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Abstract

We present a semantic foundation and a collection of program combinators for bi-directional transfor-
mations on tree-structured data. In one direction, these transformations map a “concrete” tree into a
simplified “abstract” one; in the other, they map a modified abstract tree, together with the original
concrete tree, to a correspondingly modified concrete tree. The challenge of understanding and design-
ing these transformations—called lenses—arises from their asymmetric nature: information is discarded
when mapping from concrete to abstract, and must be restored on the way back.

We identify a natural mathematical space of well-behaved lenses, in which the two components are
constrained to fit together in a sensible way. We study definedness and continuity in this setting and state
a precise connection with the classical theory of “update translation under a constant complement” from
databases. We then instantiate our semantic framework in the form of a collection of lens combinators
that can be assembled to describe powerful transformations on trees and whose well-behavedness follows
from simple, local checks. These combinators include familiar constructs from functional programming
(composition, mapping, projection, recursion) together with some novel primitives for manipulating trees
(splitting, pruning, pivoting, etc.). An extended example shows how our combinators can be used to
define a lens that translates between a native HTML representation of browser bookmarks and a generic
abstract bookmark format.



1 Introduction

Computing is full of situations where one wants to transform some structure into a different form—a view—in
such a way that changes made to the view can be reflected back as updates to the original structure.

This paper addresses a specific instance of “updating through a view” that arises in a larger project called
Harmony [26]. Harmony is a generic framework for synchronizing tree-structured data—a tool for propa-
gating updates between different copies, possibly stored in different formats, of tree-shaped data structures.
For example, Harmony can be used to synchronize the bookmark files of several different web browsers,
allowing bookmarks and bookmark folders to be added, deleted, edited, and reorganized in any browser
and propagated to the others. The ultimate aim is to provide a platform on which a Harmony programmer
can quickly assemble a high-quality synchronizer for a new type of tree-structured data stored in a stan-
dard low-level format such as XML. Other Harmony instances currently used daily or under development
include synchronizers for calendars (Palm DateBook, ical, and iCalendar formats), address books, Keynote
presentations, structured documents, and generic XML and HTML.

Views play a key role in Harmony: to synchronize disparate data formats, we define a single common
abstract view as well as lenses that transform each concrete format into this abstract view. For example,
we can synchronize a Mozilla bookmark file with an Explorer bookmark file by using appropriate lenses
to transform each into an abstract bookmark structure and synchronizing the results. However, we are not
done: we then need to take the updated abstract structures resulting from synchronization and transform
them back into correspondingly updated concrete structures. To achieve this, a lens must include not one
but two functions—one for extracting an abstract view from a concrete one and another for pushing an
updated abstract view back into the original concrete view to yield an updated concrete view. We call these
the get and put components, respectively. The intuition is that the mapping from concrete to abstract is
commonly some sort of projection, so the get direction involves getting the abstract part out of a larger
concrete structure, while the put direction amounts to putting a new abstract part into an old concrete
structure.

Naturally, the tricky aspects of constructing lenses arise in the put direction. If the get part of a lens is a
projection—i.e., information is suppressed when moving from concrete to abstract—then the put part must
restore this information in some appropriate way. (We will see a concrete example shortly.) The difficulty is
that there may, in general, be many ways of doing so.

Our approach to this problem has been to design a set of program combinators—a small domain-specific
language—with the property that every expression built from them simultaneously specifies both a get
function and the corresponding put. All the atomic combinators denote lenses whose get and put functions
fit together in a suitable sense, and all the combining forms (e.g., composition, which is parameterized on
two lenses) preserve this property.

We begin by identifying a natural mathematical space of well-behaved lenses. There is bit of interesting
work to do at this level, before we fix the domain of structures being transformed (trees) or the syntax for
writing down transformations. First, we must phrase our basic definitions to allow lenses to be partial—i.e.,
to capture the fact that there may be structures to which a given lens cannot sensibly be applied. Second,
we need some laws that express our intuitions about how the get and put parts of a lens should behave in
concert. For example, if we use the get part of a lens to extract an abstract view a from a concrete view c
and then use the put part to push the very same a back into ¢, then we should get back to the original c.
Third, we must deal with the fact that we will later want to define lenses by recursion (because the trees
that our lenses manipulate may in general have arbitrarily deep nested structure—e.g., when they represent
directory hierarchies, bookmark folders, etc.). This raises familiar issues of monotonicity and continuity.

With these semantic foundations in place, we develop syntactic forms denoting lenses on the specific do-
main of trees. These include atomic lenses for basic tree transformations and lens combinators (composition,
mapping, etc.) that allow complex lenses to be built up from simpler ones. From these basic constructs, we
can build a rich variety of derived forms—e.g., lenses for manipulating list-structured data encoded as trees.
The checks required to guarantee that expressions denote well-behaved lenses are simple and local—a kind
of “type system for well-behavedness.” In this paper, we perform these checks manually, leaving mechanical
typechecking for future work.



We begin in Section 2 with a small example illustrating the fundamental ideas. Section 3 develops the
semantic foundations of lenses in a general setting, addressing issues of partiality and continuity. Section 4
instantiates this generic framework with a set of combinators for our specific application domain of lenses over
trees. Section 5 illustrates the use of the combinators in real-world lens programming by walking through a
substantial example derived from the Harmony bookmark synchronizer. Section 6 surveys a variety of related
work from both the programming languages and the database literature and states a precise correspondence
(amplified in [25]) between our well-behaved lenses and the closely related idea of “update translation under
a constant complement” from databases. Section 7 sketches some directions for future research.

2 A Small Example

Suppose our concrete data source c¢ is a small address book, represented as the following tree:

Pat s Phone — 333-4444
. - URL — http://pat.com

o Chris Phone — 888-9999
URL — http://chris.org

”»

We draw trees sideways to save space. Each set of hollow curly braces denotes a node, and each “X — ...
inside denotes a child labeled X. The children of a node are unordered. To avoid clutter, when an edge leads
to an empty tree, we usually omit the braces, the — symbol, and the final childless node—e.g., “333-4444”
above actually stands for “ﬂ333—4444 — {[]}[}.” When trees are linearized in running text, we sometimes
separate children with commas for easier reading.

Suppose that, for some reason, we want to edit the data from this concrete tree in a simplified format,
where each name is associated directly with a phone number.

0 = Pat +— 333-4444
- Chris — 888-9999

Why would we want this? Perhaps because the edits are going to be performed by synchronizing this abstract
tree with another replica of the same address book in which no URL information is recorded, or perhaps
there is no synchronizer involved but the edits are going to be performed by a human who is only interested
in phone information and whose screen should not be cluttered with URLs. Whatever the reason, we are
going to make our changes to the abstract tree a, yielding a new abstract tree a’ of the same form but with
modified content.

For example, let us change Pat’s phone number, drop Chris, and add a new friend, Jo.

, _ f|pat > 333-4321
“ = |30 — 555-6666

Note that we are only interested in the final tree a’, not the actual sequence of edit operations that may have
been used to transform a into a’. This design choice arises from the fact that synchronization in Harmony
is based on the current states of the replicas, rather than on a trace of modifications (the tradeoffs between
state-based and trace-based synchronizers are discussed in [27]).

Finally, we want to compute a new concrete tree ¢’ reflecting the new abstract tree a’. That is, we want
the parts of ¢’ that were kept when calculating a (e.g., Pat’s phone number) to be overwritten with the
corresponding information from a’, while the parts of ¢ that were filtered out (e.g., Pat’s URL) should have
their values carried over from c.

Pat s Phone — 333-4321
. URL +— http://pat.com

c = Phone > 555-6666
Jo —
URL — http://google.com



We also need to “fill in” appropriate values for the parts of ¢’ (in particular, Jo’s URL) that were created in
a’ and for which ¢ therefore contains no information. Here, we simply set the URL to a constant default, but
in more complex situations we might want to compute it from other information.

Together, the transformations from ¢ to a and from ¢’ and ¢ to ¢’ form a lens. Our goal is to find a
set of syntactic forms that can be combined to describe a wide variety of lenses in a concise, natural, and
mathematically coherent manner.

3 Semantic Foundations

While our combinators are specialized for dealing with tree transformations, their semantic underpinnings
can be presented in an abstract setting that is parameterized by the data structures (“views”) manipulated
by lenses.! In this section, we simply assume we are given some set I of views; in Section 4 we will choose
U to be the set of trees.

3.1 Basic Structure

When f is a partial function, we write f(a) | if f is defined on argument a and f(a) = L otherwise. We
write f(a) C b for f(a) = LV f(a) =b. We write dom(f) for the set of arguments on which f is defined.
When S C U, we write f(S) for {r | s €S A f(s) | A f(s) =r}. We take application to be strict, i.e.,
f(g(x)) | implies g(z) |.

3.1.1 Definition [Lenses]: A lens | comprises a partial function I from U to U, called the get function
of [, and a partial function I\, from U x U to U, called the put function.

We often say “put a into ¢” instead of “apply the put function to (a,c¢).” The intuition behind the notations
1/ and I\, is that the get part of a lens “lifts” an abstract view out of a concrete one, while the put part
“pushes down” a new abstract view into an existing concrete view. (Abstract views, being smaller and
lighter than concrete ones, naturally float upwards.)

3.1.2 Definition [Well-behaved lenses|: Let [ be a lens and let C and A be subsets of &. We say that [
is a well behaved lens from C to A, written I € C' = A, iff (1) it maps arguments in C' to results in A and
vice versa—I /(C) C A and I\(A x C) C C—and (2) its get and put functions obey the following laws:

INN(I/¢c,c)Ec forallce C (GETPUT)
L (IN(a, ¢)) Ca for all (a,c) € Ax C (PUuTrGET)

We call C the source and A the target in C = A. Note that a given [ may be a well-behaved lens from C' to
A for many different C's and As; in particular, every [ is trivially a well-behaved lens from () to (). Conversely,
the everywhere-undefined lens belongs to C = A for every C and A.

The GETPUT law states that, if some abstract view obtained from a concrete view c¢ is unmodified, putting
it back into ¢ must yield the same concrete view. PUTGET states that the put function must capture all of
the information contained in the abstract view: if putting a view a into a concrete view ¢ yields a view ¢/,
then the abstract view obtained from ¢’ is exactly a.

An example of a lens satisfying PUTGET but not GETPUT is the following. Let C' = string x int and
A = string, and define [ as:

1" (s,n)=s
’
NS, (s,n) = (57,0)
1We use the word “view” here in a slightly different sense than some of the database papers that we cite, where a “view” is

a query that maps concrete to abstract states—i.e., it is a function that, for each concrete database state, picks out a view in
our sense.




Then I\, (I, (s,1), (s,1)) = (s,0) # (s,1). Intuitively, this law fails because the put function has some
“side effects”: it modifies information from the concrete view that is not contained in the abstract view.

An example of a lens satisfying GETPUT but not PUTGET is the following. Let C' = string and
A = string X int, and define [ as:

l/'s=(s,0)
IN((s',n), s) =5

PUTGET fails in this case because some information contained in the abstract view does not get propagated
to the new concrete view. For example, [ 7 (I, ((s/,1), 8)) =15 = (¢,0) # (¢,1).

The GETPUT and PUTGET laws are essential, reflecting fundamental expectations about the behavior of
lenses. Removing either law significantly weakens the semantic foundation. We may also optionally consider
a third law, called PuTPUT:

IN(d, 1IN (a, ) CIN(d,¢) foralla,a’ € Aand ce C

This law states that the effect of a sequence of two puts is (modulo undefinedness) just the effect of the
second. We say that a well-behaved lens that also satisfies PUTPUT is very well behaved. Both well-behaved
and very well behaved lenses correspond to well-known classes of “update translators” from the classical
database literature (see Section 6).

The PuTPuT law intuitively states that a series of changes to an abstract view may be applied incremen-
tally or all at once, resulting in the same final concrete view in both cases. This is a natural and intuitive
constraint, and the foundational development in this section is valid for both well-behaved and very well
behaved variants of lenses. However, when we come to defining our lens combinators for tree transformations
in Section 4, we will not require PUTPUT because one of our most important lens combinators, map, fails to
satisfy it for reasons that seem pragmatically unavoidable (see Section 4.2).

For now, a very simple example of a lens that is well behaved but not very well behaved can be constructed
as follows. Consider the following lens, where C' = string x int and A = string. The second component
of each concrete view intuitively represents a version number.

l/'(s,m) = s

, _ (syn) if s=14
IN(s, (s'ym)) = (s,n+1) if s#£s

The get function of I projects away the version number and yields just the “data part.” The put function
overwrites the data part, checks whether the new data part is the same as the old one, and, if not, incre-
ments the version number. This lens satisfies both GETPUT and PUTGET, but not PuTPUT, as we have

l\«(37 l\(slv (Can))) = (87n+2) # (87n+1) = l\«(37 (Can))'

A final important property that lenses may satisfy (on a given domain) is totality.

3.1.3 Definition [Totality]: A lens ! € C = A is said to be total, written [ € C < A, if C C dom(l )
and A x C' C dom(I\).

We want lenses to be total: the get direction should be defined for any structure in the concrete set,
and the put direction should be capable of putting back any possible updated version from the abstract
set. (Since we intend to use lenses to build synchronizers, the updated structures here will be the results of
synchronization. But a fundamental property of the core synchronization algorithm in Harmony is that, if all
of the updates between synchronizations occur in just one of the replicas, then the effect of synchronization
will be to propagate all these changes to the other replica. This implies that the put function in the lens
associated with the other replica must be prepared to accept any value from the abstract domain.) However,
totality of lenses—Ilike totality of ordinary recursive functions or termination of while loops—is more difficult
to reason about than simple well-behavedness, requiring us to invent global termination measures, in contrast



to the purely local reasoning used to show well-behavedness. This is why we have formulated it as a separate
condition rather than making it part of the definition of well-behavedness. We expect that, in practice,
programmers (or, better yet, a type checker) will prove that all their lenses are well behaved—i.e., that they
may diverge but will never terminate and yield wrong results—but that totality will be dealt with in a more
rough and ready way (as it is in most real-world functional programming) by a combination of intuition,
informal proofs, and testing.

