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ABSTRACT This paper describes an algorithm which transforms a flowgraph into a program containing con- 
trol constructs such as if then else statements, repeat (do forever) statements, multdevel break state- 
ments (causing jumps out of enciosmg repeats), and multilevel next statements (causing jumps to itera- 
tions of enclosing repeats) The algorithm can be extended to create other types of control constructs, 
such as while or until The program appears natural because the constructs are used according to com- 
mon programming practices The algorithm does not copy code, create subroutines, or add new variables 
Instead, goto statements are generated when no other available control construct describes the flow of 
control. The algorithm has been implemented m a program called STRUCT which rewrites Fortran pro- 
grams using constructs such as while, repeat, and if then else statements The resulting programs are 
substantmUy more readable than their Fortran counterparts 
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1. Introduction 

Structured programming emphasizes programming language constructs such as whi le  
loops, un t i l  loops, and if then  else statements.  Properly used, these constructs 
make occurrences of  loops and branching of  control clear. They are preferable to 
goto statements,  which tend to obscure the flow of  control and make programs hard 
to understand [10,11]. This paper describes an algorithm which transforms a flow- 
graph into a program written using repeat  (do forever) and if then  else statements,  
together with mult i level  break statements  (whJch cause jumps  out of  enclosing re- 
peats) and mult i level  next  s tatements  (which cause jumps  to the next  iteration of  an 
enclosing repeat) .  The  goal of  the algorithm is to produce understandable programs, 
rather than to avoid the use of  goto statements entirely. Goto s tatements  are gen- 
erated when there is no better way to describe the flow of  control. 

Repeat  and if  then  else statements are selected as target language constructs for 
the algorithm because they are sufficient to show the organization of  the program 
into loops and branches to alternative blocks o f  code. Break  and next  statements 
are used because they are easily generated by the algorithm and contain more  infor- 
mation than gota statements.  The  algorithm can be easily extended to produce other  
constructs, such as while ,  unt i l ,  or the constructs described in [16]. This paper con- 
centrates on finding the basic structure of  a program rather than on producing the 
syntax desired for a particular implementat ion of  the algorithm. 
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A number of techniques for eliminating goto statements from programs have been 
previously published [2,7-9,15,17,19]. These include adding control variables, copy- 
nag code, creating subroutines, and adding extra levels of repeat statements in con- 
junction with multilevel break statements. Each of these methods may be appropri- 
ate in some cases. However, these techniques do not necessarily produce clear flow 
of control [16]. Rather than try to determine when these techniques are appropriate, 
the algorithm of this paper does not use them. 

Instead, the structuring algorithm is based on some principles about how repeat 
and if then else statements should be used for best readability. The structuring algo- 
rithm and these principles evolved together. That is, applying earlier versions of the 
algorithm led to refinements of the principles which led in turn to refinements in the 
algorithm. The principles are discussed at length in [4]. A program which satisfies 
the principles is called properly nested. In a properly nested program, repeats reflect 
iteration in the program, and if then else statements reflect branching and merging 
of control in a reasonable way. The algorithm transforms a flowgraph into a prop- 
erly nested program, in which the predicates and straight line code statements are the 
same as those of the flowgraph in both number and execution order. In general, the 
program may contain goto statements. However, the goto statements occur only 
where no other available control construct describes the flow of control. 

Section 2 introduces flowgraphs and a simple structured language SL. Some sim- 
ple ideas concerning the use of repeat and if then else statements are discussed in 
Section 3 as motivation for the algorithm. Section 4 describes the algorithm as res- 
tricted to "reducible" flowgraphs, i.e. flowgraphs in which each loop can be entered in 
only one place. The algorithm is extended m Section 5 to include irreducible flow- 
graphs. Section 6 proves that the algorithm produces a properly nested program. 
Section 7 applies some results from [4] concerning properly nested programs to show 
that any properly nested program for a flowgraph must be similar m form to the one 
generated by the algorithm. Moreover, if a flowgraph has a properly nested program 
with no goto statements, the algorithm generates one. 

Section 8 discusses briefly an implementation of the algorithm in a program called 
STRUCT [3], which translates Fortran programs into RATFOR [13], an extended Fortran 
language which includes constructs such as if then else and while. The structured 
programs generated by STRUCT are much more readable than their Fortran counter- 
parts. It is usually not obvious that they are mechanically generated, since the 
structuring principles cause them to imitate common programming practice. The 
structured programs usually contain few goto statements. An example of a program 
structured by STRUCT is included in Appendix B. 

De Balbine [5,6] has written a program called the "structuring engine," which also 
claims to structure Fortran. His algorithm has not been published for comparison 
with the algorithm of this paper. However, the published output from the structur- 
ing engine appears to follow some of the same basic principles as the algorithm of 
thin paper. A major difference is that the structuring engine avoids goto statements 
by creating a kind of argumentless subroutine. It is not clear from the published ex- 
amples that the artificially created subroutines improve readability. 

The structuring algorithm presented in this paper is proposed as a tool for the 
maintenance of Fortran programs. One of the problems in dealing with Fortran pro- 
grams is that the lack of convenient control structures makes programs hard to 
understand Extended Fortran languages such as RATFOR have been developed so 
that new programs may be written using convenient control structures and translated 
by a preprocessor to Fortran for compilation. But many existing programs were writ- 
ten in Fortran without the benefit of preprocessors. These programs become dramat- 
ically more understandable when they are structured mechanically. Therefore, 
modification and debugging of these programs is facilitated by structuring. 
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2. Definitions 
This section defines a simple structured language SL, the execution order of SL pro- 
grams, and flowgraphs. 

SL contains optionally labeled statements of the following forms: 

(1) straight line code (sic) statements (i.e. assignment, read, write, etc.), 

(2) stop, 

(3) goto L, where L is a label, 

(4) if (p) then [S1} else {$2}, where S1 and $2 are (possibly null) sequences of 
optionally labeled SL statements, and p is a predicate, 

(5) repeat {S}, where S is a non-null sequence of optionally labeled SL statements, 

(6) break(i) ,  where i is a positive integer, 1 

(7) next(i),  where i is a positive integer, l 

An SL program is a nonnull sequence of SL statements, such that each label in a 
goto statement labels exactly one statement in the program. Henceforth, program 
means SL program, except where otherwise noted. 

Goto, next(i) ,  stop, and break(i) statements are referred to as branching state- 
ments; other statements are nonbranchmg statements. Associated with a program is 
an "exit" which is reached when a stop is executed, or when control reaches the bot- 
tom of the program. Two statements are at the same level of nestmg if neither is en- 
closed in another statement, or if the same statement is the smallest statement en- 
closing each one. The exit of the program is outside all levels of nesting by 
definition. The innermost repeat (if any) enclosing a statement is its first enclosing 
repeat. For i>1 ,  the t th enclosing repeat is the repeat ( I f  any) enclosing the 
( i - D - s t  enclosing repeat. 

Statements of types 1-4 are interpreted in the standard way. Repeat {S} causes 
the sequence S to be iterated until a stop is executed, or until a goto, break(i) ,  or 
next(i) (i greater than 1) causes a jump out of  the repeat statement. Break(i)  
causes a jump to the statement following the ith enclosing repeat statement. Next(i)  
causes a jump to the next iteration of the ith enclosing repeat statement, that is, it is 
equivalent to goto L, where L is a label added (if necessary) to the ith enclosing re- 
peat. 

For simplicity, no elseless if then statement is provided, but its equivalent is ob- 
tained by a null else clause. Also, more complex constructs such as while and until  
are not provided since they can be expressed in terms of repeat, if then else, and 
break. For simplicity, return is not included; it may be treated like stop (but 
separately) during structuring. 

A flowgraph is a directed graph with labeled nodes and arcs representing flow of 
control between nodes. Each node is either a straight line code (sic) node with one 
outarc, an exit node with no outarcs, or an if node, with a "true" outarc and a "false" 
outarc. A flowgraph has exactly one exit node, and there is a path to it from every 
node in the flowgraph. One node~pf the flowgraph is designated as the start node. 

