
INFORMATION PROCESSING 71 - NORTH-HOLLAND PUBLISHING COMPANY (1972)

PROGRAMMING WITHOUT THE GOTO

William A.WULF*
Department of Computer Science, Carnegie-Mel/on University,

Pittsburgh, Pennsylvania, USA

It has been proposed, by Dijkstra and others, that the use of the goto statement is a major villain in programs
which are difficult to understand and debug. The proponents of eliminating the goto contend that when it is eli-
minated the resulting program structure admits a simple, systematic proof of correctness. This suggestion has met
with skepticism in some circles. This paper analyzes the nature of control structures which cannot be easily syn-
thesized from simple conditional and loop constructs. This analysis is then used as the basis for developing the
control structures of a particular language, Bliss. The results of two years of experience programming in Bliss, and
hence without goto 's, are summarized.

1. INTRODUCTION

In 1968 EW.Dijkstra suggested, in a letter to the
edi tor of the Communications of the ACM [1] , that
use of the goto construct in Algol was undesirable,
and in fact was bad programming practice. The
rationale behind this suggestion was that it is possible
to use the goto in ways which obscure the logical
structure of a program, thus making it difficult to
understand, debug, and prove its correctness. Not all
uses of the goto are obscure, but the conjecture is
that these situations are adequately handled by condi-
tional and loop constructs.

This paper presents an analysis which led to the
design of the control features of Bliss [2] , an imple-
mentation.language designed at Carnegie-Mellon Uni-
versity. This analysis reveals that the Algol conditional
and looping constructs are, while adequate, not suf-
ficiently convenient of themselves. The control fea-
tures of Bliss are described and some comments are
made concerning our experiences using a gata-Iess,
language.

It is worth noting an additional benefit of remov-
ing the goto - a benefit which the author did not
fully appreciate until the Bliss compiler was designed
- that of code optimization. The presence of go to in
a block-structured language with dynamic storage
allocation forces runtime overhead for jumping out
of blocks and procedures. Eliminating the goto re-
moves this overhead. More important, however, is the
fact that the scope of a control environment is statis-
tically defined. The Fortran-H compiler [3], for ex-
ample, does considerable analysis and achieves a less

perfect picture of overall control flow than that im-
plicit in the text of a Bliss program. Since flow analysis
is prerequisite to global optimization, this benefit of
eliminating the goto must not be underestimated.

It is not surprising that a language can be devised
which does not use the gota since: (l) several formal
systems of computability theory, e.g., recursive func-
tions, do not contain the concept; (2) Lisp does not
use it; and (3) Van Wijngaarden [4] , in defining the
semantics of Algol, eliminated labels and goto's by
systematic substitution of procedures. Thus the ques-
tion is not whether it is possible to remove the go to ,
only whether it is practical. In particular there is some
suspicion among programmers that the advantages are
outweighed by inconvenience and inefficiency. The
objective of this paper is to investigate these issues.

2. ANALYSIS

We shall first consider programs which cannot be
easily built from simple conditional and looping con-
structs. To do this we will use a flow chart representa-
tion because of the explicit way in which it manifests
con trol. We assume two basic blocks (fig. I). These
boxes are connected by directed line segments in the
usual way. We are interested in two special "gota-Iess"
constructions - simple loop and noway conditional (or

* This work was supported by the Advanced Research Pro-
jects Agency of the Office of the Secretary of Defense
(F44620-70-C-0107) and is monitored by the Air Force
Office of Scien tific Research.



Programming Technology W.A. Wulj, Programming without the goto

process box noway conditional

Fig. 1.

simple loop case

Fig. 2.

"case") constructs (fig. 2). We consider these forms
"gala-less" since they contain single entry and exit
points. (The loop considered here does not corre-
spond to all variants of initialization, test before or
after the loop body, etc. These variants would not
change the arguments to follow and have been
omitted.)

Consider three transformations:
(l) any linear sequence of process boxes may be

replaced by a single process box (fig. 3);

Fig. 3.

(2) any simple loop may be replaced by a process
box (fig. 4);

Fig. 4.