3.2 Basic Properties

We now explore some simple but useful consequences of the lens laws.

Let f be a partial function from A x C to C. We will say that f is injective if it is injective in its first
argument—i.e., if, for all views a, ¢/, and ¢ such that f(a,c) | and f(a’,c) |, we have a # ¢’ = f(a,c¢) #
fa',e).

We now state some properties well-behaved lenses have.

3.2.1 Lemma: Let [ in C = A. Then the function I\ is injective on the set {(a,c) | "I\ (a, ) |
A (a,c) € Ax C}.

Proof: Let D be the set {(a,c) | I,7"IN\ (a,c) | A (a,c) € AxC}, (a,c) € D, and (a’,¢) € D, such
that a’ # a. We prove by contradiction that I\ (a, ¢) # I\, (a/, ¢). Assume that [\, (a, ¢) =1\, (d, ¢),
then by definition of D and by rule PUTGET, we have a =171\ (a, ¢) =171\ (d/, ¢) = d’, hence a = a’,
a contradiction. O

The following corollary provides an easy way to show that a total lens is not well behaved. We used it
many times while designing our combinators, to quickly generate and test candidates.

3.2.2 Corollary: Let [ in C <= A, then the function [\ is injective on A x C.

3.3 Recursion

Since our lens framework will be instantiated for the universe of trees, and since trees in many interesting
application domains may have unbounded depth (e.g., a bookmark item can be either a link or a folder
containing a collection of bookmark items), we will need to define lenses by recursion. Our final task for this
foundational section is to set up the necessary structure for interpreting such definitions.

The development follows familiar lines. We introduce an information ordering on lenses and show that
the set of lenses equipped with this ordering is a complete partial order (cpo). We then apply standard
tools from domain theory, giving us interpretations of a variety of common syntactic forms from program-
ming languages—in particular, functional abstraction and application (i.e., “higher-order lenses”) and lenses
defined by (single or mutual) recursion.

We say that a lens I’ is more informative than a lens I, written [ < I’, if both the get and put functions of
I’ have domains that are at least as large as those of [ and if their results agree on their common domains.

3.3.1 Definition: Let [ and I’ be two lenses. We say that | < I’ iff dom(I”) C dom(l' ), dom(I\,) C
dom(I'\,), I/ ¢=1'/cfor all ¢ € dom(l), and I\, (a, ¢) =1'\,(a, c) for all (a,c) € dom(I™\,).

3.3.2 Lemma: < is a partial order on lenses.
Proof: Straightforward from the definitions. O

A c¢po is a partially ordered set in which every increasing chain of elements has a least upper bound in
the set. If lp <1y < ... <[, < ... is an increasing chain, we write | |, ., I, for its least upper bound. A cpo
with bottom is a cpo with an element, 1, that is smaller than every other element. In our setting, this is the
lens whose get and put functions are everywhere undefined.



3.3.3 Lemma: Let [p <11 <... <[, < ... be an increasing chain of lenses. The lens [ defined by

l\(a,c):li\(a,c) 1fll\‘(a,c)L
L e=1;/c i1, /e

and undefined everywhere else is a least upper bound for the chain.

Proof: We first prove that [ is a lens, i.e., that both [\, and [ are functions. This is easy since, by
definition of the ordering on lenses, we have [; \,(a, ¢) =v = Vj >i. [;\,(a, ¢) = v, and the same for
/. Moreover, we have dom(l ) = |J, dom(l; /) and dom(I™\,) = |J, dom(I;™\).

We now prove that [ is a least upper bound. By definition, it is an upper bound. Let I’ be another upper
bound. Then for all i we have dom(l; /) C dom(l’ /) and dom(;\,) C dom(I"\), hence dom(l ) C dom(l’ )
and dom(IN,) € dom(I"\). Moreover, let ¢ € dom(l ), then there is some i such that l; /¢ | and "¢ =1; /c,
thus (as I’ is an upper bound), we have I’ /'c = 1; /¢ =1 /c. The same property holds for the put function,
hence we have I < 1’, so [ is a least upper bound. 0

3.3.4 Corollary: Let lp <13 <... <1, <...be an increasing chain of lenses. For every a,c € U, we have:
GET (| ,cpln) /" c=v <= Ji. l;/c=v
Put (], )\ (a,¢)=v <= Fi. ;\\(a,c)=v

new 'Mn

3.3.5 Lemma: Let [p <3 <... <1, < ... be an increasing chain of lenses, and let Co CCy C--- C C, C
...and Ag C A; C--- C A, C...be two increasing chains of subsets of . We have:

1. Well-behavedness commutes with limits: (Vi € w. I; € C; = A;) = (|, In) € (U; Ci) = (U; 4i);
2. Totality commutes with limits: (Vi € w. I; € C; <= A;) = (U,eo, In) € (U; Ci) <= (U, 4i)-

Proof: In the following we write [ for | |, In, C for |J; C;i, and A for (J; A;.

We rely on the following property (x4): if [/ ¢ is defined for some ¢ € C, then there is some ¢ such that
ceC;and /" c=1;/c. To see this, let ¢ € C; then there is some j such that Vk > j.c € C;. Moreover, by
Corollary 3.3.4, there exist some j' such that [ ¢ =1;/ /" ¢c. Let i be the max of j and j'; then we have (by
definition of <) ;"¢ =1; /" c=1/cand c € C;.

Similarly, we have the property x,: if I\ (a, ¢) is defined for some a € A and ¢ € C, then there is some
¢ such that a € A4;, ¢ € C;, and I\ (a, ¢) = ; \\(a, ¢). To see this, let a € A and ¢ € C, then there are
some j and j’ such that Vk > j.a € A, and Vk > j'.c € Ck. Moreover, by Corollary 3.3.4, there exists some
j" such that I\ (a, ¢) = l;» \,(a, ¢). Let i be the max of j, j/, and j”; then we have (by definition of <)
i\ (a, c) =1\ (a,c)=1\(a, ), a € A;, and c € C;.

We first prove that [ satisfies the typing condition of well-behaved lenses. Let ¢ € C, then if [ ¢ is
defined, then by %, there is some ¢ such that ¢ € C; and [¢ = {;/"c. Asl; isin A; = Cj;, we have
li/'c e A; C A. Let (a,¢) € A x C, then if I\ (a, c) is defined, then by %, there is some ¢ such that
(a,¢) € A; x C; and 1\ (a, ¢) =1; \\(a, ¢). Asl; isin A; = C;, we have [; \ (a, ¢) € C; C C.

We now prove that | |, I, satisfies GETPUT and PUTGET.

Using *4 and *,, we now calculate as follows:

GETPUT Suppose c € C. If I\ (I ¢, ¢) = L, then we are done. Otherwise there is some 4 such that ¢ € C;
and l; "¢ =1/"c=a € A; C A. Hence there is some j such that a € A; and [;\,(a, ¢) = . Let
k be the max of 7 and j, so we have a € Ay and ¢ € Ck. By definition of <, we have [ ¢ = a and
Ik \\(a, ¢) = ¢. As GETPUT holds for I, we have ¢/ = ¢, hence GETPUT holds for .

PUTGET Suppose a € A and c€ C. If I 71\, (a, ¢) = L, then we are done. Otherwise there is some ¢ such
thata € A;, c € Cy, and [; \, (a, ¢) =1\, (a, ¢) = ¢ € C; C C. Hence there is some j such that ¢’ € C;
and [; /¢ = a'. Let k be the max of ¢ and j, so we have a € Ay and ¢ € Cj. By definition of <, we
have I\, (a, ¢) = ¢ and l; /' ¢ = a’. As PUTGET holds for Ij, we have a’ = a, hence PUTGET holds
for I.



We now prove totality of [ if all the I; are total. If ¢ € C, then there is some 4 such that ¢ € C;, hence
l; /" cis defined, hence [ " ¢ is defined. If a € A and ¢ € C, then there is some i such that a € A; and ¢ € C},
hence 1; \ (a, ¢) is defined, thus I\ (a, ¢) is defined. O

3.3.6 Theorem: Let £ be the set of well-behaved lenses from C to A. Then (£, <) is a cpo with bottom.

Proof: First, the lens that is undefined everywhere is well behaved (it trivially satisfies all equations) and
is obviously the smallest lens. We write this lens 1;. Second, if l[p <13 < ... <, < ... is an increasing
chain of well-behaved lenses, then by Lemma 3.3.5, it has a least upper bound that is well behaved. O

When defining lenses in the next section, we will make heavy use of the following standard theorem from
domain theory (e.g., [33]). Recall that a function f between two cpos is continuous if it is monotonic and if,
for all increasing chains lp <13 < ... <1, < ..., we have f(|],c,, In) = |lpco, f(In). A fixed point of f is a

function fiz(f) satisfying fix(f) = f(fizx(f)).

3.3.7 Theorem [Fixed-Point Theorem]: Let f be a continuous function from D to D, where D is a cpo

with bottom. Define
fix(f) =] (L)

necw

Then fiz(f) is a fixed point of f.

Theorem 3.3.6 tells us that we can apply Theorem 3.3.7 to continuous functions from lenses to lenses—i.e.,
it justifies defining lenses by recursion. More generally, we can apply standard domain theory to interpret
a variety of constructs for defining continuous lens combinators. We say that an expression e is contin-
uous in the variable x if the function Az.e is continuous. An expression is said to be continuous in its
variables, or simply continuous, if it is continuous in every variable separately. Examples of continuous
expressions are variables, constants, tuples (of continuous expressions), projections (from continuous expres-
sions), applications of continuous functions to continuous arguments, lambda abstractions (whose bodies are
continuous), let bindings (of continuous expressions in continuous bodies), case constructions (of continuous
expressions), and the fixed point operator itself. Tupling and projection let us define mutually recursive
functions. If we want to define f as F(f,g) and g as G(f, g), where both F and G are continuous, we define:

(f,9) = fix (M, y).(F(z,y), G(z,y)))-

4 A Language for Transforming Trees

We now describe our combinators for tree transformations. We first introduce some notations for trees and
operations on them. We then present a number of atomic lenses and lens combinators, which we assemble to
create several derived lenses. We finally describe an encoding of lists as trees and introduce some specialized
derived lenses for manipulating them. We give small examples along the way; an extended example using
most of the lenses together appears in Section 5. The (open) problem of characterizing the formal expressive
power of these combinators is discussed in Section 7.

4.1 Trees

From now on, we will be working with the set 7 of finite, unordered, edge-labeled trees, with labels drawn
from some infinite set N of names—e.g., character strings. (Trees of this sort are sometimes called feature
trees—e.g., [22].) Each tree can be viewed as a partial function from names to other trees. We write dom(t)
for the domain of a tree t—i.e., the set of the names of its immediate children. The variables a, ¢, d, and ¢
range over 7 ; by convention, we use a for trees that are thought of as abstract and ¢ or d for concrete trees.
We write ¢(n) for the tree associated to name n in t.

We sometimes define trees by extension. For instance, let ¢t be a tree and p be a set of names such that
p C dom(t); we may define a tree w as w = {{n — t(n) | n € p|}.



When p is a set of names, we write p for '\ p, the complement of p. We write t|, for the restric-
tion of ¢ to children with names from p—i.e., the tree {]n —t(n)|nep ﬂdom(t)[}, and similarly ¢z for
{]n — t(n) | n € dom(t) \p[}

We will also need a notation for merging trees. When ¢ and ¢’ have disjoint domains, we write ¢t + ¢/
or {|t '} (the latter especially in displays) for the tree mapping n to t(n) for n € dom(t) and to ¢'(n) for
n € dom(t').

A wvalue is a tree of the special form {Ik — {[]}[}, often written just k. For instance, the phone number
{]333—4444 — {[]}[} in the example of Section 2 is a value.

There are cases where we need to apply a put function, but where no old concrete tree is available (as we
saw with Jo’s URL in Section 2). To deal with these cases, we adjoin to the set of trees a special placeholder
Q, pronounced “missing.” Intuitively, I\ (a, 1) means “create a new concrete tree from the information in
the abstract tree a.” We write Tq for 7 U {Q} and take the universe I in the definition of lenses to be 7.
By convention, €2 is only used in an interesting way when it is the second argument to the put function: in
all of the lenses defined below, we maintain the invariants that (1) I,7Q = Q, (2) I\, (2, ¢) = Q for any
¢, )1,/ c# Qfor any ¢ # Q, and (4) I\ (a, ¢) # Q for any a # Q and any ¢ (including ). We write
C 2 A for the set of lenses from C to A obeying these conventions. (There are other, formally equivalent,
ways of handling missing concrete trees. The advantages of this one are discussed below, after the definition
of the map combinator.) For brevity, in the lens definitions below, we assume that ¢ # Q when defining
1/ ¢ and that a # Q when defining [\ (a, ¢), since the results in these cases are uniquely determined by
these conventions. To shorten some definitions below, we adopt the conventions that dom(Q2) = @), and that
Q|p, = Q for any p.

The Harmony system targets data stored in XML (among other formats). However, the form of trees
that we use internally is much simpler than XML, which associates each node with both unordered children
(attributes) and ordered ones (sub-elements). We show in Section 5 how XML trees can be encoded into
ours. We chose unordered trees for engineering reasons: experience has shown that the resulting reduction
in the complexity of the lens definitions far outweighs the modest increase in complexity of lens programs
due to manipulating XML via this encoding instead of primitively.