An SL program is flowgraphable if every loop (created by means of repeat and/or 
goto statements) includes either an sic or if statement. The possible computations 
performed by a flowgraphable program P are determined by the flow of control 
between sic and if statements and the exit of the program. This flow of control is 
described by a flowgraph COMPUTE(P) which is obtained as follows from P. For 

1Multilevel break and next  statements are included because they happen to be easdy tdentlfied by the 
structuring algorithm They are not fundamental to the algor,thm; the algortthm has been implemented 
m STRUCT with nice results using only single level break and next statements 
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each sic or if statement in P, there is a corresponding node in COMPUTE(P). In 
addition, there is a single exit node which represents the exit of the program. There 
is an arc from node p to node q if control can pass from statement p to q without 
passing through any other if or sic statement. The s t a r t  node of COMPUTE(P) is 
the node which corresponds to the first sic or if statement reached upon executing 
the program, or the exit node if the exit of the program is reached before any sic or 
if statement is executed. 

Two flowgraphable SL programs PI and P2 are equtvalent if COMPUTE(Pi)= 
COMPUTE(P2). Note that this is a stronger statement than merely requiring that 
the set of execution paths be the same. If one program has two copies of an sic 
statement while the other has only one, the programs may have identical sets of exe- 
cution paths but are not equivalent by this definition. This definition of equivalence 
was chosen because the algorithm of this paper does not copy code. 

A flowgraphable program P is a structuring of a flowgraph G if G~COMPUTE(P). 
A loop in a ftowgraph G is a path which begins and ends at the same node and in- 

cludes at least one arc. A cyc/e is a loop in which only the first node (which is the 
same as the last node) occurs twice. 

Finally, a flowgraph is reductble if every cycle in it can be entered in exactly one 
place, i.e. there is a node p in each cycle such that every path from the start node 
must reach p before any other node in the cycle. A program P is reductble if 
COMPUTE(P) is reducible. The structuring of reducible flowgraphs is discussed in 
Sections 3 and 4. Irreducible flowgraphs (i.e. flowgraphs which are not reducible) are 
treated in Section 5. 

3. Basic Requirements for the Algorithm 

The goal of this paper is to present an algorithm which generates readable structured 
programs from flowgraphs. The first step in developing the algorithm is to determine 
some basic properties a program must have to be readable. To keep the discussion 
simple, this section assumes that the programs of interest are reducible. The ideas 
discussed in this section are generalized in [4] as a set of principles for the use of re- 
, a t  and if then else statements in (reducible or irreducible) programs. These prin- 
ciples are listed in their general form in Section 6. 

First, repeat statements must reflect iteration in the program Obviously, pro- 
grams such as the following should not be allowed. 

repeat 
{ s = l  

stop 
I 

But the following program is also poor because it gives the impression that the whole 
program can be iterated. 

repeat 
{ if (p) then 

code segment 
stop 

e l se  
x = f (x )  

The iteration in thin program is better represented by the following version. 
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repeat 
{ if (p) then { break(l)  } 

else { x = f(x) } 

code segment 
stop 

Thus a basic requirement  is that every statement within a repeat should lead to an 
iteration of the r e p e a t .  

Each if t h e n  e l s e  statement  should reflect branching and merging of flow of con- 
trol in the program. In particular, a goto s tatement  should not  jump into the middle 
of a then  or else clause. Also, a s tatement should appear within a clause if it can be 
reached only from the clause and is within the innermost  repeat (if any) containing 
the clause. In particular, of the following examples, (a) is reasonable, while (b) and 
(c) are not. 

(a) if (p) then { j = 1 } 
else { j ---- 2 } 
y = fq)  
stop 

(b) if (p) then 
{j----1 

goto 10 

else 
{j = 2  

1o y --  fq)  

stop 

(c) if (p) then {} 
else 

{j = 2  
goto 10 

j = l  
10 y = f(j) 

stop 

The above discussion is sufficient as a base from which to develop the algorithm. 
Obviously, the algorithm makes further decisions about the use of control constructs. 

4. The Structuring Algortthm 

This section presents the algorithm for structuring flowgraphs. To keep discussion 
simple, this section assumes that the input flowgraph is reducible. Section 5 
discusses adaptations to the algorithm which enable it to handle i r reduoble  programs 
tn a reasonable way. 

4.1. FINDINC STRUCTURE IN A FLOWGRAPH. The input to the structuring algorithm is 
a flowgraph G in which every node is reached by a path from the s tar t  node. The 
first step in structuring G is to locate the loops in G. Loops are identified from a 
spanning tree which is constructed by a depth-first search [12]. The depth-first 
search proceeds as follows. 

Begin by wsttmg the start node of G and setting NUM to the number of nodes m the flowgraph When 
vlsmng a node m, do the following If node m has an arc to a node p not already visited, make p a child of 
m in the spanning tree, and visit p next Otherwise, number m with NUM, decrement NUM by 1, and re- 
turn to v~stt the parent of m (if it exmts) again 
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A back arc is an arc from a node to itself or from a descendant to an ancestor in the 
spanning tree; other arcs are forward arcs. If (p,q) is a back arc and p~q, there is a 
path from q to p consisting of edges from parent to child in the tree. This path and 
the back arc form a cycle in G. Each node entered by one or more back arcs will be- 
come the first statement within a repeat in the final program. 

Let L be a list of the nodes of the graph ordered by the numbering assigned dur- 
ing the depth-first search. This list will be used to ensure that all gotos in the final 
program flow downward on the page. Note that an arc (p,q) is a back arc if and only 
if q appears before p in L. Also, if (p,q) is a back arc, there is a path from q to p 
which includes only nodes between q and p in L. 

Example. A flowgraph and the numbering of nodes produced by a depth-first 
search are illustrated in Figure 1. 

START A1 . . . .  ~ , B 2  

t 
V 
C5 

/ \ 

¢ "4 
D5 E4 

\ F6.¢... 
\ / 

137 t 

FIG 1 A flowgraph G and the numbering assocmted with the depth-first search, whtch traverses "true" 
(left) arcs before "false" (right) arcs Dashes indicate arcs m the sNnnmg tree The hst L-A,B,C,E,D, 
F,G,H,I 

At this point, the nodes which will become the first statements within repeats 
have been determined. In particular, they are the nodes entered by back arcs. This 
information is encoded in the flowgraph as follows. For each nt~de n entered by a 
back arc, add a single repeat node p. Replace each arc (q,n) by an arc (q,p), and add 
an arc (p,n). Insert the repeat node p immediately before n in L. Call the new 
graph the extenston of G, EXT(G). The start node of EXT(G) is defined to be the 
first node of L, which may be a repeat node rather than the start node of G. 

Note that the addition of the new nodes does not change the ordering of the 
nodes already in L. The definition of back arc is extended to EXT(G) by defining an 
arc (p,q) in EXT(G) to be a back arc if q precedes p in L. 

Example. Figure 2 shows the graph EXT(G) generated from G o f  Figure 1. 
A repeat node p is the head of all loops and cycles which include p but no nodes 

preceding p in L. If p is the head of a loop containing q, and p~q, q is in a loop tad 
headed by p. In the final program the repeat statement corresponding to p will con- 
tain the statements corresponding to nodes in loop tails headed by p. For each node 
q, the algorithm determines HEAD(q), which is the repeat node which will 
correspond to the smallest repeat enclosing q in the final program. In particular, of 
the repeat nodes which are heads of loops containing q, HEAD(q) is the closest one 
preceding q in L. If no such node exists, HEAD(q) is undefined. For convenience, 
If HEAD(q) is undefined, all nodes are said to be in the "loop tail" headed by 
HEAD(q), and this "loop tail" is considered to be the entire program. Also, if 



104 B . S .  BAKER 

START J > A > B 

C Z'a 
O E 

~ i ~ H  > I EXIT 

FiG 2 The graph EXT(G) generated from the graph G of Figure 1 The hst L=J,A,B,C, 
E,D,F,G, HJ 

HEAD(p) and HEAD(q) are undefined, HEAD(p)= HEAD(q) by definition. Note 
that for a repeat node p, HEAD (p) is either a different repeat node or is undefined. 
The repeat corresponding to p will be nested within the repeat corresponding to 
HEAD (p) m the final program. 

