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Abstract

TinkerType is a framework for compact and modular description of formal systems (type systems, opera-
tional semantics, logics, etc.). A family of related systems is broken down into a set of clauses—individual
inference rules—and a set of features controlling the inclusion of clauses in particular systems. Depen-
dency relations on both clauses and features and a simple form of “judgement signatures” are used to
check the consistency of the generated systems.

As an application, we develop a substantial repository of typed lambda-calculi, including systems
with subtyping, polymorphism, type operators and kinding, computational effects, and dependent and
recursive types. The repository describes both declarative and algorithmic aspects of the systems, and
can be used with our tool, the TinkerType Assembler, to generate calculi either in the form of typeset
collections of inference rules or as executable ML typecheckers.

1 Introduction

The quest for modular presentations of families of programming language features has a long history in the
programming languages community. At the semantic level, language designers since Landin [Lan65, Lan66]
have understood how to view a multitude of high-level constructs through the unifying lens of the lambda-
calculus. Further work has led to more structured approaches such as categorical semantics (e.g. [Gun92,
Mit96, Jac99]), action semantics [Mos92], and monadic frameworks [Mog89]. Using these tools, it is now
possible to synthesize many different interpreters [Ste94, LHJ95, Esp95, etc.] and compilers [LH96, HK98,
etc.] from common blueprints or interchangeable building blocks.

On the syntactic level (the formal systems used to define typechecking, operational semantics, and pro-
gram logics), progress on unifying formalisms has been slower. There have been some significant achievements
in restricted domains, including Barendregt’s Pure Type Systems [Bar92] and Sulzmann, Odersky, and Wehr’s
generic treatment of type inference for systems of constrained types [SOW97]. (A related result outside the
domain of programming languages is Basin, Matthews, and Viganò’s modular presentation of modal logics
in Isabelle [BMV95].) In of these proposals, the idea is to define a single “parameterized” system from which
many particular systems can be obtained by instantiation. This method supports once-and-for-all proofs of
properties like subject reduction and decidability that apply automatically to all instances. However, to give
a single, parametric description of a collection of formal systems, we must first understand all the possible
interactions among their features. If some combinations of features are not well understood, a less structured
(and hence more flexible) approach is required.

Our goal is to develop a framework that facilitates compact and modular description of very diverse
collections of formal systems (e.g., all known typed lambda-calculi). We adopt a feature-based approach,
breaking down a family of formal systems into a set of clauses—individual inference rules—plus a set of
features equipped with a dependency relation. A clause may have multiple variants, each annotated with a
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set of relevant features that control its inclusion in particular systems. A complete system is specified by a
set of features.

Several things can go wrong in the process of maintaining the repository of features and clauses and
extracting systems from it. A change in a clause may introduce inconsistencies with other variants of the
same clause; a set of features identifying a system may be nonsensical; the clauses of a system may turn out
to be incompatible with each other. In our open-ended setting, ensuring the “reasonableness” of generated
systems is a difficult problem. (In particular, our approach is less useful for generic reasoning about families
of systems than the parametric approach. This is the price we pay for breadth of coverage.) We have,
however, identified several common sources of error in practice and introduced static consistency checks to
prevent them.

The contributions of this work are twofold. First, we formalize the TinkerType language and describe
its implementation. Second, we use this framework to construct a taxonomy of a number of familiar typed
lambda-calculi, including systems with subtyping, polymorphism, type operators and kinding, computational
effects, and dependent and recursive types. We specify both declarative and algorithmic aspects of the
systems and present extracted systems either in the form of typeset collections of inference rules or as
executable ML typecheckers. This repository of type systems is useful in itself (it forms the skeleton of a
forthcoming book [Pie]) and gave us substantial experience with using the TinkerType framework in practice.

The remainder of the paper proceeds as follows. In Sections 2 and 3, we give precise definitions of
clauses, features, and the process of composing systems and checking their consistency; Section 4 describes
our implementation. Section 5 presents our collection of typed lambda-calculi. Sections 6 and 7 discuss
related and future work.

2 Assembling Systems from Features and Clauses

A formal system can be described as a set of judgements, each consisting of a set of clauses. The simply
typed lambda-calculus (STLC), for example, is a formal system with two judgements: typing and evaluation.
The typing judgement contains clauses like

Γ ` t1 : T2→T1 Γ ` t2 : T2

Γ ` t1 t2 : T1

while the evaluation relation has clauses like the beta-reduction rule.1

This is obviously a rather syntactic view of formal systems. More abstractly, we might say that the simply
typed lambda-calculus is a pair of sets of derivation trees: one set of trees with conclusions like Γ ` t : T

and one with conclusions like t → t′. More abstractly yet, we might view the STLC as a pair of relations

obtained from these sets of trees. Alternatively, the STLC can be represented by a pair of functions in, say,
ML. Since we are interested in all of these views, we avoid committing to a particular one by taking clauses
as primary and dealing with them in our formalism.