Each lens primitive defined below will be accompanied by a type declaration asserting its well-behavedness
under certain conditions (e.g., “the identity lens belongs to C' <= C for any C”). These declarations are
not quite a type system, in the sense that we do not have an algorithm that will check the conditions
automatically (yet—see Section 7), but they are close to one in that the required checks are local and
generally easy. For writing down type declarations, it is convenient to extend some of the tree notations
to sets of trees. If T C 7, then dom(T) = {dom(¢t) | t € T}. T C 7 and n € N is a name, then
{]n — Tl} denotes the set of trees {{]n — t[} |t eT}. If K C N is aset of names, then and {]n — K[} means
{{n—k} | ke K}—ie, {{n— {k—{}}]} | k € K}. We write T\ + T, for {t1 +t5 | t1 € Ty, t2 € To}
and T'(n) for {t(n) |t € T An € dom(t)}.

4.2 Primitives

In this section we define several atomic lenses and lens combinators (we will often just say “lenses” for both).
We begin with a few generic lenses that do not depend on the universe being trees: the identity lens, the
constant lens, and sequential composition of lenses. We then introduce several lenses that inspect and ma-
nipulate tree structures—four atomic lenses (rename, hoist, plunge, and pivot) and two lens combinators
(xfork and map).

All lenses introduced in this section, with the exception of the const lens, preserve all information when
building the abstract tree in the get direction. The two lens combinators also preserve all information when
applied to information-preserving lenses. Most lenses thus do not need to use the concrete tree in the put
direction.

We show that every atomic lens is well behaved, and every lens combinator is continuous and preserves
well-behavedness. (Indeed, we conjecture that the primitive lenses are all very well behaved and that almost
all the lens combinators preserve very-well-behavedness, the single exception being map.)



Identity

The simplest lens is the identity. It copies the concrete tree in the get direction and the abstract tree in the
put direction.

id "¢ = c
id\(a,c) =
VCCT. ideC&C

Having defined id, we must now prove that it is well behaved—i.e., that the type declaration at the bottom
of the box is a theorem. Since we will need a similar argument for every lens we define, some shorthand will
be useful. First, we use the labels GET and PUT to refer to the conditions in Definition 3.1.2 on the types of
1/ and [\—i.e., that [ /" maps arguments in Cq to results in Ag and that [\, maps arguments in Ag x Cq
to results in Cq. Second, by our conventions on the treatment of €2, the GET condition need only be checked
for C' (not Cq) and PUT need only be checked for A x Cq. Similarly, GETPUT need only be checked for
c € C, and PUTGET for a € A and ¢ € Cq.

4.2.1 Lemma: VOCT.ide C £ C.

Proof:

GET: id"c=ce C.

Put: id\/(a, c) =a € C.

GETPUT: id\,(id "¢, ¢) = id\ (¢, ¢) =c.

PurGeT: id"id\,(a, ¢) =id "a = a. O

We now prove that id is total. In totality proofs, we do not consider the case [\ (£, ¢) as this case is
always defined (and equal to ).

4.2.2 Lemma: id is total.

Proof: Immediate: id is defined everywhere. 0

Constant

Another simple lens is the constant lens, const ¢ d, which transforms any tree into the provided constant ¢
in the get direction. In the put direction, it is defined iff the abstract tree is equal to ¢.2 In this case, the put
function of const simply restores the old concrete tree if it is available; if the old concrete tree is €, the put
function returns a default tree d.

(const td), "¢ = t
(const t d) N\ (a,c) = ¢ ifc#Q
d ife=0Q

YOCT.VteT.VdeC. consttde C 2 {t}

4.2.3 Lemma: YCCT. VtcT. VdeC. const t d € C' 2 {t}.

Proof:
GET: (const t d)"c=1t € {t}.

2By the PuTGET law, this is the only possible definition: if const td/ (const td\,(a,c)) |, then
const t d /" (const t d\(a, ¢)) =a="t.
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PUT: (comst t d)\,(¢t, ¢) € {¢,d} C C.
GETPUT: (const t d)\,((const t d) "¢, ¢) = (const t d) \| (¢, ¢) = c.

PUTGET: If ¢ # €, then (consttd),((consttd)\,(¢t, ¢)) = (comnsttd), "¢ = t. Otherwise,
(const t d),/((const t d) \,(¢t, Q)) = (const t d) /' d =1t. O

4.2.4 Lemma: (const ¢ d) is total.

Proof: dom((const t d), ) = T and dom((const t d)\) = {t} x Tq. O

Composition

The lens composition combinator /; k places two lenses | and k in sequence.
(k)¢ = k(1 ¢)

(GR)N(a,c) = IN(k\(a, 1), c)

VA,B,CCT.VleCZ& B.Vke B2 A, LkeCZ A

The get direction applies the get function of | to yield a first abstract tree, on which the get function of k is
applied. In the put direction, the two put functions are applied in turn: first, the put function of k is used
to put a into the concrete tree that the get of k was applied to, i.e., [/ ¢; the result of this put is then put
into ¢ using the put function of I. (If the concrete tree c is €, then, [ ¢ will also be Q by our conventions
on the treatment of Q, so the effect of (I;k)\, (a, Q) will be to use k to put a into 2 and then [ to put the
result into €.)

4.2.5 Lemma: VA, B,CCT.VleC 2 B.Yke B2 A. ;keC & A.
Proof:
GET: If k"1 ¢ = (I;k) / ¢ defined, then [ "¢ € B by GET for [, so (I;k), "¢ € A by GET for k.

Put: 1IN (kN (a, 1" ¢), ¢) = (I;k) \\(a, c¢) defined, then [ ¢ € Bg by GET for [ and the convention on
treatment of Q by get functions, so k\ (a, [/ ¢) € B, by PUT for k, so I\, (k\,(a,"¢), ¢) € C by
Pur for [.

GETPUT: Assume that (I;k),"c is defined. Then:

(k)N (k) c)
= (LE)N(EAS 1L ¢ c) by definition (of the underlined expression)
N (k\ (k1 e, 17 c), c) by definition

IN(I e, ) GETPUT for k

C

11

GETPUT for {

PUTGET: Assume that (I;k)\ (a, ¢) is defined. Then:

1K)/ (1 8) . (e, ©)

(L;k) I (k. (a, 1 ¢), ¢) by definition

kU7 I\ (BN (a, 1/ ¢), ¢) by definition

k/ k\ (a,l "c) PUTGET for [

a PuTrGeT for k O

M
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Besides well-behavedness, we must also show that lens composition preserves continuity. This will justify
using composition in recursive lens definitions: in order for a recursive lens defined as fix(Al. I1;12) (where
l; and I3 may both mention ) to be well formed, we need to apply Theorem 3.3.7, which requires that the
function Al. l1; 3 be continuous. According to the following lemma, this will be the case whenever [; and o
are continuous in [. We will prove an analogous lemma for each of our lens combinators—i.e., the continuity
of every lens expression will follow from the continuity of its immediate constituents.

4.2.6 Lemma: Let FF and G be two continuous functions from lenses to lenses. Then the function
Al (F(1); G(1)) is continuous.

Proof: We first argue that Al. (F(I); G(1)) is monotone. Let | and I’ be two lenses with I < I’. We must
show that F(l); G(I) < F(I'); G(I'). For the get direction, let ¢ € 7, and assume that (F(I);G(l)), "¢ is
defined. We have:

(F(1); G(1))/~
= GO/ F1),/
= GU)/F( )/c by F(l) < F(l'), since F(l) /¢ is defined
= G/ Fl)/c byGl)=<G)
= (F();G). e
For the put direction, let (a,c) € T x Tq, assume that (F'(1); G(1)) \, (a, ¢) is defined, and calculate as follows:
(F(1); G() \i(a, ¢)
= F)N(G() N\ (a, F(1) /), c)
= FUOON(GD N\ (a, F(I') /¢), ¢) by F(I) < F(I')
= FON(GW) N\ (a, F(I') /7 ¢), ¢) by G(I) < G(I')
= FU)N(G) N (a, F(I') 7 ¢), ¢) by F(I) < F(I')
= (FU):;G0)) N\ (a, ).
Thus Al. (F(1); G(1)) is monotone. We must now prove that it is continuous.
Let [p <13 <... <1, < ... be an increasing chain of well-behaved lenses. Let [ = |_|1 l;. We have, for
ceT,
(F(1);GU)/e=t
= G0/ F(l)/c =t by definition of ;
= G/ Fl i)/ c=t by definition of [
= G/ (U, Fly) c=t by continuity of F’
— Ju.GU)/F(;y) c=t by Corollary 3.3.4 (GET)
<~ Jiu.G(U;l) " F(li) " c=t by definition of {
<~ Ji.(U;G:))/ F(li,)/ ¢c=t by continuity of G
<~  Fi,i1.G(li,) /" F(l;,)/ ¢c=t Dby Corollary 3.3.4 (GET)
. - letting ¢ = max(i1,i2)
= G /FH) o=t monotonicity of }' ;nd G
— Ji.(F,);Gy) e=t by definition of ;
= (U,(F:);Gl)) c=t by Corollary 3.3.4 (GET)

12



and

(F); GU) N (0, ) =

— FUONGON(a, F))/¢)yc)=t by definition of ;

—= FUONGON(a, F(U; 1)/ ¢c),c)=t by definition of

—= FUONGON(a, (U, F(ly)/¢c),c)=t by continuity of F

— Ji.FON(GO\(a, F(l;y),/¢),c) =t by Corollary 3.3.4 (GET)

—= . FO)N(GU; L)\ (a, F(l;,) /" c),c) =t by definition of {

= Ji.FION\ (U, Gl)) N\ (a, F(l;,) " c), c) =t by continuity of G

= Fig,i1.F()\(Gli,) \(a, F(l;y),¢), c) =t by Corollary 3.3.4 (PUT)

= Fig,i1. F(; 1i) \(G(li,) \\(a, F(l;;),/¢), ¢c) =t by definition of [

= Jig,ir.(L; F(li)) \(G(liy) \\ (a, F(l;,) /¢), c) =t by continuity of F

<~ Jig,io,i1.F(liy) \(G(li,) \(a, F(l;y),/¢),c) =t by Corollary 3.3.4 (PuT)

= FFENCEN (@ F(l)./ ), o) = onotonncity of F and

—= Fi(F);Gl) \(a,c)=t by definition of ;

= (U;(Fli);Gl)) \(a,c) =t by Corollary 3.3.4 (PuT).
Hence the lenses | |;(F'(1;); G(l;)) and F(l); G(I) are equal. O

Finally, to support compositional reasoning in proofs of lens totality, we must check that composition
preserves totality.

4.2.7 Lemma: If [ is total from C to B and k total from B to A, then (I;k) is total from C to A.

Proof: Let ¢ € C; then I /¢ is defined (by totality of I) and is in B, hence k"1, ¢ = (I;k), ¢ is defined
(by totality of k). Conversely, let a € A and ¢ € Cq; then [ ¢ is defined and is in Bg. Thus, &\, (a, [ " ¢)
is defined and is in B, and so I\, (k\\(a, [ ¢), ¢) = (I;k) \\ (a, ¢) is defined. O

Rename

The rename lens changes the names of the immediate children of a tree according to some bijection b on
names. In the type, we write b € Bij(N') to mean that b is a bijective function on names and write b(C') for
the set of trees formed by taking each tree in C' and renaming its top-level children according to b.

(rename b) /¢ = Hb(n) — c(n)[}
(rename )\ (a, c) b=1(n) — a(n)]

VOCT. Vb € Bij(N). renamebe C = b(0)

4.2.8 Lemma: YCCT. Vb € Bij(N). rename b € C' 2 b(C).

Proof:

GET: (rename b),c € b(C)

PUT: (rename b)\(a, ¢) € b=1(b(C)) =C

GETPﬁJT: (r?n)aEle b) \ ((rename b) /¢, ¢) = (rename b) \, ({b(n) — c(n)}, ¢) = {b=1(b(n)) — c(n)} =

PUTGET: (rename b), (rename b)\, (a, ¢) = (rename b) /" {b~'(n) — a(n)} = {b(b=*(n)) — a(n)
{n—an)} =a. O

4.2.9 Lemma: (rename b) is total.
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Proof: Immediate, as (rename b) is defined everywhere. O

In examples, we use the notation {h3 = name, dl = contents} for the bijection that maps h3 to name,
name to h3, d1 to contents, and contents to d1.

In practice, we also sometimes use a “deep rename” lens that changes all the names in a tree, rather than
just the immediate children of the root; this can be defined from rename using map and recursion.

Hoist

The lens hoist n is used to “shorten” a tree by removing an edge at the top. In the get direction, it expects
a tree that has exactly one child, named n. It returns this child, removing the edge n. In the put direction,
the value of the concrete tree is ignored and a new tree is created, with a single edge n pointing to the given
abstract tree.

(hoist n), "¢ = t ifc:{]n'—wf[}
(hoist n)\,(a,c) = {nw af
YCCT.VneN. hoistn € {]n — C[} L

4.2.10 Lemma: VCC7. VneN. hoist n € {]n — CI} & .

Proof:

GET: (hoist n)/ {]n — c[} =ceC

PUT: (hoist n)\,(a, ¢) = {n af} € {n— C|

GETPUT: (hoist n)\, (((hoist n),/ {n— t}), {n—t}) = (hoist n) \,(t, {n—t}) = {n—t]}.

PUTGET: (hoist n), ((hoist n)\,(a, ¢)) = (hoist n),/ {n+— af} =a. O
4.2.11 Lemma: (hoist n) is total.

Proof: Immediate. O
Plunge

Conversely, the plunge lens is used to “deepen” a tree by adding an edge at the top. In the get direction, a
new tree is created, with a single edge n pointing to the given abstract tree. In the put direction, the value of
the concrete tree is ignored and the abstract tree is required to have exactly one child, named n. It returns
this child, removing the edge n.