Example. For the graph of Figure 2, HEAD(A)=HEAD(B)=J. For all other 
nodes p, HEAD (p) is undefined. 

To produce code from EXT(G), the algorithm needs to know which statements 
are reachable from which others. For example, for the graph of Figure 2, it needs to 
know that nodes F and G can be reached through both branches of C, so that neither 
Fnor  G should be placed within a clause of C 

Such branching and merging of control can be described by dominators in the flow- 
graph [1]. Node p dommates node q if every path from the start node to node q 
must pass through node p. Node p is the tmmedtate dominator of node q if no other 
dominator of q lies "closer" to q (that is, if every dominator of q other than p also 
dominates p). Every node m the flowgraph except the start node ~s dominated by at 
least one node, the start node. Moreover, every node except the start node has an 
immediate dominator. Let DOM(p) denote the immediate dominator of p. 

Example. The dominators of the nodes in the graph of Figure 2 are as follows: 
DOM(J) is undefined, DOM(A)=J, DOM(B)=A, DOM(C)=B, DOM(I)=H, and 
the immediate dominator of the other nodes is C. 

For each node p, HEAD and DOMare used to obtain a set FOLLOW(p) specify- 
ing nodes which belong "after" p at the same level of nesting as p. For each if node 
p, define 

FOLLOW(p)={q [q is entered by 2 or more forward arcs, p=DOM(q), and 
HEAD(p)=HEAD(q) } 

For each repeat node p, define 

FOLLOW(p)={qIHEAD(q)=HEAD(p) and DOM(q) is in a loop tail headed 
by p}. 

For each sic node p, define 

EOLLOW(p)={qlHEAD(q)=HEAD(p) and p=OOM(q)}. 
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Note that the sets FOLLOW(p) are pairwise disjoint, for all nodes p. 
Every node is in a FOLLOWset except for the nodes which will correspond to the 

first statements at each level of nesting. Intuitively, FOLLOW(p) is the set of non- 
branching statements reachable from p which must follow p at the same level of 
nesting as p. 

Example. For the graph of Figure 2, FOLLOW sets are as follows. FOLLOW(J) 
= {C}, FOLLOW(A) = {B}, FOLLOW(C) = {F,G,H}, FOLLOW(H) = {I}, and all 
other FOLLOWsets are empty. 

A recursive procedure getform generates the basic form of the structured pro- 
gram. That is, getform determines the nesting and order of nonbranching state- 
ments. Branching statements are added later. Getform is called on the start  node of 
EXT(G). 

getform(n) 
{ if (n is an sic node) then 

{ pr int  the straight  line code } 
else if (n is a repeat node with arc to node q) then 

{ pr int  ("repeat{") 
call test(q) 
print("}") 

else if (n is an if node with predicate r and a "true" arc to 
node p and a "false" arc to node q) then 

{ print("if  (r) then {'9 
if (the "true" arc is a forward arc) then  { call test(p) } 
print("} else {") 
if ( the "false" arc is a forward arc) then  { call test(q) } 
print("}") 

} 
for each member  q of FOLLOW(n) in order of appearance in L 

{ call getform(q) } 
} 

test(q) 
{ if (q is not in any FOLLOWset) then 

{ call getform(q) } 

Since the FOLLOW sets are pairwise disjoint, getform is called exactly once on each 
node in EXT(G) The output from getform is called PF(G), the "program form" 
generated from G. 

Example. getform generates the following from the graph of Figure 2: 

repeat 
{A 

if (B) then {} 
else {} 

if (C) then 
I if (D) then  {} 

else {} 

else 
{ if (E) then {} 

else {} 
} 

F 
G 
H 
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The above procedure is responsible for ensuring that the final program has the 
properties discussed in the preceding section. 

4.2. ADDING BRANCmN~ STATEMENTS. The second part of the algorithm adds 
branching statements to PF(G) to represent the flow of control in EXT(G). Some 
decisions must be made at this point as to how to use branching statements. Obvi- 
ously, a branchmg statement should not be used if deleting it does not alter the flow 
of control. Branching statements are not needed in certain places in PF(G) because 
the flow of control is already correct, The first part of the algorithm guarantees that 
the first statement within a repeat is the node entered by an arc from the repeat, and 
that the first statement within a clause of an if statement is the node entered by the 
appropriate arc of the if. Thus, it remains to add branching statements to correct the 
flow of control out of some sic statements and empty if clauses 

The simplest way of correcting the flow of control in PF(G) is to find every s ic  
statement and every empty if clause which passes control to the wrong point, and 
add appropriate branching statements to correct the flow of control. However, it is 
desirable to make the algorithm somewhat more sophisticated, so that it can generate 
code such as the following. 

i f tp )  t h e n { j - l }  
else { j = 2 } 
break(l) 

The simple strategy mentioned above would put a break statement in each clause, 
rather than the single break statement after the if statement. Instead, a reasonable 
convention is to place a branching statement after any statement p such that control 
can pass out of the statement to exactly one nonbranching statement q, and q is not 
reached automatically without a branching statement. Two definitions are needed to 
identify such statements. 

First, for each node p in EXT(G), define REACH(p) to be the set consisting of 
all nodes q entered by arcs from p or from nodes corresponding to statements nested 
within p, such that q does not correspond to p or to a statement nested within p. 
(For this definition, recall that the exit node corresponds to the exit of  the program 
which has been defined to be outside all levels of nesting of statements.) 

Example. For the graph G of Figure 2 and the code PF(G) of the preceding ex- 
ample, REACH sets are defined as follows: REACH(A)={B}, REACH(B)~{J,C}, 
REACH(C)~{F,G}, REACH(D)~REACH(E)~{F,G}, REACH(F) =REACH(G) 
={H}, REACH(H)--{I}, REACH(I)~-®, REACH(J)-- {C}. 

Second, define a branching statement to be redundant if it passes control to the 
same statement which would be reached from that point if the branching statement 
were deleted. Thus, for each statement p in PF(G) such that REACH(p) contains 
exactly one node r, p must be followed by a branching statement passing control to r 
unless that statement would be redundant. 

Branching statements are added to the program recurstvely from outer levels of 
nesting to inner levels by calling the procedure addbranch(PF(G),G). 

addbranch(F,G) /* F is a program minus branching statements, G is a flowgraph */  
{ compute REACH(p) for every node p 

if (F contains no nonbranching statements) then { add a statement "stop" to F } 
else 

{ let p denote the first nonbranching statement in F 
call fixcontrol(p) 
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fixcontrol(p) 
{ if (REACH(p) contains a single node r) then 

{ add the statement choosebranch(p,r) after r unless this statement would be redundant } 
if (p is a repeat statement whose body begins with a statement q ) then { call fixcontroi(q) } 
else if (p is an if statement) then 

[ for each clause of p 
{ if (the clause is empty) then 

{ add the statement ¢heosebranch(p,r) to the clause 
unless this statement would be redundant 

} 
else if (the clause begins with a statement q) then { call fixcontrol(q) } 

} 
if (p is not the last nonbranching statement at its level of nesting) then 

{ call fixcontrol(q), where q is the next nonbranching statement at this level of nesting } 

cheosebranch(p,r) /* select a branching statement to pass control from p to r */ 
{ let n be the number of repeat statements enclosing p 

for each i from 1 to n 
{ if (placing "break(i)" after p would pass control to r) then { return("break(i)") } } 

for each i from 1 to n 
{ if (r is the ith repeat enclosing p) then { return("next(i)") } } 

if (r is the exit node) then { return("stop") } 
if (r has no label) then 

{ label r with a label L distinct from all labels already in the program } 
retnrn("goto L"), where L is the label of r 

} 

N o t e  that the p rocedure  c h o o s e b r a n c h  imposes  a p recedence  o rder  upon  the  possible  
branching s t a t emen t s  which migh t  be used  at each  point.  Th is  o rde r  has the  desir-  
able proper ty  that it ensures  that eve ry  branching  s t a t emen t  is reachable  (see L e m -  
ma  3). This  is not  t rue  for all p r ecedence  orders.  For  example ,  i f  b r e a k ( i )  is pre- 
fe r red  to b r e a k ( j ) ,  i > j ,  un reachab le  b r eak  s t a t emen t s  may  be genera ted .  T h e r e -  
fore,  the  a lgor i thm allows b r e a k  s t a t emen t s  to j u m p  to o the r  b r e a k  s ta tements .  

