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14.2.6 PERTFORMANCE

The Roberts technique of removing hidden lines requires large
quantities of computation. Roberts gives the figure of one second per
object up to thirty objects. Above thirty, as one might expect, the time
increases rapidly — 90 seconds for forty objects, 22 minutes for 200.
Consequently, despite the elegance of the method, it is somewhat
uneconomical as a means of presenting three-dimensional information.

The computation for object-object comparisons grows as the square
of the number of objects potentially visible. This behavior is a
consequence of comparing each object to the plane faces of all other
objects. If there are N objects, the number of such computations is
proportional to

Fig.

N(N—-1)=N*-N

Thus the algorithm is extremely slow for complicated scenes.

14.3 WARNOCK ALGORITHM

John Warnock developed the idea of examining portions of the display
screen for visible features rather than examining each feature to see if it
is visible. This approach catalyzed further development of hidden-line
and hidden-surface algorithms.

. The key operation in the Warnock algorithm is determining, for a
portion of the display screen, if anything interesting appears there. If
nothing appears in this window area, then that portion of the screen
need not be considered further: it is blank. If a feature (e.g. line,
surface, vertex) appears in the window and is simple enough to display
directly, the algorithm generates the display. However, the collection of
features appearing within the window may be too complicated to
analyze and display directly. In this case, the algorithm announces that
it has failed to process the window. The examination of features in a

“window, then, has three possible results:

1. No features are visible in the window.

2. A display is generated because the feature or features in the window
are classified as simple.

3. The algorithm fails because the features in the window are too

complex to analyze.
AV~ 771V @%
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Floyd calls such procedures non-deterministic, becausc
announce failure if they cannot succeed in performing their
[92].

The examination of windows is supervised by a controller
(1) make sure that all possible windows on the display ¢
examined and (2) cope with the failure of the procedure for «
a window.

If the procedure for examining a window fails, the control
the window into several smaller windows, and examines each ¢
turn. This process is applied recursively until the window
smaller than a resolvable spot on the display screen. If the
within such a window are still too complicated for the algc
display directly, the controller calls for a dot to be disp
default. Because the resolution of the screen is only 1024 by
less, 10 binary subdivisions of the window size will suffice to
finest level of resolution.

Figure 14-8a shows a scene with hidden-line elimination p
by the Warnock algorithm. Each small *x’ represents a dot disy
the screen. Figure 14-8b shows the same scene, with no hid
removed. Figure 14-8¢ shows each of the square windows exa
the algorithm in the process of computing which dots to displa
that windows are subdivided only near visible features: the
marked A actually has an edge of a polygon passing th
(compare Figure 14-8b), but the algorithm has determined tha,
is visible in the window because a nearer surface completely
window.

The choice of criteria used to decide if information in a w
simple enough to display directly affects the number of sub
required to produce a display. Figure 14-8c¢ is produced with a
procedure which never finds information simple enough. The
procedure used to produce Figure 14-8d, on the other hand, i
detect certain cases in which only one polygon is visible in a
For example, the line marked B was determined to be simple er
display directly. The same line in Figure 14-8c was not four
simple enough, the window was subdivided, and dots were cv
displayed when the window size reached the resolution of the sc

The subdivision process can be viewed as a scheme for resol
failure to examine large windows. Alternatively, it can be viev
process of selectively generating subgoals from the main goal of
the hidden-line problem for the scene. If a goal proves too difi
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reach directly, the controller generates four subgoals whose solution is
equivalent to the first goal (see Figure 14-9).

This view of the algorithm also suggests that whenever the attempt to
achieve a goal fails, the algorithm calls itself recursively four times —
once for each new subgoal. The tree picture of the subdivision process
also suggests a terminology for describing the process. Subdivisions ofa
window are called descendants of the window and the larger window is
called their ancestor.

We can characterize Warnock’s algorithm by its five major
components, discussed in subsequent sections: the Looker, the Thinker,
Display by Computation, Display by Default, and the Controller. These
five parts are shown in Figure 14-10. The Looker examines a particular
window and determines what parts, if any, of the objects in the scene
are visible in that portion of the screen. The Looker collects data about
all potentially visible objects for subsequent use by the Thinker.