Clauses may appear in many different systems. For example, both the pure STLC and the STLC with
booleans contain the application rule shown above. On the other hand, in other systems, clauses may take
different forms. In (the algorithmic presentation of) of the STLC with subtyping, the application rule refines
the rule above by adding an extra subtyping premise.

features control both which clauses and which version of each clause
dependency
a repository comprises a set of features, a dependency relation on features, and a set of clauses, each

annotated with a set of relevant features.
To put a little more flesh on these bones, let us examine a small repository involving type systems with

features for booleans, arrow types and subtyping. For the sake of brevity, the clauses we present will only
implement the algorithmic typing and subtyping judgements.

1Strictly speaking, there are also “judgements” defining the syntax of types, terms, and contexts. For example, the term

syntax judgement contains clauses like “if T1 and T2 are types, then so is T1→T2.” Our discussion elides these syntactic

judgements, for brevity.
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Figure 1: Features for arrows, booleans, and subtyping

Figure 1 shows the features needed to build systems with arbitrary combination of the above options
and the dependencies between them. The features bool , sub, and arrow represent the choices of booleans,
subtyping and arrow types mentioned above. The feature top introduces the top type and the subtyping
rule for it. The feature calcjoin represents the functionality of calculating joins and meets of types. The
presence of this feature signals that the subtype relation is closed under meets and joins, i.e., that we can
calculate the least upper bound of any pair of types. The technical features tmtmsubst and tmvar stand for
representation of variables and operations on them. Finally, the root feature simple is a common ancestor
to all the features related to the typing judgement.

Figure 2 defines the set of clauses. To complete the definition of the repository, we define a refinement
relation in which the contents of the T-App [arrow , sub] and T-If [bool , calcjoin ] clauses refine the contents
of the T-App [arrow , simple] and T-If [bool , simple] clauses respectively.

We can build the following systems from this repository:

• [bool , simple]: first-order boolean expressions

• [arrow , simple ]: simply typed lambda-calculus

• [arrow , bool , simple ]: simply typed lambda-calculus with boolean expressions

• [arrow , sub]: simply typed lambda-calculus with subtyping

• [arrow , bool , calcjoin ]: simply typed lambda-calculus with subtyping and booleans

The last system in the list is the most extensive system one can build from the given repository.
It contains every clause except T-App [arrow , simple] and T-If [bool , simple], which are superceded by
T-App [arrow , sub] and T-If [bool , calcjoin ].

We formalize these intuitions by specifying a repository to be a tuple 〈FTS , D , C , CLS 〉, where:

• FTS set of features,

• D ⊆ P(FTS ) × P(FTS ) is a mapping between sets of features that represents dependencies between
features,

• C is a set of clause contents,

• CLS is a set of clauses.

We define the function implied that takes a set of features and enriches it with all the features implied
by the features in the given set as follows:

b ∈ implied(F ) if b ∈ F or b ∈ D(F ′) for some F ′ ⊆ F.

Now we introduce a function closure as the least fixed point of the function implied. Finally, we say that a
set of features F1 dominates another set F2 if closure(F2) ⊆ closure(F1).
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Γ(x) = T

Γ ` x : T
T-Var [tmvar , simple]

Γ, x:T2 ` t1 : T1

Γ ` λx:T2.t1 : T2→T1

T-Lam [arrow , simple]

Γ ` t1 : T2→T1 Γ ` t2 : T2

Γ ` t1 t2 : T1

T-App [arrow , simple]

Γ ` false : Bool T-False [bool , simple]

Γ ` true : Bool T-True [bool , simple]

Γ ` t1 : Bool Γ ` t2 : T Γ ` t3 : T

Γ ` if t1 then t2 else t3 : T
T-If [bool , simple]

Γ ` t1 : T2→T1 Γ ` t2 : U U <: T2

Γ ` t1 t2 : T1

T-App [arrow , sub]

T1 <: S1 S2 <: T2

S1→S2 <: T1→T2

S-Arrow [arrow , sub]

S <: Top S-Top [top]

Bool <: Bool S-Bool [bool , sub]

Γ ` t1 : T1 T1 <: Bool Γ ` t2 : T2 Γ ` t3 : T3 T = T2∨T3

Γ ` if t1 then t2 else t3 : T
T-If [bool , calcjoin]

Figure 2: Clauses for arrows, booleans, and subtyping

A clause cl is a triple 〈n, F c〉, where n is a label identifying the clause, F is a set of features that governs
inclusion of the clause in particular systems, and c is the actual content of the clause. We say that cl is
relevant to the set of features F .