W h e n  the  above  p rocedure  is applied to the p rogram f o r m  PF(G) gene ra t ed  by 
the  first part o f  the a lgor i thm,  the  resul t ing  p rogram is called ALG(G). 

Example. For  the  f lowgraph G o f  F igure  1, ALG(G) is the  fol lowing.  

10 
20 

repeat 
/A  

if (B) then {I 
else { break(l) } 

} 
if (C) then 

{ if (D) then { goto 10 } 
else {} 

} 
else 

{ if (E) then {} 
else { goto 10 I 

} 
F 
goto 20 
G 
H 
stop 

This  example  is no t  an impress ive  e x a m p l e  o f  a s t ruc tured  program.  It  was chosen  
because  its pecul iar i t ies  i l lustrate m o s t  parts o f  the  s t ruc tur ing  a lgor i thm.  
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5. Structuring lrreductble Flowgraphs 
Most programs are reducible. However, the algorithm must handle irreducible pro- 
grams if it is to be perfectly general. Since the decision has been made in this paper 
not to copy code, a program generated from an irreducible flowgraph must contain a 
g o t o  into one or more repeat statements. Therefore, the problem is to find a reason- 
able way to treat goto statements which jump into repeat statements. The choice 
made here is to try to make the program well structured at a local level. In particu- 
lar, the algorithm pretends that each loop is entered at only one point, structures the 
program accordingly, and adjusts the final flow of control to put the jumps into loops 
back in. Thus, the algorithm can generate a program of the following form. 

if (p) then { goto 10 } 
else {} 
repeat 

{ i f (q)  t h e n l j - -  1 } 
else 

{ 
10 j --2 

} 
if (r) then {stop } 
else {} 

I 

This program contains an ugly jump into an else clause, However, this program is 
better structured within the repeat than the following program, in which the jump 
into the else clause is avoided at the expense of an extra goto statement. 

if (p) then Igoto 10 } 
else {} 
repeat 

I if (q) then 
{ j = ' l  

goto 20 
} 

else {} 
lO j = Z  
20 if (r) then {stop } 

else {} 
} 

A large example of an irreducible program generated by STRUCT appears in Appendix 
B. 

The way the algorithm "pretends" that the flowgraph is reducible is to construct a 
reducible flowgraph REDUCE(EXT(G)) from the flowgraph EXT(G), and calculate 
dominators from this reducible graph rather than from EXT(G). 

Intuitively, the algorithm pretends that each arc entering a loop at a point other 
than its head enters the head instead. Let REDUCE(EXT(G)) be a flowgraph ob- 
tained as follows from EXT(G). If  (p,q) is an arc, p#HE,4D(q), and p is not in a 
loop tail headed by HEAD(q), the arc (p,q) is replaced in REDUCE(EXT(G)) by an 
arc (p,r), where r is the first repeat node in L which is the head of a loop containing 
q but not the head of any loop containing p. The resulting graph 
REDUCE(EXT(G)) is reducible. Node p R-dommates node q if p dominates q in 
REDUCE(EXT(G)). Note that a repeat node p R-dominates each node in a loop 
tail headed by p. For each node p, RDOM(p) is defined to be the immediate domi- 
nator of p in the graph REDUCE(EXT(G)). Define an arc (p,q) m 
REDUCE(EXT(G)) to be a forward arc if p<q. 

The description of the algorithm in Section 4 must be modified for the general 
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case by using R-dominators rather than dominators in EXT(G). Also, in defining 
FOLLOW(p) for an if node p, the reference to forward arcs must be to forward arcs 
in REDUCE(EXT(G)) rather than to forward arcs in EXT(G). Note that if 
EXT(G) is reducible, REDUCE(EXT(G))--EXT(G). Therefore, this general form 
of the algorithm behaves the same on reducible flowgraphs as the basic algorithm of 
the preceding section. 

6. Properttes of ALG(G) 

This section proves that the general algorithm of Section 5 produces a structuring of 
G, and that this program ALG(G) has reasonable properties. 

TaEOREM 1. ALG(G) ts a structurmg of G. 
PROOF. The procedure fixcontrol guarantees that flow of control in ALG(G) 

between if, sic, and repeat statements and the exit of the program corresponds to 
EXT(G). Since every loop in EXT(G) includes an sic or if statement, ALG(G) is 
flowgraphable and COMPUTE(ALG(G)) is defined. The flow of control between 
sic and if statements and the exit of ALG(G) is obtained from EXT(G) by applying 
the inverse of the transformation which generated EXT(G) from G. Thus, 
G=COMPUTE(ALG(G)), and ALG(G) is a structuring of G. [] 

Section 3 discussed how repeat and if then else statements should be used in 
reducible programs. These ideas are generalized in [4] as a set of principles for the 
use of repeat and if then else statements in a program (reducible or irreducible). It 
will be shown that ALG (G) satisfies these principles. 

The principles are divided into two parts: ~roper use of repeat statements, and 
proper use of if then else statements. 

A program uses repeat statements properly if it has the following properties: 

(1) If a nonbranching statement q is nested within a repeat statement p, there is an 
execution path which passes from p to q and back to p without leaving the body 
of p. 

(2) The first statement within a repeat is an sic or if statement and is reached only 
from the repeat. 

(3) A repeat statement can be entered withou~ first entering its body. 

(4) Control can pass to a lexically preceding ~3art of the program only from within 
the body of a repeat to the repeat. 

A program P uses if statements properly if the following conditions are satisfied: 

(1) if goto L occurs and is not within a then or else clause containing L, then the 
goto is also outside the innermost repeat containing L. 

(2) If a nonbranching statement r in P is nested within the innermost repeat con- 
taining an if statement p, and is not within the then (else) clause of p, then r is 
reachable either from the "false" ("true") branch of p or from a nonbranching 
statement not equal to p which is nested w,thin the repeat but not nested within 
the clause or within r. 

A program is well formed if it is flowgraphab~e and every nonbranching statement 
is accessible from the start of the program. A program is properly nested if it is well 
formed and uses both repeat and if then else st~ tements properly. 

In order to prove that .4LG(G) is properly nested, two technical lemmas are 
needed. Their proofs appear in Appendix A. The first lemma describes the behavior 
of the procedure getform. If getform(q) is called during the recursive execution of 
getform(p), p is called a g-ancestor of q, and q is called a g-descendant of p. 

LEMMA 1..,4 node q ts a g-descendant of a node p tf and only tf p R-dominates q and q 
is m a loop tall headed by HEAD(p). 
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LEMMA 2. I f  (r,s) IS a back arc m EXT(G) ,  then s is a repeat node and r is nested 
within s m A L G ( G ) .  I f ( r , s )  is a forward arc m EXT(G) ,  then etther s Is nested within 
r or s is after r m A L G ( G ) .  