The Thinker uses the data collected by the Looker to determine if
the features in this window can be displayed directly. If the Thinker is
able to display the data presented to it by the Looker, it calls for
Display by Computation. If the Thinker finds the situation described
by the Looker too complicated, it will announce its failure, whereupon
the Controller will subdivide the window or call for Display by Default.

The Controller system handles subdivisions of the windows examined
by the Looker and maintains a list of unexamined windows. If the
Thinker fails to provide answers and the window is so small that it
covers only one resolution unit on the display, then Control will call for
Display by Default which will result in a single dot on the screen.

Fig.
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start

geta
window

done (—-———-———-———9° more

Looker
fail
Thinker ail |
Display by Display by
Computation Default

This processing technique is quite general. It could be :
curved surfaces and to regions of the screen of any desired s
strategy of subdividing the window to produce simpler
sufficient to solve the hidden-line problem. The algorithm car
with a trivial Looker and Thinker or with quite complicated
simple versions make it quite easy to program the Warnock :

14.3.1 SPECIALIZATION OF THE ALGORITHM

We shall describe a particular algorithm within the general fi
outlined above. The Controller, shown in Figure 14-11, is de
process square windows. Subdivison, when it takes place,
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FIGURE 14-11

window into four square windows, each with one-half the length of the
side of the original. This Controller does a prefix walk of the tree
represented by the subdivided windows. The Controller keeps in a
push-down stack the windows that have not yet been examined. If the
Thinker fails on a window, the Controller subdivides the window into
four and pushes these squares onto the stack. It repeatedly pops
windows off the stack and processes them until the stack is empty.

We shall assume that objects are plane-faced polyhedra; each face of
an object will be bounded by a polygon. There are many assumptions
that we might make about the shape of this polygon. For instance, we
could confine our attention to triangles or to polygons with four or

_fewer sides. We might insist that the polygons be convex, because it is
relatively easy to determine if a convex polygon is outside a particular

Fig.
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inside t

FIGURE 14-12

window. We might allow non-convex polygons, or we might pe
polygons to overlap themselves in complicated ways as in Figu

The version of the algorithm described here will assume
polygons are planar, that they have an arbitrary number of s
that they may be represented as an ordered list of vertices. Co
of vertices are stored in screen coordinates, as in Equation 14-2

14.3.2 THE LOOKER

The Looker compares a polygon taken from the data
representing the scene with a window generated by the Contrc
size and position of the window are specified in screen coord:
are the X, Y and Z ccordinates of the vertices of the polyg
polygon may be spatially related to the window in the X-Y plai
of several ways, as shown in Figure 14-13.

For each polygon, the Looker decides which of these cases
It may suffice to detect three cases: surrounder (a), disjoint
intersector (c,d,e).

The information calculated by the Looker is crucial
elimination of hidden lines. A surrounding polygon clearly h
features farther from the eye than the surrounding surface
14-14a).

The Looker considers all polygons of all objects. An essenti:
the algorithm is that the list of polygons is sorted in an order ¢
the polygon whose nearest corner is closest to the eye appear
the list, and the polygon with the farthest away nearest corne
last. The value of Z; at the nearest vertex of the polygon is cal
Whenever the Looker encounters a surrounding polygon, it re
the farthest away point of the polygon in the window as
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Name Drawing
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(a) Surrounder

LA

(b) Clean miss (disjoint)

(c) Single line intersection

(d) Single vertex included

(e) other, more complicated
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B Fig
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(Figure 14-14b). When considering another polygon in the-
Zmin is greater than Zpumax, it is clearly hidden by the sv
Thus the search through the ordered list of polygons
prematurely terminated by the discovery of a surrounder.

A great deal of computation can be avoided if the Look
ancestral information (Figure 14-15). For example, if a
surrounds a window, it clearly surrounds all subdivison
window. There is no point then in examining a polygon tc
surrounds a window if it was known to surround some ancest
window. When the Looker decides that a polygon surrounds :
the fact is recorded so that the computation need not be rej
descendants of that window. It is also important to record th:
a polygon is disjoint from a window, because it will be disjoir
descendants of the window. Data is stored in the polygo
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indicate whether polygons are known to be surrounders or known to be
outside certain windows.