(plunge n) /"¢ = {n—c}
(plunge n) \,(a,c) = ¢ if a = {n — t}

VOCT.VneN. plungen e C 2 {n— C|f

4.2.12 Lemma: YCCT. VneN. plunge n € C = {n — C}.

Proof:

GET: (plunge n),/c= {n— cf} € {n— C}.

Put: (plunge n)\, ({n—t},c)=teC.

GETPUT: (plunge n)\, ((plunge n) "¢, ¢) = (plunge n)\, ({n —cf}, c) =c.

PUTGET: (plunge n), ((plunge 1)\ ({]n — t[} ,¢)) = (plunge n) /'t = {]n — t[}. O
4.2.13 Lemma: (plunge n) is total.

Proof: Immediate. [l
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Pivot

The lens pivot n rearranges the structure at the top of a tree, transforming

H?Hkﬂ to k> t}.

Intuitively, the value k (i.e., {]k — {[]}[}) under n represents a key k for the rest of the tree t. The get function
of pivot returns a tree where k points directly to t. The put function performs the reverse transformation,
ignoring the old concrete tree.

(pivotn),/c = {km t] ifc:{InHkI}
(pivot n)\ (a, ¢) — ﬂ?Hkﬂ ifa_{t]kHtG

VYneEN. VKCN.VOC(T ). pivotne ({n— K[} +C) = {K — C|}

4.2.14 Lemma: VYneN. VKCN.YOC(T|z). pivot n€ ({n— K} +C) & {K — C]}.

Proof:

GET: (pivot n),/ {]?Hkl} ={k—t} e{K—C|

Put: (pivot n) N\, ({k —t}, c) = (ﬂnHkﬂ>e(ﬂnHK[}+O)

GETPUT: Assume that (pivot n), ¢ is defined, thus ¢ = ﬂ? ~ kl} We have:

(pivot n)\ ((inOt n)/ {I? - kﬂ {I? - kﬂ)
(pivot n) N\, <%]ka|} ﬂn'_)kﬂ>
)

PUTGET: Assume that (pivot n)\ (a, c) is defined, thus a = {k — t[}. We have:

(pivot n) / (pivot n)\, ({k — tf}, ¢) = (pivot n) / {]nHkI} {k—t}. O
4.2.15 Lemma: (pivot n) is total.
Proof: Because dom((pivotn),) = Ugep{({n— K} + Tlw)a} and dom((pivot n)\,) =
Usken JE = Tlal} x To. O
Xfork

The lens combinator xfork applies different lenses to different parts of a tree: it splits the tree into two
parts according to the names of its immediate children, applies a different lens to each, and concatenates the
results. Formally, xfork takes as arguments two predicates on names and two lenses. The get direction of
xfork pc pa l1 Iy can be visualized as in Figure 1 (the concrete tree is at the bottom). The triangles labeled
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s ~
pa pa
(GY) (I2.7)
pc pc
~ 7

Figure 1: The get direction of xfork

pc denote trees whose immediate child edges have labels satisfying pc; dotted arrows represent splitting or
concatenating trees. The result of applying l1 /" to ¢|p. (the tree formed by dropping the immediate children
of ¢ whose names do not satisfy pc) must be a tree whose top-level labels satisfy the predicate pa, and,
similarly the result of applying la,” to c|pz must satisfy pa. That is, the lenses l; and Iy are allowed to
change the sets of names in the trees they are given, but each must map from its own part of pc to its own
part of pa. Conversely, in the put direction, [; must map from pa to pc and Iy from pa to pc. Formally:

(xfork pcpa li l2)/ ¢ = (li,/¢clpe) + (I2,/ clpe)

(xfork pepa ly I2) \(a, c) = (l1\(alpa; clpe)) + (I2\ (alpa, clpe))
Vpc,pa@/\/’. VCle(T|pc). VAle(T|pa). VCQE(TlpT;) VA2€(T|;DT1)
Vi, € Cq & Al. Vip € Oy é AQ.

xfork pcpaly ly € (C1 + Co) 2 (A + A)

4.2.16 Lemma: Vpc, paCN. YC1€(T |pe). YALE(T |pa). YC2E(T |5e). YA2E(T |pa). Vi € C1 == Ay Vip €
Co 2 Ay, xforkpepaly lo € (C) 4+ Co) 2 (A; + Ay).

Proof:

GET: If ¢ € Cy + Cs, then ¢, € C1 and c|pz € Co. Hence 11,/ ¢|pe. € A1 and I3,/ ¢|zz € A2, and so we have
(xfork pc pa ly l2),/ c € A1 + As.

Put: Similarly, 1 \, (a|pa, ¢|pc) € C1 and la \ (alzz, c|pz) € C2, hence (xfork pe pa 11 l2) \,(a, ¢) € C1 +
Cs.

GETPUT: Suppose that (xfork pc pa ly l2),/ ¢ is defined. Then 1, ¢|pc + l2,/ ¢|pz is defined, and
(/" clpe + 12,/ clpe)|pa = 1./ ¢lpe
(i Clpe + 12/ clpe)lpa = 12/ clpe-
Thus,
SN ((ll/ C|pc + l2/c|;ﬁ)|paa C|p6) =0\ (ll/c|pm C|p6) C C|;Dc
by GETPUT for [;. Similarly,
Ia \ (/" elpe + 12,/ clpe)Ipa; clpe) E clpe
by GETPUT for l5. Thus,
(xfork pe pa ly la) \, (/" ¢|pe + 2,/ ¢lge, ©)
(N elpe + 12,7 clpe) pas €lpe)) + (la N\ (11 €lpe + 12,/ clpe) Ipa, clpe))

clpe + clpe

o

C.

16



PUTGET: Suppose that (xfork pc pa li l2) \ (a, ¢) is defined. Then I1 \ (alpa, ¢lpc) + l2 \\ (alpz, c|pe) is
defined, with

(ll N (a|paa C|p6) +la\ (a|p_aa C|p_0)) |pc =L\ (a|paa C|p6)
and
(11N (@lpas clpe) + 12\ (alpa, clpe))lpe = 12\ (alpa, clpe)-
By PuTGeT for [y,
L/ (N (a|pa= C|p0) +ia\ (alpTM ClpT))lpC) =h,/h\ (alpav ClpC) L alpa

and by PUTGET for [y,

la,/ ((lh \ (@lpa, €lpe) + 12\ (alpa; clpe))lpe) = 12,/ 12\ (alpa; clpe) E alpa

Thus,
(xfork pc pa Iy l2),/ (11 \ (alpa, clpe) + 12\ (alpa; c|pe))
= (/7 (N (alpas clpe) + 12\ (alga, clpe))lpe) + (L2 (LN (alpas lpe) + 12\ (alpa clpe))lpe)
C  alpe + alpa
= a.

O

4.2.17 Lemma: Let ' and G be continuous functions from lenses to lenses. Then the function
Al xfork pe pa F(1) G(I) is continuous.

Proof: Let [ and I’ be two lenses with [ < I’ We must first show that xfork pc pa F(I) G(I) <
xfork pc pa F(I') G(I). Choose ¢ € T such that xfork pc pa F(I) G(I), ¢ is defined. Then

xfork pc pa F(1) G()), /¢

F()/ clye) + (G(1) /i)

F(') / che) + (G / clpe) by F(1) < F() and G(1) < G(I)
xfork pec pa F(I') G(I')) /e

Now choose (a,c) € T x To with xfork pc pa F(I) G(I) \,(a, ¢) is defined. We have:

(
=
(
(

(xfork pc pa F(l) G(1)) \\(a, ¢)
= (F() \(alpa; clpe)) + (G(1) \i (alpa, clpe))
= EF( N (alpa, clpe)) + (GU) \ (alga, cle)) by F(I) < F(I') and G(I) < G(I')

xfork pc pa F(I') G(I')) \\(a, ¢).

Thus Al. xfork pc pa F(l) G(l) is monotonic. We now prove it is continuous.
Let lo <11 < ... <1, <... be an increasing chain of well-behaved lenses. Let | = | |, [;. We have:

(xfork pc pa F(I) G(1)) /c=t

(F(1) /clpe) + (G(1) / clpe) =1

(B (L L) elpe) + (G(U L) A elpe) = ¢

(U, F(l)),/ clpe) + (U, G(li)) /clps) =t by continuity of F and G
Fiv,i0.(F(lsy),/ clpe) + (G(4,) /clgs) =t by Corollary 3.3.4 (GET) twice

. 1 =max(i1,4
Fi(F (L) clpe) +(Glli) 7 clpe) =1 by monotoililcit;)ofF and G

(
Fi.(xfork pc pa F(l;) G(l;)) /" c=t
(U, xfork pc pa F(l;) G(l;)) /" c=1 by corollary 3.3.4 (GET)

fr e rrn

17



and

(xfork pc pa F(I) G(I)) \ (a, ¢) =

(F(1) \ (alpas clpe)) + (G(0) (a|pa clpe)) =t

(F'(L; 1) s (alpas elpe)) + (G(L; 1) ™\ (alpas clpe)) = ¢

((L; £(15)) s (alpas clpe)) + ((L; G i)\ (alpav clpe)) =t Dby continuity of F' and G

Fi1, i2.(F (1) (@l pas clpe)) + (G(liy) \ (ala, clze)) =t by Corollary 3.3.4 (PUT) twice

)
( = max(il,ig)

fr v 1rn

S5 (F1) N alpar clpe)) + (G0N (ol ) =0 by § Lomxine)
Ji.(xfork pe pa F(l;) G(1;)) \\ (a, ¢) =
(U, xfork pec pa F(l;) G(l;)) \\(a, ¢) = by corollary 3.3.4 (PuT). O

4.2.18 Lemma: If /; is a total lens from Cy C 7T, to Ay C 7T |, and s is a total lens from Co C 7T |5 to
Ay C Tlpg, then (xfork pc pa i l5) is total from Cy + C to Ay + As.

Proof: Let ¢ € Cy + Cs, then we have ¢|,. € Ci1, and c|zz € Co. By totality for {1 and la2, l1,7 ¢|pe
is defined and is in Ai, and ls, /" c|pz is defined and is in Ay. As these two views have disjoint domains,
li/ ¢|lpe + 12,/ ¢lpe = (xfork pc pa 1y l3) /¢ is defined.

Let a € A; + Az and C € (Cy + C2)q. We have:

o alp, € As;
o ¢, € C1U{N};
o alyg € As;
o clpe € Co U{Q}.
Hence we have:
o 11\, (a|pa; ¢|pc) = c1 defined and in Ch;
o Iy \ (alpa, c|ps) = c2 defined and in Cs.

As ¢1 and ¢ have disjoint domains, ¢; + ¢ = (xfork pc pa 11 12) \ (a, ¢) is defined. O

Map

Our most complex lens combinator, map, is parameterized on a total function m from names to lenses. In
the get direction, map applies the lens m(n) to each child n, at one level deeper in the tree, leaving the
top of the tree intact. Concretely, when we write a lens using map, we typically describe only part of the
function and adopt the convention that the function gives id at every other name. For example, the lens
map {ny — l1, na — l2} has the following behavior in the get direction:

ny — t; ny — Iyt
o +— to becomes ng —ly T to
’I’L3D—>t3 ’I’L3P—>Zd/‘t3

The put direction of map is more interesting. In the simple case where a and ¢ have equal domains, its
behavior is straightforward:

n1D—>t1 n1»—>t’1 lHll\(tlvtll)
(map {nl — 11, ng — lg}l)\ no — to p, {1 t/2 = 12N\ (tl’ tll)
ms +— t3 n3»—>t’3 kHld\(t&t/S)

The general case is a bit more involved. If (map m)\ (a, ¢) is defined, then, by rule PUTGET, we should
have (map m) " ((map m) \, (a, ¢)) C a. Thus we necessarily have dom((map m) \ (a, ¢)) = dom(a) if it is
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defined. Children bearing names that occur both in dom(a) and dom(c) are dealt with as described above.
Children that only occur in dom(c) are dropped. Children that only appear in dom(a) need to be passed
through m(l) so that they can be included in the result; to do this, we need to put them into some concrete
tree. There is no corresponding child in ¢, so instead these abstract trees are put into the missing tree €.

The typing of map is a little subtle. In the get direction, map does not modify the names of the immediate
children of the concrete tree. We might therefore expect that if, for each n € A, we have m(n) € C(n) =
A(n), then map m € C 2 A. Unfortunately, this is not the case, as the following example shows. Consider
the set of trees

S:{ ﬂXHmv Y’_’n]}v {[X'—>p, y'_)q]} }
and the lens map {x — (rename {m = p})}. By the reasoning above, we might expect this lens to have type

S 2 S because rename {m = p} € S(x) & S(x) and id € S(y) == S(y). Yet when we apply the get direction
of the lens to a tree in S

map {x — (rename {m =p})} "{x—m, y —n} = {x —p,y —n}

we get a tree that is not in S. To remedy this problem (but still give a type for map that is precise enough to
derive interesting types for lenses defined in terms of map), we require that the sets of concrete and abstract
trees in the type of map be closed under the “shuffling” of their children. Formally, if T" is a set of trees, then
the set of shufflings of T, denoted T©, is

9= |J {n—T)|ned}

dedom(T)

where {n — T(n) | n € d} is the set of trees of domain d whose children under n are taken from the set
T(n). We say that T is shuffle closed iff T = T©, and we write 7© for the set of all shuffle-closed sets of
trees.

