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Forty Years On
Forty years on, when far and asunder

Parted are those who are singing today,

When you look back, and forgetfully wonder
What you were like in your work and your play;

Then, it may be, there will often come o'er you

Glimpses of notes like the catch of a song |

Visions of boyhood shall oat them before you,

Echoes of dreamland shall bear them along.

Follow up! Follow up! Follow up! Follow up!
Till the �eld ring again and again,

With the tramp of the twenty-two men,

Follow up! Follow up!

Routs and discom�tures, rushes and rallies,

Bases attempted, and rescued, and won,
Strife without anger, and art without malice, |
How will it seem to you forty years on?

Then you will say, not a feverish minute
Strained the weak heart, and the wavering knee,
Never the battle raged hottest, but in it

Neither the last nor the faintest were we!
Follow up! Follow up!

O the great days, in the distance enchanted,
Days of fresh air, in the rain and the sun,

How we rejoiced as we struggled and panted |
Hardly believable, forty years on!
How we discoursed of them, one with another,
Auguring triumph, or balancing fate,

Loved the ally with the heart of a brother,

Hated the foe with a playing at hate!
Follow up! Follow up!

Forty years on, growing older and older,
Shorter in wind, and in memory long,

Feeble of foot and rheumatic of shoulder,
What will it help you that once you were strong?
God gives us bases to guard or beleaguer,

Games to play out, whether earnest or fun,

Fights for the fearless, and goals for the eager,
Twenty, and thirty, and forty years on!

Follow up! Follow up!

Edward Ernest Bowen (1836-1901)
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Chapter 1

Introduction

In this chapter, we present an introduction to the contents and the structure of this dis-

sertation.

1.1 Problem statement

A number of fundamental computing science problems have been extensively studied since
the 1950s and the 1960s. As these problems were studied, numerous solutions (in the form
of algorithms) were developed over the years. Although new algorithms still appear from

time to time, each of these �elds can be considered mature. In the solutions to many of
the well-studied computing science problems, we can identify three de�ciencies:

1. Algorithms solving the same problem are di�cult to compare to one another. This
is usually due to the use of di�erent programming languages, styles of presentation,

or simply the addition of unnecessary details.

2. Collections of implementations of algorithms solving a problem are di�cult, if not
impossible, to �nd. Some of the algorithms are presented in a relatively obsolete
manner, either using old notations or programming languages for which no compil-
ers exist, making it di�cult to either implement the algorithm or �nd an existing

implementation.

3. Little is known about the comparative practical running time performance of the
algorithms. The lack of existing implementations in one and the same framework,

especially of some of the older algorithms, makes it di�cult to determine the running

time characteristics of the algorithms. A software engineer selecting one of the algo-
rithms will usually do so on the basis of the algorithm's theoretical running time, or

simply by guessing.

In this dissertation, a solution to each of the three de�ciencies is presented for each of the
following three fundamental computing science problems:

3



4 CHAPTER 1. INTRODUCTION

1. Keyword pattern matching in strings. Given a �nite non-empty set of keywords

(the patterns) and an input string, �nd the set of all occurrences of a keyword as a

substring of the input string.

2. Finite automata (FA) construction. Given a regular expression, construct a �nite

automaton which accepts the language denoted by the regular expression.

3. Deterministic �nite automata (DFA) minimization. Given a DFA, construct the

unique minimal DFA accepting the same language.

We do not necessarily consider all of the known algorithms solving the problems. For exam-
ple, we restrict ourselves to batch-style algorithms1, as opposed to incremental algorithms2.

Some �nite automata construction algorithms considered in [Wat93a] can be used in a

(rudimentary) incremental fashion (this is an coincidental side-e�ect of the algorithm

derivations presented there). A much more advanced treatment of incremental algorithms

is given in [HKR94], where the construction of �nite automata (for compiler lexical anal-
ysis) is considered as an example.

In the following section, we present a broad overview of the structure of this dissertation,
describing the solutions to the three de�ciencies. Following this, is a discussion of the

intended audience.

1.2 Structure of this dissertation

The dissertation is divided into �ve parts. Parts I contains the prologue | the introduction
(this chapter) and the mathematical preliminaries. Part V contains the epilogue | the

conclusions, some challenges and directions for future work, the literature references, the
index, the summary, the Dutch summary, and my curriculum vitae.

The di�culty of comparing algorithms solving the same problem is addressed by con-

structing a taxonomy of all of the algorithms solving the particular problem. Part II
presents a collection of such taxonomies. Since Chapter 3 contains an introduction to the

method of constructing taxonomies, we present only a brief outline here. Each of the al-

gorithms is rewritten in a common notation and inspected to determine its essential ideas

and ingredients (collectively known as details). The details take one of two forms: problem
details are restrictions of the problem, whereas algorithm details are transformations to the

algorithm itself. Each algorithm can then be characterized by its set of constituent details.

In constructing the taxonomy, the common details of several algorithms can be factored

out and presented together. From this factoring process, we construct a `family tree' of the
algorithms | indicating what any two of the algorithms have in common and where they

1A batch-style algorithm is one which performs some computation on its input, produces output, and
terminates.

2An incremental algorithm is one which is able to deal with a change in the input without necessarily
recomputing from scratch. For example, an incremental keyword pattern matching algorithm would be
able to deal with the addition of a new pattern keyword, without redoing all of the precomputation.
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di�er. After this introduction to the method of constructing taxonomies, the taxonomies

themselves are presented in the remaining chapters of Part II. Pattern matching algo-

rithms are considered in Chapter 4, FA construction algorithms in Chapter 6, and DFA

minimization algorithms in Chapter 7. An additional chapter (Chapter 5) presents a new

pattern matching algorithm (which was derived from one of the taxonomies), answering
an open question posed by A.V. Aho in [Aho80, p. 342].

Part III presents a pair of toolkits, thus solving the second of the three de�ciencies
previously outlined. The toolkits are implemented (as object-oriented C++ class libraries)

directly from the taxonomies given in Part II. The inheritance hierarchy of each of the

toolkits also follows directly from the family tree structure of the (respective) taxonomies.

Chapter 8 provides an introduction to the design and implementation of class libraries,

including the attendant problems and issues. The SPARE Parts3, a toolkit of pattern
matching algorithms, is detailed in Chapter 9. Chapter 10 describes the FA construction

algorithms implemented in FIRE Lite4, a toolkit of �nite automata algorithms. The DFA

minimization algorithms which are implemented in FIRE Lite are described in Chapter 11.
This part assumes a good grasp of the C++ programming language and the related ter-
minology; references for books covering C++ are given in Chapter 8.

In Part IV, we consider the practical performance of many of the algorithms derived

in Part II and implemented in the toolkits, thereby addressing the third de�ciency intro-
duced above. A wide variety of input data was used to gather information on most of

the algorithms presented in the taxonomies. Although there is little to say about such

data-gathering methods, Chapter 12 lists the principles used. Chapters 13, 14, and 15
present data on the performance of the keyword pattern matching, FA construction, and
DFA minimization algorithms, respectively.

1.3 Intended audience

The intended audience of this dissertation can be divided into a number of di�erent groups.
Each of these groups is mentioned in the following paragraphs, along with an outline of

chapters and topics of particular interest to each group.

� Taxonomists. A number of areas of computing science are now mature enough that

the corresponding algorithms can be taxonomized. Creating a taxonomy serves to
bring order to the �eld, in a sense `cleaning it up'. Since the taxonomies also serve

as useful teaching aids and surveys of the �eld, it can be expected that more algo-

rithm families will be taxonomized. The taxonomies given in Part II can be used as

examples when creating new taxonomies.

� Algorithm designers. Embedded in each of the taxonomies are a number of new

algorithms. The method of taxonomy development is well suited to the discovery

3String PAttern REcognition.
4FInite automata and Regular Expressions.
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of new algorithms. Algorithm designers can use the method of taxonomization to

develop new algorithms, and should read Part II. (Readers who think that the most

e�cient algorithms for these problems have already been discovered, should read

Part IV, which shows that some of the new algorithms have practical importance.)

The new regular expression pattern matching algorithm (given in Chapter 5) is a
particularly good example of an algorithm which was designed using a mathematical
approach to program construction. It is unlikely that the algorithm could have been

developed using more traditional `hack and debug' techniques.

� Class library writers/generic program writers. Techniques for structuring and writing

class libraries (especially generic class libraries | those that are type parameterized

as in [MeyB94]) are still in their infancy. Parts II and III together present a method

of structuring class libraries and their inheritance hierarchies from the corresponding

taxonomies. The fact that the taxonomies implicitly contain algorithm proofs, yields

a high degree of con�dence in the quality of the class libraries.

� Programmers. Programmers needing implementations of algorithms for keyword pat-
tern matching, �nite automata construction, or deterministic �nite automata mini-
mization should read the chapters of Part III which are relevant to their needs. A

solid background in C++ and object-oriented programming is required. To best

understand the algorithms, programmers should read the chapters of Part II which
correspond to the toolkits they are using. When selecting an algorithm, a program-

mer can make use of the data and recommendations presented in Part IV.

� Software engineers. The taxonomies (Part II) provide a successful example of manip-
ulating abstract algorithms, obtained directly from a speci�cation, into more easily

implemented and e�cient ones. Furthermore, the abstract algorithms and the im-
plementation techniques described in Chapter 8 combine well to produce the toolkits
described in Part III.



Chapter 2

Mathematical preliminaries

In this chapter, we present a number of de�nitions and properties required for reading
this dissertation. This chapter can be skipped and referred to while reading individual

chapters. De�nitions that are used only in one chapter will be presented when needed, and
can be considered `local' to that chapter.

2.1 Notations and conventions

In the taxonomies, we aim to derive algorithms that correspond to the well-known ones
found in the literature. For this reason, we will frequently name variables, functions,

predicates, and relations such that they correspond to their names as given in the literature.

Furthermore, we will adopt the commonly used names for standard concepts, such as O
for `big-oh' (running time) notation. While this makes it particularly di�cult to adopt

completely uniform naming conventions, the following conventions will be used for names
that do not have historical signi�cance.

Convention 2.1 (Naming functions, sets, etc.): We will adopt the following general
naming conventions:

� A;B;C for arbitrary sets.

� D;E;F;G;H for relations.

� V;W for alphabets.

� a; b; c; d; e for alphabet symbols.

� r; s; t; u; v; w; x; y; z for words (over an alphabet).

� L;P for languages.

� h; i; j; k for integer variables.

� M;N for �nite automata (including Moore machines).

7
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� p; q; r for states, and Q for state sets.

� Lower case Greek letters, such as ; �; � for automata transition functions.

� I; J for predicates used to express program invariants.

Functions, some relations, and predicates (other than those used to express program in-

variants) will frequently be given names longer than one letter, chosen to be suggestive of
their use. Sometimes subscripts, superscripts, hats, overbars or prime symbols will be used

in addition to one of the aforementioned names. 2

New terms will be typeset in an italic shape when they are �rst mentioned or de�ned.

Notation 2.2 (Symbol ?): We will frequently use the symbol ? (pronounced `bottom')

to denote an unde�ned value (usually in the codomain of a function). 2

2.2 Basic de�nitions

In this section, we present some basic de�nitions which are not speci�c to any one topic.

De�nition 2.3 (Powerset): For any set A we use P(A) to denote the set of all subsets
of A. P(A) is called the powerset of A; it is sometimes written as 2A in the literature. 2

De�nition 2.4 (Alphabet): An alphabet is a �nite non-empty set of symbols. We will

sometimes use the term character instead of symbol. 2

De�nition 2.5 (Nondeterministic algorithm): An algorithm is called nondeterminis-
tic if the order in which its statements can be executed is not �xed. 2

Notation 2.6 (Quanti�cations): We assume that the reader has a basic knowledge of
the meaning of quanti�cation. We use the following notation in this dissertation:

(� a : R(a) : f(a))

where � is the associative and commutative quanti�cation operator (with unit e�), a is the

dummy variable introduced (we allow the introduction of more than one dummy),R is the
range predicate on the dummy, and f is the quanti�cation expression (usually a function

involving the dummy). By de�nition, we have:

(� a : false : f(a)) = e�

The following table lists some of the most commonly quanti�ed operators, their quanti�ed

symbols, and their units:

Operator _ (9) ^ (8) [ ([) min (MIN) max (MAX) + (�)

Unit false true � +1 �1 0
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2

Notation 2.7 (Sets): For any given predicate P , we use f a j P (a) g to denote the set of
all a such that P (a) holds. 2

De�nition 2.8 (for-rof statement): The for-rof statement is taken from [vdEi92].

Given predicate P and statement S, the statement for x : P ! S rof amounts to executing

statement list S once for each value of x that satis�es P initially (assuming that there are
a �nite number of such values for x). The order in which the values of x are chosen is

arbitrary. 2

Notation 2.9 (Conditional conjunction): We use cand and cor to refer (respectively)
to conditional conjunction and conditional disjunction. 2

De�nition 2.10 (Sets of functions): For any two sets A and B, we use A �! B to

denote the set of all total functions from A to B. We use A 6�! B to denote the set of all

partial functions from A to B. 2

Notation 2.11 (Function signatures): For any two sets A and B, we use the notation

f 2 A �! B to indicate that f is a total function from A to B. Set A is said to be
the domain of f while B is the codomain of f . We can also write dom(f) = A and

codom(f) = B. 2

Convention 2.12 (Relations as functions): For sets A and B and relation E � A�B,
we can interpret E as a function E 2 A �! P(B) de�ned as E(a) = f b j (a; b) 2 E g, or
as a function E 2 P(A) �! P(B) de�ned as E(A0) = f b j (9 a : a 2 A0 : (a; b) 2 E) g. 2

Notation 2.13 (Naturals and reals): We use the symbols N and R to denote the set

of all natural numbers, and the set of all real numbers respectively. De�ne N+ = N n f0g.
We will also de�ne [i; j) = f k j i � k < j ^ k 2 Ng, (i; j] = f k j i < k � j ^ k 2 Ng,
[i; j] = [i; j) [ (i; j], and (i; j) = [i; j) \ (i; j]. 2

De�nition 2.14 (Relation composition): Given sets A;B;C (not necessarily di�erent)

and two relations, E � A�B and F � B�C, we de�ne relation composition (in�x operator
�) as

E � F = f (a; c) j (9 b : b 2 B : (a; b) 2 E ^ (b; c) 2 F ) g

2

We will also use the symbol � for the composition of functions.

Remark 2.15: Note that function composition is di�erent from relation composition.

This can cause confusion when we are viewing relations as functions. For this reason, it
will be clear from the context which type of composition is intended. 2
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De�nition 2.16 (Relation exponentiation): Given set A and relation E � A�A, we

de�ne relation exponentiation recursively as: E0 = IA (where IA is the identity relation on

A) and E
k = E � Ek�1 (k � 1). Note that IA is the unit of �. 2

De�nition 2.17 (Closure operator on relations): Given set A and relation E � A�

A, we de�ne the �-closure of E as:

E
� = ([ i : 0 � i : Ei)

Note, if E is symmetrical then E
� is an equivalence relation. 2

De�nition 2.18 (Idempotence): For any set A and function f 2 A �! A, we say that
f is idempotent if f � f = f . 2

Notation 2.19 (Alternation expressions): For any given predicate P , we use the

following shorthand

if P then e1 else e2 � =

(
e1 if P

e2 otherwise

2

De�nition 2.20 (Minimum and maximum): De�ne max and min to be in�x binary
functions on integers such that

imax j = if i � j then i else j �

imin j = if i � j then i else j �

2

Recall from Notation 2.6 that max and min have as units �1 and +1, respectively.

We will sometimes de�ne functions with codomain N; these functions will frequently
have de�nitions involving MIN or MAX quanti�cations, which can have value +1 or
�1 (respectively). For notational convenience, we assume +1;�1 2 N.

Property 2.21 (Conjunction and disjunction in MIN quanti�cations): For pred-

icates P;P 0 and integer function f we have the following two properties:

(MIN i : P (i) ^ P 0(i) : f(i)) � (MIN i : P (i) : f(i))max(MIN i : P 0(i) : f(i))
(MIN i : P (i) _ P 0(i) : f(i)) = (MIN i : P (i) : f(i))min(MIN i : P 0(i) : f(i))

2
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Property 2.22 (MIN and MAX quanti�cations with quanti�ed ranges): Given

that universal quanti�cation over a �nite domain is shorthand for conjunction, and existen-

tial quanti�cation over a �nite domain is shorthand for disjunction, we have the following

general properties (where P is some range predicate, f is some integer function, and the

8 and 9 quanti�ed j is over a �nite domain):

(MIN i : (8 j :: P (i; j)) : f(i)) � (MAX j :: (MIN i : P (i; j) : f(i)))
(MIN i : (9 j :: P (i; j)) : f(i)) = (MIN j :: (MIN i : P (i; j) : f(i)))

2

De�nition 2.23 (Precedence of operators): We specify that set operators have the
following descending precedence: �, \, and [. 2

De�nition 2.24 (Tuple projection operators): For an n-tuple t = (x1; : : : ; xn) we

use the notation �i(t) (1 � i � n) to denote tuple element xi; we use the notation ��i(t)

(1 � i � n) to denote the (n� 1)-tuple (x1; : : : ; xi�1; xi+1; : : : ; xn). Both �i and ��i extend

naturally to sets of tuples. 2

Convention 2.25 (Tuple arguments to functions): For functions (or predicates) tak-
ing a single tuple as an argument, we usually drop one set of parentheses in a function
application. 2

De�nition 2.26 (Tuple and relation reversal): For an n-tuple (x1; x2; : : : ; xn) de�ne
reversal as function R given by:

(x1; x2; : : : ; xn)
R = (xn; : : : ; x2; x1)

2

Forward reference 2.27: We will also be de�ning reversal of strings (in De�nition 2.40).
These operators extend naturally to sets of tuples (relations) and to sets of strings (lan-

guages). A reversal operator is usually written as a post�x and superscript operator;
however, we will sometimes write it as a normal function. Reversal operators are their
own inverses. In subsequent sections of this dissertation, we will also be de�ning reversal

operators for more complex structures, such as �nite automata and regular expressions. 2

De�nition 2.28 (Dual of a function): We assume two sets A and B whose reversal
operators are RA and RB respectively. Two functions f 2 A �! B and fd 2 A �! B are
one another's dual if and only if

f(a)RB = fd(a
RA)

2

De�nition 2.29 (Symmetrical function): A symmetrical function is one that is its own

dual. 2
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Proposition 2.30 (Symmetrical functions): The composition of two symmetrical func-

tions is again symmetrical. 2

Notation 2.31 (Equivalence classes of an equivalence relation): For any equiva-

lence relation E on set A, we use [a]E to denote the set f b j (a; b) 2 E g. Note that

a 2 [a]E. We also denote the set of equivalence classes of E by [A]E; that is

[A]E = f [a]E j a 2 A g

The set [A]E is also called the partition of A induced by E. Since all partitions are induced

by a unique equivalence relation, we will sometimes also refer to the equivalence relation

inducing a particular partition. 2

De�nition 2.32 (Index of an equivalence relation): For equivalence relation E on

set A, de�ne ]E = j[A]Ej (i.e. the number of equivalence classes under E). ]E is called the
index of E. 2

De�nition 2.33 (Re�nement of an equivalence relation): For equivalence relations
E and E

0 (on set A), E is a re�nement of E0 (written E v E
0) if and only if E � E

0. An

equivalent statement is that E v E
0 if and only if every equivalence class (of A) under E

is entirely contained in some equivalence class (of A) under E0. 2

De�nition 2.34 (Re�nement relation on partitions): We can also extend our re-
�nement relation to partitions. For equivalence relations E and E

0 (on set A), we write
[A]E v [A]E0 if and only if E v E

0. 2

Property 2.35 (Equivalence relations): Given two equivalence relations E;F of �nite
index, we have the following property:

(E v F ) ^ (]E = ]F )) (E = F )

2

De�nition 2.36 (Complement of a relation): Given two sets (not necessarily distinct)

A and B, and relation E � A� B we de�ne the complement of relation E (written :E)

as :E = (A�B) n E. 2

De�nition 2.37 (Preserving a predicate): A function f 2 Bn �! B (for �xed n � 1)

is said to preserve predicate (or property) P (on B) if and only if

(8 b : b 2 Bn \ (dom(f)) ^ (8 k : 1 � k � n : P (�k(b))) : P (f(b)))

2

Intuitively, a function f preserves a property P if, when every argument of f satis�es P ,

the result of f applied to the arguments also satis�es P .
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2.3 Strings and languages

In this section, we present a number of de�nitions relating to strings and languages.

De�nition 2.38 (Set of all strings): Given alphabet V , we de�ne V � to be the set of
all strings over V . For more on this, see De�nition 2.48. 2

Notation 2.39 (Empty string): We will use " to denote the string of length 0 (the

empty string). Some authors use � or � to denote the empty string. 2

De�nition 2.40 (String reversal function R): Assuming alphabet V , we de�ne string

reversal function R recursively as "R = " and (aw)R = w
R
a (for a 2 V;w 2 V �). 2

De�nition 2.41 (String operators �; �; �; �): Assuming alphabet V , we de�ne four (in�x)

operators �; �; �; � 2 V � � N �! V
� as follows:

� w�k is the kmin jwj leftmost symbols of w

� w�k is the (jwj � k)max0 rightmost symbols of w

� w�k is the kmin jwj rightmost symbols of w

� w�k is the (jwj � k)max0 leftmost symbols of w

The four operators are pronounced `left take', `left drop', `right take', and `right drop'
respectively. 2

Property 2.42 (String operators �; �; �; �): Note that

(w�k)(w�k) = w

and

(w�k)(w�k) = w

2

Example 2.43 (String operators �; �; �; �): (baab)�3 = baa, (baab)�1 = aab, (baab)�5 =

baab, and (baab)�10 = ". 2

De�nition 2.44 (Language): Given alphabet V , any subset of V � is a language over V .

2

De�nition 2.45 (Concatenation of languages): Language concatenation is an in�x
operator � 2 P(V �)�P(V �) �! P(V �) (the dot) de�ned as

L � L0 = ([ x; y : x 2 L ^ y 2 L0 : fxyg)

The singleton language f"g is the unit of concatenation and the empty language � is the
zero of concatenation. 2
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Notation 2.46 (Concatenation of languages): We will frequently use juxtaposition

instead of writing operator � (i.e. we use LL0 instead of L � L0). For language L and string

w, we take Lw to mean Lfwg. 2

De�nition 2.47 (Language exponentiation): We de�ne language exponentiation re-

cursively as follows (for language L): L0 = f"g and L
k = LL

k�1 (k � 1). 2

Note that V k is the set of all strings of length k over alphabet V .

De�nition 2.48 (Closure operators on languages): We de�ne two post�x and super-

script operators on languages over alphabet V . Operator � 2 P(V �) �! P(V �) (known

as Kleene closure) is

L
� = ([ i : 0 � i : Li)

and operator + 2 P(V �) �! P(V �) is

L

+ = ([ i : 1 � i : Li)

Note that L� = L
+ [ f"g. 2

The language V � is the set of all strings over alphabet V .

De�nition 2.49 (Unary language operators : and ?): Assuming an alphabet V , pre-
�x operator : 2 P(V �) �! P(V �) is de�ned as

:L = V
� n L

while post�x and superscript operator ? 2 P(V �) �! P(V �) is de�ned as

L

? = L [ f"g

2

De�nition 2.50 (Functions pref and su�): For any given alphabet V , de�ne pref 2
P(V �) �! P(V �) and su� 2 P(V �) �! P(V �) as

pref(L) = ([ x; y : xy 2 L : fxg)

and

su�(L) = ([ x; y : xy 2 L : fyg)

Intuitively, pref(L) (respectively su�(L)) is the set of all strings which are (not necessarily
proper) pre�xes (respectively su�xes) of strings in L. 2

Property 2.51 (Idempotence of pref and su�): It follows from their de�nitions that

pref and su� are both idempotent. 2
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Property 2.52 (Duality of pref and su�): Functions pref and su� are duals of one

another. This can be seen as follows:

pref(LR)

= fde�nition of pref g

([ x; y : xy 2 LR : fxg)

= fxy 2 LR � (xy)R 2 L g

([ x; y : (xy)R 2 L : fxg)

= f (xy)R = y
R
x
R g

([ x; y : yRxR 2 L : fxg)

= f change of bound variable: x0 = x
R, y0 = y

R g

([ x
0
; y

0 : y0x0 2 L : fx0Rg)

= fR distributes over [g

([ x
0
; y

0 : y0x0 2 L : fx0g)R

= fde�nition of su� g

su�(L)R

2

Notation 2.53 (String arguments to functions pref and su�): For string w 2 V
�,

we will write pref(w) instead of pref(fwg) (and likewise for su�). 2

Property 2.54 (Function su�): For non-empty language L and alphabet symbol a 2 V ,

function su� has the property:

su�(La) = su�(L)a [ f"g

2

Property 2.55 (Non-empty languages and pref; su�): For any L 6= �, " 2 pref(L)
and " 2 su�(L). 2

Property 2.56 (Intersection and pref): Given languages A;B � V
� and string y 2 V

�

we have the following property:

Afyg \B = (A \ pref(B))fyg \B

2

De�nition 2.57 (Pre�x and su�x partial orderings �p and �s): For any given al-

phabet V , partial orders �p and �s over V
��V � are de�ned as u �p v � u 2 pref(v) and

u �s v � u 2 su�(v). 2
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De�nition 2.58 (Operator max�s
): In a manner analogous to integer operator max,

we de�ne binary in�x operator max�s
on strings as (provided x �s y _ y �s x):

xmax�s
y = if x �s y then y else x �

This operator is also associative and commutative. The unit of max�s is ", which will be
used in Section 4.3 when we consider quanti�cations involvingmax�s

.

We could have given an analogous operator for the pre�x ordering; since it would not

be used in this dissertation, we do not de�ne it here. 2

Property 2.59 (Function su�): If A and B are languages, then

su�(A) \ B 6= � � A \ V �
B 6= �

2

Property 2.60 (Language intersection): If A and B are languages over alphabet V

and a 2 V , then

V

�
A \ V �

B 6= � � V

�
A \ B 6= � _ A \ V �

B 6= �

and

V

�
aA \ V �

B 6= � � V

�
aA \B 6= � _ A \ V �

B 6= �

2

2.4 Regular expressions

In this section, we present some de�nitions and properties relating to regular expressions.

De�nition 2.61 (Regular expressions and their languages): We simultaneously de-
�ne regular expressions over alphabet V (the set RE ) and the languages they denote (given

by function LRE 2 RE �! P(V �)) as follows:

� " 2 RE and LRE (") = f"g

� � 2 RE and LRE (�) = �

� For all a 2 V , a 2 RE and LRE (a) = fag

� For E;F 2 RE

{ E [ F 2 RE and LRE (E [ F ) = LRE (E) [ LRE (F )

{ E � F 2 RE and LRE (E � F ) = LRE (E) � LRE (F )

{ E
� 2 RE and LRE (E

�) = LRE (E)
�
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{ E
+ 2 RE and LRE (E

+) = LRE (E)
+

{ E
? 2 RE and LRE (E

?) = LRE (E)
?

� Nothing else is in RE

Operators �;+; ? have the highest precedence, followed by �, and �nally [. 2

Some authors write j or + instead of [.

Note that regular expressions are syntactic objects which denote languages, even though

they may look the same (as in the cases of �, ", and a 2 V ). Whether we are dealing with

regular expressions or languages will be clear from the context.

De�nition 2.62 (RE reversal): Regular expression reversal is given by the post�x (su-
perscript) function R 2 RE �! RE

"
R = "

�R = �

a
R = a (for all a 2 V )

(E0 [ E1)
R = (ER

0 ) [ (E
R

1 )
(E0 �E1)

R = (ER

1 ) � (E
R

0 )
(E�)R = (ER)�

(E+)R = (ER)+

(E?)R = (ER)?

Function R satis�es the obvious property that

(8 E : E 2 RE : (ER)R = E ^ (LRE (E
R))R = LRE (E))

2

Remark 2.63: The property satis�ed by regular expression reversal implies that function

LRE is symmetrical. 2

De�nition 2.64 (Regular languages): The set of all regular languages over alphabet V

are de�ned as:

fLRE (E) j E 2 RE g

2

Remark 2.65: The set of regular languages could have been de�ned in a number of
other (equivalent) ways, for example, as the set of all languages accepted by some �nite

automaton. 2
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2.5 Trees

In this section, we present a number of tree-related de�nitions. We give a de�nition of

trees which is slightly di�erent than the traditional recursive one: we use the tree domain

approach to trees, which will allow us to easily access individual nodes of a tree.

Notation 2.66 (Strings over N+): In order to designate particular nodes of a tree, we

will be using strings over N+ (even though it is not �nite, and therefore not an alphabet).

To avoid confusion when writing such a string (element of N+
�), we make the concatenation

operator explicit. Instead of writing it as the dot, for clarity we write it as �. Furthermore,

we will write the empty string " as 0. 2

De�nition 2.67 (Tree domain): A tree domain D is a non-empty subset of N+
� such

that the following two conditions hold:

1. D is pre�x-closed: pref(D) � D.

2. For all x 2 N+
� and i; j 2 N+: x � j 2 D ^ i < j ) x � i 2 D.

2

Example 2.68 (Tree domain): The set f0; 1; 2; 2 � 1; 2 � 2g is a tree domain. The set
f0; 1; 2 � 1; 2 � 2g is not a tree domain since it is not pre�x-closed (it does not contain 2).

The set f0; 1; 2; 2 � 2g is not a tree domain since it does not satisfy the second requirement

(it should also contain 2 � 1 since it contains 2 � 2 and 1 < 2). 2

De�nition 2.69 (Ranked alphabet): A ranked alphabet is a pair (V; r) such that V is
an alphabet and r 2 V �! N. r(a) is called the rank of symbol a. De�ne Vn = r

�1(n).

Symbols of rank 0 are called nullary symbols, while those of rank 1 are called unary symbols.

2

Example 2.70 (Ranked alphabet): The pair (fa; bg; f(a; 2); (b; 0)g) is a ranked alpha-
bet (with a as binary symbol and b as nullary symbol). We also have V0 = fbg and

V2 = fag. There are no unary symbols. 2

De�nition 2.71 (Tree): Let (V; r) be a ranked alphabet. A tree A over (V; r) is a function

A 2 D �! V (where D is a tree domain) such that

(8 a : a 2 D : r(A(a)) = (MAX i : i 2 N ^ a � i 2 D : i))

Set D (equivalently dom(A)) are called the nodes of tree A. A(a) is the label of a. 2

De�nition 2.72 (Set Trees): De�ne Trees(V; r) to be the set of all trees over ranked

alphabet (V; r). 2

De�nition 2.73 (Nodes of a tree): Assuming a tree A, we can make the following

de�nitions:
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2

21

1

a

a

b

b

b

Figure 2.1: An example of a tree

� Node 0 is called the root of A.

� A node with a nullary label is a leaf.

� Nodes that are not leaves are internal nodes.

2

Example 2.74 (Tree): Using the tree domain from Example 2.68 and the ranked alphabet
from Example 2.70, we can give the following tree (in tabular form):

Node 0 1 2 2 � 1 2 � 2

Label a b a b b

The tree can also be presented in the more usual graphical form, as in Figure 2.1. 2

2.6 Finite automata and Moore machines

In this section, we de�ne �nite automata, Moore machines, some of their properties, and
some transformations on them.

De�nition 2.75 (Finite automaton): A �nite automaton (also known as an FA) is a

6-tuple (Q;V; T;E; S; F ) where

� Q is a �nite set of states.

� V is an alphabet.

� T 2 P(Q� V �Q) is a transition relation.

� E 2 P(Q�Q) is an "-transition relation.
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� S � Q is a set of start states.

� F � Q is a set of �nal states.

2

Remark 2.76: We will take some liberty in our interpretation of the signatures of the

transition relations. For example, we also use the signatures T 2 V �! P(Q�Q), T 2

Q�Q �! P(V ), T 2 Q� V �! P(Q), T 2 Q �! P(V �Q), T 2 P(Q)� V �! P(Q),

and E 2 Q �! P(Q). In each case, the order of the Qs from left to right will be preserved;
for example, the function T 2 Q �! P(V �Q) is de�ned as T (p) = f (a; q) j (p; a; q) 2 T g.

The signature that is used will be clear from the context. 2

Remark 2.77: Our de�nition of �nite automata di�ers from the traditional approach in

two ways:

� Multiple start states are permitted.

� The "-transitions (relation E) are separate from transitions on alphabet symbols
(relation T ).

2

Since we only consider �nite automata in this dissertation, we will frequently simply use
the term automata.

Convention 2.78 (Finite automaton state graphs): When drawing the state graph

corresponding to a �nite automaton, we adopt the following conventions:

� All states are drawn as circles or ovals (vertices).

� Transitions are drawn as labeled (with " or alphabet symbol a 2 V ) directed edges
between states.

� Start states have an in-transition with no source (the transition does not come from

another state).

� Final states are drawn as two concentric circles or ovals.

For example, the FA below has two states, one is the start state, and other is the �nal

state, with a transition on a:

a

2
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De�nition 2.79 (Moore machine): A Moore machine (also known as an MM) is a

6-tuple (Q;V;W; T; �; S) where

� Q is a �nite set of states.

� V is an input alphabet.

� W is an output alphabet.

� T 2 P(Q� V �Q) is a transition relation.

� � 2 Q �! W is an output function.

� S � Q is a set of start states.

2

Note that an MM does not have any "-transitions, as this would complicate the de�nition

of the transduction of the MM (transduction will be de�ned later).

2.6.1 De�nitions and properties involving FAs and MMs

In this subsection we de�ne some properties of �nite automata. Many of these are eas-

ily extended to Moore machines, and we do not present the Moore machine versions.
To make these de�nitions more concise, we introduce particular �nite automata M =
(Q;V; T;E; S; F ), M0 = (Q0; V0; T0; E0; S0; F0), and M1 = (Q1; V1; T1; E1; S1; F1).

De�nition 2.80 (Size of an FA): De�ne the size of an FA as jM j = jQj. 2

De�nition 2.81 (Isomorphism (�=) of FAs): We de�ne isomorphism (�=) as an equiva-

lence relation on FAs. M0 and M1 are isomorphic (writtenM0
�= M1) if and only if V0 = V1

and there exists a bijection g 2 Q0 �! Q1 such that

� T1 = f (g(p); a; g(q)) j (p; a; q) 2 T0 g,

� E1 = f (g(p); g(q)) j (p; q) 2 E0 g,

� S1 = f g(s) j s 2 S0 g, and

� F1 = f g(f) j f 2 F0 g.