In addition, we might save data indicating that a polygon has only
one edge in a window and no vertex, or that it has only one vertex in
the window and no complete edges, or other data of a similar sort.
Keeping records of such data can reduce the number of edges of the

Fi
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polygon which need to be considered in determining wh
polygon is of interest in subdivisions of the window.

The first thing the Looker does with a polygon is to
ancestral check. The Looker retricves any information kno
that polygon, such as that the polygon was entirely outs
ancestor of the present window. In such a case, of course, th
need not be considered further. If the polygon surrounds an a
the present window, it obviously surrounds the present wir
some computation can be avoided.

If the ancestral check fails to yield any information :
polygon, the Looker must compute the spatial relationship be
polygon and the present window. The Looker needs to kn
edge of the polygon passes through the window and if not, wi
polygon surrounds the window or is entirely outside the wir
The results of these computations are saved for ancestral chec
the present window must be subdivided.

The results are also saved for use by the Thinker. In
cular form of Looker and Thinker we give here, th
keeps lists of all surrounding and intersecting polygons ¢

(@ ®® O

14.3.3 THE THINKER

The function of the Thinker is to solve the hidden-line probl

Looker has found no polygons which surround or intersect the
clearly the window is blank. Otherwise, the question to be an:

the Thinker is: does there exist a surrounder ( @ ) whic

other surrounders and intersectors (@ @

window?
A simple way of answering this question is to compare the
values) of the planes of the polygons at the four corners of th
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under consideration. If the depth of a surrounder polygon is less than
the depths of all other polygons at the corners of the window, then that
surrounder indecd hides all other possible features in the window. If we
are producing a line-drawing (Figure 14-8a), the window is blank; il we
are making a shaded image, we display a shade appropriate to the
surrounder polygon surface.

The condition that the surrounder-polygon depth be less than the
depths of other polygons at the corners of the window in order to hide
the other polygons is sufficient but not necessary. The reason is that,
for the purpose of the depth comparison, we are extending the planes
of intersector polygons to cover the entire window. If the extended
polygon is hidden, so will be the actual polygon. However, a surrounder
might hide an intersector but not its extension.

If the depth tests fail to yield a surrounder nearer the eye than all
other polygons, the Thinker announces that the situation is too
complex to analyze, and the control will suitably subdivide the
window.

This simple operation of the Thinker is adequate to solve the
hidden-line problem (Figure 14-16). However, many subdivisions can be
avoided if we design a slightly more complicated Thinker (compare
Figure 14-8c and 14-8d). The more complex the Thinker, the fewer the
subdivisions required. However, a complex Thinker might slow the
algorithm more than might a few more subdivisions.

The first useful extension to the Thinker is one that enables it to
detect the case of 0 surrounders of a window and exactly 1 intersector
polygon. If we are generating an outline drawing, clearly every edge or
portion of an edge of the intersector which falls within the window
should be Displayed by Computation. In this case Display by
Computation clips the edges of the intersector polygon against the
window and displays any visible lines or portions of lines.

Another extension is detecting the case of a bonafide surrounder
(the case where hider =0 in Figure 14-16) and only one intersector
which is not hidden and which lies entirely in front of the surrounder,
as shown in Figure 14-17. The solid dots represent depth computations,
used to establish that the plane of the intersector polygon lies closer to
the eye than the surrounder polygon.

Another extension to the Thinker will process intersecting surfaces
correctly. If two polygons intersect, we may desire to show the implied
edge which appears at the intersection. The line labeled A in Figure
14-8a is such an edge; the tip of the triangle penetrates the square. The
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Thinker of Figure 14-16 must be augmented to check for two
surrounders which may penetrate each other within the window, as
shown in Figure 14-18. The actual display of the implied edge results
because windows with penetrating surrounders cause failure of the
Thinker and hence cause subdivision. Eventually, the window size
rcaches 1, and a dot is Displayed by Default.

14.3.4 PERFORMANCE OF THE ALGORITHM

The computation time consumed by the Warnock algorithm is roughly
proportional to the complexity of the final display and not
proportional to the complexity of the scene. The amount of
computation can be gauged by the number of subdivisions required.
Subdivisions always result in a displayable feature somewhere within
the window being subdivided; therefore computation time is
proportional to visible complexity. The decision procedure used in the
Looker and Thinker can speed processing of various classes of images:
we have already shown that the Looker required to process penetrating
polygons is more complex than the simple Looker. An evaluation of the
performance of several decision procedures is given in [177].