We are now ready to state the definition of map m and its type:

(mapm) "¢ = {nm(n),/c(n)|nedom(c)l]

_lIn = m(n)\, (a(n), c(n)) | n € dom(a) N dom(c)
(map m) ™\ (a, ¢) = ﬂ YN\ (a(n), Q) | n € dom(a) \ dom(c) I}

VC, ACT© with dom(C) = dom(A). Vm € (IIn. C(n) = A(n)) mapmeC = A

In the type annotation, we use the dependent type notation Iln. C(n) == A(n) to mean that m is a total
function mapping each name n to a well-behaved lens from C(n) to A(n).

4.2.19 Lemma: VC, ACT© with dom(C) = dom(A). Vm € (IIn. C(n) = A(n)) mapm € C 2 A.
Proof:

GET: Let ¢ € C such that m(n)," ¢(n) is defined. For each n € dom(c), we have m(n),"¢(n) € A(n); hence,
as A = A°, we have (map m) ¢ € A.

PutT: Let a € Aand ¢ € C. For all n € dom(a)Ndom(c), we have m(n) \ (a(n), ¢(n)) € C(n). Moreover, for
all n € dom(a)\ dom(c), we have m(n) \ (a(n), Q) € C(n). Hence, as C = C© and dom(A) = dom(C),
we have m(n)\ (a, c) € C.

GETPUT: Assume that (map m), "¢ is defined. Then

(map m) \ ((map m) "¢, c)
(mapm ({]nHm(n)/(Hnedom )[},c
H N (m(n) /c(n), c(n)) | n € dom(c)[}

| n € dom(c)f} by GETPUT for each m(n)

e
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PUTGET: Assume that (map m)\ (a, ¢) is defined. Then

(nap m), (map m) \, (4, <)
— (mapm)/ n— m(n)\, (a(n), c¢(n)) |n € dom(a)N dom(c)|}
n— m(n)\, (a(n), Q | n € dom(a) \ dom(c)
_ Jin=m(n),m(n)\ (a(n), c(n)) |n € dom(a)n dom(c)l}
n — n"z(r;)/{m(nzl\ ((a()n),dQ) © | n € dom(a) \ dom(c)
n+— a(n n € dom(a) N dom(c
C e a(n) | n € dom(a)\ dom(c) by PUTGET for each m(nD)

4.2.20 Lemma: For each name n, let F}, be a continuous function from lenses to lenses. Then the function
Al.map {n — F, (1)} is continuous.

Proof: Let [ and I’ be two lenses with [ < I’. We must show that map {n — F,(I) | n € N} < map {n —
F,(I') | neN}.
Let ¢ € T and suppose that (map {n +— F,(l) | n € N'}), "¢ is defined. We have

(map {n — Fo(l) | n € A}/
= {nw— F.(1),/¢(n) | n € dom(c)]}
{n— Fu(l')/¢(n) | n €dom(c)} byl=<1U
— (map {n Ful) | n €N} e

Conversely, let a and ¢ be two trees in 7 X 7q and suppose that (map {n — F,(I) | n € N})\\(a, ¢) is
defined. Then

(map {n — Fu(l) [n € N})\(a, ¢)
)

|
- ﬂ” = Fu(l) \(a(n), c(n)) | n € dom(a
n = F(l) \ (a(n) Qz | n € dom(a

~— —

N dom(c)
\ dom(c) ﬂ

ne Fu(U) N\ (a(n),, ¢(n)) | n € dom(a)Ndom(c) ,
- {]nHF( I\ (a(n), Q) |n€dom(a)\dom(c)[} by I =<1
= (map {n— F,(I') |[n e N})\.(q, ¢).

Thus M. map {n — F,(I) | n € N'} is monotonic. We now prove that it is continuous.

Let lp < 1; < ... <1, < ... be an increasing chain of lenses with [ = | |,l;. Let ¢ € 7. We assume
an ordering on the names of the children of ¢ and write £(c) and 1(c) for the first and last names of ¢,
respectively. We have

t=(map {n— F,() | neN}) ¢
t={n— F,()/ c(n)|n€dom( )|
t={n F.(; ;) c(n) | n € dom(c)[}
t={n (U, Fulls)),/ ( ) | n € dom(c)} by continuity of each F,
)/ c(n) |n€dom(c)} by 3.3.4 for GET, [dom(c)| times
)/ c(n) | n € dom(c)[

Hif(c)7 cey ey = ﬂn — (Fn(l,
Ji. t = {n — (Fu(ly) by monotonicity of F,
with 7 = max(if(c), . ,il(c))
Ji.t = (map {n— F, (L) |neN}) ¢
t = (;(map {n— F,(l;) | neN})), ¢ by 3.3.4 for GET.

e 110t

Let (a,c) € T x Tg. We assume an ordering on the names of the children of a, and write £(a) and 1(a)
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for the first and last names of a, respectively. We have

+11(a))

t = (map {n+— F,(I) | neN})\ (a, c)
~|n— F,(1)\.(a(n), ¢(n)) |n € dom(a)Ndom(c)
= F=n = Fu) N\ (a(n), @) | n e dom(a)\ dom(c) ﬂ
— PO (e F,(; L) \(a(n), c¢(n)) | n € dom(a) N dom(c)
no Fy(Li )\ (a(n), Q) | n € dom(a) \ dom(c)
_ fr U Fali) N alo), () |0 € dom{a) ndom(@,
= P Um0 Fall)) N (a(n), @) [0 € dom(a) \ dom(c) ﬂ by continuity of Fn
T ; PO (e (Fn(l:,)) \ (a(n), ¢(n)) | n € dom(a) Ndom(c) by 3.3.4 for Pur,
MO n— (Fo(l;, )\ (a(n), Q) | n € dom(a)\ dom(c) |dom(a)| times
PP ([ (Fn(l)) \\ (a(n), ¢(n)) |n € dom(a) Ndom(c) by monotonicity of F),
A it n— (Fo(l;)\ (a(n), Q) | n € dom(a) \ dom(c) I} with 7 = max(ig(q), - - -
= Ji. t = (map {n— F,(l;) | n € N})\(a, ¢
= t=(],(map {n— F,(L) |neN}))\(a,c) by 3.3.4 for PUT.

O
Note the use here of the fact that all trees have finite domain. This is not just a technical point: if trees are
allowed to have infinitely many children, continuity fails in the general case.

4.2.21 Lemma: If (map m) € C == A and m(n) is a total lens from C(n) to A(n) for each n, then (map m)
is a total lens from C' to A.

Proof: Suppose ¢ € C. For any n € dom(c), we have ¢(n) € C(n); hence, m(n),” c(n) is defined for each
n, i.e., (map m),"c is defined. Conversely, suppose a € A and ¢ € C. For any n in dom(a) N dom(c), we
have a(n) € A(n) and c(n) € C(n); hence m(n)\ (a(n), c(n)) is defined. For any n € dom(a), we have
a(n) € A(n), so m(n) \, (a(n), ) is also defined. Thus, (map m)\ (a, ¢) is defined. O

Interestingly, the map combinator does not obey the PUTPUT law. Consider a constant function from
names to lenses m = An.l and (a,c) € dom(1\) such that I\ (a, ¢) # I\, (a, Q). We have

(map m)\, ({o  af}, ((map m)\, ({}, {n+ cf})))
= (map m) {]n = a[} ) {H}
= {n—IN(a, D]
# {n—1\(a, o)}
= (map m)\, {]n|—>a[} {IHHC[}

Intuitively, there is a difference between, on the one hand, modifying a child n and, on the other, removing
it and then adding it back: in the first case, any information in the concrete view that is “projected away”
in the abstract view will be carried along to the new concrete view; in the second, such information will be
replaced with default values. This difference seems pragmatically reasonable, so we prefer to keep map and
lose PuTrPUT.

Another point to note is the relation between the map lens combinator and the missing tree 2. The put
function of every other lens combinator only results in a put into the missing tree if the combinator itself is
called on Q. In the case of map [, calling its put function on some a and ¢ where c is not the missing tree may
result in the application of the put of [ to 2 if @ has some children that are not in ¢. In an earlier version
of map, we dealt with missing children by providing a default concrete child tree, which would be used when
no actual concrete tree was available. However, we discovered that, in practice, it is often difficult to find a
single default concrete tree that fits all possible abstract trees, particularly because of xfork (where different
lenses are applied to different parts of the tree) and recursion (where the depth of a tree is unknown). We
tried parameterizing this default concrete tree by the abstract tree and the lens, but noticed that most
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primitive lenses ignore the concrete tree when defining the put function, as enough information is available
in the abstract tree. The natural choice for a concrete tree parameterized by a and [ was thus I\ (a, Q),
for some special tree 2. The only lens for which the put function needs to be defined on €2 is const, as it is
the only lens that discards information. This led us to the present design, where the const lens expects a
default tree d. This approach is much more local than the others we tried, since one only needs to provide
a default tree at the exact point where information is discarded.

4.3 Derived Lenses

We now derive some useful lenses from the primitive ones of Section 4.2. In each of the derived lenses, the
accompanying type declaration can be verified straightforwardly from the types of the primitive lenses from
which it is defined. Many of the derived lenses are used in the example of Section 5.

In many uses of xfork, the predicates specifying where to split the concrete tree and where to split the
abstract tree are identical. We define the simpler fork as:

forkplils = xforkpplyls
Vpgj\/ V01€(T|p) VA1€(T|;D) VCQG(T|5) VAQE(T|5)

Vi, € (4 (\:\z Al. Viy, € Cy (\:\z AQ.
forkplils € (Cl + CQ) & (Al + Ag)

We may now define a lens that discards all of the children of a tree that do not satisfy some predicate p:

filter pd = forkp id (const {} d)
VCCT.VpCN.Vd € Cly.  filterpde (C|, +Clp) = C|,

takes a concrete tree, keeps the part of the tree whose children have names in p (using id), and throws away
the rest of the tree (using const {} d). The tree d is used when putting an abstract tree into a missing
concrete tree, providing a default for information that does not appear in the abstract tree but is required in
the concrete tree. The type of filter follows directly from the types of three primitive lenses: const {} d,
with type Clz = {{}}, the lens id, with type C|, < C|,, and the fork lens (with the observation that
Cly = Cly +{1)

Another way to thin a tree is to explicitly specify a child that should be removed if it exists:

prune nd = fork {n} (const {} {]n — d[}) id
VOCT.VneN.VdeC(n). prunen de€ (Cl, +Cln) 2 Clx

This lens is similar to filter, except that (1) the name given is the child to be removed, and (2) the default
tree is the one to go under n if the concrete tree is 2.
The next derived lens focuses attention on a single child n:

focusnd = (filter {n} d); (hoist n)
VneN. YCC (T |)VdeC. ¥YDCT.  focusnde (C+ {n— DJ}) & D

In the get direction, it filters away all other children, then removes the edge n and yields n’s subtree. As
usual, the default tree is only used in the case of creation, where it is the default for children that have
been filtered away. Again the type of focus follows from the types of the lenses from which it is defined,
observing that filter {n} d € (C + {n — D}) == {n +— D} and that hoist n € {n+— D} = D.

The hoist primitive defined above requires that the name being hoisted be the unique child of the
concrete tree. It is often useful to relax this requirement, hoisting one child out of many. This generalized
version of hoist is annotated with the set p of possible names of the grandchildren that will become children
after the hoist, which must be disjoint from the names of the existing children.
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hoist nonuniquen p = xfork {n} p (hoist n) id

VneN. VpCN. VDC(T |mrp). VCC(T|,).  hoistmnonunique n p € ({n— C} + D)= (C + D)

The type of hoist nonunique follows straightforwardly from the types of xfork, hoist, and id.

4.4 Lists

XML and many other concrete data formats make heavy use of ordered lists. We describe in this section
how we represent lists, using a standard cons cell encoding, and introduce some derived lenses to manipulate
them.

4.4.1 Definition: A tree t is a list iff either it is empty or else it has exactly two children, one named *h
and another named *t, and ¢(*t) is also a list. In the following, we use the lighter notation [t; ...t,] for the

tree:
*h — t1

*h — to

*t — *tHﬂHﬂIS:H[}[}

We write [1 for the set {{}} containing only the empty list, C :: D for the set {*h— C *t — D]} of “cons
cells trees” whose head belongs to C' and whose tail belongs to D, and [C] for the set of lists with elements
in C—i.e., the smallest set of trees satisfying [C]1 = [1 U (C :: [C]).

We now define some lenses for manipulating lists. The first two extract the head or tail of the list.

hdd = focus *h ﬂ*t — d[}
YC,DCT.VdeD. hdde (C: D) Sy,

tld = focus *t ﬂ*h — d[}
VC,DCT.VdeC. tl1de (C:D) 2D

The lens hd expects a default tree, which it uses in the put direction as the tail of the created tree when
the concrete tree is missing. In the get direction, it returns the tree under name *h. The lens t1 works
analogously. Note that the types of these lenses apply to both homogeneous lists (the type of hd implies
YOCT.Vde[C]. hd d € [C] 2 C) and well as cons cells (pairs) whose head and tail have arbitrary types;
both possibilities are used in the type of the bookmark lens in Section 5. The types of hd and t1 follow
straightforwardly from the type of focus.

The map_list lens iterates over a list, applying its argument to every element of the list:

map_list ! = map {*h— [, *t — map list 1}
VO,ACT.Vic C 2 A. map.listlc [C] 2 [A]

This lens simply applies [ to every child named *h and recurses on every child named *t. In the put direction,
I\\ is used on corresponding pairs from the abstract and concrete lists. The result has the same length as
the abstract list; if the concrete list is longer, the tail is thrown away. If it is shorter, the extra elements of
the abstract list are put into 2. The type of map_list follows from the types of map and [, together with
Lemma 3.3.5. Recall that the type of map requires that both C' and A be closed under shuffling. Accordingly,
we must show that [7] = [T1° for any type 7. From the definition of lists, the set of domains of trees in
[T1 is D = {{*h,*t},0}. We can calculate [T7° directly:

Ugep{n — T'(n) | n € d}
{tU{*h— T, *t — [T1}
[(71.