2

De�nition 2.82 (Extending the transition relation T ): We extend transition func-
tion T 2 V �! P(Q�Q) to T � 2 V � �! P(Q�Q) as follows:

T

�(") = E

�

and (for a 2 V;w 2 V �)

T
�(aw) = E

� � T (a) � T �(w)

This de�nition could also have been presented symmetrically. 2
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Remark 2.83: We sometimes also use the signature T � 2 Q�Q �! P(V �). 2

Remark 2.84: If E = � then E
� = �� = IQ where IQ is the identity relation on the

states of M . 2

De�nition 2.85 (The language between states): The language between any two states

q0; q1 2 Q is T �(q0; q1). Intuitively, T
�(q0; q1) is the set of all words on paths from q0 to q1.

2

De�nition 2.86 (Left and right languages): The left language of a state (in M) is

given by function
 �
LM 2 Q �! P(V

�), where

 �
L M (q) = ([ s : s 2 S : T �(s; q))

The right language of a state (in M) is given by function
�!
L M 2 Q �! P(V

�), where

�!
L M (q) = ([ f : f 2 F : T �(q; f))

The subscript M is usually dropped when no ambiguity can arise. 2

De�nition 2.87 (Language of an FA): The language of a �nite automaton (with al-
phabet V ) is given by the function LFA 2 FA �! P(V �) de�ned as:

LFA(M) = ([ s; f : s 2 S ^ f 2 F : T �(s; f))

2

Property 2.88 (Language of an FA): From the de�nitions of left and right languages
(of a state), we can also write:

LFA(M) = ([ f : f 2 F :
 �
L (f))

and

LFA(M) = ([ s : s 2 S :
�!
L (s))

2

De�nition 2.89 (Extension of LFA): Function LFA is extended to [FA]�= as LFA([M ]�=) =

LFA(M). The choice of representative is irrelevant, as isomorphic FAs accept the same

language. 2

De�nition 2.90 (Complete): A Complete �nite automaton is one satisfying the following:

Complete(M) � (8 q; a : q 2 Q ^ a 2 V : T (q; a) 6= �)

Intuitively, an FA is Complete when there is at least one out transition from every state

on every symbol in the alphabet. 2
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Property 2.91 (Complete): For all Complete FAs (Q;V; T;E; S; F ):

([ q : q 2 Q :
 �
L (q)) = V

�

2

Instead of accepting a string (as FAs do), a Moore machine transduces the string. The

transduction of a string is de�ned as follows.

De�nition 2.92 (Transduction by a MM): GivenMoore machineN = (Q;V;W; T; �; S)

we de�ne transduction helper function HN 2 P(Q)� V
� �! (P(W ))� as

HN (Q
0
; ") = "

and (for a 2 V , w 2 V �)

HN (Q
0
; aw) = f�(q) j q 2 T (Q0

; a) g � HN (T (Q
0
; a); w)

The transduction of a string is given by function � 2 V � �! (P(W ))� de�ned as

�N(w) = f�(s) j s 2 S g � HN (S;w)

The codomains of HN and �N are strings over alphabet P(W ). Note that both functions

depend upon N . 2

De�nition 2.93 ("-free): Automaton M is "-free if and only if E = �. 2

Remark 2.94: Even if M is "-free it is still possible that " 2 LFA(M): in this case
S \ F 6= �. 2

De�nition 2.95 (Reachable states): For M 2 FA we can de�ne a reachability relation

Reach(M) � Q�Q

as

Reach(M) = (��2(T ) [ E)
�

(In this de�nition, we have simply projected away the symbol component of the transition
relation. State p reaches state q if and only if there is an "-transition or a symbol transition
from p to q.) Similarly, the set of start-reachable states is de�ned to be (here, we interpret

the relation as a function Reach(M) 2 P(Q) �! P(Q)):

SReachable(M) = Reach(M)(S)

and the set of �nal-reachable states is de�ned to be:

FReachable(M) = (Reach(M))R(F )

The set of useful states is:

Reachable(M) = SReachable(M) \ FReachable(M)

2
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Property 2.96 (Reachability): For automaton M = (Q;V; T;E; S; F ), SReachable sat-

is�es the following interesting property:

q 2 SReachable(M) �
 �
L M(q) 6= �

FReachable satis�es a similar property:

q 2 FReachable(M) �
�!
L M (q) 6= �

2

De�nition 2.97 (Useful automaton): A Useful �nite automaton M is one with only

reachable states:

Useful (M) � (Q = Reachable(M))

2

De�nition 2.98 (Start-useful automaton): A Useful
s
�nite automaton M is one with

only start-reachable states:

Useful
s
(M) � (Q = SReachable(M))

2

De�nition 2.99 (Final-useful automaton): A Useful
f
�nite automaton M is one with

only �nal-reachable states

Useful
f
(M) � (Q = FReachable(M))

2

Remark 2.100: Useful
s
and Useful

f
are closely related by FA reversal (to be presented

in Transformation 2.113). For all M 2 FA we have Useful
f
(M) � Useful

s
(MR). 2

Property 2.101 (Implication of Useful
f
): Useful

f
has the property:

Useful
f
(M)) (8 q : q 2 Q :

 �
L (q) � pref(LFA(M)))

2

De�nition 2.102 (Deterministic �nite automaton): A �nite automaton M is deter-
ministic if and only if

� It has one start state or no start states.

� It is "-free.
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� Transition function T 2 Q� V �! P(Q) does not map pairs in Q � V to multiple

states.

Formally,

Det(M) � jSj � 1 ^ "-free(M) ^ (8 q; a : q 2 Q ^ a 2 V : jT (q; a)j � 1)

2

De�nition 2.103 (Deterministic FAs): DFA denotes the set of all deterministic �nite
automata. We call FA nDFA the set of nondeterministic �nite automata. 2

De�nition 2.104 (Deterministic Moore machine): The de�nition of a deterministic
Moore machine is similar to that of a DFA. A Moore machine N = (Q;V;W; T; �; S) is

deterministic if and only if

� It has one start state or no start states.

� Transition function T 2 Q� V �! P(Q) does not map pairs in Q � V to multiple
states.

Formally,

Det(N) � jSj � 1 ^ (8 q; a : q 2 Q ^ a 2 V : jT (q; a)j � 1)

2

De�nition 2.105 (Deterministic MMs): DMM denotes the set of all deterministic
Moore machines. 2

Convention 2.106 (Transition function of a DFA): For (Q;V; T;�; S; F ) 2 DFA we

can consider the transition function to have signature T 2 Q� V 6�! Q. The transition
function is total if and only if the DFA is Complete . 2

Property 2.107 (Weakly deterministic automaton): Some authors use a property
of a deterministic automaton that is weaker than Det ; it uses left languages and is de�ned

as follows:

Det 0(M) � (8 q0; q1 : q0 2 Q ^ q1 2 Q ^ q0 6= q1 :
 �
L (q0) \

 �
L (q1) = �)

2

Remark 2.108: Det(M) ) Det 0(M) is easily proved. We can also demonstrate that
there exists an M 2 FA such that Det 0(M) ^ :Det (M); namely

(fq0; q1g; fbg; f(q0; b; q0); (q0; b; q1)g;�;�;�)

In this FA,
 �
L (q0) =

 �
L (q1) = �, but state q0 has two out-transitions on symbol b. 2



26 CHAPTER 2. MATHEMATICAL PRELIMINARIES

De�nition 2.109 (Minimality of a DFA): An M 2 DFA is minimal as follows:

Min(M) � (8 M

0 : M 0 2 DFA ^ LFA(M) = LFA(M
0) : jM j � jM 0j)

Predicate Min is de�ned only on DFAs. Some later de�nitions are simpler if we de�ne a

minimal, but Complete, DFA as follows MinC(M) �

(8 M

0 :M 0 2 DFA ^ Complete(M 0) ^ LFA(M) = LFA(M
0) : jM j � jM 0j)

Predicate MinC is de�ned only on Complete DFAs. 2

Property 2.110 (Minimality of a DFA): An M , such that Min(M), is the unique

(modulo �=) minimal DFA. 2

Minimality of DMMs is discussed in Section 4.3.3 on page 68.

Property 2.111 (An alternate de�nition of minimality of a DFA): For minimizing

a DFA, we use the predicate Minimal(Q;V; T;�; S; F ) �

(8 q0; q1 : q0 2 Q ^ q1 2 Q ^ q0 6= q1 :
�!
L (q0) 6=

�!
L (q1))

^ Useful (Q;V; T;�; S; F )

(This predicate is de�ned only on DFAs.) A similar predicate (relating to MinC) is
MinimalC(Q;V; T;�; S; F ) �

(8 q0; q1 : q0 2 Q ^ q1 2 Q ^ q0 6= q1 :
�!
L (q0) 6=

�!
L (q1))

^ Useful
s
(Q;V; T;�; S; F ) ^ Complete(Q;V; T;�; S; F )

(This predicate is only de�ned on Complete DFAs.)

We have the property that (for all M;MC 2 DFA such that Complete(MC))

Minimal(M) � Min(M) ^ MinimalC(MC) � MinC(MC)

Proof:

For brevity, we only prove MinimalC(M) � MinC(M). In order to prove MinC(M) )

MinimalC(M), consider its contrapositive :MinimalC(M)) :MinC(M).

Since :MinimalC(M), at least one of the following holds:

� There is a start-unreachable state (:Useful
s
(M)) which can be removed, meaning

that :MinC(M).

� :Complete(M). It follows that :MinC(M).

� There are two states p; q such that
�!
L (p) =

�!
L (q). In this case, the in-transitions to

q can be redirected to p, and q can be entirely eliminated, meaning that :MinC(M).
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We now continue with the proof that MinimalC(M)) MinC(M). The following proof is

by contradiction. Assume a DFA M = (Q;V; T;�; S; F ) such that MinimalC(M). For the

contradiction, we assume the existence of a Complete DFA M
0 = (Q0

; V; T
0
;�; S0

; F
0) such

that LFA(M) = LFA(M
0) and jM 0j < jM j. Since both M and M

0 are Complete , the sets

of their left languages, f
 �
L (q) j q 2 Q g and f

 �
L (q) j q 2 Q0 g, are partitions of V � with

jM 0j = jf
 �
L (q) j q 2 Q0 gj < jf

 �
L (q) j q 2 Q gj = jM j

By the pigeonhole principle, there exist words x; y which are in the same equivalence class

of the M 0 partition, but in di�erent equivalence classes of the M partition. More precisely,

there exist x; y 2 V � such that T 0�(S0
; x) = T

0�(S0
; y) ^ T �(S; x) 6= T

�(S; y).

However,
�!
L (T �(S; x)) 6=

�!
L (T �(S; y)) since MinimalC(M). It follows that there exists

z 2 V � such that

z 2
�!
L (T �(S; x)) 6� z 2

�!
L (T �(S; y))

or, equivalently

xz 2 LFA(M) 6� yz 2 LFA(M)

Returning to M 0, we have

T

0�(S0
; xz) = T

0�(T 0�(S 0
; x); z) = T

0�(T 0�(S0
; y); z) = T

0�(S0
; yz)

and so

xz 2 LFA(M
0) � yz 2 LFA(M

0)

This gives LFA(M) 6= LFA(M
0), which is a contradiction. 2

Two automataM andM 0 such that LFA(M) = LFA(M
0), :Complete(M) ^ Complete(M 0),

and Minimal(M) ^ MinimalC(M) would be isomorphic except for the fact that M 0 would
have a sink state.

Remark 2.112: In the literature the second conjunct in the de�nition of predicate
MinimalC is sometimes erroneously omitted. The necessity of the conjunct can be seen by
considering the DFA

(fp; qg; fag; f(p; a; p); (q; a; q)g;�;�; fpg)

Here
 �
L (p) =

 �
L (q) = � (which is also the language of the DFA),

�!
L (p) = fag�, and

�!
L (q) = �. Without the second conjunct, this DFA would be consideredMinimalC; clearly

this is not the case, as the minimal Complete DFA accepting � is (�; fag;�;�;�;�). 2
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2.6.2 Transformations on �nite automata

In this section, we present a number of transformations on �nite automata. Many of these

could also be de�ned for Moore machines, although they will not be needed.

Transformation 2.113 (FA reversal): FA reversal is given by post�x (superscript)

function R 2 FA �! FA, de�ned as:

(Q;V; T;E; S; F )R = (Q;V; TR
; E

R
; F; S)

Function R satis�es

(8 M : M 2 FA : (LFA(M))R = LFA(M
R)):

and preserves "-free and Useful . 2

Remark 2.114: The property (LFA(M
R))R = LFA(M) means that function LFA is its

own dual, and is therefore symmetrical. 2

Transformation 2.115 (Useless state removal): There exists a function useful 2

FA �! FA that removes states that are not reachable. A de�nition of this function is

not given here explicitly, as it is not needed. Function useful satis�es

(8 M : M 2 FA : Useful (useful (M)) ^ LFA(useful (M)) = LFA(M))

and preserves "-free, Useful , Det , and Min. 2

Transformation 2.116 (Removing start state unreachable states): Transforma-
tion useful

s
2 FA �! FA removes those states that are not start-reachable. A de�nition

is not given here, as it is not needed. Function useful
s
satis�es

(8 M : M 2 FA : Useful
s
(useful

s
(M)) ^ LFA(useful s(M)) = LFA(M))

and preserves Complete , "-free, Useful , Det , and (trivially) Min and MinC. 2

Remark 2.117: A function useful
f
2 FA �! FA could also be de�ned, removing states

that are not �nal-reachable. Such a function is not needed in this dissertation. 2

Transformation 2.118 (Completing an FA): Function complete 2 FA �! FA takes

an FA and makes it Complete . It satis�es the requirement that:

(8 M : M 2 FA : Complete(complete(M)) ^ LFA(complete(M)) = LFA(M))

In general, this transformation adds a sink state to the FA. This transformation preserves

"-free, (trivially) Complete, Det , and MinC. 2
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Transformation 2.119 ("-transition removal): An "-transition removal transforma-

tion remove" 2 FA �! FA is one that satis�es

(8 M : M 2 FA : "-free(remove"(M)) ^ LFA(remove"(M)) = LFA(M))

There are several possible implementations of remove". The most useful one (for deriving

�nite automata construction algorithms in Chapter 6) is:

rem"(Q;V; T;E; S; F ) = let Q
0 = fE�(S)g [ fE�(q) j Q� V � fqg \ T 6= � g

T
0 = f (q; a;E�(r)) j (9 p : p 2 q : (p; a; r) 2 T ) g

F
0 = f f j f 2 Q0 ^ f \ F 6= � g

in

(Q0
; V; T

0
;�; fE�(S)g; F 0)

end

In the above version of remove", each of the new states is one of the following:

� A new start state, which is the set of all states "-transition reachable from the old
start states S.

� A set of states, all of which are "-transition reachable from a state in Q which has a

non-" in-transition.

Note that this transformation yields an automaton which has a single start state. 2

Given a �nite automaton construction f 2 RE �! FA, in some cases the dual of the
construction, R � f �R, can be even more e�cient than f . For this reason, we will also be

needing the dual of function rem".

Transformation 2.120 (Dual of function rem"): The dual of function rem" is de�ned

as (R � rem" �R)(Q;V; T;E; S; F ) =

let Q
0 = f(ER)�(F )g [ f (ER)�(q) j fqg � V �Q \ T 6= � g

T
0 = f ((ER)�(q); a;Q) j (9 p : p 2 Q : (q; a; p) 2 T ) g

S
0 = f s j s 2 Q0 ^ s \ S 6= � g

in

(Q0
; V; T

0
;�; S0

; f(ER)�(F )g)

end

2

Transformation 2.121 (Subset construction): The function subset transforms an

"-free FA into a DFA (in the let clause T 0 2 P(Q)� V �! P(P(Q)))

subset(Q;V; T;�; S; F ) = let T
0(U; a) = f([ q : q 2 U : T (q; a))g

F
0 = fU j U 2 P(Q) ^ U \ F 6= � g

in

(P(Q); V; T 0
;�; fSg; F 0)

end
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In addition to the property that (for all M 2 FA) LFA(subset (M)) = LFA(M), function

subset satis�es

(8 M : M 2 FA ^ "-free(M) : Det(subset (M)) ^ Complete(subset(M)))

and preserves Complete, "-free, Det . Some authors call this the `powerset' construction.
2

In order to present a useful property of the subset construction, we need the following

lemma.

Lemma 2.122 (Subset construction): Let

M0 = (Q0; V; T0;�; S0; F0)

and

M1 = (Q1; V; T1;�; S1; F1) = subset (M0)

be �nite automata. For all w 2 V � and q 2 Q1

w 2
 �
LM1

(q) � q = ([ p : p 2 Q0 ^ w 2
 �
L M0

(p) : fpg)

Proof:

We rewrite the left side of the above equivalence as follows:

w 2
 �
L M1

(q)

� fM1 is a DFA g

q = T
�

1 (S1; w)

We rewrite the right side of the equality in the right side of the above equivalence as follows:

([ p : p 2 Q0 ^ w 2
 �
L M0

(p) : fpg)

= fde�nition of
 �
LM0

g

([ p : p 2 Q0 ^ p 2 T
�

0 (S0; w) : fpg)

= f set calculus g

T
�

0 (S0; w)

We now need to prove q = T
�

1 (S1; w) � q = T
�

0 (S0; w). We now proceed by proving that

(8 w : w 2 V

� : T �

1 (S1; w) = T

�

0 (S0; w))

We prove this by induction on jwj.

Basis: For the case w = " we have:
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T
�

1 (S1; ")

= fde�nition of S1 g

T
�

1 (fS0g; ")

= fde�nition of T �

1 2 Q1 � V
� �! Q1 g

S0

= fde�nition of T �

0 ; no "-transitions g

T
�

0 (S0; ")

Induction hypothesis: Assume that T �

1 (S1; w) = T
�

0 (S0; w) holds for w : jwj = k.

Induction step: Consider wa : jwj = k ^ a 2 V

T
�

1 (S1; wa)

= fde�nition of T �

1 2 Q1 � V
� �! Q1 g

T1(T
�

1 (S1; w); a)

= f induction hypothesis g

T1(T
�

0 (S0; w); a)

= fde�nition of T1 using signature T1 2 Q1 � V �! Q1 g

([ q : q 2 T �

0 (S0; w) : T0(q; a))

= fde�nition of T0 g

T0(T
�

0 (S0; w); a)

= fde�nition of T �

0 ; no "-transitions g

T
�

0 (S0; wa)

2

Property 2.123 (Subset construction): Let M0 = (Q0; V; T0;�; S0; F0) and M1 =
subset (M0) be �nite automata. By the subset construction, the state set of M1 is P(Q0).

We have the following properties:

(8 p : p 2 P(Q0) :
�!
L M1

(p) = ([ q : q 2 p :
�!
L M0

(q)))

and (from Lemma 2.122):

(8 p : p 2 P(Q0) :
 �
L M1

(p) = (\ q : q 2 p :
 �
L M0

(q)))

2

We can also de�ne the subset construction for Moore machines.
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Transformation 2.124 (Subset construction for MMs): Function subsetmm trans-

forms a MM into a DMM (in the let clause T
0 2 P(Q)� V �! P(P(Q)) and �

0 2

P(Q) �! P(W ))

subsetmm(Q;V;W; T; �; S) = let T
0(U; a) = f([ q : q 2 U : T (q; a))g

�
0(U) = f�(q) j q 2 U g

in

(P(Q); V;P(W ); T 0
; �

0
; fSg)

end

2

2.6.2.1 Imperative implementations of some transformations

In this section, we present some imperative implementations of a few of the �nite automata

transformations. These implementations will be used in Chapter 6 to present some �nite

automata construction algorithms from the literature.
All of the algorithms presented make use of a common `reachability algorithm' skeleton.

The di�erence lies in the way the transition relation is computed in each step. In each

of these algorithms, variables D and U (both with domain P(P(Q))) accumulate the set

of `done' and the set of `undone' (yet to be considered) states in the automaton under
construction, respectively.

Algorithm 2.125 (Composition useful
s
� rem"):

f (Q;V; T;E; S; F ) 2 FA g

S
0
; T

0 := fE�(S)g;�;
D;U := �; S0;

do U 6= �!

let u : u 2 U ;
D;U := D [ fug; U n fug;
for p; a : p 2 u ^ a 2 V ^ T (p; a) 6= �!

d := E
�(T (p; a));

if d 62 D ! U := U [ fdg

[] d 2 D ! skip

fi;
T
0 := T

0 [ f(u; a; d)g

rof

od;

F
0 := f f j f 2 D ^ f \ F 6= � g

f LFA(D;V; T
0
;�; S0

; F
0) = LFA(Q;V; T;E; S; F ) g

2
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Algorithm 2.126 (Composition useful
s
� subset):

f (Q;V; T;�; S; F ) 2 FA g

S
0
; T

0 := fSg;�;

D;U := �; S0;
do U 6= �!

let u : u 2 U ;

D;U := D [ fug; U n fug;

for a : a 2 V !

d := ([ q : q 2 u : T (q; a));
if d 62 D ! U := U [ fdg

[] d 2 D ! skip

fi;

T
0 := T

0 [ f(u; a; d)g

rof

od;

F
0 := f f j f 2 D ^ f \ F 6= � g
f LFA(D;V; T

0
;�; S0

; F
0) = LFA(Q;V; T;E; S; F ) g

f (D;V; T 0
;�; S 0

; F
0) 2 DFA g

2

Algorithm 2.127 (Composition useful
s
� subset � rem"):

f (Q;V; T;E; S; F ) 2 FA g
S
0
; T

0 := fE�(S)g;�;
D;U := �; S0;

do U 6= �!
let u : u 2 U ;

D;U := D [ fug; U n fug;

for a : a 2 V !
d := ([ q : q 2 u : E�(T (q; a)));
if d 62 D ! U := U [ fdg

[] d 2 D ! skip

fi;
T
0 := T

0 [ f(u; a; d)g
rof

od;

F
0 := f f j f 2 D ^ f \ F 6= � g

f LFA(D;V; T
0
;�; S0

; F
0) = LFA(Q;V; T;E; S; F ) g

f (D;V; T 0
;�; S 0

; F
0) 2 DFA g

2

This algorithm is the same as the one given in [ASU86].
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Part II

The taxonomies
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Chapter 3

Constructing taxonomies

In this chapter, we provide a brief introduction to the construction of taxonomies. The
McGraw-Hill Dictionary of scienti�c and technical terms provides the following (somewhat

biology oriented) de�nition of a taxonomy:

A study aimed at producing a hierarchical system of classi�cation of organisms

which best reects the totality of similarities and di�erences. [Park89, p. 1892].

In a manner analogous to a biological taxonomy, we intend to classify algorithms according

to their essential details. This classi�cation, which is frequently presented in the form of
a (directed acyclic) taxonomy graph, will allow us to compare algorithms and determine
easily what they have in common and where they di�er. In the following paragraphs, we
detail the structure and construction of a taxonomy.

Given a particular problem area (for example, keyword pattern matching), the algo-
rithms will be derived from a common starting point. The starting point is usually a na��ve
algorithm whose correctness is shown easily. Each of the algorithms appears as a vertex in

the taxonomy graph, and the �rst algorithm is placed at the root of the taxonomy graph.
The derivation proceeds by adding either problem or algorithm details. A problem detail is
a correctness preserving restriction of the problem. Such a detail may enable us to make a

change in the algorithm, usually to improve performance. The more speci�c problem may

permit some transformation which is not possible in the algorithm solving the general prob-
lem. An algorithm detail, on the other hand, is a correctness-preserving transformation

of the algorithm itself. These algorithm details may be added to restrict nondeterminacy,

or to make a change of representation; either of these changes to an algorithm, gives a

new algorithm meeting the same speci�cation. In the taxonomies presented in Chapters 4
and 6, the particular details are explicitly de�ned and given mnemonic names. In the

remaining taxonomy (Chapter 7), the details are only introduced implicitly.
Both types of details are chosen so as to improve the performance of an algorithm, or

to arrive at one of the well-known algorithms appearing in the literature. The addition

of a detail to algorithm A (arriving at algorithm B) is represented by adding an edge

from A to B (the vertices representing algorithms A and B, respectively) to the taxonomy

graph. The edge is labeled with the name of the detail. The use of correctness preserving
transformations, and the correctness of the algorithm at the root of the graph, means that

37
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the correctness argument for any given algorithm is encoded in the root path leading to

that particular algorithm.

It should be noted that, while the taxonomy is presented in a top-down manner, the

taxonomy construction process proceeds initially in a bottom-up fashion. Each of the

algorithms found in the literature is rewritten in a common notation and examined for

any essential components or encoding tricks. The common encoding tricks, algorithm
skeletons, or algorithm strategies can be made into details. The details making up the

various algorithms can then be factored, so that some of them are presented together in
the taxonomy graph | highlighting what some of the algorithms have in common.

A few notes on the taxonomy graph are in order. In some cases, it may have been
possible to derive an algorithm through the application of some of the details in a di�erent

order1. The particular order chosen (for a given taxonomy) is very much a matter of taste.

A number of di�erent orders were tried, the resulting taxonomy graphs were compared,

and the most elegant one was chosen. Frequently, the taxonomy graph is a tree. When

the graph is not a tree, there may be two or more root paths leading to algorithm A. This
means that there are at least two ways of deriving A from the na��ve algorithm appearing at
the root. It is also possible that not all of the algorithms solving a particular problem can

be derived from a common starting point. In this case, we construct two or more separate

taxonomy graphs, each with its own root.

This type of taxonomy development and program derivation has been used in the past.

A notable one is Broy's sorting algorithm taxonomy [Broy83]. In Broy's taxonomy, algo-
rithm and problem details are also added, starting with a na��ve solution; the taxonomy
arrives at all of the well-known sorting algorithms. A similar taxonomy (which predates
Broy's) is by Darlington [Darl78]; this taxonomy also considers sorting algorithms. Our

particular incarnation of the method of developing a taxonomy was developed in the dis-
sertation of Jonkers [Jonk82], where it was used to give a taxonomy of garbage collection
algorithms. Jonkers' method was then applied successfully to attribute evaluation algo-
rithms by Marcelis in [Marc90]. A recent taxonomy (not using Jonkers' method) by Hume

and Sunday [HS91] gives variations on the Boyer-Moore pattern matching algorithms; the

taxonomy concentrates on many of the practical issues, and provides data on the running
time of the variations and their respective precomputations.

Two primary aims of the taxonomies are clarity and correctness of presentation. We
abandon low levels of abstraction, such as indexing within strings. Instead, we adopt a

more abstract (but equivalent) presentation. Because of this, all of the abstract algorithms

derived in this dissertation will be presented in a slightly extended version of Dijkstra's

guarded command language [Dijk76]. The reasons for choosing the guarded command
language are:

� Correctness arguments are more easily presented in the guarded commands than in
programming languages such as Pascal or C.

1Only some of the details may be rearranged, since the correctness of some details may depend upon
the earlier application of some detail.
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� In order to present algorithms that closely represent their original imperative pre-

sentations (in journals or conference proceedings), we do not make use of other for-

malisms and paradigms, such as functional or relational programming.

We will frequently present algorithms without full annotations (invariants, preconditions,

and postconditions) since most of the algorithm skeletons are relatively simple, and the

annotations do not add much to the taxonomic classi�cation. Annotations will be used

when they help to introduce a problem or an algorithm detail.

This part is structured as follows:

� Chapter 4 presents a taxonomy of keyword pattern matching algorithms. The tax-

onomy concentrates on those algorithms that perform pattern matching of a �nite
set of keywords, and those algorithms that do not use precomputation of the input

string.

� Chapter 5 gives a derivation of a new regular expression pattern matching algorithm.

The existence (and derivation) of the algorithm answers an open question �rst posed
by A.V. Aho in 1980. The algorithm, which is a generalization of the Boyer-Moore

keyword pattern matching algorithm, displays good performance in practice.

� Chapter 6 presents a taxonomy of algorithms which construct a �nite automaton
from a regular expression. All of the well-known algorithms (including some very

recently developed ones) are included.

� Chapter 7 presents a taxonomy of deterministic �nite automata minimization algo-
rithms. All of the well-known algorithms, and a pair of new ones, are included.
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Chapter 4

Keyword pattern matching algorithms

This chapter presents a taxonomy of keyword pattern matching algorithms. We assume
that the keyword set (the patterns) will remain relatively unchanged, whereas a number

of di�erent input strings (or perhaps a very long input string) may be used with the same
pattern set. Because of this, we consider algorithms which may require some precom-
putation involving the keyword set1. The algorithms considered include the well-known

Aho-Corasick, Knuth-Morris-Pratt, Commentz-Walter, and Boyer-Moore algorithms2. In
addition, a number of variants (some of them not found in the literature) of these algo-

rithms are presented.

The taxonomy is a much-revised version of one originally co-developed with Gerard

Zwaan of the Eindhoven University of Technology. In the original version [WZ92], Zwaan
was the primary author of Part II of that paper (which gave derivations of the precomputa-
tion algorithms), while I was the primary author of Part I (the taxonomy proper). A version

of Section 4.4 appeared in [WZ95]. Gerard can be reached at wsinswan@win.tue.nl.

4.1 Introduction and related work

Keyword pattern matching is one of the most extensively explored problems in computing
science. Loosely stated, the problem is to �nd the set of all occurrences from a set of

patterns in an input string.

This chapter presents a taxonomy of keyword pattern matching algorithms. The main

results are summarized in the taxonomy graph presented at the end of this section, and in
the conclusions presented in Section 4.6. A version of the taxonomy graph is presented in

each section, highlighting the part of the taxonomy considered in that section.

We systematically present a number of variants of four well-known algorithms in a
common framework. Two of the algorithms to be presented require that the set of patterns

is a single keyword, while the other two require that the set of patterns is a �nite set of

1An alternative is to require that the subject string remain unchanged, with various di�erent pattern
sets being used. In this case, precomputation involving the subject string is preferred.

2We restrict ourselves to these `classical' pattern matching algorithms and do not consider algorithms
which are substantially di�erent, such as those given in [WM94].
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keywords. The algorithms are:

� The Knuth-Morris-Pratt (KMP) algorithm as presented in [KMP77]. This algorithm

matches a single keyword against the input string. Originally, the algorithm was

devised to �nd only the �rst match in the input string. We will consider a version

that �nds all occurrences within the input string.

� The Boyer-Moore (BM) algorithm as presented in [BM77]. This is also a single

keyword matching algorithm. Several corrections and improvements to this algorithm
have been published; good starting points for these are the bibliographic sections of

[Aho90, CR94, Step94].

� The Aho-Corasick (AC) algorithm as presented in [AC75]. This algorithm can match

a �nite set of keywords in the input string.

� The Commentz-Walter (CW) algorithm as presented in [Com79a, Com79b]. This
algorithm can also match a �nite set of keywords in the input string. Few papers
have been published on this algorithm, and its correctness, time complexity, and

precomputation are ill-understood.

These four algorithms are also presented in the overview of [Aho90]. The �rst three algo-

rithms are also covered quite extensively in a new book [CR94].

The recent taxonomy of pattern matching algorithms presented by Hume and Sunday
(in [HS91]) gives variations on the Boyer-Moore algorithm; the taxonomy concentrates on
many of the practical issues, and provides data on the running time of the variations, and
their respective precomputation. In Chapter 9, we will consider a C++ class library (and

many of the associated practical issues) implementing many of the algorithms presented
in this taxonomy. In Chapter 13, we will consider the performance (in practice) of some
of the algorithms implemented in the class library.

The taxonomy graph that we arrive at after deriving the algorithms is shown in Fig-
ure 4.1. Each vertex corresponds to an algorithm. If the vertex is labeled with a number,

that number refers to an algorithm in this chapter. If it is labeled with a page number,

that page number refers to the page where the algorithm is �rst mentioned. Each edge
corresponds to the addition of either a problem or algorithm detail and is labeled with
the name of that detail (a list of detail names follows). Each of the algorithms will either

be called by their algorithm number, by their name as found in the literature (for the

well-known algorithms), or by the parenthesized sequence of all labels along the path from

the root to the algorithm's vertex. For example, the algorithm known as the optimized
Aho-Corasick algorithm can also be called (p+, e, ac, ac-opt) (it is also Algorithm 4.53
in this dissertation). All of the well known algorithms appear near the bottom of the

graph. Due to its labeling, the graph can be used as an alternative table of contents to

this chapter.

Four algorithm details (p+, s+, p�, and s�) are actually composed of two separate
algorithm details. For example, detail (p+) is composed of details (p) and detail (+).
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However the second detail must always follow either detail (p) or detail (s) and so we

treat them as a single detail. The edges labeled mo and sl in Figure 4.1 represent generic

algorithm details that still have to be instantiated. Possible instantiations are given by the

two small trees at the bottom of Figure 4.1. The details and a short description of each of

them are as follows:

p (Algorithm detail 4.4) Examine pre�xes of a given string in any order.

p+ Examine pre�xes of a given string in order of increasing length.

p� As in (p+), but in order of decreasing length.

s (Algorithm detail 4.6) Examine su�xes of a given string in any order.

s+ Examine su�xes of a given string in order of increasing length.

s� As in (s+), but in order of decreasing length.

rt (Algorithm detail 4.17) Usage of the reverse trie corresponding to the set

of keywords to check whether a string which is a su�x of some keyword,
preceded by a symbol is again a su�x of some keyword.

ft (Algorithm detail 4.28) Usage of the forward trie corresponding to the set
of keywords to check whether a string which is a pre�x of some keyword,

followed by a symbol is again a pre�x of some keyword.

e (Problem detail 4.33) Matches are registered by their endpoints.

ac (Algorithm detail 4.42) Maintain a variable, which is the longest su�x of

the current pre�x of the input string, which is still a pre�x of a keyword.

ac-opt (Algorithm detail 4.52) A single `optimized' transition function is used to

update the state variable in the Aho-Corasick algorithm.

ls (Algorithm detail 4.64) Use linear search to update the state variable in
the Aho-Corasick algorithm.

ac-fail (Algorithm detail 4.71) Implement the linear search using the transition

function of the extended forward trie and the failure function.

kmp-fail (Algorithm detail 4.75) Implement the linear search using the extended
failure function.
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Figure 4.1: A taxonomy of pattern matching algorithms. An explanation of the graph

and its labels is given in the text of this section. Algorithm 4.53 corresponds to the op-
timized Aho-Corasick algorithm [AC75, Section 6]. Algorithm 4.72 corresponds to the
Aho-Corasick failure function algorithm [AC75, Section 2, Algorithm 1]. Algorithm 4.84

corresponds to the Knuth-Morris-Pratt algorithm [KMP77, Section 2, p. 326]. The algo-

rithm of the vertex labeled p. 95 and with incoming edge labeled norm corresponds to
the Commentz-Walter algorithm [Com79a, Section II], [Com79b, Sections II.1 and II.2].