If a shaded display is required, small modifications to the algorithm
are necessary. When the Thinker finds a surrounder which hides all
other features in the window, only one surface is visible throughout the
window, namely the surface of the surrounder. This is enough
information to determine the shading intensity for the entire window.
Additional logic is needed to compute appropriate intensities for the
dots generated when the window size is reduced to one resolution unit.

Fi
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The output of the algorithm is not convenient for ras
displays, because windows are examined according to the goal-s
nature of the algorithm, and not according to ascending or des
Ys coordinate. An interface between the Warnock algorithn
raster display has been designed; it demonstrates ingenious

hardware to drive video displays [47].
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14.4 SCAN-LINE ALGORITHMS

Exceptionally realistic pictures of solid objects can be generated by
using a raster-scan display such as a television monitor. Generating these
pictures requires techniques for removing hidden surfaces and for
shading visible surfaces. The principal technique amongst these is the
scan-line algorithm for hidden-surface elimination: an algorithm {hat
generates a shaded picture on a line-by-line basis, ready for display on a
television monitor. Several such algorithms have been developed,
making use of some of the techniques used in the earlier hidden-line
algorithms. In particular, they use the concept of generating a picture
by treating each region of the screen in turn rather than each element
of the object; and they use non-deterministic methods in a controlled
fashion to resolve complex situations. In addition, two properties of
raster-scan images are exploited to increase the efficiency of scan-line
algorithms: scan-line coherence and geometrical simplification of the
three-dimensional space into a two-dimensional space for making
decisions about hidden surfaces.

Scan-line coherence is a property of scan-line displays of most
scenes: that is, adjacent scan-lines appear very similar. The algorithm
takes advantage of the similarities to reduce the computation required
for cach scan-line to an incremental calculation: information saved
when processing one scan line is used to speed processing of the next
one. The efficiency achieved by scan-line coherence is somewhat
analogous to the ancestral checks of the Warnock algorithm and to the
advantage the Warnock algorithm achieves from processing blank,
uninteresting areas of the screen very rapidly, and concentrating only
on those portions where detail is visible.

The geometrical simplification which aids the scan-line algorithms
results from the particular choice of windows examined by the
algorithm: the windows are one scan-line high and span the width of
the screen (see Figure 14-19). As in the Warnock algorithm, the
windows are positioned in the screen coordinate space. The windows
are processed consecutively by ascending or descending Y coordinate,
just as a raster-scan display might show the scan-lines represented by
the windows. Furthermore, within each window the algorithms proceed
in a strictly left-to-right manner. The use of a top-to-bottom,
left-to-right window-processing strategy insures that display data are
generated in the same order as required by the raster scanning
hardware.

Fig.
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FIGURE 14-19

‘ test window

\

—
Warnock algorithm scan-line algorithms

FI

The geometrical simplification occurs when a planar polyg
screen coordinate system is intersected with a scan-line windo
shown in Figure 14-20. The intersection is a Lne in the Yip
corresponding intersection with a window of the Warnock alg
apolygon in three-dimensional screen coordinate space.

The scan-line algorithm must decide what polygons are v:
scan-line window, and these decisions are all made by comp
segments In the X;-Z; plane. The decisions are substantiall
than those of the Warnock algorithm, which requires comp:
polygons.

The intersection of the scan-line window and a planar pol
collection of line segments. Figure 14-21 shows what segme)
look like in the X-Y; plane. On a given scan line, a polygon is .
in terms of its segments. The polygon intersects the scan-line w
Yy =a with one segment. The segment is described by
coordinates of the edges of the polygon which bound the segn
example, at Y; = a, the segment is bounded by the edges AD
The X coordinates for the left and right edges of the seg
simple linear functions of Yy, i.e. the edge equation is X; =4 Y,
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edge AB

edge AD

FIGURE 1422 L X,

The polygon of Figure 14-21 viewed from above when Yy =a is
shown in Figure 14-22. The Z; coordinates of the left and right ends of
the segment are just the Z; coordinates of the edges AD and AB at
Y, =a. These coordinates are also simple linear functions of Yy, i.c.
Zy=c Y +d.