(3) any noway case construct may be replaced by a
process box (fig. 5).

409

Fig. 5.

Any graph which may be derived by a sequence of
these transformations we shall call a "reduced" form
of the original. We shall say that a reduced graph con-
sisting of a single node is "gala-less" and that the se-
quence of transformations defines a set of nested
"control environments".

Not all graphs are of this type; they are of interest
to us since they represent programs which cannot be
realized by simple conditionals and loops. Examina-
tion of these graphs will reveal techniques for deriving
simple gala-less graphs and provide insight leading to
the control primitives to be described later.

By definition, a gala-less flow chart is susceptible
to a sequence of transformations which reduces it to
a single process box. Imagine such a sequence in
which: (1) the correctness of the replaced construct
has been verified, and (2) the new process box con-
tains a more macroscopic description of what the re-
placed portion does. This sequence forms both a proof
of the original program as well as documentation of
what it does. This is not to say that other programs
cannot be understood or proved correct [5] , only that
programs with this structure permit a specific method-
ical approach.

Returning to an analysis of programs, consider two
cases; those with and without loops. Programs without
loops have, at most, a latticelike structure. For example,
consider the graph below (in this example, and the
remainder of the paper, we shall use circles to repre-
sent subgraphs whose fine-structure we choose to
ignore).

Consideration of such graphs reveals that it is
always possible to construct a new graph which is
similar to the original graph except for a finite number
of "node splittings" (i.e., creation of duplicate nodes).
This follows from the observation that there are at
most a finite number of paths through the graph and
each node occurs on only finitely many of them. Hence
at most a finite number of replications of each node
will guarantee that it occurs in only one path. For
example, the graph shown in fig. 6 transforms into
that shown in fig. 7. Node splitting is something we



410 W.A. Wulf, Programming without the goto Software

Fig. 6.

Fig. 7.

would like to avoid since it involves duplicating code.
A second technique, which also might have been
used above, will be discussed below.

The second case to be considered is that of graphs
involving a loop (with more than one entry or exit
point).

Floyd and Knuth [6] have proven (using flow
charts as specifications for regular expressions) that
node splitting is not adequate for deriving goto-Iess
graphs in the presence of multiple entry/exit loops.
This also follows from observing that the number of
paths leading from the "second" exit point is un-
bounded. Therefore no finite number of replications
of this node is sufficient. Consider the following
program (fig. 8): There are two exit paths from the
CD - (}) loop - that leading from (1) to (}) to ®
and that leading from G) to @. This is an example of
a program where node splitting will not work. How-
ever, one can introduce a new variable, call it a, and
obtain the graph in fig. 9.

Fig. 8.

Fig. 9.

In this graph CD is like node CD except that the
exit condition of the loop has been augmented with
"or a = 0" as has any code preceding the test, and
node ® is like node (}) except that the exit to node
(4) has been replaced by the operation "a <f- 0".
Node G) is the null operation. Conceptually we have
introduced a "state" variable which, when the loop
terminates, specifies whether or not to execute (]).

That the technique is general may be seen easily,
consider a graph with nodes CD,0, ...,@. Now
construct a new graph as follows:

(1) ife]) is a process box construct (0 by adding
to (the end oDCD "a <f- k" where ® is the successor
of i ;

(2) ife]) is a decision box, then replace it by a
process box of the form "a +- e", where € is an ex-
pression which dynamically evaluates to the appro-
priate successor label;

(3) consider all exit points as labeled by@;
(4) construct the graph in fig. 10.



Programming Technology W.A. Wulf, Programming without the go to 411

01: I >-----+4
n

Fig. 10.

As with node splitting, this technique is odious be-
cause it is inefficient.

3. THE BLISS CONTROL STRUCTURE

The previous section describes programs which
may not easily be constructed with only conditionals
and loops. The present section addresses itself to the
question of whether the class of constructs in a prac-
tical language (without an explicit go to ) should be
extended. If the decision is to extend the class, then
what should the extensions be? The answer to these
questions depends in part on the frequency with which
multiple exits from loops, etc., are used, and in part
on the answer to the second question. Hence we
answer in the context of a specific language, namely
Bliss [2] .