The algorithm of the vertex labeled p. 96 and with incoming edge labeled bm corresponds
to the Boyer-Moore algorithm [BM77, Section 4]. Algorithm 4.177 corresponds to the

Boyer-Moore algorithm as well [BM77, Sections 4 and 5].
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okw (Problem detail 4.77) The set of keywords contains one keyword.

indices (Algorithm detail 4.82) Represent substrings by indices into the complete

strings, converting a string-based algorithm into an indexing-based algo-

rithm.

cw (Algorithm detail 4.90) Consider any shift distance that does not lead to

the missing of any matches. Such shift distances are called safe.

nla (Algorithm detail 4.103) The left and right lookahead symbols are not taken

into account when computing a safe shift distance. The computation of a

shift distance is done by using two precomputed shift functions applied to

the current longest partial match.

lla (Algorithm detail 4.104) The left lookahead symbol is taken into account
when computing a safe shift distance.

cw-opt (Algorithm detail 4.108) Compute a shift distance using a single precom-

puted shift function applied to the current longest partial match and the
left lookahead symbol.

bmcw (Algorithm detail 4.116) Compute a shift distance using a single precom-

puted shift function which is applied to the current longest partial match
and the left lookahead symbol. The function yields shifts that are no greater
than the function in detail (cw-opt).

near-opt (Algorithm detail 4.121) Compute a shift distance using a single precom-

puted shift function applied to the current longest partial match and the left
lookahead symbol. The function is derived from the one in detail (bmcw),
and it yields shifts which are no greater.

norm (Algorithm detail 4.127) Compute a shift distance as in (nla) but addi-

tionally use a third shift function applied to the lookahead symbol. The
shift distance obtained is that of the normal Commentz-Walter algorithm.

bm (Algorithm detail 4.135) Compute a shift distance using one shift function

applied to the lookahead symbol, and another shift function applied to the

current longest partial match. The shift distance obtained is that of the

Boyer-Moore algorithm.

rla (Algorithm detail 4.137) The right lookahead symbol is taken into account

when computing a safe shift distance.
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r-opt (Algorithm detail 4.141) Compute a shift distance using precomputed shift

functions (applied to the current longest partial match and the left looka-

head symbol) and a shift function applied to the right lookahead symbol.

obm (Algorithm detail 4.144) Introduce a particular program skeleton as a start-

ing point for the derivation of the di�erent Boyer-Moore variants.

mo (Algorithm detail 4.148) A match order is used to determine the order in
which symbols of a potential match are compared against the keyword.

This is only done for the one keyword case (okw). Particular instances of

match orders are:

fwd (Algorithm detail 4.149) The forward match order is used to com-

pare the (single) keyword against a potential match in a left to
right direction.

rev (Algorithm detail 4.150) The reverse match order is used to com-
pare the (single) keyword against a potential match in a right to
left direction. This is the original Boyer-Moore match order.

om (Algorithm detail 4.151) The symbols of the (single) keyword are
compared in order of ascending probability of occurrence in the
input string. In this way, mismatches will generally be discovered
as early as possible.

sl (Algorithm detail 4.167) Before an attempt at matching a candidate string
and the keyword, a `skip loop' is used to skip portions of the input that
cannot possibly lead to a match. Particular `skips' are:

none (Algorithm detail 4.169) No `skip' loop is used.

sfc (Algorithm detail 4.170 The `skip loop' compares the �rst symbol

of the match candidate and the keyword; as long as they do not

match, the candidate string is shifted one symbol to the right.

fast (Algorithm detail 4.171) As with (sfc), but the last symbol of the
candidate and the keyword are compared and possibly a larger
shift distance (than with with sfc) is used.

slfc (Algorithm detail 4.172) As with (fast), but a low frequency

symbol of the keyword is �rst compared.
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mi (Algorithm detail 4.176) The information gathered during an attempted

match is used (along with the particular match order used during the at-

tempted match) to determine a safe shift distance.

4.2 The problem and some na��ve solutions

In this section, we start with a formal statement of the pattern matching problem that

we consider. We present a number of simple algorithms of which the correctness is easily
established. These simple algorithms are not particularly interesting or practical, but they

provide convenient starting points for di�erent branches of the taxonomy. The solid part

of Figure 4.2 show the part of the taxonomy that we will consider in this section.

The problem is to �nd all occurrences of any of a set of keywords in an input string.

De�nition 4.1 (Keyword pattern matching problem): Given an alphabet V , an

input string S 2 V �, and a �nite non-empty pattern set P � V
�, establish

PM : O = ([ l; v; r : lvr = S : flg � (fvg \ P )� frg)

We will sometimes refer to S as the subject string. 2

Example 4.2 (Pattern matching): Given input string S = hishershey (a `hershey' is
a type of chocolate-bar available in North America) and keyword set P = fher; his; sheg
over alphabet V = fe; h; i; r; s; yg, when PM holds we have

O = f("; his; hershey); (hi; she; rshey); (his; her; shey); (hisher; she; y)g

Notice that two matches are allowed to overlap, as in the case of leftmost she match and
the her match. This example will be used throughout this chapter. 2

Registering keyword matches (in the input string) as a set of strings is di�cult and inef-
�cient to implement in practice. A practical implementation would make use of indexing

within the input string, and would encode matches using the indices, as is done in Chap-

ter 9. In this chapter, we pursue this more abstract presentation (using strings and sets of

strings) for clarity.
A trivial (but unrealistic) solution to the pattern matching problem is:

Algorithm 4.3 ():

O := ([ l; v; r : lvr = S : flg � (fvg \ P )� frg)

f PM g

2
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Figure 4.2: The algorithms considered in Section 4.2 are denoted by solid circles, connected

by solid lines.
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The sequence of details (between parentheses, after the algorithm number) describing this

algorithm is the empty sequence. This algorithm appears at the root of the taxonomy

graph.

There are two basic directions in which to proceed while developing na��ve algorithms

to solve this problem. Informally, a substring of S (such as v in the [ quanti�cation of the

above algorithm) can be considered a \su�x of a pre�x of S" or a \pre�x of a su�x of S".

These two possibilities are considered separately below.

Formally, we can consider \su�xes of pre�xes of S" as follows:

([ l; v; r : lvr = S : flg � (fvg \ P )� frg)

= f introduce u : u = lv g

([ l; v; r; u : ur = S ^ lv = u : flg � (fvg \ P )� frg)

= f l; v only occur in the latter range conjunct, so restrict their scope g

([ u; r : ur = S : ([ l; v : lv = u : flg � (fvg \ P ) � frg))

A simple nondeterministic algorithm is obtained by introducing the following algorithm
detail:

Algorithm detail 4.4 (p): Examine pre�xes of a given string in any order. 2

The resulting algorithm is:

Algorithm 4.5 (p):

O := �;

for u; r : ur = S !
O := O [ ([ l; v : lv = u : flg � (fvg \ P )� frg)

roff PM g

2

Again starting from Algorithm 4.3() we can also consider \pre�xes of su�xes of S" as
follows:

([ l; v; r : lvr = S : flg � (fvg \ P )� frg)

= f introduce w : w = vr g

([ l; v; r; w : lw = S ^ vr = w : flg � (fvg \ P )� frg)

= f v; r only occur in the latter range conjunct, so restrict their scope g

([ l; w : lw = S : ([ v; r : vr = w : flg � (fvg \ P )� frg))

As with Algorithm detail (p), we introduce the following detail.

Algorithm detail 4.6 (s): Examine su�xes of a given string in any order. 2
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Figure 4.3: The 3-cube of na��ve pattern matching algorithms.

Using this algorithm detail yields the simple nondeterministic algorithm (s) which is anal-
ogous to Algorithm 4.5(p). Hence, it is not presented here.

The update of O (with another quanti�cation) in the inner repetitions of algorithms
(p) and (s) can be computed with another nondeterministic repetition. In the case of (p),
the inner repetition would consider su�xes of u to give algorithm (p, s); similarly, in (s)
the inner repetition would consider pre�xes of u to give algorithm (s, p).

Each of (p, s) and (s, p) consists of two nested nondeterministic repetitions. In each
case, the repetition can be made deterministic by considering pre�xes (or su�xes as the
case is) in increasing (called detail (+)) or decreasing (detail (�)) order of length. For each
of (p, s) and (s, p) this gives two binary choices. Along with the binary choice between (p,

s) and (s, p) this gives eight possible na��ve algorithms, arranged in a 3-cube representing
the three binary choices; the cube is depicted in Figure 4.3 with vertices representing
the eight possible algorithms for the two nested repetitions. The edges marked `=' join

algorithms which are symmetrical; for example, the order in which (p+, s�) considers input
string S and keyword set P is mirrored (with respect to string reversal of S and P ) by the

order in which (s+, p�) considers S and P . Because of this symmetry, we present only four

algorithms in this section: (p+, s+), (p+, s�), (s�, p�), and (s�, p+). These algorithms

were chosen because their outer repetitions examine S in left to right order.

Forward reference 4.7: In Section 4.2.1, Algorithm 4.5(p) will be re�ned further and

in Section 4.2.2, Algorithm (s) will be re�ned. In Section 4.3, Algorithm (p+) will be

developed into the Aho-Corasick and Knuth-Morris-Pratt algorithms, while in Sections 4.4

and 4.5, Algorithm (p+, s+) will be developed into the Commentz-Walter and Boyer-Moore
algorithms. 2
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4.2.1 The (p+) algorithms

The (p) algorithm presented in the previous section can be made deterministic by consid-

ering pre�xes of S in order of increasing length (Algorithm detail (p+)). The outer union

quanti�cation in the required value of O can be computed with a deterministic repetition:

Algorithm 4.8 (p+):

u; r := "; S; O := f"g � (f"g \ P ) � fSg;

do r 6= "!

u; r := u(r�1); r�1;

O := O [ ([ l; v : lv = u : flg � (fvg \ P )� frg)

odf PM g

2

Forward reference 4.9: This algorithm will be used in Section 4.3 as a starting point
for the Aho-Corasick and Knuth-Morris-Pratt algorithms. 2

The inner union quanti�cation in the required value of O can be computed with a nonde-

terministic repetition. This algorithm is called (p+, s) but will not be given here.

4.2.1.1 The (p+, s+) algorithm and its improvement

Starting with algorithm (p+, s) we make its inner repetition deterministic by considering
su�xes of u in order of increasing length:

Algorithm 4.10 (p+, s+):

u; r := "; S; O := f"g � (f"g \ P ) � fSg;
do r 6= "!

u; r := u(r�1); r�1;
l; v := u; "; O := O [ fug � (f"g \ P )� frg;

do l 6= "!
l; v := l�1; (l�1)v;

O := O [ flg � (fvg \ P )� frg

od

odf PM g

2

Remark 4.11: This algorithm has O(jSj2) running time, assuming that intersection with

P is a O(1) operation. 2



52 CHAPTER 4. KEYWORD PATTERN MATCHING ALGORITHMS

We can make an improvement to the above algorithm by noting that v 2 P ) su�(v) �

su�(P ), and therefore su�(v) 6� su�(P ) ) v 62 P . Intuitively, when a string v is not in

su�(P ), there is no string u such that uv 2 P . The property that we need can be stated

more precisely.

Property 4.12 (Su�xes of P ): Note that

(8 w; a : w 62 su�(P ) : aw 62 su�(P )):

2

In other words, in the inner repetition when (l�1)v 62 su�(P ) we need not consider any
longer su�xes of u. This means that the inner repetition guard (l 6= ") can be strengthened

to

l 6= " cand (l�1)v 2 su�(P ):

The direct evaluation of (l�1)v 2 su�(P ) is expensive. Therefore, it is done using a
function (corresponding to P ) called a reverse trie [Fred60], de�ned as follows:

De�nition 4.13 (Reverse trie corresponding to P ): The reverse trie corresponding
to P is de�ned as function �P;r 2 su�(P )� V �! su�(P ) [ f?g de�ned by

�P;r(w; a) =

(
aw if aw 2 su�(P )
? if aw 62 su�(P )

2

Convention 4.14 (Reverse trie): Since we usually refer to the trie corresponding to P

we will write �r instead of �P;r. 2

Example 4.15 (Reverse trie): The reverse trie corresponding to our example keyword
set P = fher; his; sheg is show in Figure 4.4. The vertices in the directed graph represent
elements of su�(P ), while the edges represent the mapping of an element of su�(P ) and
an element of V to su�(P ). Note that cases where the reverse trie takes value ? are not

shown. 2

Remark 4.16: Since jsu�(P )j is �nite, function �r can be viewed as a kind of transition
function, with ? meaning `unde�ned'. 2

Algorithm detail 4.17 (rt): Given the reverse trie, the guard conjunct (l�1)v 2 su�(P )

becomes �r(v; l�1) 6= ?. 2
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Figure 4.4: Example of a reverse trie.

Algorithm 4.18 (p+, s+, rt):

u; r := "; S; O := f"g � (f"g \ P ) � fSg;

do r 6= "!

u; r := u(r�1); r�1;
l; v := u; "; O := O [ fug � (f"g \ P )� frg;
do l 6= " cand �r(v; l�1) 6= ?!

l; v := l�1; (l�1)v;

O := O [ flg � (fvg \ P )� frg

od

odf PM g

2

Forward reference 4.19: Observe that u = lv ^ v 2 su�(P ) is an invariant of the inner
repetition, initially established by the assignment l; v := u; ". This invariant will be used

in Section 4.4 to arrive at the Commentz-Walter algorithms. 2

Remark 4.20: This algorithm has O(jSj � (MAX p : p 2 P : jpj)) running time. The

precomputation of �r is similar to the precomputation of the forward trie �f (see De�ni-
tion 4.26) which is discussed in [WZ92, Part II, Section 6]. 2

In practice, a reverse trie can be implemented as a table with jsu�(P )j � jV j entries, with

elements of su�(P ) and V being encoded as integers and used to index the table. Such an

implementation is used in Chapter 9.
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4.2.1.2 The (p+, s�) algorithm

In the previous section, we modi�ed the inner repetition of algorithm (p+, s) to consider

su�xes of u in order of increasing length. In this section, we will make use of an inner

repetition which considers them in order of decreasing length. This gives us the following
algorithm:

Algorithm 4.21 (p+, s�):

u; r := "; S; O := f"g � (f"g \ P ) � fSg;
do r 6= "!

u; r := u(r�1); r�1;
l; v := "; u;

do v 6= "!

O := O [ flg � (fvg \ P )� frg;

l; v := l(v�1); v�1
od;
O := O [ fug � (f"g \ P ) � frg

odf PM g

2

Remark 4.22: This algorithm has O(jSj2) running time and it appears di�cult to improve

its performance. 2

4.2.2 The (s�) algorithms

Algorithm (s) can be made deterministic by considering su�xes of S in order of decreasing
length. This results in the deterministic algorithm (s�) which will not be given here.
Furthermore, the assignment to O in the repetition can be written as a nondeterministic

repetition to give the algorithm (s�, p) which will not be given here.

4.2.2.1 The (s�, p+) algorithms

Starting with algorithm (s�, p) we make the inner repetition deterministic by considering

pre�xes of each su�x of the input string in order of increasing length. The algorithm is:

Algorithm 4.23 (s�, p+):

l; w := "; S;O := �;
do w 6= "!

v; r := ";w; O := O [ flg � (f"g \ P )� fwg;
do r 6= "!

v; r := v(r�1); r�1;

O := O [ flg � (fvg \ P )� frg
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od;

l; w := l(w�1); w�1

od;

O := O [ fSg � (f"g \ P )� f"g

f PM g

2

Remark 4.24: This algorithm has O(jSj2) running time, like Algorithm 4.10(p+, s+). 2

In a manner similar to the introduction of the reverse trie (De�nition 4.13 and Algo-

rithm 4.18(p+, s+, rt)), we can strengthen the inner repetition guard. The following
de�nitions are reections (under string reversal) of those presented starting on page 51.

Property 4.25 (Pre�xes of P ): Note that

(8 u; a : u 62 pref(P ) : ua 62 pref(P ))

Given this property, we can strengthen the guard of the inner repetition to

r 6= " cand v(r�1) 2 pref(P )

This property is the reection of Property 4.12. 2

E�cient computation of the strengthened guard (r 6= " cand v(r�1) 2 pref(P )) can be
done by using the forward trie corresponding to P .

De�nition 4.26 (Forward trie corresponding to P ): The forward trie function cor-
responding to P is �f 2 pref(P )� V �! pref(P ) [ f?g, de�ned by

�f (u; a) =

(
ua if ua 2 pref(P )
? if ua 62 pref(P )

2

Example 4.27 (Forward trie): The forward trie corresponding to our example keyword

set P = fher; his; sheg is shown in Figure 4.5. In a manner analogous to the reverse trie
example, the vertices in the directed graph represent elements of pref(P ), while the edges

represent the mapping of an element of pref(P ) and an element of V to pref(P ) (and
cases where the reverse trie takes value ? are not shown). 2

Algorithm detail 4.28 (ft): Given the forward trie, the guard conjunct v(r�1) 2
pref(P ) now becomes �f (v; r�1) 6= ?. 2

Remark 4.29: The forward trie detail (ft) is de�ned and used symmetrically to the

reverse trie detail (rt) (see Algorithm detail 4.17). 2
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Figure 4.5: Example of a forward trie.

Introducing algorithm detail (ft) yields

Algorithm 4.30 (s�, p+, ft):

l; w := "; S; O := �;

do w 6= "!
v; r := ";w; O := O [ flg � (f"g \ P )� fwg;
do r 6= " cand �f (v; r�1) 6= ? !

v; r := v(r�1); r�1;
O := O [ flg � (fvg \ P )� frg

od;
l; w := l(w�1); w�1

od;

O := O [ fSg � (f"g \ P )� f"g

f PM g

2

Remark 4.31: As in Forward reference 4.19, observe that w = vr ^ v 2 pref(P ) is an

invariant of the inner repetition. It is initially established by the assignment v; r := ";w.

2

Remark 4.32: This algorithm has O(jSj � (MAX p : p 2 P : jpj)) running time, like

Algorithm 4.18(p+, s+, rt). 2
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4.2.2.2 The (s�, p�) algorithm

The inner repetition of algorithm (s�, p) can also be made deterministic by considering

pre�xes of w in order of decreasing length. This yields algorithm (s�, p�) which is not

given here. Its running time is O(jSj2).

4.3 The Aho-Corasick algorithms

In this section, starting with the na��ve Algorithm 4.8(p+) from Section 4.2, we derive the
Aho-Corasick [AC75] and Knuth-Morris-Pratt [KMP77] algorithms and their variants. The

Knuth-Morris-Pratt (KMP) algorithm is a well known single keyword matching algorithm

operating in time linear in the length of the subject string. The article [KMP77] gives an
interesting account of the history of development of the algorithm. Aho and Corasick (AC)

combined its essential idea with concepts from automata theory to obtain two multiple
keyword matching algorithms, also operating in linear time.

The common aspect of all these algorithms is the construction of a kind of Moore3

machine (see De�nition 2.79) during a preprocessing phase. Using this Moore machine,

the subject string can be scanned in linear time. The variants of the AC and the KMP
algorithms all make use of the same Moore machine, but each of them uses a di�erent

method to compute the next transition. In the failure function AC algorithm, computation

of the transition function is implemented using the forward trie (corresponding to P ),
while in the KMP algorithm it is realized by indexing in the pattern. These di�erences
lead to tradeo�s between the time to process the input string, the time to precompute
the required functions, and the space to store the required functions. The optimized AC

algorithm (Algorithm 4.53) can process each symbol of the input string in constant time,
but requires O(jpref(P )j � jV j) time and space for precomputed functions. On the other
hand, the failure function AC algorithm (Algorithm 4.72) can require O(jpref(P )j) time
to process a given input symbol, but it only requires O(jpref(P )j) time and space for

precomputed functions.

Although these algorithms are frequently presented in an automata-theoretic way, in
this dissertation the automata aspects of these algorithms will not be stressed. Instead, a
more general (algorithmic) presentation will be used. Automata theoretic approaches to

deriving these algorithms are presented in Sections 4.3.3 and 4.3.7. Both of these sections

can be omitted without loss of continuity.

Figure 4.6 shows the part of the taxonomy that we will consider in this section. The
algorithms to be presented are denoted by solid circles, connected by solid lines.

The triple format of set O used so far has been redundant. This redundancy can be
removed by registering matches in S by their end-points only; that is, the �rst component
of the triple will be dropped. This modi�cation is known as problem detail (e).

3The inventor of Moore machines, E.F. Moore, is not the co-inventor (with Boyer), J Strother Moore,
of the Boyer-Moore pattern matching algorithms. E.F. Moore performed much of the original research
into the minimization of DFAs | see Chapter 7.
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Problem detail 4.33 (e): Matches are registered by their end-points. 2

Dropping the �rst component of the triples will allow us to make some e�ciency improve-

ments to the algorithms.

The desired value of O (with the �rst component dropped) in postcondition PM can

be rewritten as follows:

��1([ u; r : ur = S : ([ l; v : lv = u : flg � (fvg \ P )� frg))

= f �� distributes over [g

([ u; r : ur = S : ([ l; v : lv = u : ��1(flg � (fvg \ P )� frg)))

= fde�nition of �� g

([ u; r : ur = S : ([ l; v : lv = u : (fvg \ P )� frg))

= f� distributes over [g

([ u; r : ur = S : ([ l; v : lv = u : fvg \ P )� frg)

= f\ distributes over [g

([ u; r : ur = S : (([ l; v : lv = u : fvg) \ P )� frg)

= fde�nition of su� g

([ u; r : ur = S : (su�(u) \ P ) � frg)

De�nition 4.34 (Re�ned postcondition): The derivation above yields a new postcon-
dition

PM e : Oe = ([ u; r : ur = S : (su�(u) \ P )� frg)

2

Example 4.35 (End-point pattern matching): Assuming the input string and key-

word set from Example 4.2, when PM e holds we have

Oe = f(his; hershey); (she; rshey); (her; shey); (she; y)g

2

This postcondition is established by a modi�ed version of Algorithm 4.8(p+) (we could
have used Algorithm 4.5(p), however, we choose to use a deterministic algorithm):

Algorithm 4.36 (p+, e):

u; r := "; S; Oe := (f"g \ P )� fSg;
do r 6= "!

u; r := u(r�1); r�1;

Oe := Oe [ (su�(u) \ P )� frg
odf PM e g

2

In the following sections, algorithm details unique to the AC and KMP algorithms will be

introduced.
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4.3.1 Algorithm detail (ac)

In Algorithm 4.36, we see that new matches are registered whenever the condition su�(u)\

P 6= � holds, i.e. when one or more patterns occur as su�xes of u, the part of the subject

string read thus far. The essential idea of both the AC and the KMP algorithms is the

use of an easily updateable state variable that gives information about (partial) matches

in su�(u), and from which the set su�(u) \ P can easily be computed.

In order to facilitate the update of Oe in Algorithm 4.36(p+, e) we introduce a new

variable U and attempt to maintain invariant U = su�(u) \ P . When u is updated to
u(r�1), we require an update of U to maintain the invariant. We begin deriving this update

as follows:

su�(u(r�1)) \ P

= fProperty 2.54, \ distributes over [g

(su�(u)(r�1) \ P ) [ (f"g \ P )

= fProperty 2.56 g

((su�(u) \ pref(P ))(r�1) \ P ) [ (f"g \ P )

From the above derivation, it seems di�cult to derive an easily computed update for U .
The update of U could more easily be accomplished, given the set su�(u)\pref(P ) rather

than the old value of U (which is su�(u) \ P ). The set su�(u) \ pref(P ) can be viewed
as a generalization of the set su�(u) \ P .

In order to obtain an algorithm that is more easily implemented in practice, we try to

maintain invariant

U = su�(u) \ pref(P )

which is initially established by assignment u;U := "; f"g since P 6= �. Assuming U =
su�(u) \ pref(P ) we derive the following update of U :

su�(u(r�1)) \ pref(P )

= fpreceding derivation with pref(P ) instead of P g

((su�(u) \ pref(pref(P )))(r�1) \ pref(P )) [ (f"g \ pref(P ))

= fProperty 2.51 | idempotence of pref g

((su�(u) \ pref(P ))(r�1) \ pref(P )) [ (f"g \ pref(P ))

= fU = su�(u) \ pref(P ), Property 2.55 | " 2 pref(P ) g

(U(r�1) \ pref(P )) [ f"g

The new invariant relating U and u yields another interesting property:

Property 4.37 (Set U): From U = su�(u) \ pref(P ) and P � pref(P ) it follows that

U \ P = su�(u) \ pref(P ) \ P = su�(u) \ P . We can use the expression U \ P in the
update of variable Oe. 2
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This all leads to the following modi�cation of Algorithm 4.36(p+, e):

Algorithm 4.38:

u; r := "; S; U := f"g; Oe := (f"g \ P )� fSg;

do r 6= "!

U := (U(r�1) \ pref(P )) [ f"g;

u; r := u(r�1); r�1;
Oe := Oe [ (U \ P )� frg

odf PM e g

2

It should be noted that variable u is now superuous. It will, however, be kept in all

subsequent algorithms to help formulate invariants.

Returning to our introduction of variable U with invariant U = su�(u) \ pref(P )

in Algorithm 4.38, we see no easy way to implement this algorithm in practice (given
that U is a language) | it appears di�cult to implement the update statement U :=
(U(r�1)\pref(P ))[f"g. Therefore, we try to exploit the internal structure of U to obtain
an easier update statement. We proceed by using the following property.

Property 4.39 (Set su�(u) \ pref(P )): For each u 2 V
� the set su�(u) \ pref(P ) is

nonempty, �nite, and linearly ordered with respect to the su�x ordering �s. The set
therefore has a maximal element (MAX�s w : w 2 su�(u)\pref(P ) : w). (The set is also
(partially) ordered with respect to the pre�x ordering, �p, but that does not prove to be
particularly useful.) This maximal element also characterizes the set, since

su�(u) \ pref(P ) = su�((MAX�s w : w 2 su�(u) \ pref(P ) : w)) \ pref(P )

2

Example 4.40 (Characterizing su�(u) \ pref(P )): If we take u = hish (and therefore

r = ershey), we have

su�(hish) \ pref(P ) = f"; h; shg

with maximal (under �s) element sh. 2

The implication of the above property is that we can encode any possible value of U by

an element of pref(P ). Such an encoding is of great practical value since a state which is
a string is much more easily implemented than a state which is a language. Note that the

set of possible values that U can take is f su�(w) \ pref(P ) j w 2 V
� g. We now de�ne

the encoding function.
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De�nition 4.41 (Encoding function enc): Bijective encoding function

enc 2 f su�(w) \ pref(P ) j w 2 V � g �! pref(P )

is

enc(U) = (MAX�s
w : w 2 U : w)

with inverse enc�1(w) = su�(w)\pref(P ). (Note that there are di�erent uses of w in the

lines above.) 2

The fact that function enc is bijective means that f su�(w) \ pref(P ) j w 2 V
� g and

pref(P ) are isomorphic (and therefore have the same cardinality).

We replace variable U in the algorithm by variable q and maintain invariant q = enc(U),

equivalently

q = (MAX�s w : w 2 su�(u) \ pref(P ) : w)

which is initially established by q := " (since enc(f"g) = "). The introduction of variable
q constitutes the essential idea of the Aho-Corasick family of algorithms. We call this

algorithm detail (ac).

Algorithm detail 4.42 (ac): A variable q is introduced into Algorithm 4.36(p+, e) such

that

q = (MAX�s w : w 2 su�(u) \ pref(P ) : w)

2

Property 4.43 (Variable q): It follows from the update of Oe using U , and function

enc that we can rewrite the update of Oe in terms of q, since U \ P = enc�1(q) \ P =
su�(q) \ pref(P ) \ P = su�(q) \ P . 2

In order to make the update of program variableOe more concise, we introduce the following

auxiliary function:

De�nition 4.44 (Function Output): Function Output 2 pref(P ) �! P(P ) is de�ned

by

Output (w) = su�(w) \ P

2

Example 4.45 (Function Output):

w " h s he hi sh her his she

Output (w) � � � � � � fherg fhisg fsheg

2
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The update of Oe can be done by assignment Oe := Oe [Output (q)� frg.

Remark 4.46: The precomputation of function Output can be done in O(jpref(P )j) time;

an algorithm doing this is presented in [WZ92, Part II, Section 6]. 2

We now require an update of variable q, in order to maintain the invariant. The update

of variable U was

U := (U(r�1) \ pref(P )) [ f"g

Given bijection enc and the invariant relating U and q, the update of q is:

q := enc((enc�1(q)(r�1) \ pref(P )) [ f"g)

We can manipulate the right side into a more readable form as follows:

enc((enc�1(q)(r�1) \ pref(P )) [ f"g)

= fde�nition of enc�1 g

enc(((su�(q) \ pref(P ))(r�1) \ pref(P )) [ f"g)

= fProperty 2.56 g

enc((su�(q)(r�1) \ pref(P )) [ f"g)

= f\ distributes over [; Property 2.55 | " 2 pref(P ) g

enc((su�(q)(r�1) [ f"g) \ pref(P ))

= fProperty 2.54 g

enc(su�(q(r�1)) \ pref(P ))

= fde�nition of enc g

(MAX�s w : w 2 su�(q(r�1)) \ pref(P ) : w)

We now have obtained algorithm

Algorithm 4.47 (p+, e, ac):

u; r := "; S; q := "; Oe := Output (q)� fSg;
do r 6= "!

q := (MAX�s w : w 2 su�(q(r�1)) \ pref(P ) : w);

u; r := u(r�1); r�1;
Oe := Oe [Output (q)� frg

odf PM e g

2

Forward reference 4.48: Sections 4.3.2, 4.3.4, 4.3.5, and 4.3.6 are concerned with alter-

native ways of implementing assignment

q := (MAX�s w : w 2 su�(q(r�1)) \ pref(P ) : w)

2
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4.3.2 Method (ac-opt)

In this section, we aim for an implementation of the assignment given in Forward refer-

ence 4.48 by means of a simple statement of the form q := f (q; r�1), where f is a suitable

transition function, de�ned as follows:

De�nition 4.49 (Function f): Function f 2 pref(P )� V �! pref(P ) is de�ned as

f (q; a) = (MAX�s
w : w 2 su�(qa) \ pref(P ) : w)

2

Remark 4.50: Subscript f in f is used to indicate that f corresponds to the forward

trie transition function �f . That is, �f � f if we assume that ? in the codomain of �f
corresponds to the function not being de�ned at that point. Compare Examples 4.27 and

4.51. 2

Example 4.51 (Function f): Function f corresponding to our example keyword set

P = fher; his; sheg is shown in Figure 4.7. In keeping with the above remark, we can see

that the graphical representation of the example forward trie (Example 4.27, Figure 4.5)
is contained (from a graph-theoretic point of view) in Figure 4.7. 2

Given function f , the assignment to q in Algorithm 4.47(p+, e, ac) can be written as
q := f (q; r�1).

Algorithm detail 4.52 (ac-opt): Usage of function f to update variable q. 2

This leads to algorithm:

Algorithm 4.53 (p+, e, ac, ac-opt):

u; r := "; S; q := "; Oe := Output (q)� fSg;

do r 6= "!
q := f (q; r�1);
u; r := u(r�1); r�1;

Oe := Oe [Output (q)� frg

odf PM e g

2

Remark 4.54: Provided evaluating f (q; a) and Output(q) are O(1) operations (for in-

stance, if f and Output are tabulated), Algorithm 4.53(p+, e, ac, ac-opt) has O(jSj)

running time complexity. 2
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This is the Aho-Corasick optimized algorithm [AC75, Section 6]. Historically, this al-

gorithm was usually derived from a less e�cient algorithm (known as the Aho-Corasick

failure function algorithm); in the next section, we will derive the failure function algo-

rithm. The algorithm given here is known as the `optimized' algorithm because it is able

to make transitions in constant time, while using O(jpref(P )j � jV j) time and space to
precompute and store function f . This algorithm would be used instead of the failure
function algorithm in cases where the input string is to be processed quickly at the cost

of precomputation time and space. The failure function algorithm requires O(jpref(P )j)

time to process a symbol of the input string, while only using O(jpref(P )j) time and space

for precomputed functions.

Precomputation of f is discussed in [WZ92, Part II, Section 6]. It involves the so-called

failure function which is introduced in Section 4.3.4.

4.3.3 A Moore machine approach to the ac-opt algorithm

In this section, we use an automata-based approach to derive the Aho-Corasick optimized
algorithm. This section may be omitted without loss of continuity.

We begin by examining the structure of Algorithm 4.38 (taken from page 61):

u; r := "; S; U := f"g; Oe := (f"g \ P )� fSg;
do r 6= "!

U := (U(r�1) \ pref(P )) [ f"g;
u; r := u(r�1); r�1;

Oe := Oe [ (U \ P )� frg
odf PM e g

This algorithm bears a resemblance to algorithms used to simulate deterministic Moore
machines. Thanks to encoding function enc, we know that the set of values that U can

take is isomorphic to the set pref(P ); the set of possible values for U is therefore �nite (see

Property 4.39). In the simulated Moore machine, variable U corresponds to the current

state (while processing input string S), the expression U \ P corresponds to the output
function, and variable Oe can be viewed as an encoding of the output string of the Moore
machine.

Remark 4.55: There are some algorithms in the literature (see, for example, [GB-Y91])

that implement the state of the Moore machine by means of a bit vector in the case of

single keyword pattern matching. For a practical use of bit vectors to represent states, see
Chapter 10. 2

These Moore machine observations can be made more precise in the following de�nition.

De�nition 4.56 (Deterministic Moore machine M0): We de�ne deterministic Moore

machine (corresponding to keyword set P ) M0 = (Q0; V;�0; �0; �0; fs0g) as
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� State set Q0 = f su�(w) \ pref(P ) j w 2 V
� g

� Input alphabet V

� Output alphabet �0 = P(P )

� Transition function �0 2 Q0 � V �! Q0 de�ned by

�0(q; a) = (qa \ pref(P )) [ f"g

� Output function �0 2 Q0 �! �0 de�ned by

�0(q) = q \ P

� Singleton start state set fs0g where s0 = "

Since M0 corresponds to P , we could have named it MP;0; since no confusion arises, we
simply drop the subscript P . 2

Forward reference 4.57: In Section 4.3.7, we show that Moore machine M0 can be

obtained in a di�erent way (primarily using �nite automata), while in Property 4.62 we
show that Moore machine M0 is minimal. 2

The states of Moore machine M0 are languages (sets of strings). Given the bijection
enc, we can encode each M0 state. This results in a Moore machine which is isomorphic
to M0 | an MM more easily implemented in practice. The encoding of M0 parallels the

introduction of variable q (along with functions Output and f ) to replace variable U .
We can now give the isomorphic image of M0 under enc.