At Y, =8, the single segment becomes two segments because two
new edges, CD and CB enter in the window at Y =8. Finally, at Y =6,
no segments of this polygon remain.

14.4.1 PROCESSING A SCAN-LINE

The hidden-line problem is reduced to deciding, for ecach scan line,
which segments or portions of segments should be displayed. In Figure
14-23, on scan line Ys =k, there are two segments, as shown by the
arrows.

This same scan line is drawn differently in Figure 14-24, using the
plane of the paper to represent the Yy = k plane. We can sce the depth
relationships of the two segments, and also sce which parts are hidden
by other parts. But the situation could become quite complicated, as
shown in Figure 14-25. In this case, the non-deterministic procedure

Fi
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used to process scan lines announces failure. The width of the

is divided into smaller sections, or sample spans. Fach span

by its left and right ends, in screen coordinates: SP4

SPAN gy The same procedure is then applied to these spans.
We can detect several simple cases:

1. Only one segment is in the span (see Figure 14-26). This s
clearly visible in the region X, <X, <SSPANg. T
actually four similar cases, which are shown in Figure 1.
their handling is obvious.
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2. A spanner which hides all other segments. A spanner is defined as a
segment which extends to or beyond the edges of the sample span
(sce Figure 14-28). The spanner segment is everywhere nearer the
eye than any other segment. Hence it hides the other segments, and
is visible in the region SPAN,g < Xy < SPAN gt

3. Simple intersection. If only two segments fall inside the span, and
they are both spanners, we may have the kind of intersection shown
in Figure 14-29. In this case, we can compute the X coordinate of
the point of intersection. One segment is visible for
SPAN,p < Xg < DIV, the other for DIV < X; < SPAN gyt

4. Complicated cases. The remainder of cases are considered
complicated. Figure 14-30 shows an example. We must subdivide the
sample span at some point and try the test procedures again.
However, we do not recursively subdivide but instead ask: ‘What is
the left-most segment endpoint in the span?” and subdivide at that
point. If there is no segment endpoint in the span, we divide the
span at its midpoint by default.

The reason for dividing at the left-most endpoint is that this
hastens our ability to resolve the complicated case. A simple
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subdivision is shown in Figure 14-31. The example of Figure 14-32
is more complicated. This subdivision process gives a tree of
divisions needed to decide on the shading for the original span.

Another subdivision scheme might find the division point, process
the left sample-span and then try to process the entire remainder of
the original span. The processing procedure is then non-recursive, as
shown in Figure 14-33.

14.4.2 SCAN-LINE COHERENCE

The process we have detailed will generate the display for one scan-line
from a description of segments on that scan-line. The process can be
repeated for successive scan-lines. However, adjacent scan-lines often
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have very similar displays, as shown in Figure 14-34. Of cour:
not always the case, as demonstrated in Figure 14-35.
Considerable savings in computation time can be mad
algorithm takes advantage of scan-line similarities. A reasonabl
that if a certain span from one segment endpoint to another, .
in Figure 14-36, is a simple case on scan line k, then it wil
simple on scan line k+1. The span will be a predicted sample
scan-line £+1. Predicted sample spans are determined by pos
segment edges, and not by particular X; values. As we move i
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line & to k+1, the X, position of the edge will change, and our predicted
sample span must change accordingly. Thus it is convenient to describe
the predicted sample spans as ‘from the right edge of segment 102 to
the right edge of segment 104.” If, at any time, one of these edges exits
or becomes hidden, we cease prediction of that span.

Stated differently, we use the record of subdivisions on scan line £ to
predict fruitful subdivisions for scan line k+1.

As an example, the heavy dots in Figure 14-37 divide each scan line
into predicted sample spans. The dots are called predicted sample
points. Thus the four sample spans ab, bc, cd, de will subdivide the
entire scan line such that the decisions for each of the four spans are
simple cases, i.e. they do not require further subdivision. With excellent
scan-line to scan-line coherence, we should rarely need to subdivide a
span.