Now we have the tools to specify how a system is assembled given a set of features F . First, extract
from the repository all the clauses whose sets of features are dominated by F . Then, partition the obtained
clauses into sets of clauses with identical labels. Verify that each partition has a single maximal clause
according to the dominance relation or, if there are multiple maximal clauses in a partition, that all of them
have equivalent contents. Select a maximal clause from each partition. The contents of these clauses form
the system.

3 Consistency Checking

[recall the two T-App clauses. Obviously, one is a *refinement* of the other. If we edit the first one, we
want to check...]

In this section, we describe how to augment the formalism presented in the previous section with a
simple type system that allows us to check consistency of generated systems. We already described one
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consistency check between the refinement and dominance relations on clauses. This ensures that the user’s
expectations about the hierarchy of clauses and the way clause contents override each other reflect the
actual dependencies between clauses generated from their feature annotations and the dependencies between
features. This section introduces some additional consistency checks whose purpose is to ensure that no
“stray” clauses are included in systems by accident, and that and that the clauses that are included have
“compatible signatures.” [,,, This is only partially implemented at the moment. See the next section.]

First we add the following elements to the repository of the previous section: 〈. . . R, FC , S , J , JC , CS 〉
where

• R is a binary refinement relation on C , and

• FC is a set of feature constraint formulas,

• S is a set of labels representing syntactic categories,

• J is a set of labels representing judgement forms,

• JC ∈ J → P(FTS ) is a judgement enabling function, and

• CS is a clause signature relation (its type is given below).

Clause contents form a set with an equivalence and partial order refinement relations over it. The intuition
behind the latter is, roughly speaking, that one clause content refines another if it carries more information
than the content of the other clause. We say that one clause refines another if its content refines that of
the other clause. (For now, we assume that the refinement relation is given to us externally as part of the
repository; the TinkerType tool provides a concrete way of calculating the refinement relation.)

Consider the following sample clause.

Γ ` t1 : Bool Γ ` t2 : T Γ ` t3 : T

Γ ` if t1 then t2 else t3 : T
T-If [bool , simple]

This is a typing rule labeled T-If. The clause is relevant to the combination of features bool and simple,
and that implies that whenever we build a system of simple types with booleans, the above rule (or some
refinement of it) must be included. A possible refinement of the above rule is the algorithmic rule for typing
conditionals in the presense of subtyping with calculated joins:

Γ ` t1 : T1 T1 <: Bool Γ ` t2 : T2 Γ ` t3 : T3 T = T2∨T3

Γ ` if t1 then t2 else t3 : T
T-If [bool , calcjoin]

We partition the repository’s set of clauses into subsets sharing the same label. For each partition, we
define a partial order dominance relation between its clauses based on the dominance relation between their
corresponding sets of features.

For a repository to be consistent, we require that the dominance relation between clauses include the
refinement relation. To some degree, this ensures that the content of clauses reflects the features that the
clauses claim to implement.

Feature constraints are arbitrary propositional formulas over features. They enable us to verify that a
system specified by a set of features makes sense and can actually exist. A system identified by features F

is consistent if closure(F ) satisfies every formula in FC . For example, consider the reduction and evaluation
relations on terms. Suppose [why??] that every type system must have either one or the other but not both.
We can introduce features normalize and eval and add the formula normalize ⊕ eval to FC (⊕ denotes
“exclusive or”) to achieve the desired condition.

Syntactic categories are sets of basic entities of a formal system. For example, in the realm of type systems
some of the syntactic categories are terms, types, and contexts. Judgments represent relations between the
elements of the syntactic categories. Depending on its features, a system may or may not contain certain
judgements. This fact is formalized by the judgement enabling function that associates each judgement with
a set of features. A system identified by features F contains a judgement j ∈ J if F dominates JC (j).
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A given judgement may have different “shapes” in different formal systems. (For example, the subtyping
judgement in the simply typed lambda-calculus is a two-place relation on types, S <: T; in F<: it is a three-
place relation between contexts and pairs of types, Γ ` S <: T. To track these variations in shape (and
prevent mixing rules of different shapes), we introduce judgement signatures. A signature has to mention
the name of the judgements and the syntactic categories of the underlying relation. We call this pair of
a judgement label and a set of syntactic category labels a judgment shape and write it j (s1, . . . , sn). This
information alone is not enough to identify a judgement kind. For instance, the same syntactic categories
form typing relation in systems with and without kinding. The type system of the clause assembler has
to separate these judgements to be able to prevent mixing of clauses defining these two typing relations in
the same output system. The distinguishing characteristic in this example is that the typing relation of
the kindless system depends only on itself while the typing relation in a system with kinds depends on the
kinding relation as well. Thus, we define judgement signatures as a pair of a judgment shape and a set of
judgement shapes, and we write signatures using the arrow notation as follows:

j1(s11, . . . , s1k) × · · · × jm(sm1, . . . , smk) → j (s1, . . . , sn)