[r1°
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A final derived lens, hoist_hd, takes a list and “flattens” its first cell using hoist nonunique. It is
annotated with a set of names p specifying the possible domain of the tree at the head of the list.

hoist.hd p = hoist_nonunique *h p; hoist nonunique *t p

VpC(M\{*t}). VCC(T|,). VDC(T|5). hoisthdpe (C:: D)= (C+ D)

Observe that, by assumption, the concrete view has type C :: D where C' € 7|, and D € T|;. Then
hoist nonunique *h p € C' :: D & C + *t > D

and also
hoist nonunique *t p€ C +*t— D & C + D

which yields the desired result for the composition.

4.5 Conditional Lenses

In this section, we describe some conditional lens combinators, which can be used to selectively apply one
lens or another to a tree. Like xfork and map, these lenses are parameterized by a pair of lenses. Unlike
those lenses, which split the input tree and apply a lenses to each part of the tree, the conditional lenses
apply different sub-lenses to the entire tree. These lenses are newer and somewhat more experimental than
the primitives described above—we do not yet feel we have a good understanding of the design space of
conditional constructs for bi-directional programming languages. Neither of these combinators is used in
the bookmark example in Section 5, but we have found ways of using each of them in other programming
situations.

The requirement that makes conditionals difficult is totality: we want to be able to take a concrete view,
put it through our conditional lens to obtain some abstract view, and then take any other abstract view
of suitable type and push it back down. But this will only work if either (1) we somehow ensure that the
abstract view is guaranteed to be sent to the same sub-lens on the way down as we took on the way up, or else
(2) the two sub-lenses are constrained to behave coherently. There seem to be several forms of conditional
that achieve both well-behavedness and totality, but we have not yet found ones that meet all our needs.

Concrete Conditional

Our first conditional, ccond, is parameterized on a predicate on trees and two lenses, [; and . In the get
direction, it tests the concrete view, ¢, and applies the get of I, if c satisfies the predicate and [y otherwise. In
the put direction, ccond again examines the concrete view and applies the put of I; if it satisfies the predicate
and [y otherwise. This is arguably the simplest possible way to define a conditional: it fixes all of its decisions
in the get direction, so the only constraint on l; and [y is that they have the same target. (However, if we
are interested in using ccond to define total lenses, this is actually a rather strong condition.)

(ccond Bl ly) /¢

{ L, ¢c ifceB

ly/ "¢ ifcgB
s~ (1507

VO, A,BCT. VI, e CPBZ A Vi;c C\BZ A. ccondBl l;jeCZ A

One subtlety in the definition is worth noting: we arbitrarily choose to put Q using Iy (because Q ¢ B for
any B C 7). We could equally well arrange the definition so as to send 2 through I;.

4.5.2 Lemma: VC, A, BCT. V], € CNB £ A. Viy € C\B 2 A. ccond B, lyeC < A
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Proof:

GET: If ¢ € B, then (ccond B, ly), "¢ =1,/ c € A. Otherwise, c € C\B and so (ccond B, ly), "¢ =
lf/‘c € A.

Put: If ¢ € B, then (ccond B, I5)\, (¢, a) = I; \,(a, ¢) € C'N B. Otherwise (ccond B I, l7)\, (¢, a) =
Iy \\(a, ¢) € C\B. In either case, (ccond B I; I) \,(c, a) € C.

GETPUT: Assume that (ccond B I, lf) ¢ is defined. Then

(ccond B l; )\, ((ccond B I, ly) ¢, ¢)
(ccond Bl lf)\(lt/"¢c,c) ifceB

{ ccond Bl lf)\,(I;"¢, ¢) otherwise
e\t /"¢,c) ifceB

{ Iy N\ (ly ¢, c) otherwise

c by GETPUT for I; and [y.

PUTGET: Assume that (ccond B I; If) \,(a, c) is defined. Then

(ccond By ly) /" (ccond B ly If) \,(a, ¢)
(ccond Bl lp), "Iy \(a,c) ifceB

{ ccond B Iely)/ 1\ (a, ¢) otherwise
.,/ \\(a,c) ifceB

{ ly /'ly \.(a, ¢) otherwise

a by PUTGET for I; and ;. O

4.5.3 Lemma: Let FF and G be continuous functions from lenses to lenses. Then the function
Al. ccond B F(I) G(1) is continuous.

Proof: Let I and !’ be two lenses such that [ < !’.  We must show that ccond B F(I) G(I) <
ccond B F(I') G(I'). For monotonicity, first assume that (ccond B F(l) G(I)) /¢ is defined. We have:

(ccond B F(1) G(1)),/¢
F()/c ifceB
{ G(l)/ ¢ otherwise
F(l) /¢ ifceB
{ G(l') /¢ otherwise
= (ccond B F(l) G(1)),/c.

by 1 <1’

Conversely, let a and ¢ be two trees in 7 x 7 and assume that (ccond B F(l) G(1)) \\(a, c) is defined.

Then
(ccond B F(l) G(l)) \ (@, ¢)

(a,c) ifceB
otherwise
(a,c) ifceB
byl <1
{ (a, ¢) otherwise vis

= ccond B F(l ) G(") \\ (a, ).

Thus M. ccond B F(I) G(I) is monotonic. We now prove that it is continuous.
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Let lg <1y < ... <1, < ... be an increasing chain of well-behaved lenses with [ = |_|1 l;. We have

(ccond B F(I) G(1)) /"c=t

— F) c=t ifceB
G(l)/ c= otherwise
= Pk e=
GU; L)/ c=t
= (U, Fly) c=t by continuity of F and G
(L; Gi) Se=t
— Jiu.(F(ly)) c= by Corollary 3.3.4 (GET)
< E'ZF(ZZ)/‘C = 1= max(il,ig)
3.6l /e =t
<= Ji(ccond B F(l;) G(l;))"c=t
< (lJ;ccond B F(l;) G(l;)) /" ¢c=t by Corollary 3.3.4 (GET).
and
(ccond B F(I) G(1)) \\(a, c) =t
— Fl)\.(a, )= ifceB
Gl)\(a,c)=t otherwise
= F(U;li)\(a,c)=t
G(L;li) \(a, c) =t
— (U, Fly))\(a,c)=t by continuity of F' and G
(L; GUi)) N (a, ) =t
==  Fi1.(Fy))\(a,c)=t by Corollary 3.3.4 (PuT)
Fia.(G(l;,)) \((a, ¢) =t
— FJi.F(l;)\\(a,c)=t 1 = max(iy, i2)
HN.G(l;) N\ (a,c) =t
<= Ji(ccond B F(l;) G(l;))\.(a,c) =t
<= (lJ;ccond B F(l;) G(l;)) \\(a, ¢) =t by Corollary 3.3.4 (PuT). O

4.5.4 Lemma: If [, is a total lens from C'N B to A and Iy is a total lens from C\B to A then ccond B I; Iy
is total from C to A.

Proof: Suppose c € C. If ¢ € C N B, then by the totality of l;, we know that [, /¢ is defined and is in
A. On the other hand, if ¢ € C\B, then Iy, "¢ is defined and is in A. Thus, (ccond B I, l;) /¢ is defined.
Conversely, let a € A and ¢ € Cq. Then, if ¢ € C'N B, then the totality of I; tells us that I; \, (a, ¢) is defined
and is in C'N B. Similarly, if ¢ € C\B or ¢ = 2 then by the totality of ¢, we have I\ (a, ¢) is defined and
is in C\B. Thus, we have (ccond B l; lf) \, (a, ¢) is defined. O

Oblivious Conditional

A quite different way of defining a conditional lens is to make it ignore its concrete argument in the put
direction, basing its decision whether to use ;™\, or [\ entirely on its abstract argument. This obliviousness
to the concrete argument removes the need for any side conditions relating the behavior of [, and [;—
everything works fine if we put using the opposite lens from the one that we used to get—as long as, when we
immediately put the result of get, we use the same lens that we used for the get. Requiring that the sources
and targets of [; and [; be disjoint guarantees this.

The oblivious conditional can be defined in terms of map plus two new primitive lenses, pred and unpred.
The former tests a condition B in the get direction and plunges its argument ¢ under an edge labeled with
the special name *t if B holds of ¢ (i.e., if ¢ € B) and under *£f otherwise. In the put direction, pred ignores
its concrete argument and simply throws away the edge *t or *f.
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weanyse = {0 000

*xf — ¢
_ co if a={*t— co
preas) o = {0 Lozl

VC,BCT. pred Be C 2 ({{*t— CNB} U {*f — C\B]})

4.5.5 Lemma: VC,BCT. pred B € C & ({*t — CNB[ U {*f — C\B|}).
Proof:
GET: If ¢ € B then (pred B), "¢ = {*t — c}}. Otherwise, (pred B),~ ¢ = {*f — c}, as required.

PutT: If a = {*t — ¢} then ¢g € C'N B and (pred B)\,(a, ¢) = ¢o. Similarly, if a = {*f — ¢} then
¢p € C\B and (pred B) \(a, ¢) = co.

GETPUT: Assume that (pred B),"cis defined. Then, if ¢ € B,

(pred B)\,((pred B), ¢, ¢)
(pred B) \, ({*t —c}, ¢

— C.

The case where ¢ € B is symmetric.

PUTGET: Assume that (pred B)\(a, ¢) is defined. If a = {*t — ¢}, with ¢ € B, then

(pred B), (pred B)\(a, ¢)
— (pred B)/ (pred B)\, (%t  c}, )
— (pred B) /¢
= {*t—c} since c € B
= a.
The case where a = {*f — c} with ¢ ¢ B is symmetric. O

4.5.6 Lemma: pred B is a total lens from C' to {*t — C N B} U {*f — C\B}.
Proof: Straightforward. O

The unpred lens is dual to pred. In the get direction, unpred simply throws away the edge *t or *f. In
the put direction, it tests a condition B and plunges its abstract argument a under an edge labeled with the
special name *t if B holds of a and under *f otherwise; the concrete argument c is ignored.

B ag if c=*t+—ag
(unpred B) ¢ = {ao ifc—ﬂ*f»—MLQE

*fi—a

(unpred B) \ (a, ¢) = {H*t'—}aﬁ EZ;g

VA,BC7T. unpred B € (ﬂ*t — AOB[} U {]*f — A\B[}) 2

4.5.7 Lemma: VA, BC7. unpred B € ({]*t — AﬂB[} U {]*f — A\B[}) =
Proof:
GET: If ¢ = {*t — a} then (unpred B),c¢ = a. Otherwise, ¢ = {*f — a} and (unpred B), "¢ = a, as

required.
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Put: If a € B then (unpred B) \ (a, ¢) = {*t — a]. Similarly, if « ¢ B then (unpred B)\ (a, ¢) = {*f —
a}, as required.

GETPUT: Assume that (unpred B),"c is defined. If ¢ = {*t +— a}, with a € B, then

(unpred B)\ ((unpred B), "¢, ¢)
= (unpred B)\(a, ¢)
= {*t+—a} asa € B
= ¢

The case where ¢ = {*f — a} and a ¢ B is symmetric.
PUTGET: Assume that (unpred B)\ (a, c¢) is defined. Then if a € B:

(unpred B),” (unpred B)\ (a, ¢)
(unpred B),/ {*t — a}

- a.

The case where a ¢ B is symmetric. O
4.5.8 Lemma: unpred B is a total lens from {*t — ANB} U {*f — A\B] to A.
Proof: Straightforward. O

Using pred, unpred, and map, we can now easily build the oblivious conditional lens, cond. It is param-
eterized on two sets of trees, B¢ and B4, and two lenses, [; and l;. In the get direction, cond first applies
pred B¢ to transform the concrete view ¢ into either {*t — c} (if ¢ € B¢) or {*f — ¢} (if ¢ ¢ B¢). Next, we
use map{*t — [, *f — I} to apply the get of the I, or I lens. As the get direction of pred always produces
a tree with one child, exactly one of [; or I is applied to the original concrete view. Finally, we apply
unpred B4 to hoist the original ¢, which has now been transformed by either l; or I, up to the top level.
In the put direction, we first apply the put of unpred, which ignores its second argument. This produces a
tree of the form {*t — a} if a € By or {*f — a} if a € B4. To this tree, we apply the put of map, which
applies the put of l; or I to the original tree a. Finally, we use the put of pred to hoist the original a back
up to the top level.

cond Bc By l; Iy = pred Be; map {*t > l;, *f — I;}; unpred By

VC, A, Bo,BACT. Vi, € CNBe EIN ANBa. Vif € (C\Bc) EIN (A\BA).
cond Bo Ba Iy lfGC&A

The type of cond follows directly from the types of the primitive lenses used to define it. The following
type annotations witness this fact (the notation is explained on page 32).

cond BC By Iy Iy eC
= pred Bg; :{lxt — CNBe b U *fHC\Bcﬂ
map {*t — I, *f — [z }; *t — ANBalf U {*f — A\Byl|
Q

unpred B4 =

5 Extended Example: A Bookmark Lens

With these definitions in hand, we are ready to develop an extended example of programming with our lens
combinators. The example comes from a demo application of our data synchronization framework, Harmony,
in which bookmark information from diverse browsers, including Internet Explorer, Mozilla, Safari, Camino,
and OmniWeb, is synchronized by transforming each format from its concrete native representation into
a common abstract form. We show here a slightly simplified form of the Mozilla lens, which handles the
HTML-based bookmark format used by Netscape and its descendants.