Bliss is a block-structured "expression language".
That is, every executable construct, including those
which manifest control, is an expression and computes
a value. This is relevant to the goto issue in the follow-
ing way: the method described in the first section for
translating programs into goto-Iess form involved an
explicit state variable. The value of an expression (e.g.,
a block) forms a natural implicit state value.

Expressions may be concatenated with semicolons
to form expression sequences. An expression sequence

is evaluated in left-to-right order and its value is that
of its last (rightmost) component expression. A pair of
symbols, begin and end, or "(" and ")", may be used
to embrace an expression sequence and form a simple
expression. A block is a special case of this which con-
tains declarations.

There are six explicit control forms in Bliss: con-
ditional, loop, case-select, function, co-routine, and
escape. We have omitted subroutines, and so shall
omit functions and co-routines here.

The conditional expression

is defined to have the value €2 just in the case that €1
evaluates to true and €3 otherwise.

The case and select expression provide noway branch-
ing.

The case expression is executed as follows: (1)
<o- ... , ek are evaluated, (2) the value of ei (O";;i";;k)
is, in turn from left to right, used as an index to choose
one of the €/s. The e/s are constrained to 0";; ei";; n.
Execu tion is undefined for other values of e. The
value of the case expression is €ek' The "case" has
appeared in several other languages, e.g., Algol-W [7]
and Euler [8].

The select expression is similar to the case except
that the e/s are used in conjunction with the €2/s to
choose among the €2j+1 'soExecution proceeds as
follows: (1) the e/s are evaluated, (2) <o is evaluated,
(3) if the value of €o is identical to the value of one
(or more) of the e's then €1 is executed, (4) €2 is
evaluated, (5) if the value of €2 is identical to the value
of one (or more) of the e's then €3 is executed, etc.
The value of the select expression is that of the last
€2j+ 1 to be executed, or -1 if none of them is exe-
cuted.

The use of the expression nature of Bliss may be
illustrated using an earlier example, namely that in
fig. 11 (fig. 6). This graph may be thought of as
actually of the form shown in f~12, where0 is
formed from CD,(~,(2) and ~ as shown in fig.
13, which one might write in (pseudo) Bliss:



412 W.A. Wulf, Programming without the goto Software

Fig. 11.

Fig. 12.

Fig. 13.

case case CD of set ((1);0); (r3);Ov 1); (0;1)

tes ofsedJ); ® tes; OJ .
The loop expressions imply repeated execution

(possibly zero times) until a specified condition is
satisfied. Two of the available forms are:

while €1 do e

incr (id) from €1 to €2 by €3 do e .

In the first form the expression € is repeated so long
as e1 is true. The second form is similar to the "step
...until" construct of Algol, except (1) the control
variable is local to e, and (2) €1' €2 and €3 are evalu-
ated only once (before the first evaluation of the loop
body). Except for an escape expression within e (see
below) the value of a loop is -1.

The control mechanisms described above are either
similar to, or slight generalizations of, constructs in
many other languages. They do not solve the prob-
lems discussed earlier. Another mechanism is needed
~ the escape. An escape is highly structured forward
branch to the terminus of a control environment in
which the escape is nested. The general form is:

(escape type) (levels) (expression)

where (escapetype) is one of the (reserved) words
listed below and (levels) is either an integer enclosed
in square brackets or is empty (which implies" (I] ").

exitblock
exitcompound
exitloop
exitconditional

exitcase
exitselect
exit
return

An escape forces control to exit from a specified con-
trol environment (a block, etc.). The (levels) construct
permits exit from several nested loops (for example).
The (expression) defines the value of the environment.