THEOREM 2. ALG ( G) is properly nested. 
PROOF. From the proof o f  Theorem l,  A L G ( G )  is a structuring of  G. Since the 

flow of  control between nonbranching statements and the exit of  the program is 
represented by EXT(G) ,  and every node in G is accessible f rom the start  node, 
A L G ( G )  is well formed. 

Next, it is shown that ALG (G) uses repeat statements properly. 
(1) First, it is shown that a node p is nested within a repeat statement r if and 

only if p is in a loop tail headed by r. 

Let q be the node entered by an arc f rom r in EXT(G) .  It is straightforward to 
show that q is in a loop tail headed by r and q is nested within r. 

Now consider any node p, p ~ q  and p;~ r. I f  p is nested within r, p is a g- 
descendant of  q. By Lemma 1, p is in a loop tail headed by HEAD(q) .  On the 
other hand, if p is in a loop tail headed by HEAD(q)  --r, r R-dominates p. 
Since r R-dominates p and the only outarc of  r enters q, q R-dominates p. By 
Lemma 1, p is a g-descendant of  q, and p is nested within r. 

Now, control can never jump out of  r and back in without passing through a non- 
branching statement. Thus, for each statement within the body of  r, there is an exe- 
cution path f rom r to the statement and back to r, such that the path never passes 
outside of  r. 

(2) As a result of  the construction of  EXT(G)  f rom G, the first statement within 
a repeat is an sic or if statement and is reached only from the repeat. 

(3) From the depth-first search and the construction of  EXT(G) ,  it follows that a 
repeat node can be reached in EXT(G)  without passing through any node in a loop 
tail headed by the repeat. By part (1) of  this proof, the repeat can be entered 
without first passing through any nonbranching statement nested within the repeat. 
Since a goto can jump only to a nonbranching statement, the repeat can be entered 
without first entering the body of  the repeat. 

(4) If  control passes upward in the program to a statement other than an enclosing 
repeat, it does so via a goto statement. So suppose a goto statement s jumps to a 
statement r above s or to a statement r enclosing s. By definition of  fixcontrol, r is a 
nonbranching statement. 

By (2), s is not the first statement within a repeat. Suppose s is the first statement 
within a clause o f  an if statement p. Then there is an arc f rom p to r in EXT(G) .  
By Lemma 2, this arc is a back arc and r is a repeat enclosing p and s.  

Suppose s follows a statement p at the same level of  nesting. Then r is in 
REACH(p)  and there is an arc f rom p or a node nested within p to r. By definition 
of  REACH sets, r is not  nested within p and r i p .  By Lemma 2, this arc is a back 
arc and r is a repeat enclosing p and s. 

Thus, control can flow to a lexically preceding point in the program only to an en- 
closing repeat. 

Next, it is shown that A L G ( G )  uses if statements properly. 
(5) Let p be an if statement with a "true" ("false") arc to q. Suppose the then 

(else) clause contains a statement r labeled with L. Suppose goto L occurs within 
the innermost repeat enclosing p but outside this clause. The go to  corresponds to an 
arc (u,r) such that u is outside the clause but within the innermost repeat enclosing 
p. By part (1) of  this proof, u is in a loop tail headed by HEAD(p) .  Lemma 2 im- 
plies that the arc is not a back arc. If  r=q, either the arc (p,q) is a back arc or r is in 
a FOLLOW set. In  the former case, Lemma 2 implies that p is nested within r, and 
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in the latter case getform guarantees that r is not nested within the clause. So r~q. 
Now, u is not a g-descendant of  q. By Lemma 1, u is not R-dominated by q. Since u 
is in a loop tail headed by HEAD(q)=HEAD(p), neither is r. By Lemma 1, r i s  not 
a g-descendant of  q, contradicting the fact that r is in the clause. 

(6) Let p be an if statement with a "true" ("false") arc to q. If  q ~s not in the then 
(else) clause, getform implies that q is in a FOLLOlYset or the arc is a back arc, and 
that the clause contains no nonbranching statements. Thus, either q is not in the in- 
nermost repeat enclosing p, or q is reached from the "false" ("true") branch of  p, or q 
is reached from another nonbranching statement not in the clause. 

Now consider a node r~q. Suppose r is within the innermost repeat enclosing p 
but not within the then (else) clause. If  q is not within the clause, the clause con- 
tains no nonbranching statements and r is reached from a statement outside the 
clause or f rom the "false" ("true") arc of  p. So assume q is within the clause. By part 
(1) of  this proof and Lemma 1, r is not R-dominated by q. Since every nonbranch- 
ing statement within the clause is R-dominated by q, r is reached from the "false" 
("true") branch of  p or f rom a nonbranching statement which is within the innermost 
repeat enclosing p but is not within the clause. [] 

COROLLARY. I fgo to  L occurs m ALG(G), then the statement labeled L occurs after 
the goto statement. 

PROOF. The corollary follows f rom part (4) of  the above proof and the fact that 
the algorithm generates a next  in preference to a goto statement which jumps to an 
enclosing repeat. [] 

Finally, it is shown that every statement in ALG(G) is reachable. This justifies 
the comments  in Section 4 after the procedure ehoosebranch. 

LEMMA 3. Every statement ts reachable 3~om the start of the ALG(G).  
PROOF. Since G is a flowgraph in which every node is entered by a path from the 

start  node, and G=COMPUTE(ALG(G)), every nonbranching statement in 
ALG(G) is reachable f rom the start of  the program. It will be shown that every 
branching statement is reachable f rom the start of  the program, f rom a nonbranching 
statement, or from a branching statement lexically preceding it in the program. Con- 
sequently, every statement in the program is reachable. 

Let p be any branching statement within ALG(G). If  p is the first statement in 
the program, it is reachable from the start of  the program. If  p is the first statement 
within any other level of  nesting, it is reachable f rom the statement enclosing it. 
Otherwise, p follows a nonbranching statement. The remainder of  the proof shows 
that every branching statement which follows a nonbranching statement r is reach- 
able from r or from a statement nested within r. 

For each statement p, define LEX(p) as follows. If  p ~s followed at the same level 
of  nesting by a statement q, q--LEX(p). Otherwise, if p is the last statement within 
a clause of  an if statement q, LEX(p)=LEX(q). Otherwise, if p is the last statement 
within a repeat statement q, LEX(p)=q. If  p is the last statement in the program 
LEX(p) is the exit of  the program. 

Define the target of  a branching statement to be the first nonbranching statement 
reached upon executing it. 

Next, it is shown that if r is an if statement and {q}=REACH(r), then 
{q}=REACH(s), where s is the last nonbranching statement to occur at the outer- 
most level within r. Since P is well formed, the exit of  the program is reachable 
f rom s, and REACH(s) is not empty. Moreover,  every member  of  REACH(s) is 
outside r (for either it is below both s and r, or by Theorem 2, part(2) it is a repeat 
containing both s and r). Therefore,  REACH(s)=REACH(r). 

Now, it is shown by mductton that if a branching statement p is LEX(r) for a 
nonbranching statement r, and the target of  p is is the umque member  of  
REACH(r), then p is reached from r or f rom a statement nested within r. The m- 
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duction is based on the number of levels of nesting within p. For the basis, note 
that if r is an sic statement, then LEX(r)  is reached from r. Suppose that the asser- 
tion holds whenever r has at most k levels of nesting. Now suppose that r has k + l  
levels. If r is a repeat, p is reached by a break from within r because its target is in 
REACH(r)  and lower levels of break statements are generated in preference to 
higher levels. So suppose r is an if statement. Consider the else clause of r. If the 
clause is null, LEX(r)  is reached from r. Otherwise, let s be the last statement 
within the clause. If s is a branching statement, its target must be in REACH(r ) ,  
implying that its target ,s the same as the target of p, and s is redundant. Therefore, 
s is a nonbranching statement. Since REACH(s )  is nonempty, R E A C H ( s ) =  
REACH(r) .  Also, LEX(s )=  LEX(r)  ~p. By the induction hypothesis, p is reached 
from r or from within r. 