The overall path taken by the bookmark data through the Harmony system can be pictured as follows.
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ALink, = {name — Val url— Val}

ALink = {link — ALink;}

AFolder; = {name+— Val contents— AContents}
AFolder = {folder — AFolder;}

AContents = [Altem]

Altem = ALink U AFolder

Figure 2: Abstract Bookmark Types

html concrete

other
abstract
vie

[__sync /

new

bookmark|( new
view

We first use a generic HTML reader to transform the HTML bookmark file into an isomorphic concrete tree.
This concrete tree is then transformed, using the get direction of the bookmark lens, into an abstract “generic
bookmark tree.” The abstract tree is synchronized with the abstract bookmark tree obtained from some
other bookmark file, yielding a new abstract tree, which is transformed into a new concrete tree by passing
it back through the put direction of the bookmark lens (supplying the original concrete tree as the second
argument). Finally, the new concrete tree is written back out to the filesystem as an HTML file. We now
discuss these transformations in detail.

Abstractly, the type of bookmark data is a name pointing to a value and a contents, which is a list of
items. An item is either a link, with a name and a url, or a folder, which has the same type as bookmark
data. Figure 2 formalizes these types.

Concretely, in HTML (see Figure 3), a bookmark item is represented by a <dt> element containing an
<a> element whose href attribute gives the link’s url and whose content defines the name. The <a> element
also includes an add_date attribute, which we have chosen not to reflect in the abstract form because it
is not supported by all browsers. A bookmark folder is represented by a <dd> element containing an <h3>
header (giving the folder’s name) followed by a <d1> list containing the sequence of items in the folder. The
whole HTML bookmark file follows the standard <head>/<body> form, where the contents of the <body>
have the format of a bookmark folder, without the enclosing <dd> tag. (HTML experts will note that the use
of the <d1>, <dt>, and <dd> tags here is not actually legal HTML. This is unfortunate, but the conventions
established by early versions of Netscape have become a de-facto standard.)

The generic HTML reader and writer know nothing about the specifics of the bookmark format; they
simply transform between HTML syntax and trees in a mechanical way, mapping an HTML element named
tag, with attributes attrl to attrm and sub-elements subeltl to subeltn,

<tag attril="vall" ... attrm="valm">
subeltl ... subeltn
</tag>
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<html>
<head> <title>Bookmarks</title> </head>
<body>
<h3>Bookmarks Folder</h3>
<d1>
<dt> <a href="www.google.com" add_date="1032458036">Google</a> </dt>
<dd>
<h3>Conferences Folder</h3>
<d1>
<dt> <a href="www.cs.luc.edu/icfp" add_date="1032528670">ICFP</a> </dt>
</d1>
</dd>
</d1>
</body>
</html>

Figure 3: Sample Bookmarks (HTML)

{html -> {* —>
[{head -> {* —> [{title —> {* —>
[{PCDATA -> Bookmarks}]}}]}}
{body —-> {* ->
[{h3 -> {* -> [{PCDATA -> Bookmarks Folder}]}}
{d1 > {x —>
[{dt -> {* —>
[{a -> {*x -> [{PCDATA -> Google}]
add_date -> 1032458036
href -> www.google.com}}]}}
{dd -> {x —>
[{h3 -> {* -> [{PCDATA ->
Conferences Folder}]}}
{d1 -> {x —>
[{dt -> {*x —>
[{a —>
{* -> [{PCDATA -> ICFP}]
add_date -> 1032528670
href -> www.cs.luc.edu/icfp

FFIFFIFFIIIIFIIII Y

Figure 4: Sample Bookmarks (concrete tree)
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Val
PCDATA

CLink

CFolder

CContents
CContents;
CContentsg

Cltem

CBookmarks
CBookmarks;
CBookmarkss

{NE
{PCDATA — Val}

<dt> CLink; :: [1 </dt>
<a add_date href> PCDATA :: []1 </a>

<dd> CContents </dd>

CContents; :: CContentss :: []
<h3> PCDATA :: [] </h3>
<d1> [Cltem] </d1>

CLink U CFolder

<html> CBookmarks; :: CBookmarkss :: [1 </html>
<head> (<title> PCDATA </title>:: []) </head>
<body> CContents </body>

Figure 5: Concrete Bookmark Types

{name -> Bookmarks Folder

contents ->

[{1link -> {name -> Google

url -> www.google.com}}
{folder ->

{name -> Conferences Folder

contents ->
[{link —>

{name -> ICFP
url -> www.cs.luc.edu/icfp}}1}}13}

Figure 6: Sample Bookmarks (abstract tree)
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into a tree of this form:
attrl — vall

attrm — valm

tag— subeltl

subeltn

Note that the sub-elements are placed in a list under a distinguished child named *. This preserves their
ordering from the original HTML file. (The ordering of sub-elements is sometimes important—e.g., in the
present example, it is important to maintain the ordering of the items within a bookmark folder. Since
the HTML reader and writer are generic, they always record the ordering from the the original HTML in
the tree, leaving it up to whatever lens is applied to the tree to throw away ordering information where it
is not needed.) A leaf of the HTML document—i.e., a “parsed character data” element containing a text
string str—is converted to a tree of the form {PCDATA -> str}. Passing the HTML bookmark file shown
in Figure 3 through the generic reader yields the tree in Figure 4.

Figure 5 shows the type (CBookmarks) of concrete bookmark structures. For readability, the type
relies on a notational shorthand that reflects the structure of the encoding of HTML as trees. We write
<tag attrl...attrn> C </tag> for {tag+— {attrl— Val ...attrn— Val * — C}}, where Val is the set
of all values (trees with a single childless child). For elements with no attributes, this degenerates to simply
<tag> C' </tag> = {tag— {* — C}}.

The transformation between this concrete tree and the abstract bookmark tree shown in Figure 6 is
implemented by means of the collection of lenses shown in Figure 7. Most of the work of these lenses (in
the get direction) involves stripping out various extraneous structure and then renaming certain branches to
have the desired “field names.” Conversely, the put direction restores the original names and rebuilds the
necessary structure.

To aid in checking well-behavedness, the lenses in Figure 6 are annotated with type declarations both
for each top-level lens definition and at each use of the composition operator ;. For example, the annotated
composition of lenses : C'l; ; : B ly 2 A stands for [1:lo and asserts that ; € C' == B and I, € B 2 A.
From this, it is easy to verify that the type of the whole composite is C' 2 A. (The notation looks strange
in-line, but works well for multi-line displays.)

It is straightfoward to check, using the type annotations supplied, that bookmarks € CBookmarks <=
AFoldery.

In practice, composite lenses are developed incrementally, gradually massaging the trees into the correct
shape. Figure 8 shows the process of developing the link lens by transforming the representation of the
HTML under a <dt> element containing a link into the desired abstract form. At each level, tree branches
are relabeled with rename, undesired structure is removed with prune, hoist, and/or hd, and then work is
continued deeper in the tree via map.

The put direction of the 1ink lens restores original names and structure automatically, by composing
the put directions of the constituent lenses of 1ink in turn. For example, Figure 9 shows an update to the
abstract tree of the link in Figure 8. The concrete tree beneath the update shows the result of applying put
to the updated abstract tree. The put direction of the hoist PCDATA lens, corresponding to moving from
step wviii to step vii in Figure 8, puts the updated string in the abstract tree back into a more concrete tree
by replacing Search-Engine with {{PCDATA -> Search-Enginel}. In the transition from step vi to step v,
the put direction of prune add_date {|$todayl} utilizes the concrete tree to restore the value, add_date ->
1032458036, projected away in the abstract tree. If the concrete tree had been 2—i.e., in the case of a new
bookmark added in the new abstract tree—then the default argument {| $today [} would have been used to
fill in today’s date. (Formally, the whole set of lenses is parameterized on the variable $today, which ranges
over names.)

The get direction of the folder lens separates out the folder name and its contents, stripping out undesired
structure where necessary. Note the use of hoist_hd to extract the <h3> and <d1> tags containing the folder
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link = € {*+— Clink; :: [1}

hoist *; : CLink; :: []
hd [1; : CLink;
hoist_nonunique a {* add_date href}; : {*+— PCDATA: [1, add_date— Val,
href — Val}
rename {*=name, href=url}; : {name — PCDATA :: [1, add_date — Val,
url — Val}
prune add_date {$today}; : {name — PCDATA :: [1, urlw— Val}
map {name -> (hd []; : PCDATA
hoist PCDATA)} 2 {name — Val, url — Val} = ALink,
folder = € {* — CContents}
hoist *; : CContents
hoist_hd {h3}; : {h3— {*+— PCDATA :: [1}, CContentss :: [1}
fork {h3} (id) (hoist_hd {d1}); : {h3 +— {*x — PCDATA :: (1},
dl — {* — [Cltem]}}}
rename {h3=name, dl=contents}; : {name — {* — PCDATA :: 11},
contents — {* — [Cltem]]}]
map {name -> (hoist *; : PCDATA :: [1]
hd [1; : PCDATA
hoist PCDATA)
contents -> (hoist *; : [Cltem]
map_list item)}
2 {name — Val, contents— [Altem]} = AFolder;
item = € Cltem
map { dd -> folder, dt -> link }; : {dd — AFolder;} U {dt — ALink;}
rename { dd=folder, dt=link } 2 AFolder U ALink = Altem
bookmarks = € CBookmarks
hoist html; : {* — CBookmarks; :: CBookmarkss :: [1}
hoist *; : CBookmarks; :: CBookmarkss :: [1
tl {{head -> {I* -> [{ltitle —> {I* ->
[{|PCDATA -> Bookmarks[}] [} [}]1[}[}; : CBookmarksg :: []
hd [J; : CBookmarkss

hoist body; : {x — CContents}
folder L APFolder;

Figure 7: Bookmark lenses
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Step

Lens expression

Resulting abstract tree (from ’get’)

. id {x —>
[{a -> {* -> [{PCDATA -> Googlel}]
add_date -> 1032458036
href -> www.google.com}}]}}
i:  hoist * [{a -> {x -> [{PCDATA -> Google}]

add_date -> 1032458036
href -> www.google.com}}]

12

hoist *; hd {}

{a -> {* -> [{PCDATA -> Google}]
add_date -> 1032458036
href -> www.google.com}}

0

hoist *; hd {I};

hoist_nonunique a {* add_date href}

{* -> [{PCDATA -> Google}]
add_date -> 1032458036
href -> www.google.com}

hoist *; hd {};
hoist_nonunique
rename {*=name,

a {* add_date
href=url}

href};

{name -> [{PCDATA -> Googlel}]
add_date —> 1032458036
url -> www.google.com}

vl

hoist *; hd {};
hoist_nonunique a {* add_date
rename {*=name, href=url};
prune add_date {$today}

href};

{name -> [{PCDATA -> Googlel}]
url -> www.google.com}

VL

hoist *; hd {};
hoist_nonunique a {* add_date
rename {*=name, href=url};
prune add_date {$today};

map { name -> (hd {}) }

href};

{name -> {PCDATA -> Google}
url -> www.google.com}

VUL

hoist *; hd {};
hoist_nonunique a {* add_date
rename {*=name, href=url};
prune add_date {$today};

map { name -> (hd {}; hoist PCDATA) }

href};

{name -> Google
url -> www.google.com}

{link -> {name -> Google

Figure 8: Building up a link lens incrementally.

url -> www.google.com}}

updated to...

yields (after put)...

{dt -> {*x —>

[{a -> {*x -> [{PCDATA -> Search-Engine}]
add_date -> 1032458036
href -> www.google.com}}]}}

Figure 9: Update of abstract tree, and resulting concrete tree
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url -> www.google.com}}



name and contents respectively; although the order of these two tags does not matter to us, it matters to
Mozilla, so we want to ensure that the put direction of the lens puts them to their proper position in case of
creation, which hoist_hd will ensure. Finally, we use map to iterate over the contents.

The item lens processes one element of a folder’s contents; this element might be a link or another folder,
so we want to either apply the 1ink lens or the folder lens. Fortunately, we can distinguish them by whether
they are contained within a <dd> element or a <dt> element; we the map operator to wrap the call to the
correct sublens. Finally, we rename dd to folder and dt to link.

The main lens is bookmarks, which (in the get direction) takes a whole concrete bookmark tree, strips
off the boilerplate header information using a combination of hoist, hd, and t1, and then invokes folder
to deal with the rest. The huge default tree supplied to the t1 lens corresponds to the head tag of the
html document, which is filtered away in the abstract bookmark format. This default tree would be used to
recreate a well-formed head tag if it was missing in the original concrete tree.

6 Related Work

The overall architecture of Harmony and the role of lenses in building synchronizers for various forms of data
are described in [26], along with a detailed discussion of related work on synchronization.

Our foundational structures—Ilenses and their laws—are not new: closely related structures have been
studied for decades in the database community. However, our “programming language treatment” of these
structures has led us to a formulation that is arguably simpler (transforming states rather than “update
functions”) and somewhat more refined (treating well-behavedness as a form of type assertion). Our formu-
lation is also novel in considering the issue of continuity, thus supporting a rich variety of surface language
structures including definition by recursion.

The idea of defining a programming language for constructing bi-directional transformations has also
been explored previously. However, we appear to be the first to have connected it with a formal seman-
tic foundation, choosing primitives that can be combined into composite lenses whose well-behavedness is
guaranteed by construction.

Foundations of View Update

The foundations of view update translation were studied intensively by database researchers in the late '70s
and '80s. This thread of work is closely related to our semantics of lenses in Section 3.

Dayal and Bernstein [12] gave a seminal formal account of the theory of “correct update translation.”
Their notion of “exactly performing an update” corresponds to our PUTGET law. Their “absence of side
effects” corresponds to our GETPUT and PUTPUT laws. Their requirement of preservation of semantic
consistency corresponds to the partiality of our put functions.