We call the shape to the right of the arrow the head. It describes the judgement which depends on the
judgements represented by the left hand side shapes. For example, the typing judgement signature of a type
system with kinds mentioned above may be:

Typing(Γ, t, T) × Kinding(Γ, T, K) → Typing(Γ, t, T),

where Γ is the set of contexts and t and T represent the term and type syntactic categories respectively.
Finally, the clause signature mapping has the type CS ∈ CLS → JS , where JS is the set of judgement
signatures. The mapping assigns a judgement signature to every clause in the repository.

Judgement signatures enable two useful consistency checks—a global check on the whole repository and
a local check on a particular system being assembled.

The global consistency condition ensures that no stray clauses defining irrelevent judgements can appear
in generated systems. The assembler extracts the judgement signature from every clause in the repository
and checks that the set of features enabling the signature’s head judgement is dominated by the set of
features relevant to the clause:

∀(c ∈ CLS ). Features(c) dominates JC (Head(CS (c))),

where Features extracts relevant features of a clause, and Head returns the name of the head judgement given
a judgement signature [maybe we can use pattern matching notation or something to keep from introducing
all these aux functions.] This consistency check is a safeguard against a clause being mislabeled with a wrong
relevant feature set.

The local consistency condition prevents clauses for different versions of the same judgement from ending
up in the same output system, thus helping ensure that the generated system is well formed. It is acomplished
by requiring that clauses of the generated system s with the same head judgement in their signature have
the same signature:

∀(c1, c2 ∈ s). (Head(CS (c1)) = Head(CS(c2)) implies CS (c1) = CS (c2)).

This check alerts the user when a judgement for a feature required for building the output system has not
been implemented in the repository. For example, suppose we want to build a system with kinding and
universal polymorphism represented by features kinding and all respectively, but we forgot to implement the
clause with the appropriate typing rule for the type application construct:

Γ ` t1 : ∀X::K.T1 Γ ` T2 :: K

Γ ` t1[T2] : {X 7→ T2}T1

T-TApp [all , kinding]

In the absense of the system well-formedness consistency check, the assembler will select the kindless version
of the clause
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Γ ` t1 : ∀X.T1

Γ ` t1[T2] : {X 7→ T2}T1

T-TApp [all , simple]

since it is the closest fit to the given feature specification assuming that kinding implies simple. Adding this
rule to the result will produce an unsound type system since checking well-kindedness of the type parameter
is essential.

We conclude this section by defining a term that describes the shape of a system: the system signature

is the set of distinct judgement signatures of the system’s clauses. We will use this term in a later chapter
to classify features used to build type systems of various lambda calculi.

4 The TinkerType System

This section describes the TinkerType tool based on the ideas presented above. We have successfully applied
the tool to build chapters of a book on type systems. One of the goals was to run examples in every chapter
through the type checker and interpreter corresponding to this chapter and insert the output directly in the
book. The book considers over 30 different type systems, and our tool helped tremendously in keeping them
in a consistent state.

We represent clause contents by arbitrary strings. For instance, clauses containing bits of ML code
can form a running type checker or interpreter; clauses with bits of TeX source can define a declarative
presentation of a system. Consider the following part of the typechecking function typeof. This clause
corresponds to T-If [bool , simple], the simple typing rule for conditional expressions mentioned before.

T-If

{#TmIf(fi,s1,s2,s3) →

if tyeqv ctx (typeof ctx s1) TyBool then

let tyS = typeof ctx s2 in

if tyeqv ctx tyS (typeof ctx s3) then tyS

else error fi "arms of conditional have different types"

else error fi "guard of conditional not a boolean"#}

Here, T-If is the label of the clause, and the content appears between the brackets {# and #}. To specify a
refinement relation between two versions of a clause, we delimit the new bits of text in the refined clause by
another set of brackets. (The concrete syntax choice for these brackets interacts with the object language
syntax and is configurable.) Consider implementation of T-If [bool , calcjoin ], the version of the clause above
in the presense of subtyping:

T-If

{#TmIf(fi,s1,s2,s3) →

if [[[subtype]]] ctx (typeof ctx s1) TyBool then

[[[join ctx (typeof ctx s2) (typeof ctx s3)]]]

else error fi "guard of conditional not a boolean"#}

The text enclosed in the brackets [[[ and ]]] is new; while, the three pieces outside of the brackets occur
consequtively in the body of the first clause. Whenever the latter condition holds of a pair of clauses, we
say that the content of the second clause refines that of the first one.