De�nition 4.58 (Deterministic Moore machine M1): Moore machine M1 is the iso-

morphic image of M0 under enc . It is

M1 = (pref(P ); V;P(P ); f ;Output ; f"g)

where

� State set pref(P ) is the codomain of enc

� The input and output alphabets are unchanged

� f (see De�nition 4.49) is obtained as

f (q; a) = enc(�0(enc
�1(q); a)) = (MAX�s w : w 2 su�(qa) \ pref(P ) : w)

� Output (see De�nition 4.44) is obtained as

Output (q) = �0(enc
�1(q)) = su�(q) \ P
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� Start state " is obtained as " = enc(f"g)

Since M0 depends upon P , so does M1. 2

The simulation of M1 yields Algorithm 4.53.

Interestingly, the Moore machineM1 is in fact the minimal deterministicMoore machine

for its language (it follows from the isomorphism of M0 and M1 that M0 is also minimal).

This will be shown in the following de�nitions and properties.

Property 4.59 (Minimality of a Moore machine): ADMM (Q;V;�; �; �; fsg) is min-

imal if and only if all of its states are useful, and

(8 q0; q1 : q0 6= q1 ^ q0 2 Q ^ q1 2 Q : (9 w : w 2 V � : �(��(q0; w)) 6= �(��(q1; w))))

2

Remark 4.60: This de�nition can be viewed as a generalization of a property of min-
imality for deterministic �nite automata (see Property 2.111) | replace �(��(q; w)) by
�
�(q; w) 2 F in the de�nition where F is the set of �nal states of the �nite automaton. 2

Before presenting the derivation, we will require a property of function f
� (the extension

of f from domain pref(P )� V to pref(P )� V
�).

Property 4.61 (Function f
�): For q 2 pref(P ) and z 2 V �, we have

f

�(q; z) = (MAX�s w : w 2 su�(qz) \ pref(P ) : w)

It follows that f
�(q; z) �s qz. 2

Property 4.62 (Minimality of Moore machine M1): Moore machine M1 is minimal.
Proof:

The following proof is by contradiction. Since all states of M1 are useful, assume that there
exist two states

q0; q1 : q0 2 pref(P ) ^ q1 2 pref(P ) ^ q0 6= q1 ^ jq0j � jq1j

such that

(8 w : w 2 V
� : Output(f

�(q0; w)) = Output (f
�(q1; w)))

(That is, we assume that M1 is not minimal.) Choose w0 : q0w0 2 P . Then f
�(q0; w0) =

q0w0 and q0w0 2 Output (f
�(q0; w0)). In this case (from the assumptions)

q0w0 2 Output (f
�(q0; w0))

� f assumption about q0 and q1 g

q0w0 2 Output (f
�(q1; w0))

� fde�nition of Output g
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q0w0 2 su�(f
�(q1; w0)) \ P

) fde�nition of su�; Property 4.61; transitivity of �s g

q0w0 �s f
�(q1; w0) �s q1w0

) f transitivity of �s g

q0w0 �s q1w0

� fproperty of �s g

q0 �s q1

) f jq0j � jq1j g

q0 = q1

This is a contradiction. We conclude that Moore machines M0 and M1 are minimal. 2

4.3.4 Linear search

In this section, we return to our algorithmic derivation of the Aho-Corasick algorithms.

There are other ways of implementing the assignment in Forward reference 4.48 than

the one presented in Section 4.3.2. The presence of the MAX�s on the right side of the
assignment hints that a linear search could be used. Rather than using a single assignment

of the form q := f (q; r�1) (as was done in Section 4.3.2), we can try to compute the
MAX�s quanti�cation by means of a linear search of the form

do :B(q; r�1)! q := f(q) od

where f is a so-called failure function from states to states. The failure function will be used
to step through decreasing (under �s) values of q (from the maximum) until the value of

the quanti�cation is found. This may slow down the actual scanning of the subject string,

but with a suitable choice of f linearity can still be maintained.

The advantages of this approach (over the use of f in Section 4.3.2) lie in the lower
storage requirements and in the preprocessing phase. The storage requirements decrease

from O(jpref(P )j � jV j) for f to O(jpref(P )j) for a failure function. Correspondingly, the
precomputation can be performed in O(jpref(P )j) time, as opposed to O(jpref(P )j � jV j)

time for the preprocessing of function f .

Both the AC and KMP failure function algorithms make use of such a failure function,
albeit in slightly di�erent ways. Here, we give the common part of the derivations. The
di�erences are dealt with in the two following sections.

In order to derive a speci�cation for the linear search guard, and for the failure function,

we manipulate the right side of the assignment to q (from Forward reference 4.48) into a

suitable form.

We start with the �rst two lines of the derivation on page 63 (that derivation was used

to obtain the right side of the update of q).
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enc((enc�1(q)(r�1) \ pref(P )) [ f"g)

= fde�nition of enc�1 g

enc(((su�(q) \ pref(P ))(r�1) \ pref(P )) [ f"g)

= fde�nition of enc g

(MAX�s w : w 2 ((su�(q) \ pref(P ))(r�1) \ pref(P )) [ f"g : w)

= f for strings w; v : w 2 A [ fvg � w 2 A _ w = v g

(MAX�s
w : w 2 (su�(q) \ pref(P ))(r�1) \ pref(P ) _ w = " : w)

= fdomain split g

(MAX�s
w : w 2 (su�(q) \ pref(P ))(r�1) \ pref(P ) : w)max�s

"

= f change of bound variable: w = w
0(r�1) g

(MAX�s
w
0 : w0 2 su�(q) \ pref(P ) ^ w

0(r�1) 2 pref(P ) : w0(r�1))max�s
"

A linear search cannot be used to easily compute the above expression directly. In the next

two sections, the expression will be further manipulated for the speci�c linear searches.

Forward reference 4.63: Linear search will be used in Sections 4.3.5 and 4.3.6 to compute

(MAX�s w
0 : w0 2 su�(q) \ pref(P ) ^ w0(r�1) 2 pref(P ) : w0(r�1))max�s"

2

The use of linear search is expressed in the following program detail.

Algorithm detail 4.64 (ls): Using linear search to update the state variable q. 2

4.3.5 The Aho-Corasick failure function algorithm

In order to simplify the linear search, we would like to compute the following MAX�s

quanti�cation (as an intermediate step in computing the one in Forward reference 4.63):

(MAX�s w
0 : w0 2 su�(q) \ pref(P ) ^ w0(r�1) 2 pref(P ) : w0)

There is a potential problem with this approach: when the linear search computes " as the
value of this quanti�cation, an if-� statement is required to decide which of the following

two situations gave rise to the " (and therefore what the value of the quanti�cation in

Forward reference 4.63 is):

� :(9 w
0 : w0 2 su�(q)\ pref(P ) ^ w0(r�1) 2 pref(P ) : w0). The MAX�s quanti�ca-

tion has an empty range, and therefore value " (the unit of max�s).

� (r�1) 2 pref(P ). The MAX�s quanti�cation does not have an empty range, and

the value of the quanti�cation is ".

The linear search will make use of the following failure function.
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De�nition 4.65 (Failure function ff): Function ff 2 pref(P ) �! pref(P ) is de�ned

as

ff (q) = (MAX�s w : w 2 su�(q) n fqg \ pref(P ) : w)

Note that ff(") = " since " is the unit of max�s
. 2

Remark 4.66: The subscript f in the failure function ff is for forward. In Chapter 5, we

will use a reverse failure function fr which will be de�ned analogously. In that chapter,

a precomputation algorithm for fr is given; that algorithm could easily be modi�ed to

compute ff . 2

Example 4.67 (Failure function): The failure function corresponding to our example

keyword set is:

w " h s he hi sh her his she

ff(w) " " " " " h " s he

2

Using ff , the resulting linear search is:

q
0 := q;
do q0 6= " ^ q0(r�1) 62 pref(P )! q

0 := ff (q
0) od;

f (q0 = " ^ :(9 w
0 : w0 2 su�(q) \ pref(P ) : w0(r�1) 2 pref(P )))

_ q0 = (MAX�s w
0 : w0 2 su�(q) \ pref(P ) ^ w0(r�1) 2 pref(P ) : w0) g

if q0 = " ^ (r�1) 62 pref(P )! q := "

[] q
0 6= " _ (r�1) 2 pref(P )! q := q

0(r�1)
f i

f q = (MAX�s w : w 2 su�(q(r�1)) \ pref(P ) : w) g

The second conjunct in the guard of the repetition can be evaluated cheaply using the

forward trie �f , since q
0(r�1) 62 pref(P ) � �f (q

0
; (r�1)) = ?. However, by extending the

forward trie �f , we can use it to evaluate both of the repetition guard conjuncts4.

De�nition 4.68 (Extended forward trie corresponding to P ): The extended for-

ward trie is function �ef 2 pref(P )� V �! pref(P ) [ f?g de�ned by

�ef (w; a) =

8><>:
wa if wa 2 pref(P )

" if w = " ^ a 62 pref(P )

? otherwise

2

4This is essentially an application of the sentinal technique often used with linear search.
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Figure 4.8: Example of function �ef .

Note that �f (q; a) = �ef (q; a) except when q = " ^ a 62 pref(P ) where �f (q; a) = ? and

�ef (q; a) = ".

Property 4.69 (Extended forward trie): Both conjuncts of the linear search guard

can be combined since

q
0 6= " ^ q0(r�1) 62 pref(P ) � �ef (q

0
; r�1) = ?

As a side e�ect of the introduction of �ef , the if-� statement after the linear search can be
replaced by the single assignment statement q := �ef (q

0
; r�1). 2

Example 4.70 (Extended forward trie): Function �ef corresponding to our example

keyword set P = fher; his; sheg is shown in Figure 4.8. Visually, we can see that �ef is
simply an extension of the forward trie �f , by comparing this �gure with Figure 4.5 given

in Example 4.27. 2

Algorithm detail 4.71 (ac-fail): Introduction of the extended forward trie �ef and the

failure function ff to implement the linear search updating state variable q. 2
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We can now eliminate variable q0 from the linear search, to obtain the following algo-

rithm:

Algorithm 4.72 (p+, e, ac, ls, ac-fail):

u; r := "; S; q := "; Oe := Output (q)� fSg;

do r 6= "!

do �ef (q; r�1) = ?! q := ff (q) od;

q := �ef (q; r�1);

u; r := u(r�1); r�1;

Oe := Oe [Output (q)� frg
odf PM e g

2

This algorithm is the Aho-Corasick failure function pattern matching algorithm [AC75,
Section 2, Algorithm 1]. In Aho and Corasick's original paper, this algorithm is derived

�rst; it is then used as a starting point to derive the optimized AC algorithm.
This algorithm still has O(jSj) running time complexity [Aho90] but is less e�cient

than Algorithm 4.53(p+, e, ac, ac-opt). Function �ef can be stored more e�ciently than

function f , requiring O(jpref(P )j) space. Precomputation of extended forward trie �ef
and failure function ff is discussed in [WZ92, Part II, Section 6].

Since (in this algorithm) the failure function ff is never applied to ", we can restrict
its domain to ff 2 pref(P ) n f"g �! pref(P ). The function with the restricted domain

is slightly cheaper to precompute than the full function. In the next section, we will make
use of the full signature of ff .

4.3.6 The Knuth-Morris-Pratt algorithm

In this section, we would like to use a simpler linear search (compared to that used in the
previous section) to compute the following expression (from Forward reference 4.63):

(MAX�s w
0 : w0 2 su�(q) \ pref(P ) ^ w0(r�1) 2 pref(P ) : w0(r�1))max�s"

We would like to rewrite the above quanti�cation into

(MAX�s w
0 : w0 2 su�(q) \ pref(P ) ^ w0(r�1) 2 pref(P ) : w0)(r�1)

In this case, the quanti�cation could be calculated by linear search, but (as in the previ-
ous section) we would still need to distinguish between two cases when the value of the

quanti�cation is " (see page 70). In order to avoid this, we extend operator max�s (from

being a binary operator on V
� to a binary operator on V

� [ f?sg for some new element
?s) and we make this new element the unit ofmax�s. (Making it the unit will allow us to

identify the empty range case of the above quanti�cation; this required an if-� statement
in our �rst linear search algorithm in the previous section.)
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De�nition 4.73 (Extension of max�s
): Extend max�s

to be an associative and com-

mutative binary operator on V
� [ f?sg, with (8 w : w 2 V

� : wmax�s
?s = w) | that

is, ?s is the unit of max�s
. We also de�ne ?s to be the zero of string concatenation

| that is, (8 w : w 2 V
� : (w?s = ?s) ^ (?sw = ?s)). By Notation 2.6 we have

(MAX�s w : w 2 � : w) = ?s. 2

The property that ?s is the zero of string concatenation will be used later in the following

derivation. We can now rewrite the expression from Forward reference 4.63

(MAX�s
w
0 : w0 2 su�(q) \ pref(P ) ^ w

0(r�1) 2 pref(P ) : w0(r�1))max�s
"

= fDe�nition 4.73 | ?s is zero of concatenation and the unit of max�s
g

(MAX�s w
0 : w0 2 su�(q) \ pref(P ) ^ w

0(r�1) 2 pref(P ) : w0)(r�1)max�s"

We are left with an expression containing a simplerMAX�s
quanti�cation (the quanti�-

cation is the same as the one given at the beginning of Section 4.3.5). It is therefore easier
to implement a linear search to compute the value of this quanti�cation. The linear search

will traverse elements of (su�(q) \ pref(P )) [ f?sg.
This straight-forward linear search yields the KMP algorithm. Before presenting the

linear search, we note that we will have a failure function with the same de�nition as

was given in De�nition 4.65. The only change is: with the extension of max�s, we have
ff (") = (MAX�s w : w 2 su�(") n f"g : w) = (MAX�s w : w 2 � : w) = ?s instead of
ff (") = ". (This version of the failure function ff is sometimes called the extended failure

function.)
To compute the desired MAX�s quanti�cation we can simply use the linear search:

q
0 := q;
do q0 6= ?s cand q

0(r�1) 62 pref(P )! q
0 := ff(q

0) od;
f q0 = (MAX�s w : w 2 su�(q) \ pref(P ) ^ w(r�1) 2 pref(P ) : w) g

q := q
0(r�1)max�s"

f q = (MAX�s w : w 2 su�(q(r�1)) \ pref(P ) : w) g

Remark 4.74: Strictly speaking, the conditional conjunction in the repetition guard

could also be written as a normal (unconditional) conjunction because ?s is the zero of

concatenation. As we shall see in Algorithm 4.84, conditional conjunction is necessary
when certain coding tricks are used. 2

Algorithm detail 4.75 (kmp-fail): The extended failure function ff is introduced to
implement the linear search for the update of q. 2
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Eliminating variable q0 in the linear search leads to algorithm

Algorithm 4.76 (p+, e, ac, ls, kmp-fail):

u; r := "; S; q := "; Oe := Output (q)� fSg;

do r 6= "!
do q 6= ?s cand q(r�1) 62 pref(P )! q := ff (q) od;

q := q(r�1)max�s
";

u; r := u(r�1); r�1;
Oe := Oe [Output (q)� frg

odf PM e g

2

This algorithm does not appear in the literature. In some cases, the linear search in the

algorithm above performs one more iteration than the one in Algorithm 4.72, meaning that
it is slightly less e�cient.

4.3.6.1 Adding indices

Historically, the KMP algorithm was designed using indexing within strings; this stems
from e�ciency concerns. Some of the most common uses of the KMP algorithm are in

�le-search programs and text editors, in which pointers to memory containing a string
are a preferable method of accessing strings. In order to show the equivalence of this

more abstract version of KMP, and the classically presented version we will now convert

Algorithm 4.76 to make use of indexing within strings. To facilitate the use of indexing,
we have to restrict the problem to the one keyword case, as stated in problem detail

Problem detail 4.77 (okw): P = fpg 2

Convention 4.78 (Shadow variables): Most shadow predicates and functions will be
`hatted' for easy identi�cation. Variables i and j are so named (and not hatted) to conform

to the original publication of the algorithms. 2

We now introduce three shadow variables, and invariants that are maintained between the
shadow variables and the existing program variables:

� i : q = p1 : : : pi�1 where i = 1 � q = " and i = 0 � q = ?s. With this convention we
mirror the coding trick from the original KMP algorithm.

� j : u = S1 : : : Sj�1 ^ r = Sj : : : SjSj. Also r�1 = Sj if 1 � j � jSj.

� c
Oe : Oe = ([ x : x 2 c

Oe : f(p; Sx � � �SjSj)g).

Naturally, we must de�ne new predicates and a new failure function b
ff on these shadow

variables.
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De�nition 4.79 (Indexing extended failure function): De�ne b
ff 2 [1; jpj+ 1] �!

[0; jpj] as

b
ff (i) = jff(p1 : : : pi�1)j+ 1

and de�ne j?sj = �1. 2

Example 4.80 (Indexing extended failure function): For this single-keyword exam-

ple, we assume the keyword p = hehshe. In this case, our failure function ff is given

as:

w " h he heh hehs hehsh hehshe

ff (w) ?s " " h " h he

The corresponding indexing failure function b
ff is:

i 1 2 3 4 5 6 7b
ff(i) 0 1 1 2 1 2 3

2

The invariant relating u and q (q = (MAX�s w : w 2 su�(u) \ pref(P ) : w)) can be
rewritten to relate j and i:

p1 : : : pi�1 = (MAX�s w : w 2 su�(S1 : : : Sj�1) \ pref(p) : w))

De�nition 4.81 (New postcondition dPM e): Postcondition PM e can be rewritten in
terms of the shadow variables:

dPM e : cOe = ([ j : 1 � j � jSj+ 1 ^ p 2 su�(S1 � � �Sj�1) : fjg)

2

We can also note the following equivalences and correspondences:

� Since q 2 pref(p) we have q(r�1) 62 pref(p) � Sj 6= pi when i � jpj ^ j � jSj.
Similarly q 6= ?s � 0 < i and q = p � i = jpj+ 1.

� Assignment q := q(r�1)max�s" corresponds to i := i+ 1. It is here that we use the
coding trick alluded to in Remark 4.74.

� Assignment u; r := u(r�1); r�1 corresponds to j := j + 1.

� The guard can be rewritten using the following equivalence r 6= " � j � jSj.

� Assignment Oe := Oe [ Output(q)� frg corresponds to
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if i = jpj+ 1! c
Oe := c

Oe [ fjg

[] i 6= jpj+ 1! skip

fi

The complete algorithm (written without the invariants relating shadow to non-shadow

variables) is now:

u; r := "; S; q := "; Oe := Output (q)� fSg;

i := 1; j := 1;

if i = jpj+ 1! c
Oe := fjg

[] i 6= jpj+ 1! c
Oe := �

f i;
do j � jSj !

do 0 < i cand Sj 6= pi ! q := ff (q); i := b
ff (i) od;

q := q(r�1)max�s"; i := i+ 1;
u; r := u(r�1); r�1; j := j + 1;
Oe := Oe [Output (q)� frg;

if i = jpj + 1! c
Oe := c

Oe [ fjg
[] i 6= jpj + 1! skip

fi

odf PM e ^ dPM e g

We have introduced algorithm detail:

Algorithm detail 4.82 (indices): Represent substrings by indices into the complete
strings. 2

Remark 4.83: While we have introduced (indices) as an algorithm detail, it could also be

considered as a problem detail since it is being used to derive an algorithm which satis�es

a postcondition given in terms of indices. We will continue to call it an algorithm detail,

since we will use it as a pure algorithm detail in Section 4.5. 2

Removing the non-shadow variables leaves us with the following algorithm:

Algorithm 4.84 (p+, e, ac, ls, kmp-fail, okw, indices):

i := 1; j := 1;

if i = jpj+ 1! c
Oe := fjg

[] i 6= jpj+ 1! c
Oe := �
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f i;

do j � jSj !

do 0 < i cand Sj 6= pi ! i := b
ff (i) od;

i := i+ 1;

j := j + 1;

if i = jpj + 1! c
Oe := c

Oe [ fjg

[] i 6= jpj + 1! skip

fi

odf dPM e g

2

The above algorithm is the classic Knuth-Morris-Pratt algorithm [KMP77, Section 2,

p. 326]. This algorithm has O(jSj) running time, and it has been shown by Perrin [Perr90,

p. 32] that the number of applications of bff (the total number of iterations of the outer

repetition and the inner repetition) is never greater than 2 � jSj. Storage of b
ff requires

O(jpj) space. Precomputation of function b
ff can easily be derived by converting, in a

similar way to above, the precomputation of function ff (as discussed in [WZ92, Part II,
Section 6]) into using indices.

4.3.7 An alternative derivation of Moore machine M0

An interesting solution to the pattern matching problem involves using an automaton
for the language V �

P . Usually, a nondeterministic �nite automaton is constructed. The

automaton is then simulated, processing input string S, and considering all paths through

the automaton. Whenever a �nal state is entered (after processing string u, a pre�x of
S), a keyword match has been found (since u 2 V

�
P , equivalently su�(u) \ P 6= �,

by Property 2.59) and the match is registered; see for example [AHU74, p. 327] for a
description of this approach.

One particular ("-transition-free) transition function for the automaton is simply the
forward trie for P , augmented with a transition from state " to itself on all symbols in

V (recall that pref(P ) is the state set of the forward trie | see De�nition 4.26). This
automaton is de�ned as (QN ; V; �N ;�; fsNg; FN), where

� State set QN = pref(P )

� The input alphabet V

� Transition function (trie-based) �N 2 QN � V �! P(QN) is de�ned (for q = ") by

�N(q; a) =

(
f"; ag if a 2 pref(P )

f"g otherwise
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Figure 4.9: Example of function �N . Notice the similarity with function �ef .

and (for q 6= ")

�N(q; a) =

(
fqag if qa 2 pref(P )

� otherwise

and is extended to ��
N
2 QN � V

� �! P(QN) in the usual way

� Single start state sN = "

� Final state set FN = P

It is useful to see the graphical representation of transition function �N .

Example 4.85 (Function �N): The function �N corresponding to our keyword set P =

fher; his; sheg is shown in Figure 4.9. 2

The simulation of this automaton can proceed as follows:

u; r := "; S; qN := fsNg;
Oe := (qN \ FN)� frg;

f invariant: qN = �
�

N
("; u) g

do r 6= "!

qN := ([ q : q 2 qN : �N (q; r�1));

u; r := u(r�1); u�1;
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Oe := Oe [ (qN \ FN)� frg

odf PM e g

Strictly speaking, the automaton is being used as a nondeterministic Moore machine. Each

path through the Moore machine is followed simultaneously; the output function is only

de�ned for some of the states (the �nal states, FN = P to be precise). The output alphabet
�N can be written as �N = P [f?Ng (?N is output in nonmatching, i.e. non-�nal states).

The output function is �N 2 QN �! �N de�ned as

�N (q) =

(
q if q 2 FN
?N if q 62 FN

The nondeterministic Moore machine is now MN = (QN ; V;�N ; �N ; �N ; fsNg). In the

algorithm, the set Oe is only updated when the output is not ?N .

The subset construction (with unreachable state removal) can be applied to the non-
deterministic Moore machine, to give a deterministic Moore machine MD. That is, MD =

(useful
s
� subsetmm)(MN). In the following property, we will prove that MD = M0 (deter-

ministic Moore machine M0 was de�ned in De�nition 4.56).
In the derivation that follows, we will use an interesting property of automaton MN .

Property 4.86 (Transition function �N): For all states q 2 QN , the left language of

q is V �
q. We write

 �
L (q) = V

�
q. This follows from the fact that the only cycles in the

transition graph are from start state sN to itself on every a 2 V . 2

Under the subset construction, the state set is P(QN) = P(pref(P )). The set of
reachable states is smaller, as will be shown below. A new output alphabet (under the
subset construction) is de�ned as: �D = P(�N). The set of start-reachable states is

QD

= fTransformation 2.124 and Property 2.96 g

f q j q 2 P(QN) ^
 �
L MD

(q) 6= � g

= fProperty 2.123 | subset construction g

f q j q 2 P(QN) ^ (\ p : p 2 q :
 �
L MN

(p)) 6= � g

= fProperty 2.107 | disjoint left languages in a DMM g

f f p j p 2 QN ^ w 2
 �
LMN

(p) g j w 2 V � g

= fde�nition: QN = pref(P ) and Property 4.86 g

f f p j p 2 pref(P ) ^ w 2 V �
p g j w 2 V � g

= fProperty 2.59: w 2 V �
p � p 2 su�(w) g

f f p j p 2 pref(P ) ^ p 2 su�(w) g j w 2 V � g

= fde�nition of \: p 2 pref(P ) ^ p 2 su�(w) � p 2 pref(P ) \ su�(w) g
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f f p j p 2 pref(P ) \ su�(w) g j w 2 V � g

= f set calculus g

f su�(w) \ pref(P ) j w 2 V � g

= fde�nition of Q0 g

Q0

The deterministic output function �D 2 QD �! P(�N) is

�D(q)

= fTransformation 2.124 | subset construction g

f�N (p) j p 2 q ^ �N (p) 6= ?N g

= fde�nition of �N g

f p j p 2 q ^ p 2 FN g

= fde�nition: FN = P g

f p j p 2 q ^ p 2 P g

= fde�nition of \g

f p j p 2 q \ P g

= f set calculus g

q \ P

= fde�nition �0 g

�0(q)

Lastly, the deterministic transition function �D 2 QD � V �! QD is

�D(q; a)

= fTransformation 2.124 | subset construction g

([ p : p 2 q : �N(p; a))

= fde�nition of �N , " 2 q g

([ p : p 2 q ^ pa 2 pref(P ) : fpag) [ f"g

= f set calculus g

(qa \ pref(P )) [ f"g

= fde�nition of �0 g

�0(q; a)

From these derivations it follows that MD = M0.

Remark 4.87: Notice that the number of states of the Moore machine does not grow

during the subset construction. Perrin mentions the Aho-Corasick and Knuth-Morris-
Pratt Moore machines as examples of ones which do not su�er from exponential blowup

(i.e. the number of states grows exponentially) during the subset construction [Perr90].
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Indeed, we have shown a stronger result: the AC and KMP Moore machine (we use the

singular since they are isomorphic) does not su�er from any increase in the number of

states under the subset construction (with start-unreachable states removed). 2

4.4 The Commentz-Walter algorithms

In this section, we discuss a number of algorithms that can be derived from the na��ve

Algorithm 4.18, viz. the Commentz-Walter (CW) algorithms [Com79a, Com79b] and a

multiple keyword version of the Boyer-Moore (BM) algorithm. The original single keyword

version of the BM algorithm [BM77], and those variants considered in [HS91], will be

discussed in Section 4.5. All of the algorithms derived in this section are also derived (with
precomputation algorithms) in [WZ95]. In that paper, some of the algorithm details are

given di�erent names, and part of the algorithm graph has a slightly di�erent structure.

We will be using Algorithm 4.18(p+, s+, rt) as the starting point for algorithms in this
section. For easy cross-referencing, we duplicate that algorithm here:

Algorithm 4.88 (p+, s+, rt):

u; r := "; S; O := f"g � (f"g \ P ) � fSg;
do r 6= "!

u; r := u(r�1); r�1;

l; v := u; "; O := O [ fug � (f"g \ P )� frg;
do l 6= " cand �r(v; l�1) 6= ?!

l; v := l�1; (l�1)v;
O := O [ flg � (fvg \ P )� frg

od

odf PM g

2

This algorithm traverses the subject string from left to right but does matching from
right to left. As soon as a match fails, the starting point for matching is `shifted' to the
right by the assignment u; r := u(r�1); r�1 and the matching starts again. The essential

algorithm detail added in this section is that of shifts of the form u; r := u(r�k); r�k for k

possibly greater than 1 (provided no matches are missed, of course). `Safe' shift distances

can be determined from the symbols inspected during a match and some precomputed
tables speci�c to the patterns. This idea was introduced in the original BM single keyword

algorithm [BM77], which turns out to be extremely e�cient in practice and has become
very popular. The algorithm was extended to multiple keywords by Commentz-Walter

[Com79a, Com79b], much in the same way as the Aho-Corasick algorithms relate to the

Knuth-Morris-Pratt algorithm. In Chapter 5, we will extend the CW algorithm to handle
patterns that are arbitrary regular expressions. That extension answers an open question

�rst posed by A.V. Aho in 1980 [Aho80, p. 342].
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It turns out that the CW algorithm is little-used in practice, if at all, due to a some-

what inaccessible description and the problem of correctly carrying out the rather intricate

precomputations. The algorithm deserves better: extensive benchmarking, reported in

Chapter 13, shows that the CW algorithm signi�cantly outperforms the better-known AC

algorithms in many cases.

The algorithms presented in this section all use the same algorithm skeleton for scanning

the subject string, but di�er in the shift distances used and the way these are computed.
We now present the derivation of the common part; speci�c shift distances are treated in

Sections 4.4.2{4.4.8. The solid lines and solid circles of Figure 4.10 indicate the part of the

taxonomy which we will be considering in this section.

In the next section, we will outline a general method of computing a `safe' shift distance.

4.4.1 Safe shift distances and predicate weakening

We begin by characterizing the `ideal' shift distance that can be used in the assignment
u; r := u(r�k); r�k. Ideally, we would like to shift to the next keyword match to the right
(of the current position), a distance of (MIN n : 1 � n � jrj ^ su�(u(r�n)) \ P 6= � : n).
(Note that this quanti�cation can have an empty range if there is no `next match', and
therefore take value +1. For this reason, we extend the take and drop operators such

that r�(+1) = r and r�(+1) = ".) This ideal shift distance can be explained intuitively
as the smallest shift distance n � 1 such that a su�x of u(r�n) is a keyword and therefore
a match will be found while scanning u(r�n) from right to left.

Any smaller shift is also appropriate, and we de�ne a safe shift distance as follows.

De�nition 4.89 (Safe shift distance): A shift distance k satisfying

1 � k � (MIN n : 1 � n � jrj ^ su�(u(r�n)) \ P 6= � : n)

is called a safe shift distance. 2

The use of a safe shift distance is embodied in the following algorithm detail.

Algorithm detail 4.90 (cw): A safe shift distance, k, is used in the assignment

u; r := u(r�k); r�k

of Algorithm 4.18(p+, s+, rt). 2

In [WZ95], this algorithm detail has been renamed ssd (for `safe shift distance').

Computing the upperbound on k (the maximal safe shift distance) is essentially the
same as the problemwe are trying to solve, and we aim at easier to compute approximations
(from below) of the upperbound. Thanks to the following property, we can weaken the

range predicate of the ideal shift to obtain an approximation.



84 CHAPTER 4. KEYWORD PATTERN MATCHING ALGORITHMS

| {z }
AC

p.90

4.5

4.8

4.36

4.76

4.84

4.23

4.30

4.177

4.145

4.154

4.168

4.3

| {z }
BM| {z }

KMP

mi

sl

okw

indices

indices

mo

obm

okw

�

p

ft

+

�

s

+

s e

+ �

ac

ls

kmp-fail

lla

p

4.47

nla

ac-fail

ac-opt

rt

cw

4.93

4.53

4.72

4.10

4.18

cw-opt

p.91

near-opt, norm

fwd rev om none sfc fast

mo sl

slfc

norm

bmcw

okw

p.96

p.93

p.97

rla

r-opt

p.99p.92

bm

bm

near-opt

p.96

p.95

Figure 4.10: The algorithms considered in Section 4.4 are denoted by solid circles, con-

nected by solid lines.
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Property 4.91 (Weakening of range predicates): For predicates J and J
0 such that

J ) J
0, we have

(MIN i : J(i) : i) � (MIN i : J 0(i) : i)

2

Approximations will be obtained by weakening the predicate su�(u(r�n)) \ P 6= � in the
range of the upperbound. Since the ideal predicate (su�(u(r�n)) \ P 6= �) implies its

weakenings, the quanti�cation with the weakening in the range will not be greater than

the ideal shift (i.e. it will approximate the ideal shift distance from below, and will be

a safe shift). The weakest predicate true is one such weakening; using it yields a shift

distance of 1.
By considering di�erent weakenings, several variants of the CW algorithm (amongst

which, the BM algorithm) are obtained. The choice of which weakening to use is frequently

a tradeo� between larger shifts (resulting in a more e�cient algorithm) and the greater
cost of precomputation and storage of the resulting shift tables.

The idea of range predicate weakening turns out to be very useful, and it will also be
used in Section 4.5 (to derive the Boyer-Moore family of algorithms) and in Chapter 5 (to

derive a generalization of the Commentz-Walter algorithm).
In order to compute a safe shift distance, some additional information will be used.

An interesting side-e�ect of introducing the reverse trie (creating Algorithm 4.18) is that
the predicate u = lv ^ v 2 su�(P ) becomes an invariant of the inner repetition (see
Forward reference 4.19). Adding l; v := "; " to the initial assignments in Algorithm 4.18

turns u = lv ^ v 2 su�(P ) into an invariant of the outer repetition too. This additional
information (the invariant) will be used in �nding weakenings of the ideal shift predicate.
Most of the weakenings that we will derive depend only upon l and v; in Section 4.4.8, we
will consider a shift that depends upon l, v, and r.

Notation 4.92 (Shift distance k): Due to this dependence on l, v and perhaps r, we
can view k as a function and write k(l; v; r) instead of k. In cases where the shift does not
depend upon r, we simply write k(l; v). 2

This yields the following algorithm scheme for all variants of the CW algorithm from which

variants are obtained by substituting a particular function for k(l; v; r).

Algorithm 4.93 (p+, s+, rt, cw):

u; r := "; S;

l; v := "; "; O := f"g � (f"g \ P )� fSg;
f invariant: u = lv ^ v 2 su�(P ) g

do r 6= "!
u; r := u(r�k(l; v; r)); r�k(l; v; r);

l; v := u; "; O := O [ fug � (f"g \ P )� frg;

f invariant: u = lv ^ v 2 su�(P ) g
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do l 6= " cand �r(v; l�1) 6= ?!

l; v := l�1; (l�1)v;

O := O [ flg � (fvg \ P )� frg

od

odf PM g

2

Previous presentations of the Commentz-Walter algorithms [Com79a, Com79b, WZ92] all
present phase shifted versions of this algorithm scheme. In those papers, the phase shifted

version is chosen to simplify some of the de�nitions, at the expense of complicating the

algorithm. The algorithm above is considerably simpler. Other algorithm skeletons are
possible, as in [FS93] where a single repetition containing an if-� construct is used.