14.4.3 IMPLEMENTATION AND PERFORMANCE

A variety, of scan-line algorithms has been created; the discussion above
is taken from the algorithm of Watkins [301], which was designed to
be implemented in hardware and utilizes the non-determinism,
windowing and screen-coordinate concepts of the Warnock algorithm.
This algorithm was derived from earlier work by Wylie, Romney, et al
[318, 238]. Another algorithm, designed by Bouknight [28, 29] uses
explicit computation to avoid the non-deterministic behavior of the
Warnock algorithm, but does not employ scan-line coherence speedups.

The scan-line algorithm described above is quite fast, although its
dependence on complexity of the scene is difficult to analyze. Watkins
tabulated the performance of the algorithm for a variety of scenes and
discovered that the computation grows roughly as the wisible
complexity increases.

The algorithm can be implemented in software (Appendix VII) or
hardware. The hardware implementation is inexpensive compared to
previous hardware techniques [246] and can generate images of quite
complicated scenes in real time. By real time we mean that the
calculations required to generate display information take no longer
than the raster-scan of the frame.

* At the University of Utah, Watkins has built prototype equipment that implements his
algorithm.

Fig.



APPENDIX VI
THE WARNOCK HIDDEN-LINE ALGORTTHM

This appendix describes an implementation of the Warnock algorithm
which is described briefly in Chapter 14. Specific Looker and Thinker
computations are described, followed by a  SAIL  program
implementation.

AVI.1 THE LOOKER

The task of the Looker is to classify a polygon as either (1) a
surrounder of the window, (2) disjoint from the window, or (3) an
intersector of the current window. In addition, it may compute some
details of any intersection (e.g. 1 vertex, 1 free edge, etc).

The computations all closely resemble clipping: a set of lines
representing the edges of a polygon is clipped against the window
(Notice that this is two-dimensional clipping). If any edge of a polygon
intersects the window, then the polygon is an intersector. Further
information is available from the clipping operation, such as the screen
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FIGURE AVI-1

coordinates of the clipped edge. Another way to decide whe
edge passes through the window is to substitute the coordinat
corners of the window into the line equation of the edge. If the
the four resulting numbers are the same, then all four corner
window lie on one side of the line, and the line does not pass
the window.

If no edges of a polygon intersect the window, then the pc
disjoint from the window or it surrounds the window. The me
for distinguishing these two cases requires a fair ame
computation, and it is often convenient to be able to detect
polygons very rapidly. If any of the following conditions are
window and the polygon are disjoint:

All vertices of the polygon lie to the right of the window.
All vertices of the polygon lic to the left of the window.
All vertices of the polygon lie below the window.

All vertices of the polygon lie above the window.

LN

This check can be performed quickly if, for each polygon, min
maximum X, minimum Y, and maximum Y values of the coord
all its vertices are stored. These minimum and maximum valu
viewed as defining a rectangle which surrounds the
Comparison of that rectangle and the window quickly tells
further computation is required (cf. boxing), as can be sc
Figure AVI-1. If this simple check fails, it is still possible
window and polygon are disjoint, but more computation is re
make the decision.

If the line equations for the edges of the polygon determin
four corners of the window lie on the interior side of all the ed
the polygon surrounds the square (This requires that the line «
be formulated appropriately). This condition is sufficient
necessary for concave polygons (see Figure AVI-2).

The method for determining surroundedness which Warnos
to draw a line from part of the window to a point known
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both of these
windows cannot
be ‘interior’ by
above test

N

this window is
‘exterior’ to —
this edge

FIGURE AVI-2

total = 2
1

total = 3
total = 1

total = 1

FIGURE AVI-3

outside the polygon. We then count the number of edges of the
polygon which intersect the line. If the number is odd, then the
polygon surrounds the window; if even, the polygon does not surround
the square (disjoint). The only difficulty with this computation occurs
when a vertex of the polygon lies directly on the line. In this case, the
vertices adjacent to the vertex on the line are considered. If these two
vertices are on different sides of the line emanating from the window,
then one intersection is recorded, otherwise two (sce Figure AVL-3).
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3 2