As you may have noticed, the above two clauses do not declare their relevant features. In fact, having a
list of features next to each clause would be too cluttering. Instead, we introduce the notion of component,
a group of clauses relevant to the same set of features. For better structuring, we group clauses into nested
sections. For example, we may have a core section for type checking related functions. Inside it we may have
sections for individual functions, and they, in turn, may contain the actual clauses. The following fragment
is a part of the [bool , simple ] component:

core {

tyeqv {

eqv-bool {# ... #}

}
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typeof {

t-false {# ... #}

t-true {# ... #}

t-if {# ... #}

}

}

Each section may define special clauses called header, footer, and separator. When the tool prints a
section, it outputs the header, the section’s subitems separated by the separator and followed by the footer.
The subitems are printed in the order they appear in the components. Additionally, the user can explicitely
specify an ordering constraint for one item relatively to another when they appears in different components.

The tool is run w.r.t. a template which could be a directory or a file. The template’s files may contain
hooks that refer to particular sections or clauses. The eventual goal is to make a copy of the template with
each hook replaced by the output produced by the referenced item.

The tool operates as follows. Given a list of features, the tool figures out the relevant components, makes
the necessary consistency checks, and merges the components by combining items that belong to the same
sections. Then it traverses the template w.r.t. the combined component, instantiates the hooks, and outputs
the final result.

For more flexibility we introduce macros as special code that can appear as part of a clause content. There
is a macro that allows optional inclusion or exclusion of text depending on a command line flag or internal
attribute. Another macro provides support for inclusion of text generated by other clauses or sections. We
refer to this feature as parametrization. A use of this kind of macro is similar to a virtual method call in
Java since the inclusion operation has late binding semantics; the refered item is selected from the combined
component after merging is complete.

Another useful feature our tool has is optional omission of clauses repeated from a preceeding system. For
example, we may output a system of simple types immediately followed by its extension with booleans. The
latter system can be partially printed showing only the clauses specific to the boolean feature and omitting
the ones that have not changed from the original system. In general, when printing these new bits of text,
either brand-new clauses or new parts in refined clauses, the tool can delimit them by a user-defined prefix
and suffix. We use this feature to highlight the new parts in the TeX output; you can see this in action in
the previous section’s example of T-If [bool , calcjoin ].

At the present stage, our tool does not fully implement judgement signature checking discussed in the
previous section. We plan to incorporate it soon, but in the mean time, we provide a simpler consistency
check that detects some of the problem covered by signature checking.

5 The Next 700 Type Systems

This section describes our current implementation of a number of type systems using the framework intro-
duced above. We have built a repository of components, from which we generate about 40 different type
systems. We support declarative and algorithmic presentations. The former consists of TeX code that im-
plements rules of type systems; the algorithmic presentation consists of full fledged interpreters and type
checkers written in ML. Below, we present our organisation of features and show how to use them to encode
several interesting type systems including systems of Barendregt’s lambda cube and a collection of lambda-
calculi with subtyping. This section concentrates on the algorithmic systems, since their ”feature skeleton”
is more interesting.

5.1 Arrows, Booleans, and Subtyping Revisited

The remainder of this section discusses features and relationships between them. But firstly, to understand
how components are built around features, we return to the example of boolean, subtyping, and arrow types
presented in Section 2 and describe the list and content of the components needed to implement this example
in our tool. Please, refer to Section 2 for the hierarchy of features used in the example.

We break components informally into two groups: infrastructure and content. The former components
provide the basis for various judgements: they define auxiliary functions, the headers and signatures of
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the functions that implement the judgements; provide headers of datatype declarations etc. The content
components define clauses of the judgements for particular type constructors. Now, we list the components
used in the example. Each component is indexed by its relevant features.