We start the weakening of predicate su�(u(r�n)) \ P 6= � with some general steps
(before proceeding to more speci�c weakenings) under the assumption that u = lv ^ v 2

su�(P ) ^ 1 � n � jrj:

su�(u(r�n)) \ P 6= �

� fu = lv g

su�(lv(r�n)) \ P 6= �

) f l = (l�1)(l�1), l�1 2 V �, monotonicity of su� and \g

su�(V �(l�1)v(r�n)) \ P 6= �

� f 1 � n, r�n = ((r�n)�1)((r�n)�1) = (r�1)((r�n)�1) g

su�(V �(l�1)v(r�1)((r�n)�1)) \ P 6= �

) fn � jrj, ((r�n)�1) 2 V n�1, monotonicity of su� and \g

su�(V �(l�1)v(r�1)V n�1) \ P 6= �

� fProperty 2.59 g

V
�(l�1)v(r�1)V n�1 \ V �

P 6= �

The only reference to r in the last predicate is r�1. Since r 6= " (by the outer repetition
guard in Algorithm 4.93) we have r�1 2 V . We no longer need the upper bound n � jrj on
n, and it can be dropped from the range of the MIN quanti�cation for the shift distance.

String5 l�1 is known as the left lookahead symbol, v is known as the recognized su�x

(since v 2 su�(P ), by the invariant), and r�1 is known as the right lookahead symbol.

Remark 4.94: In the above derivation, we discarded all but a single symbol of l and r

(except in the case l = ", where we discard all of l). We could have kept more of either string

in our weakening (yielding a stronger predicate, and therefore a greater shift distance);
unfortunately, this would have given a funtion that is more di�cult to precompute, and

a shift tables that require more space for storage. For example, we could have kept two

symbols of l and two of r, yielding a minimum storage requirement of O(jV j4 � jsu�(P )j).

The jsu�(P )j term comes from the fact that v 2 su�(P ). 2

5It is a string since it is possible that l = ".
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Forward reference 4.95: In the following section, we will consider a further weakening

of the last predicate in the preceding derivation:

V

�(l�1)v(r�1)V n�1 \ V �
P 6= �

2

In the next section, we consider some general weakening strategies which will be used

later to derive particular weakenings. By discussing the strategies �rst, we are able to
develop an informal notation in which we can express the steps in obtaining a weakening,

and can be used to develop new weakenings.

4.4.1.1 General weakening strategies

We present a number of weakening strategies, assigning each of them a name (which

resembles an algorithm detail). By naming the strategies, we will be able to give a concise
description of the steps involved in deriving the weakening. In this dissertation, we will

only consider a few of the possible weakenings. The notation introduced in this section is
intended to help other weakening-developers convey the general steps involved in deriving

their weakenings. It is possible that two di�erent sequences of strategies yield equivalent

predicates.
Each of the following strategies is given simply as an implication (or an equivalence),

or as a relationship between two MIN quanti�cations. In some cases, a reference to a

relevant property is given. In the following descriptions, we assume that A;B;C � V
�

(they are languages), u; v 2 V �, a 2 V , and J and J
0 are predicates:

discard Discard a conjunct: J ^ J 0) J .

duplicate Duplicate a conjunct: J � J ^ J .

split From Property 2.60:

V

�
A \ V �

B 6= � � V

�
A \B 6= � _ V �

B \ A 6= �

and

V

�
aA \ V �

B 6= � � V

�
aA \B 6= � _ V �

B \ A 6= �

decouple AuB \ C 6= �) AV
juj
B \ C 6= �

absorb V
�
CA \B 6= �) V

�
A \B 6= �

q-split (MIN i : J(i) _ J
0(i) : i) = (MIN i : J(i) : i)min(MIN i : J 0(i) : i)

(see Property 2.21).

q-decouple (MIN i : J(i) ^ J
0(i) : i) � (MIN i : J(i) : i)max(MIN i : J 0(i) : i)

(see Property 2.21).
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enlarge For 1 � k, (MIN i : k � i ^ J(i) : i) � (MIN i : 1 � i ^ J(i) : i)

Some of these strategies are used directly in weakening the predicate, while some are

used after a weakening has been inserted into aMIN quanti�cation. In some of the strate-

gies, it is necessary to specify which conjunct, word, or quanti�cation is being manipulated.
An example of this is given below.

Beginning with Forward reference 4.95, we make our �rst weakening step | a decou-

ple step. The step can also be given as a hint in the derivation:

V
�(l�1)v(r�1)V n�1 \ V �

P 6= �

) fdecouple r�1 g

V
�(l�1)vV V n�1 \ V �

P 6= �

� fV V n�1 = V
n g

V
�(l�1)vV n \ V �

P 6= �

Note that the last step involved straightforward manipulation instead of the application of

a strategy. Such simple steps are not mentioned in the list of strategies applied.

The last predicate is totally free of r. In Section 4.4.8 we will consider an algorithm
which makes use of the right lookahead symbol r�1.

Forward reference 4.96: In Sections 4.4.2{4.4.6 we will consider further weakenings of

the predicate (derived above):

V

�(l�1)vV n \ V �
P 6= �

2

In the following section, we consider the l = " case (and the no-lookahead case) sepa-

rately. This will allow us to assume l 6= " in Sections 4.4.2{4.4.8.

4.4.1.2 The l = " and the no-lookahead cases

In the l = " case, the predicate in Forward reference 4.96 is equivalent to V �
vV

n\V �
P 6= �.

We apply a split step, yielding

V

�
vV

n \ P 6= � _ V �
P \ vV n 6= �

We can use this predicate, and one more step, to arrive at a practical shift distance.
Starting with the ideal shift distance:

(MIN n : 1 � n � jrj ^ su�(u(r�n)) \ P 6= � : n)

� fweakening steps above g

(MIN n : 1 � n ^ (V �
vV

n \ P 6= � _ V �
P \ vV n 6= �) : n)

= fq-split g

(MIN n : 1 � n ^ V �
vV

n \ P 6= � : n)min(MIN n : 1 � n ^ V �
P \ vV n 6= � : n)
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In order to make this shift distance more concise, we de�ne two auxiliary functions.

De�nition 4.97 (Functions d1 and d2): Functions d1; d2 2 su�(P ) �! N are de�ned

by

d1(x) = (MIN n : 1 � n ^ V �
xV

n \ P 6= � : n)

d2(x) = (MIN n : 1 � n ^ V �
P \ xV n 6= � : n)

2

Functions d1 and d2 were named by Commentz-Walter [Com79a, Com79b].

Remark 4.98: Note that the quanti�cation in d1 can have an empty range, meaning

that it can take value +1. On the other hand, the quanti�cation in the de�nition of d2
never has an empty range, and therefore d2 never takes value +1. Indeed, function d2 is

bounded above by (MIN p : p 2 P : jpj)max1, and so the shift distances are never greater

than (MIN p : p 2 P : jpj)max1. In Chapter 13, we show that this upperbound can
have a signi�cant e�ect on the practical performance of the Commentz-Walter algorithm

variants. 2

Forward reference 4.99: Functions d1 and d2 will also be used in Chapter 5 to derive
a generalization of the Commentz-Walter algorithm. In that chapter, precomputation
algorithms for d1 and d2 are also presented. 2

Example 4.100 (Functions d1 and d2): For keyword set fher; his; sheg we compute d1
and d2:

w " e r s er he is her his she

d1(w) 1 1 +1 2 +1 1 +1 +1 +1 +1

d2(w) 3 3 3 2 3 1 2 3 2 1

2

Using functions d1 and d2, our l = " shift distance is d1(v)mind2(v). In the following
sections, we assume l 6= ".

4.4.1.2.1 The no-lookahead shift function We can discard all references to the left

lookahead symbol, by using the l = " shift distance for the l 6= " case too. This weakening

step is referred to as discarding the lookahead symbol. The corresponding shift function is
given as follows.

De�nition 4.101 (Shift function knla): Shift function knla is de�ned as:

knla(l; v) = d1(v)mind2(v)

2
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Remark 4.102: This shift function yields the smallest shift distances of all shift functions

to be considered in this section. 2

Since the various k shift functions are usually expressed in terms of more elementary

functions, they are not usually tabulated (the k functions are computed on-the-y). The

basic functions, however, are usually tabulated.

Algorithm detail 4.103 (nla): Calculating the shift distance using knla is algorithm

detail (nla). 2

The use of shift function knla results in algorithm (p+, s+, rt, cw, nla), which does

not appear in the literature. This algorithm is of no great practical interest, since the
precomputation is barely cheaper than any of the other variants (for example, shift function

kcw | see Section 4.4.5), and the resulting shift distances are less than in any of the other

variants. The algorithm does, however, use only O(jsu�(P )j) storage for functions d1 and

d2.

4.4.2 A shift function without further weakening

For our �rst shift function, we do not weaken the predicate in Forward reference 4.96 any
further | we simply apply split, and q-split. This weakening, and most of the following

ones, will include the left lookahead symbol (one of the weakenings will not). The use of
the lookahead symbol is given in the following algorithm detail

Algorithm detail 4.104 (lla): The left lookahead symbol (l�1) is used in determining

the shift distance. 2

Applying split to the predicate in Forward reference 4.96 yields:

V
�(l�1)vV n \ P 6= � _ V �

P \ vV n 6= �

We manipulate the resulting MIN quanti�cation as follows:

(MIN n : 1 � n ^ (V �(l�1)vV n \ P 6= � _ V �
P \ vV n 6= �) : n)

= fq-split g

(MIN n : 1 � n ^ V �(l�1)vV n \ P 6= � : n)

min(MIN n : 1 � n ^ V �
P \ vV n 6= � : n)

The second term of the in�x min is simply d2(v). To give the shift function concisely, we

de�ne another auxiliary function.

De�nition 4.105 (Function dopt): Functions dopt 2 V � su�(P ) �! N is de�ned by

dopt (a; x) = (MIN n : 1 � n ^ V �
axV

n \ P 6= � : n)

2
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Remark 4.106: Note that the quanti�cation in the de�nition of this function can have

an empty range, and therefore dopt can take value +1. 2

Due to the size of the resulting tables, we do not present an example of dopt here.

Given this function, we can de�ne the shift distance:

De�nition 4.107 (Shift function kopt): Shift function kopt is de�ned as

kopt (l; v) =

(
dopt (l�1; v)mind2(v) l 6= "

d1(v)mind2(v) l = "

2

The use of the particular shift derived above is given in the following algorithm detail.

Algorithm detail 4.108 (cw-opt): Calculating the shift distance using function kopt is

algorithm detail (cw-opt). 2

The resulting algorithm is (p+, s+, rt, cw, lla, cw-opt). From the informal de-

scription in their article, it appears that Fan and Su present a version of this algorithm
[FS93]. The algorithm was derived independently in [WZ95], where the precomputation of
the three auxiliary functions can also be found. This algorithm promises to be particularly

e�cient, although it is not one of the ones benchmarked in Chapter 13. The disadvantage
to the use of shift function kopt is that it requires storage O(jV j � jsu�(P )j), whereas some
of the other shift functions presented in this chapter require less storage.

4.4.3 Towards the CW and BM algorithms

In this section, we weaken the range predicate from function dopt further, decoupling the
lookahead symbol and the recognized su�x. We perform a type of decouple step, using
following function:

De�nition 4.109 (Function MS): Function MS 2 su�(P ) �! P(V ) is de�ned as

MS (v) = f a j av 2 su�(P ) g

2

Example 4.110 (Function MS): Computing MS for keyword set fher; his; sheg yields:

w " e r s er he is her his she

MS (w) fe; r; sg fhg feg fig fhg fsg fhg � � �

2

We will need a conjunct of the postcondition of the inner repetition of Algorithm 4.93:

(l�1)v 62 su�(P ); this follows from the negation of the inner repetition guard. Recall that
we are considering the l 6= " case, so we may assume the termination condition of the inner

repetition. It follows that (l�1) 62 MS (v), equivalently (l�1) 2 V nMS (v). We begin with

the range predicate of function dopt :



92 CHAPTER 4. KEYWORD PATTERN MATCHING ALGORITHMS

V
�(l�1)vV n \ P 6= �

� fduplicate g

V
�(l�1)vV n \ P 6= � ^ V �(l�1)vV n \ P 6= �

� fdecouple v in �rst conjunct g

V
�(l�1)V jvj+n \ P 6= � ^ V �(l�1)vV n \ P 6= �

) fde�nition of MS ; (l�1)v 62 su�(P ) g

V
�(l�1)V jvj+n \ P 6= � ^ V �(V nMS (v))vV n \ P 6= �

In the following sections, we will further manipulate the shift predicate in the last line
above. We can directly use the above predicate, by de�ning the following shift function.

De�nition 4.111 (Function dbmcw): De�ne dbmcw 2 V � su�(P ) �! N by dbmcw (a; x) =

(MIN n : 1 � n ^ V �
aV

jxj+n \ P 6= � ^ V �(V nMS (x))xV n \ P 6= � : n)

2

Example 4.112 (Function dbmcw ): Due to the space required for the table, an example
of this function is not given here. 2

Remark 4.113: Note that the quanti�cation in the de�nition of function dbmcw can have

an empty range, meaning that it can take value +1. 2

The resulting shift distance is given as follows.

De�nition 4.114 (Shift function kbmcw): Shift function kbmcw is de�ned as

kbmcw (l; v) =

(
dbmcw (l�1; v)mind2(v) l 6= "

d1(v)mind2(v) l = "

2

Remark 4.115: The shift distance given by kbmcw is never greater than that given by
kopt . That is, kbmcw � kopt . 2

Using this shift distance is given in the following algorithm detail.

Algorithm detail 4.116 (bmcw): Calculating the shift distance using function kbmcw is

algorithm detail (bmcw). 2

The resulting algorithm (p+, s+, rt, cw, lla, cw-opt, bmcw) does not appear in the

literature. The algorithm includes the (cw-opt) detail, since shift distance is derived from
the one given in detail (cw-opt). It is given in [WZ95], where the precomputation of the

auxiliary function is discussed. Shift function kbmcw requires the same amount of storage
as kopt . Function kbmcw is interesting because it combines the best of the Boyer-Moore and

the normal Commentz-Walter algorithms (both to be presented later). An algorithm given
by Baeza-Yates and R�egnier (in [B-YR90]) appears to be related to this one. Although it

is not yet clear how their shift distance is obtained, it appears that it yields smaller shifts

than those given with Algorithm detail (bmcw).
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4.4.4 A more easily precomputed shift function

In this section, we weaken the range predicate derived in the previous section, applying an

absorb step. Starting from the predicate in the previous section, we derive:

V
�(l�1)V jvj+n \ P 6= � ^ V �(V nMS (v))vV n \ P 6= �

) fabsorb in second conjunct g

V
�(l�1)V jvj+n \ P 6= � ^ V �

vV
n \ P 6= �

We can now de�ne another auxiliary function, using this predicate in its range.

De�nition 4.117 (Function dnopt): Function dnopt 2 V � su�(P ) �! N is de�ned by

dnopt (a; x) = (MIN n : 1 � n ^ V �
aV

jxj+n \ P 6= � ^ V �
xV

n \ P 6= � : n)

2

Remark 4.118: As with function dopt , the quanti�cation in function dnopt can have an
empty range, and the function can take value +1. 2

Due to the size of the resulting tables, we do not present an example of function dnopt here.
Given dnopt , we can de�ne the shift distance:

De�nition 4.119 (Shift function knopt): Shift function knopt is de�ned as

knopt (l; v) =

(
dnopt (l�1; v)mind2(v) l 6= "

d1(v)mind2(v) l = "

2

Remark 4.120: Note that (due to the weakenings of the range predicate) the shift distance
given by knopt is never greater than that given by kbmcw . That is, knopt � kbmcw . 2

The use of the particular shift derived above is given in the following algorithm detail.

Algorithm detail 4.121 (near-opt): Calculating the shift distance using function knopt
is algorithm detail (near-opt). 2

The resulting algorithm (p+, s+, rt, cw, lla, cw-opt, bmcw, near-opt) does not

appear in the literature. Note that the sequence of details includes the sequence of details

from the previous section, since knopt derived from kbmcw . The storage requirements for
this shift function are the same as the requirements for kopt . The advantage of using knopt
is that the precomputation is cheaper.
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4.4.5 The standard Commentz-Walter algorithm

We can further weaken the range predicate used in the previous section in the de�nition

of function dnopt . We apply q-decouple, followed by enlarge. We start our derivation

with dnopt .

dnopt (l�1; v)

= fde�nition of dnopt g

(MIN n : 1 � n ^ V �(l�1)V jvj+n \ P 6= � ^ V �
vV

n \ P 6= � : n)

� fq-decouple g

(MIN n : 1 � n ^ V �(l�1)V jvj+n \ P 6= � : n)

max(MIN n : 1 � n ^ V �
vV

n \ P 6= � : n)

= fde�nition of function d1 g

(MIN n : 1 � n ^ V �(l�1)V jvj+n \ P 6= � : n)max d1(v)

= f changing bound variable: n0 = jvj+ n g

(MIN n
0 : 1 + jvj � n

0 ^ V �(l�1)V n
0

\ P 6= � : n0 � jvj)maxd1(v)

� fenlarge g

(MIN n
0 : 1 � n

0 ^ V �(l�1)V n
0

\ P 6= � : n0 � jvj)maxd1(v)

We use the following auxiliary function to simplify the MIN quanti�cation in the last
expression.

De�nition 4.122 (Function char cw): De�ne char cw 2 N� V �! N by

char cw (i; a) = (MIN n : 1 � n ^ V �
aV

n \ P 6= � : n� i)

Note that we could have given a more speci�c signature, since the �rst argument to char cw
is always in the range [0; (MAX p : p 2 P : jpj)]. 2

Example 4.123 (Function char cw): Due to the space required for the tables, an example
of char cw is not given here. The interested reader can easily construct an example of char cw
using Example 4.130 and Property 4.131. 2

Remark 4.124: Note that it is possible for the quanti�cation in the de�nition of char cw
to have an empty range, and therefore function char cw can take value +1. 2

We can now give the standard Commentz-Walter shift function.

De�nition 4.125 (Shift function kcw): Shift function kcw is de�ned as

kcw (l; v) =

(
(char cw(jvj; l�1)maxd1(v))mind2(v) l 6= "

d1(v)mind2(v) l = "

2
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Remark 4.126: Note that (due to the weakenings of the range predicate) the shift distance

given by kcw is never greater than that given by knopt . That is, kcw � knopt . 2

The particular shift derived above is given in the following algorithm detail.

Algorithm detail 4.127 (norm): Calculating the shift distance using function kcw is
algorithm detail (norm). 2

The resulting algorithm (p+, s+, rt, cw, lla, cw-opt, bmcw, near-opt, norm)

is the normal Commentz-Walter algorithm (cf. [Com79a, Section II] and [Com79b, Sec-

tions II.1 and II.2]). The storage requirements for this shift function are O(jsu�(P )j) for

functions d1 and d2, and O((MAX p : p 2 P : jpj) � jV j) for char cw . (The de�nition of
function char cw makes it obvious that it can be stored in O(jV j) space with a small penalty

for computing the function.) As a result, kcw can be stored more economically than kopt ,

knopt , or knopt . The precomputation required for kcw is also cheaper, the tradeo� being a
smaller shift distance.

4.4.6 A derivation of the Boyer-Moore algorithm

In this section, we derive the multiple keyword Boyer-Moore algorithm starting with the

weakening in Section 4.4.3. We begin our derivation with dbmcw :

dbmcw (l�1; v)

= fde�nition of dbmcw g

(MIN n : 1 � n ^ V �(l�1)V jvj+n \ P 6= � ^ V �(V nMS (v))vV n \ P 6= � : n)

� fq-decouple g

(MIN n : 1 � n ^ V �(l�1)V jvj+n \ P 6= � : n)

max(MIN n : 1 � n ^ V �(V nMS (v))vV n \ P 6= � : n)

We continue our derivation with the the �rst operand of the in�x max:

(MIN n : 1 � n ^ V �(l�1)V jvj+n \ P 6= � : n)

= f changing bound variable: n0 = n+ v g

(MIN n
0 : 1 + jvj � n

0 ^ V �(l�1)V n
0

\ P 6= � : n0 � jvj)

� fenlarge g

(MIN n
0 : 1 � n

0 ^ V �(l�1)V n
0

\ P 6= � : n0 � jvj)

� fV �(l�1)V n \ P 6= �) V
�(l�1)V n \ V �

P 6= � g

(MIN n
0 : 1 � n

0 ^ V �(l�1)V n
0

\ V �
P 6= � : n0 � jvj)

= fnon-empty range predicate g

((MIN n
0 : 1 � n

0 ^ V �(l�1)V n
0

\ V �
P 6= � : n0)� jvj)

To present the resulting shift distance concisely, we de�ne the following auxiliary functions.
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De�nition 4.128 (Function char bm): Function char bm 2 V �! N is de�ned as

char bm(a) = (MIN n : 1 � n ^ V �
aV

n \ V �
P 6= � : n)

2

De�nition 4.129 (Function dbm): De�ne dbm 2 su�(P ) �! N by

dbm (x) = (MIN n : 1 � n ^ V �(V nMS (x))xV n \ P 6= � : n)

2

In [WZ95], function dbm is called dvi .

Example 4.130 (Function char bm): Recall that we take our alphabet to be fe; h; i; r; s; yg.

a e h i r s y

char bm (a) 1 1 1 3 2 3

2

Functions char cw and char bm are related by the following interesting property.

Property 4.131 (Functions char cw and char bm): Note that:

char bm(a) = char cw(0; a)min(MIN p : p 2 P : jpj)min1

From this property, and the above example, it is possible to construct an example of char cw .
2

Example 4.132 (Function dbm): Computing dbm for keyword set fher; his; sheg yields:

w " e r s er he is her his she

dbm (w) 1 +1 +1 +1 +1 +1 +1 +1 +1 +1

2

De�nition 4.133 (BM shift function kbm): The BM shift function kbm is de�ned as:

kbm (l; v) =

(
((char bm (l�1)� jvj)maxdbm (v))mind2(v) l 6= "

d1(v)mind2(v) l = "

2

Remark 4.134: The shift distance given by kbm is never greater than that given by kbmcw .
That is, kbm � kbmcw . The shift distance given by kbm is not comparable to that given by

functions knopt or kcw . 2

Algorithm detail 4.135 (bm): Calculating the shift distance using function kbm is algo-

rithm detail (bm). 2

The resulting algorithm is the Boyer-Moore algorithm (p+, s+, rt, cw, lla, cw-opt,

bmcw, bm). Adding problem detail (okw) (restricting P to one keyword) yields the well-
known BM algorithm, (p+, s+, rt, cw, lla, cw-opt, bmcw, bm, okw), which appears

in the literature as [BM77, Section 4]. Precomputation of functions dbm and char bm is

discussed in [WZ95].
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4.4.7 A weakened Boyer-Moore algorithm

Finally, we derive a weaker variant of the BM algorithm. This variant incorporates the

weakenings involved in both the normal Commentz-Walter and the Boyer-Moore algo-

rithms. The resulting shift function is given as follows:

De�nition 4.136 (Weak BM shift function kwbm): The BM shift function kwbm is

de�ned as:

kwbm(l; v) =

(
((char bm(l�1) � jvj)maxd1(v))mind2(v) l 6= "

d1(v)mind2(v) l = "

2

We do not introduce a new detail, since this algorithm combines details near-opt, norm,
and bm.

The resulting algorithm is a weak Boyer-Moore algorithm (p+, s+, rt, cw, lla, cw-
opt, bmcw, near-opt, norm, bm). (Since there are two root-paths to this algorithm,
the last three algorithm details could also have been ordered as bm, near-opt, norm.)

This shift function yields a shift distance which is no greater than that given by the

Commentz-Walter and Boyer-Moore shift functions.

4.4.8 Using the right lookahead symbol

In this section, we consider a shift function which uses the right lookahead symbol. Since
we use the symbol, we introduce the following algorithm detail.

Algorithm detail 4.137 (rla): The right lookahead symbol (r�1) is used in determining

the shift distance. 2

We shall begin with the predicate given in Forward reference 4.95,

V

�(l�1)v(r�1)V n�1 \ V �
P 6= �

We will apply the following steps:

1. duplicate.

2. decouple r�1 and (l�1)v.

3. absorb.

4. q-decouple.

5. Implicit split and q-split.

This is shown in the following derivation:
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V
�(l�1)v(r�1)V n�1 \ V �

P 6= �

� fduplicate g

V
�(l�1)v(r�1)V n�1 \ V �

P 6= � ^ V �(l�1)v(r�1)V n�1 \ V �
P 6= �

) fdecouple r�1 (�rst conjunct) and (l�1)v (second conjunct) g

V
�(l�1)vV V n�1 \ V �

P 6= � ^ V �
V V

jvj(r�1)V n�1 \ V �
P 6= �

) fabsorb g

V
�(l�1)vV n \ V �

P 6= � ^ V �(r�1)V n�1 \ V �
P 6= �

We can now use the last predicate in a MIN quanti�cation:

(MIN n : 1 � n ^ V �(l�1)vV n \ V �
P 6= � ^ V �(r�1)V n�1 \ V �

P 6= � : n)

� fq-decouple g

(MIN n : 1 � n ^ V �(l�1)vV n \ V �
P 6= � : n)

max(MIN n : 1 � n ^ V �(r�1)V n�1 \ V �
P 6= � : n)

= fSection 4.4.2 | de�nitions of dopt ; d2; implicit split, q-split; l 6= " g

(dopt (l�1; v)mind2(v))max(MIN n : 1 � n ^ V �(r�1)V n�1 \ V �
P 6= � : n)

= f changing of bound variable: n0 = n � 1 g

(dopt (l�1; v)mind2(v))max(MIN n
0 : 0 � n

0 ^ V �(r�1)V n
0

\ V �
P 6= � : n0 + 1)

= fnon-empty range predicate g

(dopt (l�1; v)mind2(v))max(MIN n
0 : 0 � n

0 ^ V �(r�1)V n
0

\ V �
P 6= � : n0) + 1

We can now de�ne an auxiliary function.

De�nition 4.138 (Function char rla): Function char rla 2 V �! N is de�ned by

char rla(a) = (MIN n : 0 � n ^ V �
aV

n \ V �
P 6= � : n) + 1

2

Example 4.139 (Function char rla):

a e h i r s y

char rla(a) 1 2 2 1 1 4

2

This function can be used in the following shift distance:

De�nition 4.140 (Shift function kropt): The optimized shift function with right looka-

head is:

kropt (l; v; r) =

(
(dopt (l�1; v)mind2(v))maxchar rla(r�1) l 6= "

d1(v)mind2(v) l = "

2
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Algorithm detail 4.141 (r-opt): Calculating the shift distance using function kropt is

referred to as algorithm detail (r-opt). 2

The resulting algorithm is (p+, s+, rt, cw, lla, rla, r-opt). This algorithm does

not appear in the literature. It is not di�cult to see that function kropt will always yield
a shift distance at least as large as kopt . Function char rla requires O(jV j) storage. The

precomputation of char rla is similar to that for char bm (see [WZ95]).

4.5 The Boyer-Moore family of algorithms

Since the appearance of the original Boyer-Moore algorithm [BM77], many variations and

improvements have been published. Most of these have been classi�ed and discussed by
Hume and Sunday in [HS91], which also contains extensive benchmarking results. The

material we present in this section supplements their work, as we provide derivations and

correctness arguments for most of the algorithms in their paper. Figure 4.11 gives the part
of the taxonomy graph which corresponds to this section.

The Boyer-Moore algorithm derivation in the previous section only accounted for one
method of traversing the string variable u, in increasing order of v. In practice, when
P = fpg (P is a singleton set) other methods of comparing v to keyword p can be used.
We therefore introduce problem detail (okw) (P = fpg, originally given on page 75).

Starting with the original problem speci�cation, we derive the Boyer-Moore algorithm and
its variants. The derivation presented here has a number of similarities with the one given
in the previous section, in particular, the technique of predicate weakening (introduced in

Section 4.4.1) will again be used to derive shift distances. Di�erent weakening strategies
(which will not be introduced explicitly as they were in Section 4.4.1.1) can be used in this

section, thanks to problem detail (okw).
To make the following presentation more readable, we de�ne a `perfect match' (as

opposed to a failed, or partial, match) predicate and an auxiliary function.

De�nition 4.142 (Perfect match predicate PerfMatch): We de�ne a `perfect match'

predicate

PerfMatch((l; v; r)) � (lvr = S ^ v = p)

Notice that p is an implicit parameter of PerfMatch. 2

We can rewrite the pattern matching postcondition in terms of predicate PerfMatch as:

O = ([ l; v; r : PerfMatch((l; v; r)) : f(l; v; r)g)

To make the following presentation more readable, we introduce an auxiliary function.

De�nition 4.143 (Shift function shift): De�ne right shift function shift 2 (V �)3 � N �!

(V �)3 by

shift(l; v; r; k) = (l(vr�k); (v(r�k))�k; r�k)

2
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Figure 4.11: The algorithms considered in Section 4.5 are denoted by solid circles, con-
nected by solid lines. Additional algorithm details considered in this section are denoted

by the two smaller graphs at the bottom of the �gure.
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We can now introduce the `ordinary Boyer-Moore' algorithm detail.

Algorithm detail 4.144 (obm): Use function shift and maintain invariant I1(l; v; r) �

O = ([ l
0
; v

0
; r

0 : PerfMatch((l0; v0; r0)) ^ (l0v0 <p lv) : f(l
0
; v

0
; r

0)g)

^ (lvr = S) ^ (jvj � jpj) ^ (jvj < jpj ) r = ")

2

Using this algorithm detail, we obtain a �rst (deterministic) solution.

Algorithm 4.145 (okw, obm):

l; v; r := "; S�jpj; S�jpj; O := �;

f invariant: I1(l; v; r) g

do jvj = jpj !

if v = p! O := O [ f(l; v; r)g
[] v 6= p! skip

fi;
(l; v; r) := shift(l; v; r; 1)

odf PM g

2

This algorithm does not take into account how we evaluate v = p. Comparing symbols of

v and p from left to right or right to left are two possible methods of evaluating v = p.
The methods that we consider in this section all involve indexing in strings v and p. For

this reason, we introduce algorithm detail (indices) (originally given on page 77).
To take advantage of the indexing, we de�ne `match orders', which will enable us to

consider a number of di�erent ways of comparing v and p.

De�nition 4.146 (Match order): A match order is a bijective functionmo 2 [1; jpj] �!

[1; jpj]. This function is used to determine the order in which the individual symbols of v
and p are compared. 2

The usefulness of match orders is expressed in the following property.

Property 4.147 (Match order): Since mo is bijective, we now have

(v = p) � (8 i : 1 � i � jpj : vmo(i) = pmo(i))

2

The match order algorithm detail is:

Algorithm detail 4.148 (mo): The symbols of v and p are compared in a �xed order

determined by a bijective function mo 2 [1; jpj] �! [1; jpj]. 2
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The particular match order used in an algorithm determines the third position of the

algorithm name. Three of the most common match orders, (which represent particular

instances of detail (mo) and appear in the smaller graph of Figure 4.11 with (mo) as root)

are

Algorithm detail 4.149 (fwd): The forward (or identity) match order given by

mo(i) = i. 2

Algorithm detail 4.150 (rev): The reverse match order given by mo(i) = jpj �

i+ 1. This is the original Boyer-Moore match order. 2

Algorithm detail 4.151 (om): Let Prob 2 [1; jpj] �! R be the probability distri-

bution of the symbols of p in input string S; the domain of function Prob consists of

indices into p. Let an `optimal mismatch' match order be any permutation mo such
that

(8 i; j : 1 � i � jpj ^ 1 � j � i : Prob(mo(j)) � Prob(mo(i)))

This match order is described as `optimal' because it compares symbols of p in order

of ascending probability of occurring in S. In this way, the least probable symbols of
p are compared �rst, so on the average one can expect to �nd any mismatch as early
as possible. 2

Example 4.152 (Match orders): We assume a single keyword hehshe (taken from

Example 4.80). The (fwd) match order is mo(i) = i, while the (rev) match order is
mo(i) = 6� i+ 1 = 7� i. If we assume that symbol h is the least probable, followed by s
and �nally e, we obtain an (om) match order mo = f(1; 1); (2; 3); (3; 5); (4; 4); (5; 6); (6; 2)g.

Another possible (om) match order is mo = f(1; 3); (2; 1); (3; 5); (4; 4); (5; 2); (6; 6)g. 2

Comparing v and p using match order mo is done by (program) function match speci�ed
by

f jvj = jpj g

i := match(v; p;mo)

f I2(v; p;mo; i) :(1 � i � jpj+ 1) ^ (i � jpj ) vmo(i) 6= pmo(i))

^ (8 j : 1 � j < i : vmo(j) = pmo(j)) g

Property 4.153 (Postcondition of match): From I2(v; p;mo; i) it follows that (v =
p) � (i = jpj+1), and that if i � jpj then vmo(i) is the �rst (in the given order) mismatching
symbol. 2

An implementation of match is
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func match(v; p;mo)!

i := 1;
do i � jpj cand vmo(i) = pmo(i)! i := i+ 1 od;

return i

cnuf

Adding indexing, mo, i, and match to Algorithm 4.145(okw, obm) results in

Algorithm 4.154 (okw, obm, indices, mo):

l; v; r := "; S�jpj; S�jpj; O := �;

f invariant: I1(l; v; r) g

do jvj = jpj !
i := match(v; p;mo);

f I2(v; p;mo; i) g
if i = jpj + 1! O := O [ f(l; v; r)g
[] i 6= jpj + 1! skip

fi;
(l; v; r) := shift(l; v; r; 1)

odf PM g

2

Remark 4.155: In some versions of the Boyer-Moore algorithms match is only executed

after a successful comparison of a symbol of p which is least frequent in S, and the cor-
responding symbol of v. In the taxonomy in [HS91] this comparison is called the guard
and the symbol of p is called the guard symbol. We do not consider it here since it can be
viewed as additionally requiring that pmo(1) is a symbol of p with minimal frequency in S.