4 windo

5 J 6
FIGURE AVI-4

//*‘i’“\ Z
2 3 |
[

+2

total = 8 total =
surrounder disjoii

Another way to determine whether a polygon surrounds the
is to compute the angle about the window through which e:
passes, and to keep a running total of these incremental angle:
edge of the polygon is processed in order. If the resulting tota
zero, then the polygon is outside the window (disjoint). If t
angle is £360 degrees, the polygon surrounds the window. If t
angle is £720 degrees, the polygon surrounds the window tv
must overlap itself. If the resulting angle is not a multiple
degrees, the angle computation has gone astray. The techniqu
simplified to consider only 8 regions around the window, as s
Figure AVI-4. The incremental angle of the directed line seg
Figure AVI-4 is +2. The total cumulative angle determines whe
polygon surrounds the window or is disjoint (see Figure AVI-5)

The incremental angle (Aa) is calculated as follows:

Aa = (region number of second endpoint) —
(region number of first endpoint)

if Aa > 4 then Ao < Aa —8;
if Aa < —4 then Aa < Aa +8;
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< 4

FIGURE AVI-6

One tricky case arises when the incremental angle is +4, as shown in
Figure AVI-6. Although these two lines have endpoints in the same
regions, they have different incremental angles. The computation of the
correct angle can be made by intersecting the line with one of the
window boundaries, and then calculating the incremental angle of each
part of the two line fragments formed.

This simplified angle measurement can be performed as a side effect
of applying a clipping procedure to the edges of the polygon. The
clipping operation will yield, for each edge (1) whether it intersects the
window at all, (2) if not, the value of the incremental angle traced by
the edge. If this information is computed for all edges, the polygon can
casily be determined to be (1) a surrounder, (2) a disjoint polygon or
(8) an intersector of the window.

AVI.1.1 DEPTH CALCULATIONS

The Looker and Thinker occasionally need to compute the depth (Z;
value) of a polygon at given screen coordinates X, Y. This
computation is performed in the screen coordinate system, and 1s
equivalent to intersecting a ray from the eye through the screen at
point X, Y with the plane of the polygon.

The computation is aided by storing, for each polygon, the equation
of the plane of the polygon in screen coordinates:

aXs-i-bYS‘f‘CZs‘l‘d:O

The value of Z; at any screen position (X, Yy) can then be quickly
computed.
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AVI1.2 THE THINKER

The range of Thinkers suitable for the Warnock algorithm
boundless. Two interesting Thinkers which handle penetrat
are given below. They use the following symbolic notation
number of surrounders of the window; I is the number of it
of a window, less those whose planes are behind the plan
surrounder.

The Thinkers are:

1. Never Display by Computation. The Thinker must distin
two cases (just as in Figure 14-18):

1. I+# 0 or Penetrate # 0 = Fail
2. Penetrate = 0 and I = 0 = Success; window empty

2. Display by Computation if only one intersector polygon li
ot a (possibly non-existent) surrounder. The Thinker di
three cases:

1. I>1 or Penetrate + 0 = Fail

2. Penetrate = 0 and I = 0 = Success; window empty

3. 1 = 1 = Success; clip each edge of the intersector :
window and display.

Case 3 yields success only if the intersector polygon
penetrate the plane of a critical surrounder (hider); othe
decision must be to fail.

EXERCISES

1. Suggest various mechanisms for retaining the ancestral in
Examine the methods in the light of the uses the algorithn
this data: storing when a polygon is examined, retrievir
window is processed, and saving/restoring information as th
controller processes different windows. How does the efficie
ancestral data structure interfere with the ordering of the p
by Zmin?
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9. If we restrict the class of surfaces so that no polygons can penctrate
each other, what simplifications can be made in the algorithm, ex-
cluding thosc mentioned in Chapter 14?

3. One version of the Warnock algorithm restricts the class of polygons
to triangles. If polygons of more than 3 sides are required, they are
created from collections of triangles. The motivation for this procedure
is that the algorithm will be much more efficient. Give an algorithm for
decomposing a collection of polyhedra into a representation consisting
only of triangles. Can the Warnock algorithm be made to operate more
efficiently on triangles than on arbitrary polygonal faces? What are the
drawbacks of this technique? How, if at all, does the subdivision of
polygons into triangular regions affect the final line-drawing? What if
we are generating a shaded picture?

4. Where does the Warnock algorithm spend its time?
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