Infrastructure components:

• [simple ]: introduction of the term and type datatypes and the typing judgement

• [sub]: introduction of the subtyping judgement

• [calcjoin ]: introduction of the meet and join judgements

Content components:

• [tmvar ]: declaration of the variable clause of the term datatype and simple typing rule for
variables

• [arrow ]: declaration of the abstraction and application clauses of the term datatype, arrow
clause of the type datatype, and simple typing rules for abstraction and application

• [arrow , sub]: refinement of the typing rule for application with subtyping; subtyping rule
for arrow types

• [arrow , calcjoin ]: rules for meets and joins of arrow types

• [bool ]: declaration of the false, true, and if clauses of the term datatype, bool clause of the
type datatype, and simple typing rules for boolean constants and conditionals

• [bool , sub]: trivial subtyping rule for Bool

• [bool , calcjoin ]: refinement of the typing rule for conditionals with subtyping and joins, plus
trivial rules for meets and joins involving type Bool

5.2 Features for Variables and Binders

Identification of features and specification of dependencies and constraints between them is a complex process
driven by the intricacies of the type systems we set out to model. To a large degree complexity of type systems
arises from operations on term and type variables. We use DeBruijn notation to represent variables in ML
code and provide customized shifting and substitution operations on types and terms. Since, for a particular
type system, our goal is to make code as simple as possible and avoid unnecessary functionality, we must take
into account whether type and term variables are present in the system, whether type and term variables
appear in terms and types respectively, and which shifting and substitution operations are required in the
system.

all

tytmsubst

tytysubst

tyvar

tyrec operator

tyabbrev

family

tmtysubst

tmtmsubst

tmvar

arrow tmrec

let

tmabbrev

some

Figure 3: Variable and binding features

We start overview of our design by presenting a hierarchy of features related to operations on variables
and binders. Figure 3 shows these features and relationships between them. Features with no incoming
dependency arrows represent various variable binding forms. To some extent, the type and term variable



10

features are parallel to each other. Features arrow and family stand for abstraction of terms over terms and
types over terms respectively. They correspond to operator and all in the type variable part of the hierarchy
which stand for abstraction of types over types and terms over types respectively. Feature let provides local
definitions and loosely corresponds to existential types represented by some. The tmrec and tyrec features
give us recursive terms and types. The variant feature adds variant types and a branching construct over
them. Finally, tmabbrev and tyabbrev define top level abbreviations.

Usually, features represent some kind of optional functionality. Thus, we do not need features for term
and type shifting since these operations are always required when the corresponding variable features are
present. Various kinds of substitution, on the other hand, may or may not be needed depending on the kind
of type system one wants to build. Therefore, we created features tmtmsubst, tmtysubst, tytmsubst, and
tytysubst that represent substitution of terms inside terms, terms inside types, types inside terms and types
inside types respectively.

There are some features that correspond to real aspects we use to specify type systems; while some other
features carry only technical significance to facilitate sharing of component code between different systems.
The substitution features presented here are of the latter kind. It does not make sense to specify a system
by tmtysubst since substitution is only useful inasmuch as some higher level feature, like all , requires it. So,
generally, we create systems only from high level features.

In a straightforward implementation, the functions for different kinds of substitution can be encoded as
inductive recursive functions over the shape of the parameter into which the substitution is made. That
will require providing clauses for every kind of substitution for every relevant content feature. These clauses
will be defined in new components tagged by relevant features [tytmsubst ,X ] and [tmtmsubst ,X ] where
X ranges over {arrow ,nat , bool , tmvar , etc.} and [tmtysubst ,X ] and [tytysubst ,X ], where X ranges over
{tyvar , all , operator , etc.}. To avoid prolifiration of components and clauses, we introduce general mapping
functions over terms and types enabled by features tmvar and tyvar respectively. Then, we introduce compo-
nents with relevant features [tmvar ,X ] where X ranges over {arrow ,nat , bool , tmvar , etc.} and components
with relevant features [tyvar ,X ], where X ranges over {tyvar , all , operator , etc.}, whose goal is to define
corresponding clauses for the term and type mapping functions. We implement substitution and shifting
functions via the mapping procedures thus avoiding introducing clauses for every kind of substitution/shifting
function - content feature pair.

The variable related features contain the cornerstones for building systems of Barendregt’s lambda cube:
arrow is the origin of the cube, while all , typeontype, and typeonterm represent the three dimensions of the
cube. We will postpone the discussion of the cube, however, until we examine some other ways of slicing the
world of type systems.

5.3 Simple Features

Another way to classify features is based on what kinds of judgements they support. The feature simple

enables term and type formation and typing judgements. A large number of systems can be built containing
these judgements and a choice of a reduction or evaluation relation on terms. We call these systems simple,
and Figure 4 shows the hierarchy of features we use to build them.

