
serves three purposes. First, the efficiency of collection is increased because a higher
percentage of the objects visited are garbage. Secondly, because fewer objects are
visited during each collection, program pauses associated with garbage collection
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are shortened. The final and most important purpose of generation garbage collection
(based on my measurements) is that the reference locality of garbage collection is
substantially increased.t? This increase occurs because only a small part of the
program's address space is visited during a collection.
Generation garbage collection has been successfully used in languages including

Lisp.i" Smalltalk" and ML. 22 Because generation collection relies on the behavior
that most objects live a relatively short time, generation collection will only be
effective for C if C programs also display this behavior. Figure 9 shows the survival
curves for objects in five of the applications used in this paper. The survival curve
plots the fraction of objects surviving past a particular age as a function of age
(e.g., in the Figure, approximately 50 per cent of the objects live beyond 10,000
cycles in the perl application). The Figure shows that in all cases except yacr, fewer
than 10 per cent of objects allocated live beyond 100,000 cycles (or approximately
3 ms on a 33 MHz CPU). Object lifespans were measured as the number of instruc-
tions between when they were allocated and freed. Object lifespans in yacr are
quite long because the programmer failed to free garbage objects. I conclude from
the data in the Figure that generation techniques can be successfully applied to C
programs. A generation collector that collected objects less frequently than every
100,000 cycles (e.g. every 5-10 seconds) would find mostly dead objects and thus
perform very efficiently.
Generation techniques have already been applied to conservative garbage collec-

tion algorithms. Boehm et al. have a technique called 'sticky-mark-bit', currently
available in the Portable Common Runtime system, that adds generations to their
conservative collection algorithm. 23 Bartlett has also extended a mostly-copying
conservative collection algorithm for C++ to use generation techniques." From
these research initiatives and others that may develop as the true potential of
conservative garbage collection becomes clear, it is likely that much better conserva-
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tive collection algorithms, with increased locality of reference and decreased address
space needs, will be discovered.
In this paper I have measured the performance of a conservative garbage collection

algorithm and found it to be comparable to that of the best explicit storage manage-
ment algorithms. As object-oriented programming becomes widely used, techniques
that reduce the complexity of managing heap-allocated storage will become more
important. Efficient conservative garbage collection algorithms are available for use
right now and, in the future, are likely to increase in efficiency as better algorithms
are discovered. C programmers should now seriously consider using conservative
garbage collection instead of explicitly calling free in programs they write.
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