2

Remark 4.156: A number of variants of the Boyer-Moore algorithm are considered in

[CR94, Chapter 4]. Some of these variants use information from previous match attempts

to reduce the number of symbol comparisons (in v and p) that occur in subsequent match

attempts. While such improvements appear to lead to algorithms which are e�cient in
practice, the approach is not considered further in this dissertation. 2

4.5.1 Larger shifts without using match information

It may be possible to make an additional shift (immediately before match is invoked)

providing no matches are missed. In this section, we consider making such a shift provided

that it can be cheaply implemented. On certain computer architectures, some of the
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shifts described below can be implemented with as few as three machine instructions (see

Chapter 9 for more on implementation issues). A shift of not greater than (MIN k : 0 �

k � jrj ^ PerfMatch(shift(l; v; r; k)) : k)min jrj will be safe. The min jrj is used to ensure

that jvj = jpj is maintained, as required for the precondition of match.

Remark 4.157: This de�nition of a safe shift is similar to the one given in De�nition 4.89,
rewritten to make use of function shift and predicate PerfMatch. In De�nition 4.89, a lower

bound of 1 is placed on the bound variable in theMIN quanti�cation, while in this section

we use a lower bound of 0. The di�erence depends upon the position (in the algorithm) of

the shift: a lower bound of 0 is used for a shift immediately before a match attempt, while

a shift of 1 is used for a shift after a match attempt. That is, the lower bound 0 is used
here because there may be a keyword match at the current position in the input string (a

shift of distance 0), and function match is still to be executed. In Section 4.5.2, we will

again consider safe shift distances of at least one symbol. 2

The shift can be performed with the statement

f jvj = jpj g
(l; v; r) := shift(l; v; r; (MIN k : 0 � k � jrj ^ PerfMatch(shift(l; v; r; k)) : k)min jrj)

f jvj = jpj ^ (r = " _ PerfMatch((l; v; r))) g

The safe shift can be implemented in another way, as in the following de�nition.

De�nition 4.158 (Skip loop): We de�ne the following algorithm fragment to be a skip

loop:

f jvj = jpj g

do 1 � jrj ^ :PerfMatch((l; v; r))!
(l; v; r) := shift(l; v; r; (MIN k : 1 � k � jrj ^ PerfMatch(shift(l; v; r; k)) : k)min jrj)

od

f jvj = jpj ^ (r = " _ PerfMatch((l; v; r))) g

This implementation of the safe shift is known as a skip loop in the taxonomy of Hume
and Sunday [HS91]. 2

Remark 4.159: Since at most one step is taken by the skip loop (in its present form),
this could have been implemented with an if-� construct, however, the do-od construct

will prove to be more useful when the shift distance is approximated from below. 2

Convention 4.160 (Skip loop shift distance): The shift distance in the skip loop is

also known as a skip length. 2
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As in Section 4.4, we note that calculating the MIN quanti�cation is essentially as

di�cult as the problem we are trying to solve. Since any smaller shift length su�ces, we

consider weakenings of predicate PerfMatch in the MIN range predicate. Some weak-

enings are: J0((l; v; r)) � true, J1((l; v; r)) � (v1 = p1), J2((l; v; r)) � (vjpj = pjpj), and

J3((l; v; r)) � (vj = pj) (for some j : 1 � j � jpj); the predicates J1, J2 and J3 require that
p 6= ". These particular weakenings were chosen to be cheap to evaluate, requiring as few
as a single machine instruction on some machines.

Remark 4.161: Predicates J1 and J2 are special cases of J3. We can of course take the

conjunction of any of these weakenings and still have a weakening of PerfMatch. 2

Evaluating predicate PerfMatch in the skip loop guard is equivalent to an invocation of

functionmatch. Fortunately, we can make use of the weakenings of PerfMatch here as well.
Since PerfMatch(l; v; r)) J3(l; v; r) (and therefore :J3(l; v; r)) :PerfMatch(l; v; r)), we

will use a weakening in place of PerfMatch in the skip loop guard.

For each weakening of PerfMatch, we assume that the weakening is used in place of
PerfMatch in the guard, and we consider the resulting shift length as calculated with the
quanti�ed MIN under the assumption that the guard holds. In the case of J0, the entire
skip loop is equivalent to skip.

We consider the shift length for J3 before returning to J1 and J2 as special cases. We

need to compute

(MIN k : 1 � k � jrj ^ PerfMatch(shift(l; v; r; k)) : k)

In order to easily compute this we will weaken the range predicate, removing lookahead.
It is known (from the do-od guard) that :J3((l; v; r)) holds. The derivation proceeds as

follows (assuming 1 � k � jrj, jvj = jpj, :J3((l; v; r)) and �xed j : 1 � j � jpj):

PerfMatch(shift(l; v; r; k))

� fde�nition of shift g

PerfMatch((l(vr�k); (v(r�k))�k; r�k))

) fde�nition of PerfMatch g

(v(r�k))�k = p

� fde�nition of = on strings, k � jrj, jvj = jpj g

(8 h : 1 � h � jpj : ((v(r�k))�k)h = ph)

� f rewrite � into indexing g

(8 h : 1 � h � jpj : (v(r�k))h+k = ph)

) fdiscard lookahead at r, jvj = jpj g

(8 h : 1 � h � jpj � k : vh+k = ph)

� f change of bound variable: h0 = h+ k g

(8 h
0 : 1 + k � h

0 � jpj : vh0 = ph0�k)

) f one point rule | quanti�cation at h0 = j; j � jpj g
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1 + k � j ) vj = pj�k

� f assumption: :J3((l; v; r)) g

1 + k � j ) vj = pj�k ^ vj 6= pj

) f transitivity of = g

1 + k � j ) pj 6= pj�k

We will use the last line to present one skip distance, and the the third last line (1 + k �

j ) vj = pj�k) to present another (greater) skip distance. The �nal predicate is free of r,
and so the upperbound of jrj on k can be dropped.

Remark 4.162: As in the Commentz-Walter algorithm variant presented in Section 4.4.8,

we could have kept some right lookahead in the weakenings. Although this would have
yielded a family of e�cient algorithms, we do not consider such weakenings in this disser-

tation. 2

In order to present the two skip distances concisely, we de�ne an auxiliary function and
a constant.

De�nition 4.163 (Function sl 1 and constant sl2): Given j : 1 � j � jpj (the index

used in predicate J3), we can de�ne function sl 1 2 V �! N and constant sl 2 2 N

sl1(a) = (MIN k : 1 � k ^ (1 + k � j ) a = pj�k) : k)

sl2 = (MIN k : 1 � k ^ (1 + k � j ) pj 6= pj�k) : k)

Note that sl1 and sl2 both depend implicitly on j. 2

It follows from the derivation of the range predicates of these two functions, that sl 1 yields
a greater skip distance than sl2. The disadvantage to using sl 1 is that O(jV j) storage space

is required to tabulate it.

Remark 4.164: In Section 4.5.2 we will show how each of sl 1 and sl2 can be obtained
from two functions computed for a di�erent purpose. 2

Remark 4.165: It is not too di�cult to see that the skip distances of both sl1 and sl 2
are bounded above by j. 2

Example 4.166 (Functions sl1 and sl 2): Assuming keyword hehshe, j = 4, and alpha-
bet fe; h; i; r; s; yg, we have sl 2 = 1 and

a e h i r s y

sl1(a) 2 1 4 4 4 4

2
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Either sl1(vj)min jrj or sl2min jrj can be used as the skip distance. In the remaining

presentations of the algorithms, we will use sl1 exclusively. If a conjunct of any of J0,

J1, J2, or J3 is used as a weakening of PerfMatch, the appropriate skip length can be

approximated as the max of the individual skip lengths. A particularly interesting skip

length is that arising from predicate J1 (in which j = 1). In this case, sl1(a) = 1 (for all
a 2 V ) and sl2 = 1 and a skip length of 1 is always used, regardless of p or v.

Assuming J is a weakening of PerfMatch we introduce the following program detail.

Algorithm detail 4.167 (sl): Comparison of v and p is preceded by a skip loop based

upon weakening J of PerfMatch and some appropriate skip length. 2

Assuming some �xed j : 1 � j � jpj we use J3 as an example of a weakening of PerfMatch

in

Algorithm 4.168 (okw, obm, indices, mo, sl):

l; v; r := "; S�jpj; S�jpj; O := �;

f invariant: I1(l; v; r) g

do jvj = jpj !
f jvj = jpj g
do 1 � jrj ^ :J3((l; v; r))!

(l; v; r) := shift(l; v; r; sl1(vj)min jrj)
od;

f jvj = jpj ^ (J3((l; v; r)) _ r = ") g
i := match(v; p;mo);

f I2(v; p;mo; i) g
if i = jpj + 1! O := O [ f(l; v; r)g
[] i 6= jpj + 1! skip

fi;
(l; v; r) := shift(l; v; r; 1)

odBCPM g

2

Note that the e�ciency, but not the correctness, of this algorithm is diminished by omitting

the skip loop. Although the skip look looks costly to implement, it is usually compiled
into a few machine instructions. In [HS91], it is shown that the use of a skip loop can yield
signi�cant improvements to the running time of most BM variants.

We proceed by presenting four instances of detail (sl) (each based on a weakening of

PerfMatch)6:

Algorithm detail 4.169 (none): The predicate J0 (de�ned as true) is used as the
weakening of PerfMatch in the skip loop. Notice that in this case the skip loop is

equivalent to statement skip. 2

6The names of the details are taken from the taxonomy in [HS91].
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Algorithm detail 4.170 (sfc): The predicate J1 (de�ned as v1 = p1) is used as

the weakening of PerfMatch, along with the corresponding skip length of 1, in the

skip loop. 2

Algorithm detail 4.171 (fast): The predicate J2 (de�ned as vjpj = pjpj) is used as

the weakening of PerfMatch, along with the corresponding skip length, in the skip

loop. 2

Algorithm detail 4.172 (slfc): Let pj be a symbol of p with minimal frequency

in S. Predicate J3 (de�ned as vj = pj) is used as the weakening of PerfMatch, along

with the corresponding skip length, in the skip loop. 2

4.5.2 Making use of match information

Up to now information from previous matching attempts was not used in the computation

of the shift distance (in fact, there was no computation and the shift distance in the update
of (l; v; r) at the end of the outer repetition defaulted to 1). In this section, we will take
into account the information from the immediately preceding matching attempt, in much

the same way as was done in the Commentz-Walter algorithm (see Section 4.4).

We would like to compute a safe shift distance of

(MIN k : 1 � k � jrj ^ PerfMatch(shift(l; v; r; k)) : k)

and again we proceed with a weakening of the range predicate (see De�nition 4.89). In the

following derivation we will make use of part of the weakening derivation in Section 4.5.1,
and we will also assume 1 � k � jrj, jvj = jpj and the postcondition of match, namely
I2(v; p;mo; i).

PerfMatch(shift(l; v; r; k))

) fderivation on page 105 g

(8 h
0 : 1 + k � h

0 � jpj : vh0 = ph0�k)

� f change of bound variable: h0 = mo(h) g

(8 h : 1 � h � jpj ^ 1 + k � mo(h) : vmo(h) = pmo(h)�k)

� f I2(v; p;mo; i) g

(8 h : 1 � h � jpj ^ 1 + k � mo(h) : vmo(h) = pmo(h)�k)

^ (i � jpj ) vmo(i) 6= pmo(i)) ^ (8 h : 1 � h < i : vmo(h) = pmo(h))

) f one point rule (�rst quanti�cation) | h = i g

(8 h : 1 � h � jpj ^ 1 + k � mo(h) : vmo(h) = pmo(h)�k)

^ (i � jpj cand 1 + k � mo(i)) vmo(i) 6= pmo(i) ^ vmo(i) = pmo(i)�k)

^ (8 h : 1 � h < i : vmo(h) = pmo(h))

) f combine 8 quanti�cations, with restricted range, since 1 � i � jpj + 1 g

(8 h : 1 � h < i ^ 1 + k � mo(h) : vmo(h) = pmo(h)�k ^ vmo(h) = pmo(h))
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^ (i � jpj cand 1 + k � mo(i)) vmo(i) 6= pmo(i) ^ vmo(i) = pmo(i)�k)

) f transitivity of = in quanti�cation, to eliminate dependence upon v g

(8 h : 1 � h < i ^ 1 + k � mo(h) : pmo(h) = pmo(h)�k)

^ (i � jpj cand 1 + k � mo(i)) vmo(i) 6= pmo(i) ^ vmo(i) = pmo(i)�k)

) f transitivity of = in implication g

(8 h : 1 � h < i ^ 1 + k � mo(h) : pmo(h) = pmo(h)�k)

^ (i � jpj cand 1 + k � mo(i)) pmo(i) 6= pmo(i)�k ^ vmo(i) = pmo(i)�k)

De�nition 4.173 (Predicate I3): The last predicate in the preceding derivation will be
denoted by I3(i; k) (here we have chosen to make parameters mo, p and v implicit). 2

Based upon previous match information, a safe shift distance is

(MIN k : 1 � k ^ I3(i; k) : k)

Notice that this shift distance still depends on implicit parameters mo and p.
In much of the literature, I3 is broken up into three conjuncts:

I
0

3(i; k) � (8 h : 1 � h < i ^ 1 + k � mo(h) : pmo(h) = pmo(h)�k)

I
00

3 (i; k) � (i � jpj cand 1 + k � mo(i)) vmo(i) = pmo(i)�k)
I
000

3 (i; k) � (i � jpj cand 1 + k � mo(i)) pmo(i) 6= pmo(i)�k)

In order to concisely present a shift distance, we de�ne three auxiliary functions.

De�nition 4.174 (Functions s1, char1, and char 2): De�ne functions s1 2 [1; jpj+ 1] �!
N, char1 2 [1; jpj+ 1] �! N, and char2 2 [1; jpj+ 1] �! N as

s1(i) = (MIN k : 1 � k ^ I 03(i; k) : k)
char1(i) = (MIN k : 1 � k ^ I 003 (i; k) : k)
char2(i) = (MIN k : 1 � k ^ I 0003 (i; k) : k)

Function char1 implicitly uses v, and requires O(jV j � (jpj + 1)) space for tabulation. 2

All three of these functions are bounded above by jpj.
It should be noted that, when I2(v; p;mo; i) holds, I

00

3 (i; k)) I
000

3 (i; k). This means that
char1 always yields a greater shift distance than char2. As with sl1 and sl 2, either char1
or char 2 can be used; the choice is a tradeo� between the O(jV j � (jpj+1)) space for char1
and the O(jpj+ 1) space for char2. In the following presentation, we will use only char1.

Example 4.175 (Functions s1 and char2): Using keyword hehshe and the (fwd) match

order, we obtain

i 1 2 3 4 5 6 7

s1(i) 1 1 2 2 4 4 4

and
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i 1 2 3 4 5 6 7

char2(i) 1 1 1 1 1 1 1

The shift distance provided by char2 does not look promising. This is due to the particular
keyword choice. Keywords in which a single symbol is repeated (such as hhhh) yield greater

shift distances. 2

Using functions s1 and char1 yields a new, possibly smaller, shift distance

s1(i)maxchar1(i)

This is known as the match information detail.

Algorithm detail 4.176 (mi): Use information from the preceding match attempt by

computing the shift distance using functions s1 and either char1 or char2. 2

Adding this detail, and integer variable distance for clarity, results in the following Boyer-

Moore algorithm skeleton7 (cf. [HS91, Section 4, p. 1224]):

Algorithm 4.177 (okw, obm, indices, mo, sl, mi):

l; v; r := "; S�jpj; S�jpj; O := �;

f invariant: I1(l; v; r) g
do jvj = jpj !
f jvj = jpj g

do 1 � jrj ^ :J3((l; v; r))!
(l; v; r) := shift(l; v; r; sl1(vj)min jrj)

od;
f jvj = jpj ^ (J3((l; v; r)) _ r = ") g

i := match(v; p;mo);
f I2(v; p;mo; i) g
if i = jpj + 1! O := O [ f(l; v; r)g

[] i 6= jpj + 1! skip

fi;
distance := s1(i)max char1(i);

(l; v; r) := shift(l; v; r; distance)

odf PM g

2

Remark 4.178: Precomputation of functions s1, char1, and char2 is briey discussed in

the original taxonomy [WZ92]. 2

7Details (mo) and (sl) still have to be instantiated | weakening J3 is used for the skip loop.
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Given �xed j : 1 � j � jpj we can easily compute the function sl1 and constant sl 2
from Section 4.5.1. This can be done for any particular mo. The functions are

sl1(vj) = char1(mo
�1(j))

sl2 = char2(mo
�1(j))

Example 4.179 (Computing function sl2): Our example of sl2 used j = 4, so

sl2 = char2(mo
�1(4)) = char2(4) = 1

2

4.6 Conclusions

The highlights of this taxonomy fall into two categories: general results of the derivation
method and speci�c results of the taxonomy. The general results are:

� The method of re�nement used in each of the derivations presents the algorithms in
an abstract, easily digested format. This presentation allows a correctness proof of
an algorithm to be developed simultaneously with the algorithm itself.

� The presentation method proves to be more than just a method of deriving algo-

rithms: the derivations themselves serve to classify the algorithms in the taxonomy.
This is accomplished by dividing the derivation at points where either problem or
algorithm details are introduced. A sequence of such details identi�es an algorithm.
By pre�x-factoring these sequences, common parts of two algorithm derivations are

presented simultaneously.

� The taxonomy of all algorithms considered can be depicted as a graph: the root
represents the original (na��ve) solutionO := ([ l; v; r : lvr = S : flg�(fvg\P )�frg);
edges represent the addition of a detail; and the internal vertices and leaves represent

derived algorithms. This graph is shown in Figure 4.1 in Section 4.1. The utility

of this graph is that it can be used as a table of contents to the taxonomy. Being

interested in only a subset of the algorithms, for example the Aho-Corasick (AC)
algorithms, does not necessitate reading all of the derivations; only the root-leaf

paths that lead to the AC algorithms need to be read for a complete overview of
these algorithms.

� The presentation was more than just a taxonomy. Instead of using completed deriva-

tions of known algorithms, which are frequently derived in di�erent styles, all of the
algorithms were derived in a common framework. This made it easier to determine

similarities or di�erences between algorithms for the purpose of classifying them.
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� The pattern matching overviews presented in [Aho90, CR94, Step94] are excellent in-

troductions to many of the algorithms presented in this chapter. Unfortunately, they

do not present all variants of the algorithms, nor does it present them in a fashion

that allows one to contrast the algorithms with one another. The taxonomy in this

chapter accomplished precisely this goal, of presenting algorithms in one framework
for comparison. In deriving the algorithms for this taxonomy every attempt was
made to thoroughly explore all of the possible variants. Our taxonomy is a thor-

ough introduction to all variants of the four principal pattern matching algorithms

presented in [Aho90, CR94, Step94].

Results concerning particular algorithms can be summarized as follows:

� As stated in [AC75], the AC algorithm is intended to be a generalization of the

original Knuth-Morris-Pratt (KMP) algorithm | making use of automata theory.

The classical derivations of the two (using automata and indices, respectively) do

not serve to highlight their similarities, or di�erences.

When derived in the same framework, it becomes apparent that the AC algorithm

cannot be specialized to arrive at KMP; this can be seen from the derivation of
the AC algorithm subtree of the taxonomy tree. The linear search (introduced in
Section 4.3.4) used in the failure function AC algorithm (Algorithm 4.72) is quite
di�erent from the linear search used in the abstract KMP algorithm (Algorithm 4.76).

Indices could have been introduced in Algorithm 4.72, although this does not yield
the classically presented KMP algorithm. The relationship between the AC and KMP
algorithms is in fact that they have a common ancestor algorithm (p+, e, ac, ls).

� The abstract intermediate KMP algorithm (Algorithm 4.76) is in fact a new algo-

rithm, albeit a variant of the AC algorithm. The running time of this new algorithm
does not appear to be any better than Algorithm 4.72. The transformation (by
adding indices) of Algorithm 4.76 into the classically presented KMP algorithm (Al-
gorithm 4.84) was demonstrated to be straightforward.

� The original Aho-Corasick article [AC75] presented the `optimal' version of the al-
gorithm after the failure function version of the algorithm. Although the optimal

algorithm was explained in [AC75] as using a transition function f which is a com-

position of the extended forward trie �ef and failure function ff , our derivation pro-
ceeded much more smoothly by deriving an algorithm which is a common ancestor

of both the optimal and the failure function algorithms.

� The pattern matching Moore machine with transition function f is the minimal
Moore machine performing the Aho-Corasick pattern matching transduction.

� `Predicate weakening' (of Sections 4.4 and 4.5) was instrumental in deriving various

algorithms (and their correctness proofs) from the Commentz-Walter (CW) algo-

rithm, in particular the Boyer-Moore (BM) algorithm. The CW algorithm has not
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emerged as a popular string pattern matching algorithm partly due to the di�culty

in understanding it. The derivation presented in Section 4.4 arrives at the CW al-

gorithm through a series of small transformations, starting with a na��ve (quadratic

running time) algorithm. This derivation makes the CW algorithm considerably

easier to understand. Predicate weakening was also heavily used in deriving the
`match-order' variant of the BM algorithm.

� Commentz-Walter's intention was to combine the BM algorithm with automata the-

ory, to produce an algorithm dealing with multiple keywords. The relationship be-
tween the two algorithms has previously remained obscured by the styles of presen-

tation of the two algorithms (indices in BM, and automata in CW). As seen from

Section 4.4 the BM algorithm can indeed be arrived at in the same framework (as the

CW algorithm) as a special case. The publication of the Hume-Sunday taxonomy

[HS91] motivated us to also derive the BM algorithm in an entirely di�erent manner

| making use of the concept of `match-orders'.

� In both papers by Commentz-Walter describing her algorithm (in particular the
technical report [Com79b]), the di�erences between methods of determining a safe
shift amount were not made explicit. Indeed, that some of these shift functions were

distinct was not mentioned in all cases. The derivation of the CW algorithm given

in this chapter clearly de�nes the di�erences between the shift functions.

� In the BM algorithm, the functions contributing to a shift have been presented in
several separate papers since the introduction of the original algorithm. Until the

publication of the taxonomy by [HS91] it was di�cult to examine the contribution
of each shift function. Both Section 4.5 and [HS91] present a shift as consisting of

components that can be readily replaced by an equivalent component, for example:
the `skip' loops, or the `match-orders'. [HS91] emphasized e�ects on running-time
of each component. Our taxonomy has emphasized the derivation of each of these

components from a common speci�cation.
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Chapter 5

A new RE pattern matching algorithm

This chapter presents a Boyer-Moore type algorithm for regular expression pattern match-
ing, answering an open problem posed by A.V. Aho in 1980 [Aho80, p. 342]. The new

algorithm handles patterns speci�ed by regular expressions | a generalization of the Boyer-

Moore and Commentz-Walter algorithms, both considered in Chapter 4.
Like the Boyer-Moore and Commentz-Walter algorithms, the new algorithm makes

use of shift functions which can be precomputed and tabulated. The precomputation
algorithms are derived, and it is shown that the required shift functions can be precomputed
from Commentz-Walter's d1 and d2 shift functions.

In certain cases, the Boyer-Moore (respectively Commentz-Walter) algorithm has greatly
outperformed the Knuth-Morris-Pratt (respectively Aho-Corasick) algorithm (as discussed
in Chapter 13). In testing, the algorithm presented in this chapter also frequently outper-
forms the regular expression generalization of the Aho-Corasick algorithm.

An early version of this algorithm was presented in [WW94]. The research reported in

this chapter was performed jointly with Richard E. Watson of the Department of Mathe-
matics, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada; he can be

reached at watsona@sfu.ca.

5.1 Introduction

The pattern matching problem is: given a non-empty language L (over an alphabet1 V )

and an input string S (also over alphabet V ), �nd all substrings of S that are in L. Several

restricted forms of this problem have been solved (all of which are discussed in detail in

Chapter 4, and in [Aho90, WZ92]):

� The Knuth-Morris-Pratt (Section 4.3.6 and [KMP77]) and Boyer-Moore (Sections 4.4.6

and 4.5 and [BM77]) algorithms solve the problem when L consists of a single word
(the single keyword pattern matching problem).

� The Aho-Corasick (Section 4.3 and [AC75]) and Commentz-Walter (Section 4.4

and [Com79a, Com79b]) algorithms solve the problem when L is a �nite set of

1Throughout this chapter we assume a �xed alphabet V .
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(key)words (the multiple keyword pattern matching problem). The Aho-Corasick

and Commentz-Walter algorithms are generalizations of the Knuth-Morris-Pratt and

Boyer-Moore algorithms respectively.

� The case where L is a regular language (the regular expression pattern matching

problem) can be solved as follows: a �nite automaton is constructed for the language

V
�
L; each time the automaton enters a �nal state (while processing the input string

S) a matching substring has been found. This algorithm is detailed in [Aho90,

AHU74], and is a generalization of the algorithm presented in Section 4.3.7. Since it

is also a generalization of the Knuth-Morris-Pratt and Aho-Corasick algorithms, we

will refer to it as the GAC (generalized AC) algorithm. Until now, most practical

algorithms solving the regular expression pattern matching problem are variants of
the GAC algorithm.

Although the Knuth-Morris-Pratt and Aho-Corasick algorithms have better worst-case
running time than the Boyer-Moore and Commentz-Walter algorithms (respectively), the

latter two algorithms are known to be extremely e�cient in practice (see Chapter 13
and [HS91, Wat94a]). Interestingly, to date no generalization (to the case where L is an
arbitrary regular language) of the Boyer-Moore and Commentz-Walter algorithms has been

discovered. In 1980, A.V. Aho stated the following open problem:

It would also be interesting to know whether there exists a Boyer-Moore type
algorithm for regular expression pattern matching. [Aho80, p. 342].

In this chapter, we present such an algorithm. As with the Boyer-Moore and Commentz-

Walter algorithms, the new algorithm requires shift tables. The precomputation of these
shift tables is discussed, and shown to be related to the shift tables used by the Commentz-
Walter algorithm. Finally, the new algorithm is specialized to obtain a variant of the

Boyer-Moore (single keyword) algorithm | showing that it is indeed a generalization of
the Boyer-Moore algorithm. The algorithm has been implemented, and in practice it
frequently displays better performance than the GAC algorithm.

The derivation of the new algorithm closely parallel the development of the Commentz-

Walter algorithm (see Section 4.4), especially in the use of predicate weakening to �nd
a practically computed shift distance. In the Commentz-Walter algorithm, information

from previous match attempts is used to make a shift of at least one symbol; the shift

functions are �nite, and can therefore be tabulated. In the new algorithm, we also use

information from previous match attempts; directly using the information may yield shift
functions which are in�nite, and therefore impossible to precompute. The main result in

the development of the algorithm is a weakening step which allows us to use �nite shift
functions in place of the (possibly) in�nite ones | thereby yielding a practical algorithm.

It should be noted that there does exist another regular expression pattern matching

algorithm (due to R. Baeza-Yates [GB-Y91]) with good performance; that algorithm re-

quires some precomputation on the input string, and is therefore suited to a di�erent kind

of problem than the one presented in this chapter.
This chapter is structured as follows:
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� Section 5.2 gives the problem speci�cation, and a simple �rst algorithm.

� Section 5.3 presents the essential idea of greater shift distances while processing the
input text, as in the Boyer-Moore algorithm.

� Section 5.4 derives algorithms required for the precomputation of the shift functions
used in the pattern matching algorithm.

� Section 5.5 specializes the new pattern matching algorithm to obtain the Boyer-Moore
algorithm.

� Section 5.6 provides some data on the performance of the new algorithm versus the
GAC algorithm.

� Section 5.7 discusses some techniques for further improving the performance of the

algorithm.

� Section 5.8 presents the conclusions of this chapter.

5.2 Problem speci�cation and a simple �rst algo-

rithm

We begin this section with a precise speci�cation of the regular language pattern matching
problem.

De�nition 5.1 (Regular pattern matching problem): Given an alphabet V , an input

string S 2 V
�, a regular expression E (the pattern expression), and regular language

L � V
� such that L = LRE (E), establish postcondition

RPM : O = ([ l; v; r : lvr = S : flg � (fvg \ L) � frg)

2

In the remainder of this chapter, we will use language L instead of regular expression E in

order to make the algorithm derivation more readable. Note that the encoding of set O is

precisely the same as was used in Chapter 4.
We pattern our na��ve �rst algorithm after Algorithms 4.10 and 4.18 (from Chapter 4,

pages 51 and 85). In this algorithm, the pre�xes (u) of S and the su�xes (v) of u are
considered in order of increasing length2.

2Other orders of evaluation can also be used. This order is only chosen so as to arrive at an algorithm
generally resembling the Boyer-Moore algorithm.
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Algorithm 5.2:

u; r := "; S;

if " 2 L! O := f("; "; S)g
[] " 62 L! O := �

f i;

do r 6= "!

u; r := u(r�1); r�1;

l; v := u; ";

if v 2 L! O := O [ f(l; v; r)g
[] v 62 L! skip

fi;

do l 6= " cand (l�1)v 2 su�(L)!
l; v := l�1; (l�1)v;

if v 2 L! O := O [ f(l; v; r)g
[] v 62 L! skip

fi

od

odf RPM g

2

Remark 5.3: Note that we have used if-� constructs in giving the initialization and
updates to variable O (compare this with the use of � and \ in presenting the initialization

and updates in Algorithm 4.10). This is done to facilitate the introduction of a �nite

automaton in the next section. 2

Remark 5.4: The number of iterations of the inner repetition is O(jSj � ((MAX w : w 2
L : jwj)min jSj)). This is not the same as the running time, as we have not taken the cost

of operations such as " 2 L and v 2 L into account. The implementation of guard conjunct
(l�1)v 2 su�(L) and expression v 2 L (in the update of variable O) remain unspeci�ed. 2

In order to make the algorithm more practical, we introduce a �nite automaton, in much

the same way that the reverse trie was introduced in Algorithm detail 4.17.

5.2.1 A more practical algorithm using a �nite automaton

Since L is a regular language, we construct (from E) a (possibly nondeterministic) "-free
�nite automaton M = (Q;V; �;�; I; F ) accepting L

R (the reverse language3 of L). The
transition function will be taken to have signature � 2 P(Q)� V �! P(Q).

3The reverse is used, since we will be using automaton M to consider the symbols of substring v in
right to left order instead of left to right order; this is analogous to the way in which the reverse trie was
used with Algorithm 4.18.
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We will not explicitly present the automaton here (except in the examples); we assume

that it was constructed (from regular expression E) by one of the well-known algorithms,

for example those presented in Chapter 6. Since M is "-free, we have the property that

" 2 L � I \F 6= � (see Remark 2.94). Finite automata with "-transitions could have been

used; they are only excluded in order to simplify the de�nitions given here.
In a manner analogous to that in which the reverse trie was introduced into Algo-

rithm 4.10, we now make use of the automaton M . We introduce a new variable C (the
current state set) ranging over P(Q) with the invariant

C = f q j q 2 Q ^ vR 2
 �
L (q) g

String v is reversed in the conjunct since v is processed in reverse. Given this invariant,

the conditional conjunct of the inner repetition guard in Algorithm 5.2, (l�1)v 2 su�(L),

is equivalent to �(C; l�1) 6= �. The new algorithm is:

Algorithm 5.5:

u; r := "; S;

if I \ F 6= �! O := f("; "; S)g
[] I \ F = �! O := �

f i;

do r 6= "!
u; r := u(r�1); r�1;

l; v; C := u; "; I;

if C \ F 6= �! O := O [ f(l; v; r)g
[] C \ F = �! skip

fi;

f invariant: u = lv ^ C = f q j q 2 Q ^ vR 2
 �
L (q) g g

do l 6= " cand �(C; l�1) 6= �!

l; v; C := l�1; (l�1)v; �(C; l�1);
f C \ F 6= � � v 2 L g
if C \ F 6= �! O := O [ f(l; v; r)g
[] C \ F = �! skip

fi

od

odf RPM g

2

Remark 5.6: There are a number of choices in the implementation of the �nite automaton
M . In particular, if a deterministic �nite automaton is used then the algorithm variable

C would always be a singleton set (and the algorithm could be modi�ed so that C ranges

over Q instead of P(Q)). The use of a deterministic automaton requires more costly



120 CHAPTER 5. A NEW RE PATTERN MATCHING ALGORITHM

precomputation (of the automaton), but enables the algorithm to process input string

S faster. A nondeterministic automaton would involve cheaper precomputation, but the

input string would be processed more slowly as all paths in the automaton are simulated.

A hybrid solution is to begin with a nondeterministic automaton, and then construct

(and tabulate) a deterministic automaton on-the-y, as the nondeterministic automaton is
simulated. The performance of various types of �nite automata will be considered again
in Chapter 14. In this chapter, we continue to use a possibly nondeterministic �nite

automaton. 2

In order to make some of the derivations in subsequent sections more readable, we

de�ne some constants.

De�nition 5.7 (Constants relating to automaton M): For each state q 2 Q, we

de�ne constant mq to be the length of a shortest word in
 �
L (q). De�ne m to be the length

of a shortest word in L. Intuitively, mq is the length of a shortest path from a start state
to state q in M , while m is the length of a shortest path from a start state to a �nal state

in M . 2

Example 5.8 (Pattern and corresponding FA): As an example of a regular language
pattern, and a corresponding �nite automaton, consider the language L = fbd; degfcg�fbg[
fbdag (over alphabet V = fa; b; c; d; eg). In this case, an automaton M (which is shown in
Figure 5.1) accepts the language LR = fbgfcg�fdb; edg[fadbg. Coincidentally, automaton
M is a DFA. The left languages of each of the states (for the automaton in Figure 5.1) are

as follows:

 �
L (0) = f"g
 �
L (1) = fag
 �
L (2) = fbgfcg�

 �
L (3) = fadg [ fbgfcg�fdg
 �
L (4) = fbgfcg�feg
 �
L (5) = fadbg [ fbgfcg�fdbg
 �
L (6) = fbgfcg�fedg

Additionally, m = 3, m0 = 0, m1 = m2 = 1, m3 = m4 = 2, and m5 = m6 = 3. Language
L and automaton M will be used as our running example throughout this chapter.

Within examples, we will use names (such as L, V , and M) to refer to the concrete

objects de�ned above, as opposed to the abstract objects used elsewhere in this chapter.

2
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Figure 5.1: A �nite automaton accepting the regular language L
R = fbgfcg�fdb; edg [

fadbg.