The simple feature hierarchy includes almost all of the variable operation hierarchy and defines a variety
of new content features. The feature nat represents natural numbers and the operation of iteration on them.
The expression iter n f b returns f (f ... (f b)...), where f is applied repeatedly n times. Because
of the use of functions with iter, nat implies arrow . The feature pattern combines capabilities of local
definition of let and record projection of record to provide pattern matching of record values. Features bool

and unit represent corresponding types and operations on them; basety introduces base types viewed as just
string constants; coerce defines explicit type casts.

5.4 Evaluation and Normalization Features

Any system built from the simple features can contain either a reduction and normalization or evaluation
relation (with a particular reduction strategy selected) on terms but not both. To enforce this restriction,
we introduce features normalize and eval and define a feature constraint normalize ⊕ eval . This constraint
requires one of these features to be explicitely added to a specification of every simple system. For systems
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Figure 4: Simple features

with effects, a particular reduction strategy must be selected. Therefore, they can only support the evaluation
relation. The feature eff provides the needed infrastrcture to implement effects, and ref is built on top of it
to support reference cells.

5.5 Kinding Features

simple

tmvar

tmtmsubst

sub

top

calcjoin

bool

arrow

Figure 5: Kinding features

Systems with non-trivial type well-formedness relation introduce a kinding judgement. Type operators
and dependent type families are both examples of systems with kinding. Our feature hierarchy is shown in
Figure 5. Feature kinding enable the infrastructure of kinding. Feature dep introduces dependent functions
and mutual dependency between the typing and kinding relations. Featuresoperator and family define type
operators and type families respectively.

5.6 Type Conversion Features

Syntactically equal types are considered equivalent in every type system. Additionally, three circumstances
can cause syntactically different types to be viewed as equivalent. The types can be beta-convertible to
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Figure 6: Type conversion features

each other in systems with operator or family features, or a type variable can be dereferenced to another
type in the presense of the type abbreviation feature tyabbrev . When there is no subtyping, these features
control whether to use syntactic equality or convertability for type comparison. Feature tyconvert (shown
in Figure 6) signals presense of any one of the above three features and triggers the use of convertability;
otherwise, the simple type equality is sufficient.

Now we have defined all the necessary features for building systems of Barendregt’s lambda cube:

• [arrow ]: simple types

• [arrow , all ]: System F

• [arrow , family ]: types dependent on terms

• [arrow , all , operator ]: System Fω

• [arrow , all , operator , family ]: calculus of constructions

Features all , operator , and family define three different dimensions of the cube, while, arrow is the origin
point.

5.7 Subtyping Features

A major difficulty in the design of systems with subtyping arises from the treatment of joins of types required
for typing multi-armed conditional or variant branch expressions. There is a straightforward algorithm that
calculates the join (least common supertype) of an arbitrary pair of types in systems that have both joins and
meets. Not all systems are like that however. For example, full fsub is a system that contains pairs of types
that have no join. Applying the above algorithm in such a system is unsound. The solution is to provide
the algorithm for calculating joins in systems with joins and meets but require annotation of multi-armed
expressions with the intended result type in systems without joins. We achieve this by introducing mutually
exclusive calcjoin and anotjoin features. Whenever a system contains any of the multi-armed forms, it has
to have either calcjoin or anotjoin ; hence, the repository contains the following feature constraint:

bool ∨ variant ⇒ calcjoin ⊕ anotjoin

Mutually exclusive kfsub and ffsub stand for kernel and full versions of F<:. The corresponding constraint is

¬(kfsub ∧ ffsub).

Finally, ffsub excludes the possibility of having calculated joins:

ffsub ⇒ ¬(calcjoin)

Figure 7 presents the subtyping hierarchy where boundedtyvar represents bounded type variable declara-
tion and is implied by any of the fsub features. Among others, we can build the following subtyping systems
from the presented features:
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Figure 7: Subtyping features

• [arrow , bool , calcjoin ]: simple subtyping with booleans and calculated joins

• [arrow , all , kfsub]: kernel F<:

• [arrow , all ,ffsub]: full F<:

• [arrow , all , operator , kfsub]: kernel Fω
<:

• [arrow , all , operator ,ffsub]: full Fω
<:

Our components are tuned to recognize whether boundedtyvar is present in a system and define the
subtyping judgement with or without variable context depending on that. We achive it by refining every
[?, sub] component with a corresponding [?, boundedtyvar ] component that adds a context to every applicable
clause.