Finally, suppose a branching statement p follows a nonbranching statement r at 
the same level of nesting. By the definition of fixcontrol, the target of p is the 
unique member of REACH(r) .  By the preceding paragraph, p is reached from r or 
from a statement nested within r. [] 

7. Properttes of  Properly Nested Programs 

This section quotes some results concerning proper nesting which show that any 
properly nested structuring of a flowgraph G must be similar to ALG(G) .  More- 
over, if G has a properly nested structuring with no goto statements, A L G ( G )  has 
no goto statements. 

In a program with proper nesting, the nesting of statements can be characterized 
as follows [4]. 

THEOREM 3[4]. I f  Pl and P2 are equtvalent properly nested reductble programs, then 
they are tdentmal m the number of  occurrences of  each nonbranchmg statement and tn 
how the nonbranchmg statements are nested wtthm each other, but not necessardy m the 
order of  nonbranchmg statements at each level of  nesong. 

Note that this theorem does not state that Pl and P2 are identical in the order of 
nonbranching statements at each level of nesting. In fact, the order of statements is 
not uniquely determined. For example, consider the following code. 

if  (p) then 
{ if (q) then { goto 10 } 

else {} 

else 
{ if (r) then { goto 10 } 

else {} 

x ~ l  
goto 20 

10 x ~ 2  
20 y ~- f(x) 

This segment could be rewritten by exchanging x ~- 2 with x --- 1 and moving the 
goto statements to the else clauses. 

However, there is no flexlbihty in order when no goto statements occur [4]. 
THEOREM 4 [4]. I f  Pl and P2 are equtvalent properly nested programs with no goto 

statements, then PI and P2 are tdenttcal m how nonbranchmg statements are nested and 
m the order ofnonbranchmg statements at each level of  nesting. 

The following theorem shows that AL G(G)  generates a properly nested program 
with no goto statements whenever this is possible. 

THEOREM 5. Let P be a properly nested program. The followtng statements are 
equivalent: 
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(1) 
(2) 
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P has an equivalent properly nested program wtth no goto statements. 
P is reductble, and for each repeat or if statement p, at most one statement outstde 
of p but wtthm the innermost repeat enclosmg p can be reached 3tom p or from 
wtthm p. 

(3) ALG(COMPUTE(P))  ts a properly nested program wtth no goto statements 
equtvalent to P. 

PROOF. (1 = > 2) Let P '  be a properly nested program equivalent to P with no goto 
statements. The lack of goto statements implies that P ' is  reducible. 

Let p be any repeat or if statement. At most one statement within the innermost 
repeat (if any) enclosing p can be reached from p or from within p without a goto, 
since control must pass out of an if or repeat through the bottom. 

( 2 = > 3 )  For each nonbranching statement p, let R (p) denote the unique non- 
branching statement outside of p but within the innermost repeat enclosing p which 
can be reached from p or from within p, if such a statement exists. Apply the algo- 
rithm to COMPUTE(P) to obtain a properly nested program P'. By Theorem 3, Pl 
and P2 are identical in the nesting of nonbranching statements but not necessarily in 
the ordering of statements at each level of nesting. 

Suppose p is a nonbranching statement. It will be shown that if FOLLOW(p)  is 
nonempty, then R (p) is defined and is the unique member of FOLLOW(p).  

Let s be the least member of FOLLOW(p).  Since s is reachable, s is entered 
by a forward arc from a node t. Now, s is dominated by p and 
HEAD(s)=HEAD(p) .  Therefore, either t=p or t is dominated by p. Also, t is 
in a loop tail headed by HEAD(p).  Either t=p or by Lemma 1, t is a g- 
descendant of p. By Lemma 2, t precedes s or t encloses s in the program. 
Thus, either t=p or t is nested within p, implying s=R (p) 

Now, suppose that FOLLOW(p)  has another member q, q ~ R ( p ) .  By 
definition, the immediate dominator of q is p or is nested within p. But R (p) 
must be a closer dominator to q than p or any node nested within p. Therefore, 
no such q exmts. 

Define LEX(p) as in the proof of Lemma 3. It is shown that R(p )= L EX(p )  
whenever R (p) is defined. The proof is by induction on the number of levels en- 
closing p. Assume that the assertion holds for all statements (if any) enclosing p. 

If p is the last nonbranching statement at its level of nesting, and R(p)  is 
defined, then R (p) is below p within the innermost repeat (if any) enclosing p 
and is not the exit of the program. Therefore, p is enclosed by an if statement 
t such that R ( t )=R (p). By the induction hypothesis, L E X ( t ) = R ( t ) .  Thus, 
L E X ( p ) = L E X ( t ) = R  (p). 

Otherwise, let q be the next nonbranching statement after p at the same level of 
nesting Since each FOLLOW set has at most one member, q is in 
FOLLOW(p) ,  implying q=R (p). Thus, no branching statement follows p and 
q=LEX(p) .  

Now, suppose a goto statement g with target q occurs in the program. Either g 
follows a nonbranching statement p or is the first statement within a clause of an if 
statement p. If q is within the innermost repeat enclosing p, the above argument im- 
plies that q=LEX(p)  contradicting the existence of the goto. If q is not within the 
innermost repeat containing p, then q=LEX(r)  for some repeat r enclosing p Thus, 
ehoosebraneh generates a break in preference to the goto, contradicting the ex- 
istence of the goto. Therefore, no goto occurs m the program. 

( 3 = > 1 )  Trivial. [] 
The results in this section suggest that ALG(G)  cannot be greatly improved upon 

within the context of properly nested programs and the limitations imposed by the 



114 B . S .  BAKER 

definition of structuring. The way in which branching statements are used could be 
modified without losing the desirable properties described in this section and Section 
6. It. is possible that restricted use of  code copying, creating subroutines, or creation 
of control variables might improve upon ALG(G)  in some cases, if the definition of 
"structuring" is relaxed to allow these operations. Such extensions of the algorithm 
are left for further research. 

8. Applying the Algortthm 

The algorithm has been implemented in a program called STRUCT [3], which rewrites 
Fortran programs in RATFOR [13]. STRUCr consists of about 4000 lines of code in the 
programming language C [18] and runs on a PDP 11/45 under UNIX [20]. 

RarFog has the following statement types m addition to Fortran statements: re- 
peat, repeat until, while, if else (the keyword then is omitted), and single level 
break and next  statements. The basic algorithm is extended m STRUCr to generate 
whi le  loops and elseless if statements. Predicates are negated when necessary for 
the generation of elseless if statements. STRtJCT keeps each comment  with the fol- 
lowing statement. Since RATFOR has only single-level break and next statements, 
STRUCT chooses its branching statements by a modified version of choosebranch. 
Appendix B contains an example of a Fortran program and the RATFOR program gen- 
erated from it by STRUCT. 

The mechanically structured versions of programs are easier to understand than 
their Fortran counterparts, sometimes dramatically so. Their natural appearance in- 
dicates that the structuring principles describe reasonable programming practices. 
The structured programs usually contain few goto statements. Of course, STROCr 
does not improve programs; it merely displays their structure. A Fortran program 
with peculiar flow of control can have a structured version with many goto state- 
ments. A more extensive discussion of STRUCT, its handling of individual Fortran 
constructs, and its success in structuring Fortran appears in [3]. 

It is expected that STRUCT will be a useful tool in the maintenance of existmg pro- 
grams. New programs may be written in RATFOR, while existing Fortran programs 
may be structured into RATFOR for greater ease of modtfication and debugging. 

Appendtx A 

This appendix contains the proofs of Lemmas 2 and 3. In order to prove them, 
another technical lemma is needed to relate REDUCE(EXT(G))  to EXT(G) when 
G is irreducible. The following lemma is trivially true if G is reducible. 