Bancilhon and Spyratos [6] developed an elegant semantic characterization of update translation, intro-
ducing the notion of complement of a view, which must include at least all information missing from the
view. When a complement is fixed, there exists at most one update of the database that reflects a given up-
date on the view while leaving the complement unmodified—i.e., that “translates updates under a constant
complement.” In general, a view may have many complements, each corresponding to a possible strategy
for translating view updates to database updates. The problem of translating view updates then becomes a
problem of finding, for a given view, a suitable complement.

Gottlob, Paolini, and Zicari [14] offered a more refined theory based on a syntactic translation of view
updates. They identified a hierarchy of restricted cases of their framework, the most permissive form being
their “dynamic views” and the most restrictive, called “cyclic views with constant complement,” being
formally equivalent to Bancilhon and Spyratos’s update translators.

Recent work by Lechtenborger [18] establishes that translations of view updates under constant comple-
ments are possible precisely if view update effects may be undone using further view updates.

In a companion report [25], we have stated a precise correspondence between our lenses and the structures
studied by Bancilhon and Spyratos and by Gottlob, Paolini, and Zicari. Briefly, our set of very well behaved
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lenses is isomorphic to the set of translators under constant complement in the sense of Bacilhon and Spyratos,
while our set of well-behaved lenses is isomorphic to the set of dynamic views in the sense of Gottlob, Paolini,
and Zicari. To be precise, both of these results must be qualified by an additional condition regarding
partiality. The frameworks of Bacilhon and Spyratos and of Gottlob, Paolini, and Zicari are both formulated
in terms of translating update functions on A into update functions on C), i.e., their put functions have type
(A — A) — (C — (), while our lenses translate abstract states into update functions on C, i.e., our
put functions have type (isomorphic to) A — (C — (). Moreover, in both of these frameworks, “update
translators” (the analog of our put functions) are defined only over some particular chosen set U of abstract
update functions, not over all functions from A to A. These update translators return total functions from
C to C. Our put functions, on the other hand, are slightly more general as they are defined over all abstract
states and return partial functions from C to C. Finally, the get functions of lenses are allowed to be partial,
whereas the corresponding functions (called views) in the other two frameworks are assumed to be total. In
order to make the correspondences tight, our sets of well-behaved and very well behaved lenses need to be
restricted to subsets that are also total in a suitable sense.

A related observation is that, if we restrict both get and put to be total functions (i.e., put must be total
with respect to all abstract update functions), then our lens laws (including PUTPUT) characterize the set
C as isomorphic to A x B for some B.

The view update problem has also been studied in the context of object-oriented databases. School,
Laasch, and Tresch [29] restrict the notion of views to queries that preserve object identity. The view update
problem is greatly simplified in this setting, as the objects contained in the view are the objects of the
database, and an update on the view is directly an update on objects of the database.

Updates for Relational Views

Research on view update translation in the database literature has tended to focus on taking an existing
language for defining get functions (e.g., relational algebra) and then considering how to infer corresponding
put functions, either automatically or with some user assistance. By contrast, we have designed a new
language in which the definitions of get and put go hand-in-hand. Our approach also goes beyond classical
work in the relational setting by directly transforming and updating tree-structured data, rather than flat
relations. (Of course, trees can be encoded as relations, but it is not clear how our tree-manipulation
primitives could be expressed using the recursion-free relational languages considered in previous work in
this area.) However, our goals are more modest than those of most work on relational update transformation
in one significant respect: we do not, at present, support any analog of relational join, a major source of
update ambiguity in the relational world. (We have not yet encountered a need for join in the setting in which
we use our combinators—transforming tree-structured application data to prepare it for synchronization.)
We briefly review the most relevant research from the relational setting.

Masunaga [19] described an automated algorithm for translating updates on views defined by relational
algebra. The core idea was to annotate where the “semantic ambiguities” arise, indicating they must be
resolved either with knowledge of underlying database semantic constraints or by interactions with the user.

Keller [16] catalogued all possible strategies for handling updates to a select-project-join view and showed
that these are exactly the set of translations that satisfy a small set of intuitive criteria. These criteria are:

1. No database side effects: only update tuples in the underlying database that appear somehow in the
view.

2. Only one-step changes: each underlying tuple is updated at most once.

3. No unnecessary changes: there is no operationally equivalent translation that performs a proper subset
of the translated actions.

4. Replacements cannot be simplified (e.g., to avoid changing the key, or to avoid changing as many
attributes).
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5. No delete-insert pairs: for any relation, you have deletions or insertions, but not both (use replacements
instead).

These criteria apply to update translations on relational databases, whereas our state-based approach means
only criteria (1), (3), and (4) might apply to us. Keller later [17] proposed allowing users to choose an
update translator at view definition time by engaging in an interactive dialog with the system and answering
questions about potential sources of ambiguity in update translation. Building on this foundation, Barsalou,
Siambela, Keller, and Wiederhold [7] described a scheme for interactively constructing update translators
for object-based views of relational databases.

Medeiros and Tompa [20] presented a design tool for exploring the effects of choosing a view update policy.
This tool shows the update translation for update requests supplied by the user; by considering all possible
valid concrete states, the tool predicts whether the desired update would in fact be reflected back into the
view after applying the translated update to the concrete database. Miller et al. [21] describe Clio, a system
for managing heterogenous transformation and integration. Clio provides a tool for visualizing two schemas,
specifying correspondences between fields, defining a mapping between the schemas, and viewing sample
query results. They only consider the get direction of our lenses, but their system is somewhat mapping-
agnostic, so it might eventually be possible to use a framework like Clio as a user interface supporting
incremental lens programming like that in Figure 8.

Atzeni and Torlone [5, 4] described a tool for translating views and observed that if one can translate any
concrete view to and from a meta-model (shared abstract view), one then gets bi-directional transformations
between any pair of concrete views. They limited themselves to mappings where the concrete and abstract
views are isomorphic.

Complexity bounds have also been studied for various versions of the view update inference problem. In
one of the earliest, Cosmadakis and Papadimitriou [10, 11] considered the view update problem for a single
relation, where the view is a projection of the underlying relation, and showed that there are polynomial
time algorithms for determining whether insertions, deletions, and tuple replacements to a projection view
are translatable into concrete updates. More recently, Buneman, Khanna, and Tan [9] established a variety
of intractability results for the problem of inferring “minimal” view updates in the relational setting for
query languages that include both join and either project or union.

Another problem that is sometimes mentioned in connection with view update translation is that of
incremental view maintenance (e.g., [3])—efficiently recalculating an abstract view after a small update to
the underlying concrete view. Although the phrase “view update problem” is sometimes (confusingly) used
for work in this domain, there is little technical connection with the problem of translating view updates to
updates on an underlying concrete structure.

Programming Languages for View Update

In the literature on programming languages, laws similar to our lens laws (but somewhat simpler, dealing
only with total get and put functions) appear in Oles’ category of “state shapes” [24] and in Hofmann and
Pierce’s work on “positive subtyping” [15]. Another related idea, proposed by Wadler [32], extended algebraic
pattern matching to abstract data types using programmer-supplied in and out operators. This is related to
the special case of our lenses in which the get and put functions always form an isomorphism.

Abiteboul, Cluet, and Milo [1] defined a declarative language of correspondences between parts of trees
in a data forest. In turn, these correspondence rules can be used to translate one tree format into another
through non-deterministic Prolog-like computation. This process again assumes an isomorphism between
the two data formats.

The same authors [2] later defined a system for bi-directional transformations based around the concept
of structuring schemas (parse grammars annotated with semantic information). Thus their get functions
involved parsing, whereas their puts consisted of unparsing. Again, to avoid ambiguous abstract updates,
they restricted themselves to lossless grammars that define an isomorphism between concrete and abstract
views.
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Ohori and Tajima [23] developed a statically-typed polymorphic record calculus for defining views on
object-oriented databases. They specifically restricted which fields of a view are updatable, allowing only
those with a ground (simple) type to be updated, whereas our lenses can accommodate structural updates
as well.

The designers of the RIGEL language [28] argued that programmers should specify the translations of
abstract updates. However, they did not provide a way to ensure consistency between the get and put
directions of their translations.

A number of papers have been written in the program transformation community on inverse and reversible
computation—see, for example, [?, 7, ?] and other papers cited there. These languages bear many intriguing
similarities to ours, but again focus on the bijective case.

More recent work by Hu, Mu, and Takeichi [?] applies a bi-directional programming language much more
closely related to ours to the design of “programmable” editors for structured documents.

Updates and Trees

There have been many proposals for query languages for trees (e.g., XQuery [31] and its forerunners, UnQL,
StruQL, and Lorel), but these either do not consider the view update problem at all or else handle update
only in situations where the abstract and concrete views are isomorphic.

For example, Braganholo, Heuser, and Vittori [13], and Braganholo, Davidson, and Heuser [8] studied
the problem of updating relational databases “presented as XML.” Their solution requires a 1:1 mapping
between XML view elements and objects in the database, to make updates unambiguous.

Tatarinov, Ives, Halevy, and Weld [30] described a mechanism for translating updates on XML structures
that are stored in an underlying relational database. In this setting there is again an isomorphism between
the concrete relational database and the abstract XML view, so updates are unambiguous—rather, the
problem is choosing the most efficient way of translating a given XML update into a sequence of relational
operations.

7 Future Work

Applications

Our interest in bi-directional tree transformations arose in the context of the Harmony data synchronization
framework. Besides the bookmark synchronizer described in Section 5, we are currently developing a number
of synchronizers (for calendars, address books, structured text, etc.) as instances of Harmony. This exercise
provides valuable stress-testing for both our combinators and their formal foundations.

Additional Combinators

The combinators we have described are the product of an iterative process, driven by the practical needs
of the Harmony system as it has evolved. Each iteration begins with a Harmony instance that we wish to
construct, for which one or more lenses is needed. We write these lenses using our current set of combinators
as much as possible, but, when we get stuck, resorting to “native lenses” —pairs of ordinary functions written
in a general-purpose programming language and checked for well-behavedness by ad hoc reasoning. After
verifying that our combined lenses work as required, we step back and try again to see whether the native
lenses we wrote along the way can be expressed using our existing combinators, or, if not, how we can
introduce the smallest possible number of new primitives that can be combined to achieve the desired effect.
Often, this leads to ideas for simplifying, generalizing, or combining other combinators. Then we start again.
The combinators described in this paper have stood the test of time and become the core components of our
lens programming toolbox.

We do not know whether this process will converge to a complete set of combinators in which all imag-
inable bi-directional transformations on trees can be expressed. Fortunately, our goals (in the context of
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Harmony, at any rate) are more modest: we do not need to be able to represent all conceivable tree transfor-
mations as combinator expressions—just the majority of the ones we encounter in day to day programming
of synchronizer instances. As in most high-level programming languages, we expect, occasionally, to need to
drop down to a lower level language to code some special-purpose lens. However, we are still some distance
from even this sort of pragmatic completeness.

Besides the conditional lens combinators discussed in Section 4.5, one area where our present combinators
are often awkward (and occasionally downright insufficient) is in splitting views and operating separately on
both parts. The xfork primitive presented here works in a shallow way, splitting just the top-level children
of its inputs according to some predicate on names. Sometimes we need a “deeper” split, in which the
information in the given trees is partitioned by some more complex rule involving more of their structure—
for example, by performing some form of pattern matching and sending matching parts to one side and
non-matching parts to the other. We do not yet feel we have found the “perfect fork”: in the ones we have
tried, the extra flexibility is difficult to use because the side-conditions that must be checked to guarantee
well-formedness become too heavy.

Expressiveness

More generally, what are the limits of “bi-directional programming”? How expressive are the combinators
we have defined here? Do they cover any known or succinctly characterizable classes of computations (in
the sense that the set of get parts of the total lenses built from these combinators coincide with this class)?
We have put considerable energy into these questions, but at the moment we can only report that they are
challenging!

One puzzle that we are currently wrestling with is list reverse. As we have seen, we can use our combi-
nators, plus recursion, to define an ordinary “map” function on lists encoded as trees. Also, it is clear that
list reversal is, semantically, a perfectly good lens—i.e., we can write it as a native lens and it will obey all
the conditions we desire of lenses. However, we have been unable, after many attempts, to express reverse
in terms of simpler primitives plus recursion (or to show that this is impossible).

We are also investigating notations for bi-directional tree transformations in the classical setting of tree
transducers (over ranked, node-labeled trees).

Static Analysis

At present, it is the lens programmers’ responsibility to check the well-behavedness of the lenses that they
write. However, the types of the lens primitives are designed so that these checks are both local and
essentially mechanical. The obvious next step is to reformulate them as an automatic type analysis. This
task is not completely straightforward, however: there is some inherent tension between precision (how much
we need to know about the arguments to a lens combinator to establish the well-behavedness of the result)
and tractibility of typechecking or type inference. For example, the infinitary intersection in the current
type of map is a probable source of difficulties.

A number of other interesting questions are related to static analysis of lenses. For instance, can we
characterize the complexity of programs built from these combinators? Is there an algebraic theory of lens
combinators that would underpin optimization of lens expressions in the same way that the relational algebra
and its algebraic theory are used to optimize relational database queries? (For example, the combinators
we have described here have the property that map l;; map lo = map (l1;12) for all I; and I3, but the latter
should run substantially faster.)

Lens Inference

In restricted cases, it may be possible to build lenses in simpler ways than by explicit programming—e.g.,
by generating them automatically from schemas for concrete and abstract views, or by inference from a set
of pairs of inputs and desired outputs (“programming by example”). Such a facility might be used to do
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part of the work for a programmer wanting to add synchronization support for a new application (where the
abstract schema is already known, for example), leaving just a few spots to fill in.

Beyond Trees

Finally, we would like to experiment with instantiating our semantic framework with other structures besides
trees—e.g., with relations, to establish closer links with existing research in databases.
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