5.8 Parameterization

To avoid copying the same code in many places, our components judiciously use parametrization described
in the previous section. A characteristic example of this is the way we implement type comparison in type
checking algorithms. Depending on the system, three different type comparison operations can be used:
syntactic equality, convertability, or subtyping. Many clauses of the type checking algorithm compare types:
application, if expression, record projection clauses etc. We can provide three different versions of each one
of them for the case of equality, convertability, and subtyping, but that would be too verbose. Instead, we
introduce an auxiliary clause called tycmp-proc, whose content is the name of the comparison procedure,
and include it (using the macro facility described in the previous section) wherever types are compared.
That way we have to provide three different versions of tycmp-proc, but only one version of any clause
that compares types (unless it has to be refined for other reasons.)

6 Related Work

The initial inspiration for our work came from the type system fragments used by Abadi and Cardelli in
their book, A Theory of Objects [AC96]. There, the repository consists of a collection of named “fragments”
analogous to our components. A system is specified by naming a collection of fragments whose contents are
to be concatenated. This is a degenerate instance of our framework, where each component is labeled with
a single, distinct feature and where there is no dependency between features, and where no static consis-
tency checks are performed. Their book presents a substantial collection of fragments, covering (declarative
formulations of) approximately the same range of type systems as the ones described here in Section 5.

Another close relative of our work is Prehofer’s feature-oriented programming [Pre97]. Like our approach,
it includes features and dependencies between them, components with multiple variants, and an assembly
process that combines appropriate variants based on a set of requested features. The main difference is
the application domain. Our approach focuses on formal systems, and the basic unit of composition is
an individual inference rule. Feature-oriented programming is used to assemble objects; its basic unit of
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composition is a group of related methods. Prehofer introduces an extension of Java with feature support
and describes two approaches for compiling it into Java.

The Hyperspace project [OT99, TOHS99] introduce a general theory of multi-dimensional separation
of concerns. In their work, units are atomic entities similar to our clauses. A unit can be related to
several concerns, which correspond to our features. Concerns are partitioned into orthogonal dimensions.
Hyperslices are composed of units and resemble our components. They can be merged to form hypermodules

that are similar to systems in our work. This approach is somewhat more abstract than ours (for example,
the algorithm for merging hyperslices is taken as a parameter).

Earlier work in the same group promoted a technology called subject-oriented programming [HO93]. One
of its principal goals was to allow parallel development of classes and provide a composition mechanism to
obtain a final system. In this view, classes resemble our components, and their merging is analogous to
system assembly. No mechanism corresponding to features is provided.

Aspect-oriented programming [KLM+97, Kic96] starts from the observation that it is sometimes difficult
to address certain issues in a programs without obscuring its main functionality. These issues, called aspects,
“cross-cut” the natural decomposition of the main functionality, resulting in small bits of related code strewn
across the system. To simplify designing programs with these properties, AOP proposes using conventional
component languages to implement basic functionality, and special purpose aspect languages to deal with the
cross-cutting issues. A special process called weaving merges programs written in these languages to produce
the resulting system. To some extent, we can view our language of features, clauses, and components as a
particular aspect language; the component language is whatever language is used to express the contents of
clauses.

Another area of related work is monadic techniques for structuring interpreters and compilers [Ste94,
LHJ95, Esp95, LH96, HK98, etc.]. The focus here is on modular definition and combination of different
aspects of computation (state, exceptions, concurrency, etc.). It is a highly structured approach, using the
type system of the metalanguage to control the composition process and focusing on constraints arising from
interaction between features. It does not appear easy to extend the monadic approach to typing features in
the spirit of the present work. On the other hand, we believe that a monadic style could be used to structure
the presentation of the operational semantics of our typed lambda-calculi.

7 Conclusions and Future Work

Current status

• how we generate the book (examples get checked every time, etc.)

• 9,000 lines of TinkerType sources,

• generating 67,000 lines of typecheckers (and plenty of TeX)

Pros of our approach (compared to e.g. PTS)

• leafiness

• control over pedagogical aspects

• ability to design new systems of classification at will

The framework can potentially be applied in a wide variety of settings: anyplace where we’re interested in
programs that can be broken down into clauses (i.e., that consist of definitions by cases / pattern matching).

Cons: harder to reason ”uniformly” about the formal systems we generate (the usual problem with
reasoning in the presence of inheritance: all reasoning must be ”parametric in all possible extensions”)

Future work:

• Modular metatheory proofs (mention preliminary experiments),

• More static consistency checking
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Our approach to formal systems is rather unstructured: we treat the contents of clauses as uninterpreted
strings and perform only rudimentary checks on their signatures. (For example, we completely ignore issues
of variable binding.) The payoff from this lack of structure is considerable flexibility, but we would like to
see how much structure could be added without impeding malleability. Recent work by Fiore, Plotkin, and
Turi on a general treatment of abstract syntax and variable binding [FPT] may help point the way.
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