5.3 Greater shift distances

Upon termination of the inner repetition, we know (by the invariant of the inner repetition)

that C = f q j q 2 Q ^ v
R 2

 �
L (q) g. This implies (8 q : q 2 C : vR 2

 �
L (q)), and

equivalently

(8 q : q 2 C : v 2
 �
L (q)R)

In a manner analogous to the Commentz-Walter and Boyer-Moore algorithm derivations
(Sections 4.4 and 4.5), this information can be used on a subsequent iteration of the

outer repetition to make a shift k of more than one symbol by replacing the assignment
u; r := u(r�1); r�1 by u; r := u(r�k); r�k.

In order to make use of this information (which relates v and C) on the �rst iteration
of the outer repetition, we make the invariant of the inner repetition an invariant of the
outer repetition as well, by adding the (redundant) initialization l; v; C := u; "; I before
the outer repetition4:

Algorithm 5.9:

u; r := "; S;

if I \ F 6= �! O := f("; "; S)g
[] I \ F = �! O := �

f i;
l; v; C := u; "; I;

f invariant: u = lv ^ C = f q j q 2 Q ^ vR 2
 �
L (q) g g

4This does not change the nature of the algorithm, other than creating a new outer repetition invariant.
A similar initialization was added to the Commentz-Walter algorithm skeleton, Algorithm 4.93.
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do r 6= "!

u; r := u(r�1); r�1;

l; v; C := u; "; I;

if C \ F 6= �! O := O [ f(l; v; r)g

[] C \ F = �! skip

fi;

f invariant: u = lv ^ C = f q j q 2 Q ^ vR 2
 �
L (q) g g

do l 6= " cand �(C; l�1) 6= �!

l; v; C := l�1; (l�1)v; �(C; l�1);

f C \ F 6= � � v 2 L g
if C \ F 6= �! O := O [ f(l; v; r)g

[] C \ F = �! skip

fi

od

odf RPM g

2

5.3.1 A more e�cient algorithm by computing a greater shift

We wish to use a shift distance which is possibly greater than 1 by replacing the assignment

u; r := u(r�1); r�1 by u; r := u(r�k); r�k (for 1 � k). As with the Commentz-Walter and
Boyer-Moore algorithms, we would like an ideal shift distance | the shift distance to

the nearest match to the right (in input string S). Formally, this distance is given by:
(MIN n : 1 � n � jrj ^ su�(u(r�n))\L 6= � : n). Any shift distance less than this is also

acceptable, and we de�ne a safe shift distance (similar to that given in De�nition 4.89).

De�nition 5.10 (Safe shift distance): A shift distance k satisfying

1 � k � (MIN n : 1 � n � jrj ^ su�(u(r�n)) \ L 6= � : n)

is a safe shift distance. We call the upperbound (the quanti�cation) the maximal safe shift

distance or the ideal shift distance. 2

Using a safe shift distance, the update of u; r then becomes u; r := u(r�k); r�k. In order to

compute a safe shift distance, we will weaken predicate su�(u(r�n)) \ L 6= � (which we

call the ideal shift predicate) in the range of the maximal safe shift distance quanti�cation.
This technique of using predicate weakening to �nd a more easily computed shift distance

was introduced in Section 4.4.1. The weakest predicate true yields a shift distance of 1.
We begin by �nding a weakening of the ideal shift predicate which is stronger than true,

but still precomputable; later we will present precomputation algorithms for the resulting

approximation.
In the following weakening, we will �rst remove the dependency (of the ideal shift

preciate) on l, then r, then v, leaving a weakening that only depends upon C and n
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(and, of course, language L). The particular weakening that we derive will prove to yield

precomputable shift tables. Assuming 1 � n � jrj and the (implied) invariant u = lv ^

(8 q : q 2 C : v 2
 �
L (q)R), we begin with the ideal shift predicate:

su�(u(r�n)) \ L 6= �

� f invariant: u = lv g

su�(lv(r�n)) \ L 6= �

) fdiscard lookahead to l: l 2 V �, monotonicity of su� and \g

su�(V �
v(r�n)) \ L 6= �

) fdomain of r and n: n � jrj, so (r�n) 2 V n g

su�(V �
vV

n) \ L 6= �

� fProperty 2.59 g

V
�
vV

n \ V �
L 6= �

) f invariant: (8 q : q 2 C : v 2
 �
L (q)R), monotonicity of \g

(8 q : q 2 C : V �
 �
L (q)RV n \ V �

L 6= �)

The predicate is now free of l; v; r and S and depends only on current state set C, automaton
M , and language L (and therefore E). The fact that it is free of r allows us to drop the

conjunct n � jrj from the quanti�cation giving the shift distance. We will continue this
derivation from the last line.

Remark 5.11: As in the Commentz-Walter algorithms, we could have weakened the
predicate in the above derivation to use one character of lookahead, l�1. With a single
character of lookahead, it seems particularly di�cult to arrive at easily precomputed shift
functions, and that approach is not pursued in this dissertation. 2

Forward reference 5.12: The fact that the language L and the languages
 �
L (q) can be

in�nite (for a given q 2 Q) makes evaluation of this predicate, (8 q : q 2 C : V �
 �
L (q)RV n\

V
�
L 6= �), di�cult. In the following subsection, we will introduce the essential ingredient

of this algorithm derivation, by deriving a more practical range predicate. 2

5.3.2 Deriving a practical range predicate

In order to further weaken the predicate in Forward reference 5.12 (and �nd a more easily
computed weakening), we aim at �nite languages Lq (corresponding to each q 2 Q) such

that V �
 �
L (q)R � V

�
Lq and a �nite language L

0 such that V �
L � V

�
L
0. This is the essential

ingredient which reduces the shift functions from being in�nite (not precomputable) to
�nite (which can be precomputed and tabulated). Possible de�nitions of such languages

are as follows.
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De�nition 5.13 (Languages Lq and L
0): De�ne the following languages (for all q 2 Q)

Lq = su�(
 �
L (q)R) \ V mqminm

L
0 = su�(L) \ V m

2

Remark 5.14: The de�nitions given here were chosen for their simplicity; other de�ni-

tions are possible, but these particular ones lead to a generalization of the Boyer-Moore

algorithm. 2

Languages Lq satisfy an important property that we will require later.

Property 5.15 (Languages Lq): Assuming M 2 FA we have:

Useful
s
(M) � (8 q : q 2 Q :

 �
L (q) 6= �) � (8 q : q 2 Q : Lq 6= �)

2

In the following property, we show that this de�nition of Lq satis�es the required property.

Property 5.16 (Languages Lq): For all q 2 Q: V
�
 �
L (q)R � V

�
Lq and V

�
L � V

�
L
0.

Proof:

We can see that the de�nition of Lq satis�es a required property by considering a particular
word w:

w 2
 �
L (q)R

) fde�nition of mq: jwj � mq � mqminm g

(9 x; y : w = xy : x 2 V � ^ y 2 su�(
 �
L (q)R) ^ jyj = mqminm)

� fde�nition of \ and V
mqminm g

(9 x; y : w = xy : x 2 V � ^ y 2 su�(
 �
L (q)R) \ V mqminm)

� fde�nition of Lq g

(9 x; y : w = xy : x 2 V � ^ y 2 Lq)

� fde�nition of concatenation of languages g

w 2 V �
Lq

We conclude that
 �
L (q)R � V

�
Lq. It follows that V

�
 �
L (q)R � V

�
V
�
Lq, and (since V

�
V
� =

V
�) V �

 �
L (q)R � V

�
Lq. 2

A similar proof applies to the L;L0 case. Note that Lq and L
0 (for all q 2 Q) are �nite

languages.
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Example 5.17 (Lq and L
0): Given our running example, we can see that

L
0 = fbda; bdb; deb; dcb; ecb; ccbg

and (for all states 0; : : : ; 6 in �nite automaton M):

L0 = f"g

L1 = fag

L2 = fbg
L3 = fda; db; cbg

L4 = feb; cbg
L5 = fbda; bdb; dcb; ccbg

L6 = fdeb; ecb; ccbg

2

We can continue our previous derivation of a useable range predicate, from Forward
reference 5.12.

(8 q : q 2 C : V �
 �
L (q)RV n \ V �

L 6= �)

) fProperty 5.16 g

(8 q : q 2 C : V �
LqV

n \ V �
L
0 6= �)

� f existentially quantify over all w 2 Lq g

(8 q : q 2 C : (9 w : w 2 Lq : V
�
wV

n \ V �
L
0 6= �))

We now have a usable weakening of the range predicate of the ideal shift distance.
Recalling Property 2.22, we can now proceed with our derivation (of an approximation),

beginning with the ideal shift distance:

(MIN n : 1 � n � jrj ^ su�(u(r�n)) \ L 6= � : n)

� fweakening of range predicate (see derivation above), free of r so drop n � jrj g

(MIN n : 1 � n ^ (8 q : q 2 C : (9 w : w 2 Lq : V
�
wV

n \ V �
L
0 6= �)) : n)

� fProperty 2.22 | conjunctive (8) MIN range predicate; jCj is �nite g

(MAX q : q 2 C : (MIN n : 1 � n ^ (9 w : w 2 Lq : V
�
wV

n \ V �
L
0 6= �) : n))max1

= fProperty 2.22 | disjunctive (9) MIN range predicate; jLqj is �nite g

(MAX q : q 2 C : (MIN w : w 2 Lq : (MIN n : 1 � n ^ V �
wV

n \ V �
L
0 6= � : n)))max1

The second step (above) warrants further explanation. In the case that M 2 FA has no
start states (I = �), variable C will always be �. Since this would yield a shift distance

of �1 we use max1 to ensure that the shift distance is at least 1.
In the case where a particular Lq = �, the outermost MIN quanti�cation can take the

value +1 | yielding a shift distance which is not safe. As mentioned in Property 5.15,

this can be avoided by requiring that Useful
s
(M) holds. In practice, this is not necessary,

since it is not possible that q 2 C ^ Lq = � (this can be seen by inspection of the second

conjunct of our algorithm invariant).
We now continue with the inner MIN quanti�cation above:
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(MIN n : 1 � n ^ V �
wV

n \ V �
L
0 6= � : n)

= fProperty 2.60 g

(MIN n : 1 � n ^ (V �
wV

n \ L0 6= � _ wV n \ V �
L
0 6= �) : n)

= fProperty 2.21; ^ distributes over _g

(MIN n : 1 � n ^ V �
wV

n \ L0 6= � : n)min(MIN n : 1 � n ^ wV n \ V �
L
0 6= � : n)

This last line above can be written more concisely with the introduction of a pair of

auxiliary functions.

De�nition 5.18 (Functions d1; d2): We de�ne two auxiliary functions d1; d2 2 V
� �! N

as:

d1(x) = (MIN n : 1 � n ^ V �
xV

n \ L0 6= � : n)

d2(x) = (MIN n : 1 � n ^ xV n \ V �
L
0 6= � : n)

Since both d1 and d2 are only applied to elements of Lq (for all q 2 Q), we could have given
their domains as ([ q : q 2 Q : Lq). In Section 5.4.1, we will give an even more useful
characterization of their domains. 2

Note that these functions are almost identical to those de�ned in De�nition 4.97 | only
the domains are di�erent.

Using the auxiliary functions, the last line of the derivation above can be written as
d1(w)mind2(w). The approximation of the ideal shift distance is then:

(MAX q : q 2 C : (MIN w : w 2 Lq : d1(w)mind2(w)))max1

For readability, we de�ne another auxiliary function.

De�nition 5.19 (Function t): De�ne auxiliary function t 2 Q �! N as

t(q) = (MIN w : w 2 Lq : d1(w)mind2(w))

2

Remark 5.20: Functions d1; d2 and t are easily precomputed as discussed in Section 5.4.

2

Using function t gives a shift distance of

(MAX q : q 2 C : t(q))max1



5.4. PRECOMPUTATION 127

The �nal algorithm (using function t and introducing variable distance for readability)

is:

Algorithm 5.21 (An e�cient algorithm):

u; r := "; S;
if I \ F 6= �! O := f("; "; S)g

[] I \ F = �! O := �

f i;

l; v; C := u; "; I;

f invariant: u = lv ^ C = f q j q 2 Q ^ vR 2
 �
L (q) g g

do r 6= "!

distance := (MAX q : q 2 C : t(q))max1;
u; r := u(r�distance); r�distance ;

l; v; C := u; "; I;
if C \ F 6= �! O := O [ f(l; v; r)g
[] C \ F = �! skip

fi;

f invariant: u = lv ^ C = f q j q 2 Q ^ vR 2
 �
L (q) g g

do l 6= " cand �(C; l�1) 6= �!
l; v; C := l�1; (l�1)v; �(C; l�1);

f C \ F 6= � � v 2 L g
if C \ F 6= �! O := O [ f(l; v; r)g
[] C \ F = �! skip

fi

od

odf RPM g

2

5.4 Precomputation

In this section, we consider the precomputation of languages Lq and L
0, and functions d1,

d2, and t. The precomputation is presented as a series of small algorithms | each easier to
understand than a single monolithic one. All algorithms are presented and derived in the

reverse order of their application. In practice they would be combined into one algorithm,
as is described in Section 5.4.9.

5.4.1 Characterizing the domains of functions d1 and d2

Since functions d1 and d2 are only applied to elements of Lq (for all q 2 Q), their signatures

can be taken as d1; d2 2 ([ q : q 2 Q : Lq) �! N. In order to make the precomputation of
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the functions easier, we need a di�erent characterization of their domains. To do this in

a simple manner, we require that Useful
f
(M) holds; intuitively, this means that for every

state q inM , there is a path from q to a �nal state inM . In Chapter 6, several general �nite

automata construction algorithms are given; many of those algorithms construct automata

with this property. Property Useful
f
(M) implies another property of M which will prove

to be more directly useful.

Property 5.22 (Left languages): From the de�nition of Useful
f
and Property 2.101 it

follows that

(8 q : q 2 Q :
 �
L (q) � pref(LR))

2

From the property above, and the domains of d1 and d2, we can restrict the domains of d1
and d2 as follows (for all q 2 Q):

Lq

= fde�nition of Lq g

su�(
 �
L (q)R) \ V mqminm

� fProperty 5.22; monotonicity of su� g

su�(pref(LR)R) \ V mqminm

= fProperty 2.52 | pref and su� are duals; reverse is its own inverse g

su�(su�(L)) \ V mqminm

= fProperty 2.51 | idempotence of su� g

su�(L) \ V mqminm

� fmqminm � m; w 2 V mqminm ) w 2 su�(V m) g

su�(su�(L) \ V m)

= fde�nition of L0 g

su�(L0)

Given this property (of each Lq), we can restrict the domain of functions d1 and d2 so that

d1; d2 2 su�(L
0) �! N. Since jL0j is �nite, then jsu�(L0)j is �nite as well. Notice that this

new signature (for d1 and d2) corresponds to that given in De�nition 4.97, with (�nite)

keyword set L0 in place of keyword set P .

Example 5.23 (Language L
0): In our running example, where

L

0 = fbda; bdb; deb; dcb; ecb; ccbg

we have

su�(L0) = f"; a; b; da; db; eb; cb; bda; bdb; deb; dcb; ecb; ccbg

Given the de�nitions of d1; d2, we can compute the two functions by hand:
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w " a b da db eb cb bda bdb deb dcb ecb ccb

d1(w) 1 +1 2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1
d2(w) 3 3 2 3 2 2 2 3 2 2 2 2 2

2

Before precomputing d1; d2, we concentrate on the precomputation of function t.

5.4.2 Precomputing function t

Assuming that functions d1 and d2 and sets Lq (for all q 2 Q) have been precomputed, we

can compute function t as follows (variable tee is used to accumulate shift function t):

Algorithm 5.24 (Computing t):

for q : q 2 Q!

tee(q) := +1
rof ;
for q; u : q 2 Q ^ u 2 Lq !

tee(q) := tee(q)mind1(u)mind2(u)
roff tee = t g

2

Notice that we impose no unnecessary order of evaluation in either of the two repetitions.

An implementor of this algorithm is free to choose an order of evaluation which is most

e�cient for the encoding used in the implementation.

Example 5.25 (Function t): In our running example, we obtain the following values for
function t (given the values of Lq for all states q, and functions d1 and d2): t(0) = 1; t(1) =
3; t(2) = 2; t(3) = 2; t(4) = 2; t(5) = 2; t(6) = 2. 2

5.4.3 Precomputing functions d1 and d2

With the domain of functions d1 and d2 restricted to su�(L0), functions d1 and d2 are the

Commentz-Walter precomputed functions for (�nite) keyword set L0 [Com79a, Com79b].

We now present two algorithms, computing d1 and d2 respectively. The algorithms
are fully derived in [WZ95], and are given here without proofs of correctness. The two

precomputation algorithms presented below depend upon the reverse failure function cor-
responding to keyword set L0.

De�nition 5.26 (Function fr): Function fr 2 su�(L
0) n f"g �! su�(L0) corresponding

to L0 is de�ned as

fr(u) = (MAX�p w : w 2 pref(u) n fug \ su�(L0) : w)

2
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The reverse failure function is de�ned analogously to the forward failure function | see

De�nition 4.65 and Remark 4.66.

In the following two algorithms, we assume that function fr is precomputed (variables

dee1 and dee2 are used to accumulate d1 and d2, respectively):

Algorithm 5.27 (Computing d1):

for u : u 2 su�(L0)!

dee1 (u) := +1

rof ;

for u : u 2 su�(L0) n f"g !

dee1 (fr(u)) := dee1 (fr(u))min(juj � jfr(u)j)
roff dee1 = d1 g

2

Again, notice that we impose no unnecessary order of evaluation in either of the two
repetitions.

Algorithm 5.28 (Computing d2):

for u : u 2 su�(L0)!
dee2 (u) := +1

rof ;
for u : u 2 L0 !

v := u;
do v 6= "!

v := fr(v);
if juj � jvj < dee2 (v)! dee2 (v) := juj � jvj

[] juj � jvj � dee2 (v)! v := "

f i

od

rof ;
n := 1;
do su�(L0) \ V n 6= �!

for u : u 2 su�(L0) \ V n !
dee2 (u) := dee2 (u)mindee2 (u�1)

rof ;

n := n + 1

odf dee2 = d2 g

2

Notice that the third (un-nested) repetition is a breadth-�rst traversal of the set su�(L0),
and the second (un-nested) repetition requires that function fr is precomputed. By the

de�nition of language L0, the depth of the traversal is m.

Precomputation using these algorithms has been found to be cheap in practice [Wat94a].
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5.4.4 Precomputing function fr

The following algorithm (taken largely from [WZ92, Section 6, p. 33]) computes function

fr (variable e�r is used to accumulate fr):

Algorithm 5.29 (Computing fr):

for a : a 2 V !

if a 2 su�(L0)! e�r(a) := "

[] a 62 su�(L0)! skip

fi

rof ;

n := 1;

f invariant: (8 u : u 2 su�(L0) ^ juj � n : e�r (u) = fr(u)) g

do su�(L0) \ V n 6= �!

for u; a : u 2 su�(L0) \ V n ^ a 2 V !
if au 2 su�(L0)!
u
0 := e�r(u);
do u0 6= " ^ au0 62 su�(L0)!

u
0 := e�r(u0)

od;

if u0 = " ^ a 62 su�(L0)! e�r(au) := "

[] u
0 6= " _ a 2 su�(L0)! e�r(au) := au

0

f i

[] au 62 su�(L0)! skip

fi

rof ;
n := n + 1

od

f n > m g
f e�r = fr g

2

This algorithm also makes use of a breadth-�rst traversal (of depth m) of the set su�(L0).

Example 5.30 (Function fr): Consider the function fr for our running example:

w : w 2 su�(L0) n f"g a b da db eb cb bda bdb deb dcb ecb ccb

fr(w) " " " " " " b b " " " "

2



132 CHAPTER 5. A NEW RE PATTERN MATCHING ALGORITHM

5.4.5 Precomputing sets Lq

The languages Lq can easily be precomputed using relation Reach(M) (see De�nition 2.95)

and two auxiliary functions.

De�nition 5.31 (Functions st and emm): The auxiliary functions are st 2 su�(L0) �!

P(Q) and emm 2 Q �! [0;m] de�ned as:

st(u) = f q j q 2 Q ^ uR 2
 �
L (q) g

emm(q) = mqminm

2

Relation Reach(M) will be used along with the following property of �nite automata.

Property 5.32 (Reachability and left languages): A useful property (of any �nite

automaton) is that (for all states q 2 Q):

pref(
 �
L (q)) = ([ p : p 2 Q ^ (p; q) 2 Reach(M) :

 �
L (p))

2

Given relation Reach(M) and functions emm and st , we now derive an expression for
Lq that is easier to compute (than the de�nition):

Lq

= fde�nition of Lq g

su�(
 �
L (q)R) \ V mqminm

= fProperty 2.52 | pref and su� are duals g

pref(
 �
L (q))R \ V mqminm

= fProperty 5.32 g

([ p : p 2 Q ^ (p; q) 2 Reach(M) :
 �
L (p))R \ V mqminm

= f\ and R distribute over [g

([ p : p 2 Q ^ (p; q) 2 Reach(M) :
 �
L (p)R \ V mqminm)

= f quantify over all words w : w 2
 �
L (p)R \ V mqminm g

([ w; p : p 2 Q ^ (p; q) 2 Reach(M) ^ w 2
 �
L (p)R \ V mqminm : fwg)

= fde�nition of \g

([ w; p : p 2 Q ^ (p; q) 2 Reach(M) ^ w 2
 �
L (p)R ^: fwg)

= fLq � su�(L
0); w 2

 �
L (p)R � w

R 2
 �
L (p) � p 2 st(w) g

([ w; p : p 2 Q ^ (p; q) 2 Reach(M) ^ w 2 su�(L0) ^ p 2 st(w) ^ w 2 V mqminm : fwg)

= fw 2 V mqminm � jwj = mqminm � jwj = emm(q) g

([ w; p : p 2 Q ^ (p; q) 2 Reach(M) ^ w 2 su�(L0) ^ p 2 st(w) ^ jwj = emm(q) : fwg)
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Assuming that relation Reach and auxiliary functions emm and st are precomputed, we

can now present an algorithm computing Lq (for all q 2 Q, using variable ell to accumulate

the sets Lq):

Algorithm 5.33 (Computing Lq):

for q : q 2 Q!

ell (q) := �

rof ;

for p; q; w : (p; q) 2 Reach(M) ^ w 2 su�(L0) ^ p 2 st(w) ^ jwj = emm(q)!

ell (q) := ell (q) [ fwg

roff (8 q : q 2 Q : ell (q) = Lq) g

2

5.4.6 Precomputing function emm

Assuming that function st and length m have already been computed, the following algo-
rithm computes function emm using a breadth-�rst traversal of su�(L0):

Algorithm 5.34 (Computing emm):

for q : q 2 Q!
if q 2 I ! emm(q) := 0

[] q 62 I ! emm(q) := m

f i

rof ;

n := 1;
do su�(L0) \ V n 6= �!

for u : u 2 su�(L0) \ V n !

for q : q 2 st(u)!
emm(q) := emm(q)minn

rof

rof ;

n := n + 1

odf (8 q : q 2 Q : emm(q) = mqminm) g

2

5.4.7 Precomputing function st and languages L0 and su� (L0)

The following algorithm makes a breadth-�rst traversal (of depth m) of the transition
graph of �nite automaton M . It simultaneously computes function st , languages L0 and

su�(L0), and m (the length of a shortest word in language L).
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Languages L0 and su�(L0) are used in most of the precomputation algorithms already

presented. While the following algorithm computes language su�(L0), it is also an example

of a breadth-�rst traversal of su�(L0) without having to explicitly compute and store it;

instead, the algorithm traverses the transition graph of �nite automaton M and implicitly

performs a breadth-�rst traversal of su�(L0).

Algorithm 5.35 (Computing st , L0, and su�(L0)):

st("); current;SLprime; n;�nal := I; f"g; f"g; 0; (I \ F = �);

f invariant: current = su�(L0) \ V n

^ SLprime = ([ i : i � n : su�(L0) \ V i)

^ 0 � n � m

^ (�nal � n = m)

^ (8 u : u 2 su�(L0) ^ juj � n : st(u) = f q j uR 2
 �
L (q) g) g

do :�nal !

current 0 := �;
n := n + 1;
for u; a : u 2 current ^ a 2 V !

if �(st(u); a) 6= �!
f au 2 su�(L0) \ V n g

st(au) := �(st(u); a);

f (8 q : q 2 st(au) : au 2
 �
L (q)R) g

current 0 := current 0 [ faug;
�nal := �nal _ (st(au) \ F 6= �)

[] �(st(u); a) = �! skip

fi

rof ;
current := current 0;
SLprime := SLprime [ current

od

f n = m g
f current = su�(L0) \ V m = L

0 g

f SLprime = su�(L0) g

f (8 u : u 2 su�(L0) : st(u) = f q j uR 2
 �
L (q) g) g

2



5.5. SPECIALIZING THE PATTERN MATCHING ALGORITHM 135

5.4.8 Precomputing relation Reach(M )

Relation Reach(M) can be precomputed by a reexive and transitive closure algorithm.

The algorithm is (where IQ is the identity binary relation on state set Q):

Algorithm 5.36 (Computing Reach(M)):

Rch := �;

for q; a : q 2 Q ^ a 2 V !
Rch := Rch [ f(q; q)g [ (fqg � �(fqg; a))

rof ;

f Rch = IQ [ ��2(�) g
change := true;

do change!

change := false;

for p; q; r : (p; q) 2 Rch ^ (q; r) 2 Rch !

change := change _ (p; r) 62 Rch;
Rch := Rch [ f(p; r)g

rof

odf Rch = Reach(M) g

2

5.4.9 Combining the precomputation algorithms

The precomputation algorithms can be combined into a single monolithic algorithm. Such

an algorithm is essentially the sequential concatenation of the separate precomputation
algorithms. The order in which the algorithms are applied is determined by their depen-
dency graph, which is shown in Figure 5.2. A possible order of execution is obtained by
reversing a topological sort of the dependency graph. One such order is: (Algorithms)
5.36, 5.35, 5.34, 5.33, 5.29, 5.27, 5.28, 5.24.

5.5 Specializing the pattern matching algorithm

By restricting the form of the regular expression patterns, we can specialize the pattern
matching algorithm to obtain the Boyer-Moore and the Commentz-Walter algorithms. In

this section, we specialize to obtain a variant of the Boyer-Moore algorithm that does not

use a lookahead symbol.

To obtain the single-keyword pattern matching problem, we require that L be a single-
ton set; that is L = fpg (problem detail (okw) from Chapter 4), a language consisting of
a single keyword.

We can now give a �nite automaton accepting LR.
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5.24

5.28

5.27

5.29 5.33

5.36

5.34 5.35

Figure 5.2: The dependency graph of the precomputation algorithms. An arrow from

algorithm a to algorithm b indicates that algorithm b must be executed before algorithm

a.

De�nition 5.37 (Finite automaton accepting L
R): We de�ne deterministic �nite au-

tomaton M = (su�(p); V; ;�; f"g; fpg). The states are elements of su�(p). We de�ne
deterministic transition function  2 su�(p) � V �! su�(p) [ f?g (the special value ?
denotes an unde�ned transition) as:

(w; a) =

(
aw if aw 2 su�(p)

? otherwise

2

Useful
f
(M) holds. Given function , we have (for every state w 2 su�(p)):

 �
L (w) = fwRg

Automaton M is deterministic, and the current state-set variable (C in the algorithm) is

always a singleton set; call it state w 2 su�(p). Since
 �
L (w) is a singleton set and jwj � jpj,

we have mw = jwj and Lw =
 �
L (w)R = fwg. Additionally, since m = jpj, L0 = L = fpg.

Clearly, we have Lw � su�(L0) = su�(p). Function t is given by t(w) = d1(w)mind2(w).
The shift distance will then be d1(w)mind2(w) in the update of variables u; r. Elements

of su�(p) (in particular, current state variable w) can be encoded as integer indices (into

string p) in the range [0; jpj], as was done in Section 4.3.6.1. By making use of this encoding,
and changing the domain of the variables u; r and functions d1; d2 to make use of indexing

in input string S, we obtain the Boyer-Moore algorithm. The Commentz-Walter algorithm
can similarly be obtained as a specialization.

5.6 The performance of the algorithm

Empirical performance data was gathered by implementing this algorithm in a grep style

pattern matching tool, running under Unix (on a Sun Sparc Station 1+) andMS-Dos

(on a 20 Mhz 386DX).
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On each run, the new algorithm was used in addition to the old (generalized Aho-

Corasick) algorithm which constructs a �nite automaton accepting the language V �
L. (For

both the old and the new algorithms, only deterministic �nite automata were used. The

time required for precomputation was not measured, but for both algorithms it appeared

to be negligible compared to the time required to process the input string.) In the cases
where m � 6 (the length of the shortest word in L is at least 6), and jL0j � 18, this new
algorithm outperforms the other algorithm. These conditions held on approximately 35%

of our user-entered regular expression patterns.

In the cases where the new algorithm outperformed the traditional one, the di�erences

in execution speed varied from a 5% improvement to a 150% improvement. In the cases

where the new algorithm was outperformed, its execution speed was never less than 30%

of the execution speed of the traditional algorithm.

The conditions for obtaining high performance from the new algorithm (m � 6 ^ jL0j �

18) can easily be determined from automaton M . In a grep style pattern matching tool,

the automaton M can be constructed for language LR. If the required conditions are met,
the Boyer-Moore type pattern matcher presented in this chapter is used. If the conditions
are not met, M can be reversed (so that it accepts language L), and converted to an
automaton accepting V �

L. The traditional algorithm can then be used.

5.7 Improving the algorithm

In this section, we briey consider two approaches to improving the expected performance
of the algorithm. In the �rst approach, we consider the use of a right lookahead symbol,

to improve the shift distance. In the second approach, we consider how the choice of a

particular FA can a�ect the shift distance.

The use of a right lookahead symbol was �rst discussed, in the context of the Commentz-
Walter algorithm, in Section 4.4.8. Had we retained a single symbol of right lookahead in
this chapter, we would have arrived at the weakening

(8 q : q 2 C : V �
 �
L (q)R(r�1)V n�1 \ V �

L 6= �)

in place of

(8 q : q 2 C : V �
 �
L (q)RV n \ V �

L 6= �)

in the derivation on page 123. The introduction of sets Lq and L
0 would remain unchanged,

yielding the weakening

(8 q : q 2 C : (9 w : w 2 Lq : V
�
w(r�1)V n�1 \ V �

L
0 6= �))

in place of the one on page 125. We could then use the same techniques as used in

Section 4.4.8 to introduce an auxiliary function and give a new shift distance which uses
this right lookahead symbol. This is left to the reader.



138 CHAPTER 5. A NEW RE PATTERN MATCHING ALGORITHM

b

a

c

d

b

e

d

0

2

5

6 4

3 1

b
3050

d

Figure 5.3: Improved automaton, equivalent to the one shown in Figure 5.1.

Another possible technique for improvement in the algorithm involves the following
observation: it follows from the de�nition of function t (De�nition 5.19) that smaller sets
Lq can lead to greater shift distances. Consider the �nite automaton used in the examples

| see Figure 5.1. In this automaton we will consider two states in particular: 3 and
5. We see that L3 = fda; db; cbg, L5 = fbda; bdb; dcb; ccbg, t(3) = 2, and t(5) = 2 (see

Examples 5.17 and 5.25). The relatively low shift distance for state 3 is due to the fact

that it is not possible to tell (without modifying the algorithm) from the state number (3)
whether the most recent in-transition was from state 1 or state 2.

If we were to split states 3 and 5, producing two new states 30 and 50, we would obtain
the FA shown in Figure 5.3. In this new automaton, we have the following changes:
L3 = fdag, L30 = fdb; cbg, L5 = fbdag, and L50 = fbdb; dcb; ccbg. Correspondingly, the

shift function is changed to t(3) = t(5) = 3 and t(30) = t(50) = 2. Using this alternative
automaton, when in state 3 or state 5, the resulting shift is 3 symbols instead of 2.

In order to take advantage of this type of improvement, it is necessary to use �nite
automata which distinguish as much as possible between di�erent strings in their left
languages (as in the way we split state 3 to distinguish between the two in-transitions

in the original automaton). The tradeo� is that the alternative automaton requires more

storage space. It would be interesting to know quantitatively what the tradeo�s are between
automaton size and shift distances.

5.8 Conclusions

We have achieved our aim of deriving an e�cient generalized Boyer-Moore type pattern

matching algorithm for regular languages. The stepwise derivation began with a simple,

intuitive �rst algorithm; a �nite automaton was introduced to make the implementation
practical. The idea of shift distances greater than one symbol (as in the Boyer-Moore
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and Commentz-Walter algorithms) was introduced. The use of predicate weakening was

instrumental in deriving a practical approximation to the ideal shift distance.

Using a structural property of �nite automata, the approximation was shown to be the

composition of several functions, all but two of which are easily computed. The remaining

two functions are the Commentz-Walter shift functions; an algorithm computing these
functions has previously been derived with correctness arguments in [WZ92, WZ95].

A Boyer-Moore algorithm was derived as a special case of our algorithm, showing our

algorithm to be a truly generalized pattern matching algorithm.
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Chapter 6

FA construction algorithms

In this chapter, we present a taxonomy of functions and algorithms (collectively called

constructions) which construct a �nite automaton from a regular expression. The taxonomy
presented here reuses some ideas of the earlier taxonomy given in [Wat93a]. The taxonomy

will be presented in a less rigorous fashion than the one in Chapter 4. We present a number
of de�nitions and theorems without full proofs; in those cases, the proofs are omitted for
brevity.

6.1 Introduction and related work

The �nite automaton construction problem is: given a regular expression E, construct

M 2 FA (or, in some cases, M 2 DFA) such that LRE (E) = LFA(M).

The central idea behind our taxonomy is as follows: we present a `canonical' con-
struction whose correctness is easily seen. The states in a canonically constructed FA have
internal structure, encoding information | namely the left language and the right language

of the state. In subsequent constructions, we may discard some of the information (per-
haps identifying states) or we may encode the states (for example, as regular expressions)

for greater e�ciency. Additionally, we can apply function rem" to remove "-transitions,

or the subset construction yielding a DFA. We use these techniques to arrive at all of the
well-known constructions.

In order to clearly present and derive the constructions, they are given as functions
(instead of as algorithms). Since most of the constructions given in the literature (especially

in text-books) are given as algorithms, we also select a few and present them again as

imperative programs in Section 6.9.