LE~MA A. 
(3 I f  u R-dommates v, then u < v. 
(tO I f  (r,s) ts an arc m EXT(G) whtch ts replaced by an arc (r,t) m 

REDUCE(EXT(G)) ,  s # t ,  then r < t < s .  
PgOOF. The following assertion, referred to as Assertion A, is helpful in the 

proofs of (i) and (ii). 
Suppose p is not a repeat node, p is in a loop headed by r, and r has an arc to s 
in EXT(G).  Either p=s or p is a descendant of s in the spanning tree generated 
by the depth-first search. 

This assertion is easily proved from the fact that a back arc passes from a descendant 
to an ancestor in the spanning tree. 

(i) Each path from the start node to v in REDUCE(EXT(G))  contains every R- 
dominator of v. Therefore, it suffices to show that there is a path from the start 
node to v in REDUCE(EXT(G))  in which each node other than v is < v. 

If v is a repeat node, let s be the node entered by an arc from v; otherwise, let 
s=v. In G, there is a path start =Po ..... Pn=S in which each arc passes from parent to 
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s=v. In G, there is a path start  =P0 ..... p,=s in which each arc passes f rom parent to 
child in the spanning tree identified by the depth-first search. Since all these arcs are 
forward arcs, each P,<P,+i. In EXT(G) ,  some edges (P,,P,+i) may be replaced by 
edges (p,,t), (t,p,+l) in which t is a repeat node and p,<t<p,+l. Call the new path 
P'. By Assertion A, P '  contains every repeat heading a loop tail containing s. Thus,  
v is on the path whether or not v=s. It is easy to show that this path is also a path in 
REDUCE (EXT( G) ). 

(li) Let u be the node entered by an arc from t. I f  s is a repeat node, let w be the 
node entered by an arc f rom s, otherwise, let w=s. Then u immediately follows t in 
L, and either s=w or w immediately follows s in L. Since t is the head of  a loop tail 
containing s, t <s.  Suppose by way of  contradiction that t < r  Then u < r ,  and u is 
last visited after r is last visited during the depth-first search. 

If  u is also first visited before r is first visited during the search, then r is a descen- 
dant of  u in the spanning tree. But then, there is a path from u to r to w which in- 
cludes no node less than u. Since w is in a loop tail headed by t, there is a path in G 
from w to u not including any node less than u. Consequently, EXT(G)  has a path 
from t to r and from r to t not including any node less than t. Thus, r is in a loop 
tail headed by t, and (r,s) is not replaced by (r,t) in REDUCE(EXT(G)) ,  contradict- 
ing the imtial condition on r. 

Therefore, u is first visited after r. But then, the arc (r,w) is searched before t is 
searched, and w is not a descendant of  t, contradicting Assertion A. [] 

LEMMA 1. A node q ts a g-descendant of a node p tf and only tf p R-dominates q and q 
ts m a loop tad headed by HEAD(p).  

Pgoov. ( = > )  If  q is a g-descendant of  p, there is a sequence P=Po,Pl ..... Pn=q 
such that for each t, getform(p,+0 is called during the outermost  level of  
getform(p,). Suppose n = l ,  i.e. getform(q) is called during the outermost  level of  
getform(p). Either q is in FOLLOW(p)  or q is not in any FOLLOW set and is en- 
tered by an arc f rom p. 

In the former case, HEAD(q)- -HEAD(p)  by definition. If  p is an if node or sic 
node, p = R D O M ( q )  by definition of  FOLLOW sets. I f  p is a repeat node, 
RDOM(q)  is in a loop tall headed by p and p R-dominates RDOM(q) .  By transitivi- 
ty, p R-dominates q. 

In the latter case, q is entered by only one forward arc in REDUCE(EXT(G)) .  If  
q is entered by a back arc (s,q) in REDUCE(EXT(G)) ,  (s,q) is also a back arc in 
EXT(G) by Lemma A. Consequently, s is in a loop tall headed by q, and q R- 
dominates s. Therefore,  back arcs need not be considered in finding RDOM(q) .  
Since the only forward arc entering q is (p,q), p=RDOM(q) .  Moreover,  since q is 
not in the FOLLOW set of  any repeat node, q is in a loop tail headed by 
HEAD (RDOM(q)  ) =HEAD (p). 

The proof is completed for n > 1 by applying the above argument inductively and 
noting the transitivity of  the dominance relation and containment in loops. 

(< - - )  Suppose node p R-dominates q and q is in a loop tail headed by HEAD(p).  
The R-dominance relation provides a sequence p=ro ..... rn=q such that for each j <  n, 
rj=RDOM(rj+i). Obtain a subsequence p--so ..... sm--q by deleting each rj such that q 
is not in a loop tail headed by HEAD(rj). Obviously, So=p and Sm--q. By transitivi- 
ty, each sj R-dominates sj+l, for j ~ 0  ..... m - 1 .  

Consider any s,, 1 ~<t<m, for whmh HEAD(s,) is defined. Since the loop headed 
by HEAD(s,) is entered only through HEAD(s,) in REDUCE(EXT(G)) ,  HEAD(s,) 
must be a closer R-dominator  to q than any other R-dominator t of  q not in this 
loop, i.e. t R-dominates HEAD(s,). Therefore, if s,-i is not  in a loop tail headed by 
HEAD(s,), s,_i=HEAD(s,). Moreover,  s,+l is in a loop tail headed by HEAD(s,). 
For otherwise, both s, and s,+l R-dominate q, implying that s,+l R-dominates 
HEAD(s,). But this contradicts the fact that HEAD(s,) R-dominates s, which R- 
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dominates s,+l. 
Now, suppose HEAD (s,) # HEAD (S,+l) for some i. I f  HEAD (s,) is undefined, the 

inequality guarantees that HEAD(s,+i) is defined, and by definition, HEAD(s,+i) is 
in a loop tail headed by HEAD(s,). I f  HEAD(s,) is defined, the preceding paragraph 
implies that s,+l is in a loop tail headed by HEAD(s,). Since HEAD(s,) 
HEAD(s,+i), s, cannot also be in a loop tail headed by HEAD(s,+i). By the preced- 
ing paragraph, s,~HEAD(s,+i), and s, is a repeat node. Since q is in a loop tail 
headed by s, =HEAD(s,+i), the node entered by an arc f rom s, cannot have been 
deleted; this node must  be S,+l. Since this node is entered by no other arcs, S,+l is 
not in any FOLLOWset  and getform(s,+l) is called during getform(s,).  

Now suppose HEAD(s,)=HEAD(s,+i). If  s, #RDOM(s,+O,  then s, is a repea t  
node and RDOM(s,+i) is in a loop tail headed by s,. Therefore,  s,+: is in 
FOLLOW(s,).  On the other hand, suppose s,--RDOM(s,+i). If  S,+l is entered by 
two or more forward arcs in REDUCE(EXT(G)) ,  then s, is an if node and s,+l is in 
FOLLOW(s,).  Otherwise, either s, is an s|e node and S,+l is in FOLLOW(s,) ,  or s, 
is an if node with an arc to s,+l and s,+l is not  in any FOLLOW set. In each case, 
getform(s,+l) is called during getform(s,). [] 

LEMMA 2. I f  (r,s) tS a back arc m EXT(G) ,  then s ts a repeat node and r is nested 
wtthtn s in ALG(G) .  l f ( r , s )  ts a forward arc m EXT(G) ,  then eaher s is nested wtthm 
r or sts  after r m ALG(G) .  

PROOF. If (r,s) is a back arc in EXT(G) ,  then s is a repeat node by construction 
o f  EXT(G)  and r is in a loop headed by s. By part (1) o f  the proof o f  Theorem 2, r 
is nested within s in ALG(G) .  