The use of an escape is illustrated by a typical prob-
lem involving multiple exits from a loop. Suppose a
vector, X, is to be searched for a value, x. If an ele-
ment of X is equal to x, then the variable, k, is to be
set to the index of this element. If no element of X is
equal to x, then the value of x is to be inserted after
the last element of X and k set to this index. If there
areN elements in X, the following Bliss expression*
will do this:

if (k +- incr i from 1 to N by 1 do if X[i] = x then

exitloop i) < 0 then X(k +- N +- N+ 1] +- x ;

Returning to the original questions of this section:

* The given expression is not Bliss; the differences are not
essential to con trot



Programming Technology W.A. Wulf, Programming without the goto 413

these mechanisms are "adequate", but are they con-
venient and do they preserve the desirable goto-Iess
properties? The answer to the first question lies
principally in the experience of those who have used
the language. These experiences are summarized be-
low and essentially answered in the affirmative.

•
I

Fig. 14.

The second question, whether the Bliss structures
retain the desirable properties of gota-Iess notations,
requires more consideration. It is only the escape
mechanism which violates the gota-Iess criteria. We
now think of our flow chart primitives as those in fig.
14, where the dotted lines represent the set of flow
lines which may be followed if an escape is invoked.
The previous transformations are applicable if the
dotted, "escape", lines are ignored. We are guaranteed
that the escape lines will be totally enclosed at some
stage in the reduction process. Hence, one can apply
the former reasoning to sub-graphs from which no
dotted lines emanate. After this attention must shift
to a sub-graph which wholly contains its escape lines.
This mayor may not lead to the simpler form of
graph, but in either case the process can be iterated.
In this sense the desirable properties of goto-Iess
graphs are retained.

Bliss has been in active use for two years and we
have gained considerable experience programming
without the goto. This experience includes several
compilers, a conversational programming system
(APL), parts of an operating system, and numerous
applications programs. Writing programs presents no
difficulty. Just as one adapts to the inability to jump
into the middle of an Algol block, one also adapts to
Bliss. But it is not that one merely survives in this
mode; quite the contrary. I am convinced that pro-
grammer productivity has significantly improved due
to this enforced style of programming.

We have found two inconvenient aspects of the
Bliss structure. The "(levels>" construct embodies an
important semantic notion. But, as a program is modi-

fied, the number of levels through which an escape
should execute may change. Hence one should indi-
cate its target symbolically - i.e., labels should be
reintroduced. The other construct is one which allows
an exit through several levels of subroutine call. Both
of these can be incorporated into a simple syntax:

<expression> ::= ... 1<label>: <expression> .

This defines the (label> as the name of the control
environment of the <expression>. A subrou tine name
would be considered a (label) in the same sense. Now,
replace all of the escapes by

leave (label) <expression> .

This causes control to exit from the control environ-
ment named (label) (including exit through several
levels of subroutines) and defines <expression> as its
value.

Whether or not a language includes the goto con-
struct is immaterial. There are certain types of con-
trol flow which occur in real programs. If these con-
structs are not explicitly provided, the goto must be
provided so that the programmer may synthesize
them. The danger in the goto is that the programmer
will do this in obscure ways. The advantage in eliminat-
ing the go to is that these same control structures will
appear in regular and well-defined ways. Both the
human and the compiler will do a better job of inter-
preting them.

REFERENCES

[1] E.W.Dijkstra, Goto statement considered harmful, Letter
to the Editor, CACM 11, 3 (March 1968).

[2] W.A.Wulf et al., Bliss reference manual, Computer Science
Department Report, Carnegie-Mellon University.

[3] Lowery and Medlock, Object code optimization, CACM
12, 1 (January 1969).

[4] A.Van Wijngaarden, Recursive definition of syntax and
semantics, in: Formal Language Description Languages,
T.B.Steel, ed., (North-Holland, Amsterdam, 1966).

[5] J .King, A program verifier, Ph. D. Dissertation, Carnegie-
Mellon University, 1969.

[6] F.Knuth, Notes on avoiding 'GOTO' statements, Tech-
nical Report CS 148, Stanford University, January 1970.

[7J Wirth and Hoare, A contribution to the development of
Algol, CACM 9, 6 (June 1966).

[8J Wirth and Weber, Euler: A generalization of Algol and
its formal definition, CACM 9, I and 2 (January and
February 1966).