Suppose (r,s) is a forward arc in EXT(G).  By definition, r < s .  Since the con- 
struction of  EXT(G)  eliminates self-loops, r # s .  If  s is a g-descendant of  r, then 
getform(s) is called before getform(r) ,  and either r is nested within s or s is above r. 
I f  r is a g-descendant of  s, then s R-dominates r by Lemma 1. By Lemma A(i) ,  
s < r, contradicting the choice of  r < s. 

So suppose neither r nor s is a g-descendant o f  the other. Let t be the "closest" 
common  g-ancestor of.  r and s ,  i.e. there is no g-descendant of  t which is a g- 
ancestor of  both r and s. Let u be such that getform(t) calls getform(u) and either 
u=r or r is a g-descendant of  u. Let  v be such that getform(t) calls getform(v) and 
either v f s  or s is a g-descendant of  v. 

If  r is in a loop tail headed by HEAD(s) ,  let z=s. Otherwise, let z be the node 
such that the arc (r,s) is replaced in REDUCE(EXT(G))  by an arc (r,z). In the 
former case, r<sffiz since (r,s) is a forward arc. In the latter case, r < z  by Lemma 
A(ii). The following argument  shows that vffiz: 

Either zffis or z is the head of  a loop tail containing s. In the latter case, s is 
nested within z by part (1) of  the proof of  Theorem 2, and s is a g-descendant 
of  z. Either s=v or s is a g-descendant o f  v. Thus,  either zffiv or z is a g- 
descendant of  v or v is a g-descendant of  z 
If  v is a g-descendant of  z, so are u and r. By Lemma 1, z R-dominates r. By 
Lemma Aft) ,  z<r. But from earlier, r<z. The contradictton implies that v is 
not a g-descendant of  z. 
Suppose z is a g-descendant of  v. Then z is in a loop tail headed by HEAD(v)  
by part (1) of  the proof of  Theorem 2. Moreover,  so is r. Since r is not a g- 
descendant of  v, Lemma 1 implies that v does not R-dominate r. But then the 
arc (r,z) prevents v f rom R-dominating z,  which contradicts Lemma 1. 
The conclusion is that vffiz. 

Next, it is shown that z is m FOLLOW(t) .  Suppose z is not  in any FOLLOWset.  
Then only one forward arc enters z in REDUCE(EXT(G))  and it originates at t. But 
(r,z) is also a forward arc entering z in REDUCE(EXT(G)) ,  and r~ t .  Consequent-  
ly, z is in a FOLLOW set. Moreover,  it must  be in FOLLOW(t)  in order for 
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By L e m m a  1, u ~< r a n d  f r o m  a b o v e ,  r < z .  E i t h e r  u is n e s t e d  w i t h i n  t wh i l e  z fol-  
lows t, o r  u is a lso in  FOLLOW(t) a n d  g e t f o r m ( u )  is ca l l ed  b e f o r e  g e t f o r m ( z ) .  
T h e r e f o r e ,  g e t f o r m ( r )  is ca l led  b e f o r e  g e t f o r m ( z ) ,  a n d  z appea r s  a f t e r  r in  ALG(G). 
E i t h e r  s=z or  z is t he  h e a d  o f  a loop  c o n t a i n i n g  s a n d  s is n e s t e d  w i t h i n  z by  par t  (1)  
o f  t he  p r o o f  o f  T h e o r e m  2. T h e r e f o r e ,  s is a f t e r  r in  ALG(G). [] 

Appendtx B 

A F o r t r a n  s u b r o u t i n e  ( f r o m  R.C.  S i n g l e t o n ,  A l g o r i t h m  347,  A n  eff ic ient  a l g o r i t h m  
for  so r t i ng  w i t h  m i n i m a l  s to rage ,  Comm. ACM 12, 3 ( M a r c h  1969) ,  p. 186,  w i t h  
s o m e  a d d e d  c o m m e n t s ) :  

subroutine sort(a,ii,jj) 
c variation on quicksort sorts array a into increasing order from a(ii) to a ~ )  
c arrays iu(k) and il(k) permit sorting up to 2"*(k+1)-1  elements 

dimension a(1),iu(16),il(16) 
integer a,t,tt 
m----1 
i = i i  
j = j j  

5 if (i .ge.j) goto 70 
e set t to median of a(i), a( ( i+j) /2) ,  a(j) 
10 k - - - - i  

lj = q + i ) / 2  
t = a(ij) 
if (a(1) .le. t) goto 20 
a(ij) -- a(i) 
a(i)  = t 
t=a(i j )  

20 l= j  
if  (a(j) .ge. 0 goto 40 
a(q) = aq) 
aq) = t 
t = a(ij) 
if (a(i) .ie. t) goto 40 
a(ij) = a(i) 
a(D = t 
t = a(ij) 
goto 40 

30 a(l) = a(k) 
a(k) = tt 

c use t to split segment 
40 ! = !-1 

if (a(I) .gt. t) goto 40 
tt -- a(i)  

50 k = k ÷ l  
if (a(k) .It. t) goto 50 
if  (k  .le. D goto 30 

c stack one segment to be sorted later 
if ( l - i  .le. j - k )  goto 60 
il(m) = i 
iu(m) = I 
i = k  
m = m + l  
goto 80 

60 i l (m)  = k 
iu (m)  = j  
j = l  
m = m + l  
goto 80 

c find next segment to be sorted 
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70 m Z m - - 1  
if(m.eq. 0) return 
i= i l (m)  
j = iu (m) 

80 if ( j - i  .ge. 11) goto 10 
c sort smal l  segments  

if (i .eq. ii) goto 5 
i = i - I  

90 i = i + l  
if (i .eq. j) goto 70 
t = a ( i + l )  
if (a(i) .le. t) goto 90 
k = i  

100 a ( k + l )  = a(k) 
k = k - I  
if (t .It. a(k)) goto 100 
a ( k + l )  = t 
goto 90 
end 

The preceding program as structured by STRUCT is: 

subroutine sort(a,ii,jj) 
# variation on quicksort sorts array a into increasing order from a(ii) to a(jj) 
# arrays in(k) and il(k) permit sorting up to 2 * * ( k + l ) - I  e lements  

dimension a(1),iu(16),il(16) 
integer a,t,tt 
m = l  
i = i i  
j = j j  
repeat 

{ if ( i< j )  
go to 10 

repeat 
{ 

# find next  segment  to be sorted 
m = m - I  
if (m = =0)  

return 
i = il(m) 
j = iu(m) 
while ( j - i >  =11) 

{ 
# set t to median of a(i), a ( ( i + j ) / 2 ) ,  a(j) 

10 k = i  
= q +i)12 

t = a(ij) 
if (a(i) > t )  

{ a(ij) = a(i) 
a(i) = t 
t = a(ij) 

} 
I = j  
if (a(j) < t )  

{ a(19 = aq) 
aq) = t 
t = a(ij) 
if (a(i) > t) 

{ a(ij) = a(i) 
a(i) = t 
t = a(ij) 

} 
} 
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repeat 

# use t to split segment  
I---- i - 1  
if (a(l) < ~-t) 

{ tt = a(l) 
repeat 

{ k = k + l  
if (a(k) > ----t) 

break 
} 

if (k > 1) 
break 

a(I) = a(k) 
a(k) = tt 

} 
} 

# stack one segment  to be sorted later 
if ( I - i  < ---j-k) 

{ il(m) = k 
iu(m) ---- j 
j = l  
m = m + l  

} 
else 

{ il(m) -~ i 
in(m) ~- I 
i - ---k 
m ---- m + l  

} 
} 

# sort small  segments  
if (i -'~ ----ii) 

break 
i = i - I  
repeat 

{ i ---- i+1  
if ( i=  = j )  

break 
t ---- a( i+ l )  
if (a(i) > t )  

{ k = i  
repeat 

} 

} 

FetuFn 
end 

{ a ( k + l )  = a(k) 
k ~ - k - 1  
if ( t >  -~-a(k)) 

break 

a(k+ l )  ---- t 
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