The main �nite automata constructions included in the taxonomy are:

� A variant of the Thompson construction as presented in [Thom68], appearing as Con-

struction 6.15. This construction, which is known in this dissertation as the `canoni-

cal' construction, produces a (possibly nondeterministic) �nite automaton (possibly
with "-transitions). It is based upon the concept of `items' which is borrowed from

LR parsing [Knut65].

141
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� The "-free item set construction, appearing as Construction 6.19. This construction

is the composition of "-transition removal with the canonical construction.

� The deterministic item set construction, given on page 156 (as Construction (rem-",

subset, use-s)) and as Algorithm 6.83. The construction produces a deterministic

�nite automaton and does not appear in the literature.

� An improvement of the item set construction. This construction (appearing on

page 158 (as Construction (rem-", subset, use-s, Wfilt)) and not appearing in

the literature) produces a deterministic �nite automaton, and is also based upon the

DFA item set construction. Furthermore, it is an improvement of DeRemer's con-
struction (mentioned below). A variant (given in Section 6.9) is also related to the

Aho-Sethi-Ullman deterministic �nite automaton construction.

� The DeRemer construction as presented in [DeRe74]. This construction (page 159

as Construction (rem-", subset, use-s, Xfilt)) produces a deterministic �nite
automaton. In this chapter, it is derived from the item set construction, although
DeRemer made use of LR parsing in his derivation.

� The Berry-Sethi construction as presented in [BS86, Glus61, MY60]. This construc-
tion appears as Construction 6.39. It is implicitly given by Glushkov [Glus61] and

McNaughton and Yamada [MY60], where it is used as the nondeterministic �nite

automaton construction underlying a deterministic �nite automaton construction.
Berry and Sethi explicitly present this algorithm in [BS86], where they relate it to

Brzozowski's DFA construction [Brzo64].

� The McNaughton-Yamada-Glushkov construction as presented in [MY60, Glus61].
This construction (Construction 6.44) produces a DFA.

� The dual of the Berry-Sethi construction. This construction (Construction 6.65) is
the `mirror image' of the Berry-Sethi construction. A variant of this construction
was also mentioned in passing by Aho, Sethi, and Ullman [ASU86, Example 3.22,

p. 140]; that variant appears in this chapter as Construction 6.68.

� The Aho-Sethi-Ullman construction as presented in [ASU86, Alg. 3.5, Fig. 3.44]. This
construction (Construction 6.69 and Algorithm 6.86) produces a deterministic �nite
automaton. It is, in a sense, the `mirror image' of a variant of the McNaughton-

Yamada-Glushkov construction.

� The Antimirov construction as presented in [Anti94, Anti95]. This construction

(Construction 6.55 in this dissertation) yields an "-free �nite automaton.

� The Brzozowski construction as presented in [Brzo64]. This construction (Construc-
tion 6.57) gives a deterministic �nite automaton.
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The resulting taxonomy graph is shown in Figure 6.1. This graph will be reproduced

in each of the following sections of this chapter, indicating the subpart of the taxonomy

considered in the section. Later in this section, we give a list of algorithm and problem

details introduced and used in this chapter.

Another taxonomy of constructions (also by the present author) was given in [Wat93a].
That taxonomy is structured around the idea of �-algebras, deriving a few constructions
that are not covered here. It is also much larger (textually) than the one presented in this

chapter.

This chapter is structured as follows:

� In Section 6.2, we introduce `items' and an alternative (tree-based) de�nition of
regular expressions.

� Section 6.3 presents the `canonical' �nite automata construction.

� Section 6.4 is the beginning of the presentation of the "-free constructions.

� In Section 6.5, we introduce a method of encoding the sets of items which are used
as states in Section 6.4.

� Section 6.6 introduces some constructions which use derivatives of regular expressions
for states, providing an encoding of the constructions of Section 6.4.

� Section 6.7 gives the duals of some of the constructions given in preceding sections.

� The constructions given in Sections 6.5 and 6.7 make use of auxiliary functions and
sets. In Section 6.8 we consider the precomputation of these functions and sets.

� Section 6.9 gives the imperative programs which implement some of the constructions.

� Section 6.10 contains the conclusions of this chapter.

The following is a list the algorithm and problem details with a short description of each:

rem-" (Algorithm detail 6.18) "-transition removal function rem" is composed

onto a construction.

use-s (Algorithm detail 6.21) Start-unreachable state removal function useful
s

is composed onto a construction.

subset (Algorithm detail 6.22) The subset construction is composed onto a con-

struction.

filt (Algorithm detail 6.25) A �lter is used to remove redundant items. Par-
ticular �lters are:

Wfilt (Algorithm detail 6.26) Function W is used as a �lter.
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Figure 6.1: A taxonomy of �nite automata construction algorithms. The larger graph

represents the main part of the taxonomy, while the smaller graph represents the two

instantiations of the filt detail that are discussed in this dissertation. The numbers
appearing at some of the vertices correspond to the algorithm or construction numbers in

the text of this chapter. In some cases, the algorithm is not presented explicitly, and the
page number is given instead. The use of duality is clearly shown by the symmetry in

the graph. The algorithms in the dashed-line subtree (on the right of the graph) are not
treated in this dissertation, since they are the duals of algorithms in the left half and it is

not clear that the duals would be more e�cient or enlightening.
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Xfilt (Algorithm detail 6.31) Function X is used as a �lter.

sym (Algorithm detail 6.33) States (sets of items) are encoded by elements of
SymnodesE.

a-s (Algorithm detail 6.38) Auxiliary sets FollowE;FirstE;LastE, and pred-

icate Null are used to encode the states and transitions.

b-mark (Algorithm detail 6.42) Certain constructions are greatly simpli�ed by

prepending a symbol (the `begin-marker', usually written $) to the in-

put regular expression E. In the dual constructions, an `end-marker' is
appended instead.

pd (Algorithm detail 6.54) Partial derivatives are used to encode the states

and transition relation in a construction.

rem-"-dual (Algorithm detail 6.62) The dual of the "-transition removal function is
composed onto a construction.

e-mark (Algorithm detail 6.67) As with detail b-mark, but an end-marker is

appended to the regular expression. This detail is used for the dual
constructions.

6.2 Items and an alternative de�nition of RE

This chapter relies upon the tree de�nitions given in Section 2.5. In order to present the
canonical construction, we need the ability to refer to a particular subexpression of an RE,
and the place where it occurs in the RE. For example, in (a [ a) 2 RE , we would like to
be able to distinguish between the two a subexpressions. To do this, we view an RE as

synonymous with its corresponding parse tree.

De�nition 6.1 (Regular expressions): De�ne the set of regular expressions over al-

phabet V as a set of trees. We take W = (V [ f�; ";[; �; �;+; ?g; r) as ranked alphabet

where symbols in the set V [ f�; "g are all nullary, f�;+; ?g are all unary, and f[; �g are

all binary. We can then de�ne the set of regular expressions RE to be the set Trees(W ).
2

Using this de�nition, we refer to the set of nodes of the parse tree of E 2 RE as dom(E),

and the operator at node e is E(e). The two a subexpressions above, in a [ a, would be
nodes 1 and 2 respectively.



146 CHAPTER 6. FA CONSTRUCTION ALGORITHMS

a

[

b"

�

�

1

1 2

2 1

Figure 6.2: Tree view of an example RE.

Functions on regular expressions, such as LRE , can by extended to work with the tree
versions of regular expressions. Given this equivalence, we will use the two views of regular
expressions interchangeably; which one is used at any given time will be clear from the

context.

Example 6.2 (Regular expression): We use the regular expression E = (a [ ") � (b�)
as our example. In the tree view, we have dom(E) = f0; 1; 2; 1 � 1; 1 � 2; 2 � 1g and

E = f(0; �); (1;[); (2; �); (1 � 1; a); (1 � 2; "); (2 � 1; b)g. This tree is shown in Figure 6.2. We
will use this regular expression in examples throughout this chapter. 2

Some of the following de�nitions are given with respect to a particular E 2 RE .

We will be considering regular expressions with a dot placed somewhere in the regular
expression. Such a regular expression, with the dot, is sometimes called an item or a dotted
regular expression. We now give some formal de�nitions relating to dottings.

De�nition 6.3 (Item): An item (or dotted regular expression) is a triple (E;n; p) where:

� E is the regular expression.

� n 2 dom(E), that is n is a node in the tree interpretation of regular expression E.

� p 2 fBEF ;AFTg is the position of the dot, either before or after the node n.

We use DRE to denote the set of all dotted regular expressions. We can also write an item

in a linear form, in which the dot (depicted as �, not to be confused with the bullet used
for typesetting lists) is embedded in the regular expression itself. This is shown in the

example which follows. 2

Example 6.4 (Item): Given our regular expression, (a[") � (b�), the following is an item:

((a [ ") � (b�); 1; AFT )

We could also write this item as ((a [ ")�) � (b�). The tree form of this item is shown in

Figure 6.3. 2
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1 2 1

Figure 6.3: Tree form of an item.

Sometimes we will need access to the regular expression underlying a particular item. The
following function gives such access.

De�nition 6.5 (Function undot): Function undot de�ned as undot(E;n; p) = E maps
an item to its underlying regular expression. 2

We will frequently be considering sets of dottings of a particular regular expression. In
this case, we can drop the �rst component of the dottings (the regular expression) in the
set, since they will all be over the same regular expression. This is simply a notational

convenience. We will freely alternate between the pair and triple form of items, choosing
the form that best suits the application. The following de�nition is the set of all dottings
of a particular regular expression.

De�nition 6.6 (Set DotsE): De�ne the set DotsE as the set of all items over E. That is,

DotsE = dom(E)� fBEF ;AFTg

Intuitively, DotsE is the set of all items D such that undot(D) = E. 2
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Example 6.7 (DotsE): Given our example regular expression, (a [ ") � (b�), we give the

set Dots(a[")�(b�) as (where we have fully parenthesized the regular expression)

(�((a) [ (")) � ((b)�))

((�(a) [ (")) � ((b)�))

(((�a) [ (")) � ((b)�))

(((a�) [ (")) � ((b)�))
(((a) [ (�")) � ((b)�))

(((a) [ ("�)) � ((b)�))
(((a) [ (")�) � ((b)�))

(((a) [ (")) � (�(b)�))

(((a) [ (")) � ((�b)�))

(((a) [ (")) � ((b�)�))

(((a) [ (")) � ((b)��))

(((a) [ (")) � ((b)�)�)

2

For every item, we can give a pair of regular expressions denoting (respectively) the lan-

guage to the left and to the right of the dot. The regular expressions are given by the

functions de�ned as follows.

De�nition 6.8 (Functions
 �
E and

�!
E ): We de�ne functions

 �
E ;
�!
E 2 DRE �! RE

giving the regular expressions denoting languages to the left and to the right of the dot

respectively. The de�nition of
�!
E is inductive on the structure of items (we take some

notational shortcuts in the de�nition), assuming that F;F0, and F1 are regular expressions:

�!
E (F; 0;BEF ) = F

�!
E (F; 0;AFT ) = "

�!
E (F0 [ F1; 1 � w; p) =

�!
E (F0; w; p)

�!
E (F0 [ F1; 2 � w; p) =

�!
E (F1; w; p)

�!
E (F0 � F1; 1 � w; p) =

�!
E (F0; w; p) � F1

�!
E (F0 � F1; 2 � w; p) =

�!
E (F1; w; p)

�!
E (F �

; 1 � w; p) =
�!
E (F;w; p) � F �

�!
E (F+

; 1 � w; p) =
�!
E (F;w; p) � F �

�!
E (F ?

; 1 � w; p) =
�!
E (F;w; p)

(It is important to note that the right sides in the lines above are regular expressions.)

Function
 �
E can be de�ned similarly | however, the de�nition is not needed explicitly in

this dissertation. 2
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Example 6.9 (
�!
E ): We present an example of only

�!
E (using the informal notation for

items):

�!
E ((a [ ") � �(b�))

= f
�!
E (D � E) rule g

�!
E ((a [ ")�) � (b�)

= f
�!
E (E�) rule g

" � (b�)

Note that the result is a regular expression. 2

De�nition 6.10 (Relation D): We de�ne a binary relation D on DotsE. Before de�ning

D, we de�ne a larger binary relation (called �D) on items. �D is the smallest relation such

that:

1. If F0; F1 2 RE , then (here we use in�x notation for relation �D):

�" �D "�

�(F0 � F1) �D (�F0) � F1

(F0�) � F1
�D F0 � (�F1)

F0 � (F1�) �D (F0 � F1)�
�(F0 [ F1) �D (�F0) [ F1

�(F0 [ F1) �D F0 [ (�F1)

(F0�) [ F1
�D (F0 [ F1)�

F0 [ (F1�) �D (F0 [ F1)�
�(F �

0 )
�D (�F0)

�

�(F �

0 ) �D (F �

0 )�

(F0�)
� �D (�F0)

�

(F0�)
� �D (F �

0 )�
�(F+

0 ) �D (�F0)
+

(F0�)
+ �D (�F0)

+

(F0�)
+ �D (F+

0 )�

�(F ?
0 )

�D (�F0)
?

�(F ?
0 )

�D (F ?
0 )�

(F0�)
? �D (F ?

0 )�

Note that the pair (��;��) does not appear in relation �D.

2. If F 2 RE and D0;D1 2 DRE such that (D0;D1) 2 �D, then:

(a) (F [ D0; F [ D1) 2 �D, (D0 [ F;D1 [ F ) 2 �D, (F � D0; F � D1) 2 �D, and
(D0 � F;D1 � F ) 2 �D.
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a

[

b"

�

�

1 2

1 12

Figure 6.4: The Symnodes appear as solid nodes in the tree.

(b) (D�

0;D
�

1) 2
�D, (D+

0 ;D
+
1 ) 2 �D, and (D?

0;D
?
1) 2

�D.

These are known as closure rules.

Note that (D0;D1) 2 �D ) undot(D0) = undot (D1). (That is, all dottings related by �D

have the same underlying regular expression.)

For E 2 RE , we de�ne D to be the subset of �D on dottings of E. More formally, de�ne

D = �D \ (DotsE �DotsE)

Since D depends upon E, we sometimes write DE. Note that, although �D is an in�nite
relation, DE is a �nite one since it is a binary relation on DotsE (which is a �nite set).

The relation D is called the dot movement relation. 2

We do not present an example of relationD since one is implicitly included in Example 6.17.

De�nition 6.11 (Set Symnodes): We de�ne the set

SymnodesE = f e j e 2 dom(E) ^ E(e) 2 V g

That is, SymnodesE is the set of all nodes in E having labels in V . 2

Example 6.12 (Symnodes): Given our example regular expression:

Symnodes(a[")�(b�) = f1 � 1; 2 � 1g

The set of symbol nodes are also shown as solid nodes in Figure 6.4. 2

De�nition 6.13 (Relation T ): For each a 2 V , we de�ne a binary relation on DotsE,

called T a de�ned as:

T a = f ((e;BEF ); (e;AFT)) j e 2 SymnodesE ^ E(e) = a g
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The T relations allow the dot to hop over symbol nodes in the tree E. All of the T a

can also be combined into a ternary relation T � DotsE � V �DotsE (note that we have

inserted the third component, V , as the middle component). Sometimes we write T E to

indicate that the relation T depends upon E. 2

Example 6.14 (T ): Given our example regular expression, (a [ ") � (b�), the relation T

can be expressed as the two relations T a containing the single pair

(((�a) [ ") � ((b)�); ((a�) [ ") � ((b)�))

and T b containing the single pair

(((a) [ ") � ((�b)�); ((a) [ ") � ((b�)�))

2

6.3 A canonical construction

In this section, we present a `canonical' �nite automata construction. The states of the
constructed �nite automaton will contain information | encoding the left and right lan-
guages of the states. In order to encode the information, each state will be an item |

the dot in the item denotes a language to the left and to the right of the dot. The dot
movement relation D will be used as the "-transition relation, while the relation T will be
used as the symbol transition relation.

Using relations D and T , we can give our canonical construction as follows.

Construction 6.15 (): We de�ne a canonical FA construction CA 2 RE �! FA as

CA(E) = (DotsE; V;T E;DE; f�Eg; fE�g)

This construction is symmetrical. 2

This construction is also called Construction () (the empty sequence of details) since it will

be used as the root of our taxonomy graph.

Remark 6.16: Notice that all states either have an in-transition on " or on a symbol in
V , but not both (and similarly with the out-transitions). 2

Example 6.17 (Construction CA): Given our example regular expression (a[ ") � (b�),
we refer back to Example 6.7 for set of states of CA((a [ ") � (b�)). The resulting FA is

shown in Figure 6.5. The states in the �gure are numbered as follows:
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"
"

"

a

"
"

" " b

"

"

"""
q0 q1

q4

q2 q3

q5

q6 q7 q8 q9 q10 q11

Figure 6.5: Automaton CA((a [ ") � (b�)).

q0 (�((a) [ (")) � ((b)�))
q1 ((�(a) [ (")) � ((b)�))

q2 (((�a) [ (")) � ((b)�))

q3 (((a�) [ (")) � ((b)�))

q4 (((a) [ (�")) � ((b)�))
q5 (((a) [ ("�)) � ((b)�))
q6 (((a) [ (")�) � ((b)�))
q7 (((a) [ (")) � (�(b)�))

q8 (((a) [ (")) � ((�b)�))

q9 (((a) [ (")) � ((b�)�))
q10 (((a) [ (")) � ((b)��))
q11 (((a) [ (")) � ((b)�)�)

2

In Example 6.17, we can see that states q0 and q11 are redundant | they can be merged
with states q1 and q10 respectively. Some other variants of Thompson's construction (see,
for example, [AU92, HU79, Wood87]) take this (or other) redundancy into account and are

able to produce smaller automata for some regular expressions.

The correctness of the canonical construction follows from the fact that
 �
L CA(E)(e) =

LRE (
 �
E (e)) and

�!
L CA(E)(e) = LRE (

�!
E (e)) (i.e. the left language of a particular state |

a dotting of E | is equal to the language left of the dot, and likewise for the right

languages). For example, consider the right language of state q9 of Example 6.17. By

inspecting the automaton, we see that
�!
L CA(E)(q9) = fbg

�. Considering the dottings (the
fact that q9 = ((a [ ") � (b�)�)), we obtain:

LRE (
�!
E ((a [ ") � (b�)�))

= f
�!
E rule for � g

LRE (
�!
E ((b�)�))

= f
�!
E rule for � g
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LRE (
�!
E (b�) � b�)

= f
�!
E rule for E� g

LRE (" � b
�)

= fde�nition of LRE g

fbg�

For the start state, we have
�!
L CA(E)(�E) = LRE (

�!
E (�E)) = LRE (E), as desired. The

left and right language information is encoded in the states of the �nite automaton as the

language to the left and the language to the right of the dot.

6.4 "-free constructions

In this section, we present the �rst of our "-free constructions. The part of the taxonomy

considered here is shown as the solid part in Figure 6.6. We can present the composition
rem"�CA (see Transformation 2.119 for the de�nition of rem") as a �rst "-free construction
(one which produces "-free automata). The following algorithm detail makes explicit the

fact that we will be using function rem" to produce such automata.

Algorithm detail 6.18 (rem-"): Composing function rem" onto a construction is algo-
rithm detail rem-". 2

Before presenting the composition, we note the following properties (which we will use
to give the new set of states) of (Q;V; T;G; S; F ) = CA(E):

� For state q 2 Q, G�(q) = D�(q) and so G�(S) = D�(�E).

� fG�(q) j Q � V � fqg \ T 6= � g = fD�(e;AFT ) j e 2 dom(E) ^ E(e) 2 V g =
fD�(e;AFT ) j e 2 SymnodesE g.

The intuition behind the second property is: the only states in CA(E) with a non-" in-

transition are dottings of E of the form (e;AFT ) where the label of node e is a symbol
in V (that is, e is an element of SymnodesE). (This follows from the de�nition of relation

T .) Assuming the de�nition of CA(E) and the context of the let clause of the de�nition of

rem" (page 29), we calculate the transition set (T 0 � P(Q)�V �P(Q)) of (rem" �CA)(E)
as follows:

T
0

= fde�nitions of CA(E) and rem" g

f (q; a;D�(r)) j (9 p : p 2 q : (p; a; r) 2 T ) g

= f change of bound variable: p = (e;BEF ) ^ r = (e;AFT ) ^ E(e) = a g

f (q; a;D�(e;AFT )) j (e;BEF ) 2 q ^ E(e) = a ^ a 2 V g

= fde�nition of SymnodesE; eliminate bound variable a g

f (q;E(e);D�(e;AFT )) j (e;BEF ) 2 q ^ e 2 SymnodesE g
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Figure 6.6: The constructions considered in Section 6.4 are shown as solid circles connected
by solid lines. The smaller of the two graphs represents the two instantiations of the filt

detail which are discussed in this section.
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We can now present the composite construction.

Construction 6.19 (rem-"): The composition is (rem" � CA)(E) =

let Q
0 = fD�(�E)g [ fD�(e;AFT ) j e 2 SymnodesE g

T
0 = f (q;E(e);D�(e;AFT )) j (e;BEF ) 2 q ^ e 2 SymnodesE g

F
0 = f f j f 2 Q0 ^ E� 2 f g

in

(Q0
; V; T

0
;�; fD�(�E)g; F 0)

end

An automaton constructed using this (composite) function has the following properties:

� It has a single start state.

� The single start state has no in-transitions.

� All in-transitions to a state are on the same symbol (in V ).

2

This construction is sometimes known as the (nondeterministic) item set construction.

Example 6.20 (Construction (rem-")): Recalling CA((a[") �(b�)) from Example 6.17,

we obtain the following states for automaton (rem" � CA)((a [ ") � (b
�)).

q
0

0

(�((a) [ (")) � ((b)�));
((�(a) [ (")) � ((b)�));

(((�a) [ (")) � ((b)�));

(((a) [ (�")) � ((b)�));
(((a) [ ("�)) � ((b)�));
(((a) [ (")�) � ((b)�));
(((a) [ (")) � (�(b)�));

(((a) [ (")) � ((�b)�));
(((a) [ (")) � ((b)��));
(((a) [ (")) � ((b)�)�)

q
0

1

(((a�) [ (")) � ((b)�));

(((a) [ (")�) � ((b)�));

(((a) [ (")) � (�(b)�));

(((a) [ (")) � ((�b)�));
(((a) [ (")) � ((b)��));

(((a) [ (")) � ((b)�)�)

q
0

2

(((a) [ (")) � ((b�)�));
(((a) [ (")) � ((�b)�));

(((a) [ (")) � ((b)��));
(((a) [ (")) � ((b)�)�)
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b

b

a

b

q
0

0

q
0

1

q
0

2

Figure 6.7: Automaton (rem" � CA)((a [ ") � (b
�))

The structure of each state is more easily understood if we consider the FA given in

Example 6.17. Note that (our new state) q00 is the set of all states (in Example 6.17) which
are reachable (by "-transitions) from q0 |namely the set fq0; q1; q2; q4; q5; q6; q7; q8; q10; q11g.

Similarly, q01 is the set of states reachable from q3 (that is, q
0

1 = fq3; q6; q7; q8; q10; q11g) and
q
0

2 is the set of states reachable from q9 (q
0

2 = fq9; q8; q10; q11g).

The resulting automaton is shown in Figure 6.7. 2

We could also present a start-reachability version of this construction. Such a construction
would make use of the following algorithm detail.

Algorithm detail 6.21 (use-s): Compose function useful
s
(Transformation 2.116) onto

a construction, to produce automata with only start-reachable states. 2

Using this detail would yield function useful
s
� rem" � CA to give Construction (rem-",

use-s). The example FA produced by this construction would be isomorphic to the one
produced in Example 6.20, since all states of the FA in that example are start-reachable.
(Note that it is possible for an automaton to have start-unreachable states. As an example,
consider the automaton corresponding to the regular expression � � a. This is left to the
reader.)

Alternatively, we could apply the subset construction as well as start-reachability. The
use of the subset construction is given by the following detail.

Algorithm detail 6.22 (subset): Compose the subset construction (function subset |

Transformation 2.121) onto a construction, to produce a DFA. 2

This would yield composite function useful
s
� subset � rem" � CA and give Construction

(rem-", subset, use-s). This last construction is known as the `(deterministic) item set
construction'.

Example 6.23 (Construction (rem-", subset, use-s)): Recall the FA produced in
Example 6.20. That FA also happens to be a DFA. The composition of useful

s
� subset �

rem" �CA produces a similar DFA, with a sink state. We do not give the state set here in

detail. The resulting DFA is shown in Figure 6.8. 2
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b

b

a

a; ba

a

q0

q1

q2

q3

b

Figure 6.8: Automaton (useful
s
� subset � rem" � CA)((a [ ") � (b

�)).

6.4.1 Filters

In Construction 6.19, states are sets of items (of the regular expression E). Given state

q, when the successor states to q are being constructed, the only information in q that is
used are those items (e;BEF ) 2 q where e 2 SymnodesE. This follows from the de�nition
of transition function T 0 in the let clause of that construction. In other words, for any two
states p and q such that p \ (SymnodesE �fBEFg) = q \ (SymnodesE �fBEFg), p and q

will have the same out-transitions.

The information that is used to determine if q is a �nal state is the predicate E� 2 q.
So, if the above condition holds on p and q, and E� 2 p � E� 2 q, then the two states
will be indistinguishable | that is, their right languages will be the same, and the we can

use this information to identify the two states. We can therefore use a �lter to remove
redundant information from the item sets p and q, allowing them to be identi�ed. We can

now de�ne such a �lter.

De�nition 6.24 (Item set �lter W): Given the above discussion, we de�ne the �lter
function W on sets of items

W(u) = u \ ((SymnodesE � fBEFg) [ fE�g)

This �lter was called Y when it was �rst introduced in [Wat93a]. 2

We will show later that there are other possible �lters. The use of a �lter is known as

algorithm detail filt.

Algorithm detail 6.25 (filt): Usage of an item set �lter, such as W. 2

This detail is used to indicate that a �lter is used. We will also de�ne an algorithm detail

for each of the actual �lters; the sequence of details describing a construction will contain
the name of the actual �lter used in place of detail filt. The use of our �rst �lter is given

by the following algorithm detail.

Algorithm detail 6.26 (Wfilt): Usage of �lter W is detail Wfilt. 2
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a; b

b

q0 q1

Figure 6.9: FA produced by Construction (rem-", Wfilt)

This results in the following construction:

Construction 6.27 (rem-", Wfilt): The construction using the �lter is:

let Q
0 = fW(D�(�E))g [ fW(D�(e;AFT )) j e 2 SymnodesE g

T
0 = f (q;E(e);W(D�(e;AFT ))) j (e;BEF ) 2 q ^ e 2 SymnodesE g

F
0 = f f j f 2 Q0 ^ E� 2 f g

in

(Q0
; V; T

0
;�; fW(D�(�E))g; F 0)

end

2

The following example shows the type of improvement that �lter W can make.

Example 6.28 (Construction (rem-", Wfilt)): To show the operation of �lterW, we
recall the set of states from Example 6.20. We obtain the following �ltered states (where

the state numbers are taken from Example 6.20):

W(q00) = f(((�a) [ (")) � ((b)�)); (((a) [ (")) � ((�b)�)); (((a) [ (")) � ((b)�)�)g
W(q01) = f(((a) [ (")) � ((�b)�)); (((a) [ (")) � ((b)�)�)g

W(q02) = f(((a) [ (")) � ((�b)�)); (((a) [ (")) � ((b)�)�)g

From this, we can see that states q01 and q
0

2 are identi�ed under Construction (rem-",

Wfilt), becoming state q1 in the two state FA (which is also a DFA) shown in Figure 6.9.
2

Filters are also interesting (as the following example shows) in the case where the subset

construction is used. An example of this will be given in Section 6.9, where we present an

imperative program implementing Construction (rem-", subset, use-s, Wfilt). That
construction was presented as [Wat93a, Constr. 5.82].

Example 6.29 (Construction (rem-", subset, use-s, Wfilt)): Construction (rem-
", subset, use-s, Wfilt) produces a DFA which is identical to the one given in Exam-
ple 6.28, with the addition of a sink state. The resulting DFA is shown in Figure 6.10.

2
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b

a; b

a

q0 q1

q2
a; b

Figure 6.10: DFA produced by Construction (rem-", subset, use-s,Wfilt).

Discarding more information than W already discards can be dangerous, since states

could then be identi�ed which should not be identi�ed. Of course, we could also devise

�lters which discard less information than W. Such a �lter would be called a safe �lter.
One particular safe �lter is of historical interest.

De�nition 6.30 (DeRemer's �lter): Filter X removes (�lters out) the following types

of items: any item containing a subexpression of the form �(E [ F ), �(E�), or (E�)�.
Clearly, this �lter discards less than the ideal �lter W. 2

The use of this �lter is given by the following algorithm detail.

Algorithm detail 6.31 (Xfilt): Usage of �lter X . 2

Use of this �lter would yield Construction (rem-", subset, use-s, Xfilt). This construc-
tion was originally given by DeRemer in [DeRe74], where an LR parsing algorithm was
modi�ed for (compiler) lexical analysis. DeRemer attributes the de�nition of X to Earley

[Earl70]. Although this construction has been largely ignored in the literature, it was the
motivation for deriving the W �lter and eventually the entire taxonomy presented in this
chapter. An example of the use of this construction follows.

Example 6.32 (Construction (rem-", subset, use-s, Xfilt)): The DFA resulting

from this construction is isomorphic to the one given in Example 6.23. This example
shows that �lterW is frequently more e�ective (and never less e�ective) than �lter X . See

Chapter 14 for data on the e�ectiveness of the two �lters in practice. 2

6.5 Encoding Construction (rem-")

While the use of �lters can make the constructions more e�cient in practice, they still

produce automata whose states are sets of items. In this section, we explore even more

compact representations of the states of the automata. The solid part of the graph in
Figure 6.11 indicates the subpart of the taxonomy which is discussed in this section.
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Figure 6.11: The constructions considered in Section 6.5 are shown as solid circles con-
nected by solid lines.
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We proceed by trying to characterize the set of states in Construction 6.19. Obviously,

we can characterize each element of the set

fD�(e;AFT ) j e 2 SymnodesE g

by an element in SymnodesE.

To characterize the remaining state D�(�E) in Construction 6.19, we introduce a new
state s in the let clause. We now turn to encoding the set of �nal states. In the unencoded

construction, a state (item set) f is �nal if and only if E� 2 f . For an encoded state

e 2 SymnodesE, this is equivalent to E� 2 D
�(e;AFT ). The remaining state (D�(�E) in

the unencoded construction) is �nal if and only if E� 2 D�(�E).

In providing an encoded version of the transition function, we take advantage of the

fact that the single start state in Construction 6.19 never has an in-transition. We divide

the de�nition of the transition function into two pieces. The out-transitions from the start

state (a new state s, encoding the original start state D�(�E)) are

f (s;E(e); e) j (e;BEF ) 2 D�(�E) ^ e 2 SymnodesE g

while the remaining transitions are

f (f;E(e); e) j (e;BEF ) 2 D�(f;AFT ) ^ e 2 SymnodesE ^ f 2 SymnodesE g

The encoding of some of the states by elements of SymnodesE constitutes the following
algorithm detail.

Algorithm detail 6.33 (sym): States are encoded by elements of SymnodesE. 2

Remark 6.34: This encoding is similar to the LR parsing technique of encoding sets of
items by the kernel items [Knut65]. The closure operation can then be used to recover the
set from the kernel items. 2

Construction 6.35 (rem-", sym): Assuming E 2 RE , the encoded automaton construc-

tion is:

let s be a new state

in

let Q = fsg [ SymnodesE
T = f (s;E(e); e) j (e;BEF ) 2 D�(�E) ^ e 2 SymnodesE g

[ f (f;E(e); e) j (e;BEF ) 2 D�(f;AFT ) ^ e; f 2 SymnodesE g

F = f e j E� 2 D�(e;AFT ) ^ e 2 SymnodesE g

[ if E� 2 D�(�E) then fsg else � �

in

(Q;V; T;�; fsg; F )

end

end

For any given E 2 RE , the FA produced by the above construction is isomorphic to the
one produced by Construction 6.19. 2
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When elements of SymnodesE are used as states, they are frequently called `positions'

in the literature [ASU86, BS86, B-K93a, Chan92, CP92, tEvG93, MY60]. They can be

encoded as integers, with a single traversal of the tree E being used to assign the integers

to each node labeled by an element of V . Such an encoding is discussed in Chapter 10.

The above construction can still be made more e�cient through the introduction of
some auxiliary sets.

De�nition 6.36 (Sets Follow ;First;Last): Given E 2 RE , relation FollowE is a binary

relation on SymnodesE:

FollowE = f (e; f) j ((e;AFT ); (f;BEF )) 2 D� ^ e; f 2 SymnodesE g

Sets FirstE;LastE � SymnodesE are de�ned as:

FirstE = f e j (e;BEF ) 2 D�(�E) ^ e 2 SymnodesE g

and

LastE = f e j E� 2 D�(e;AFT ) ^ e 2 SymnodesE g

Note that Follow ;First, and Last can also be viewed as functions with domain RE since

they depend upon the regular expression E. 2

In Section 6.8, we will present examples of these sets and methods for computing them.

In addition to making use of the auxiliary sets, we will also use the fact that E� 2
D�(�E) � " 2 LRE (E). For brevity, we de�ne a predicate on regular expressions.

De�nition 6.37 (Predicate Null ): For E 2 RE , we de�ne Null (E) � " 2 LRE (E). 2

Algorithm detail 6.38 (a-s): The use of auxiliary sets FollowE;FirstE;LastE, and
predicate Null constitute algorithm detail a-s. 2

Construction 6.39 (rem-", sym, a-s): Assuming E 2 RE , we use the auxiliary sets to
produce the FA:

let s be a new state
in

let Q = fsg [ SymnodesE
T = f (s;E(e); e) j e 2 FirstE g

[ f (q;E(e); e) j e 2 FollowE(q) ^ q 2 SymnodesE g

F = LastE [ if Null (E) then fsg else � �

in

(Q;V; T;�; fsg; F )
end

end

This construction is the Berry-Sethi construction [BS86]. An alternative derivation of this
construction is given in the original taxonomy as [Wat93a, Constr. 4.32]. 2



6.5. ENCODING CONSTRUCTION (REM-") 163

b

b

a

q0

q1

q2

b

Figure 6.12: FA produced by Construction (rem-", sym, a-s).

The following is a short history of the algorithm.

Remark 6.40: The history of this algorithm is somewhat complicated. The following ac-

count is given by Br�uggemann-Klein [B-K93b]. Glushkov and McNaughton and Yamada si-
multaneously (and independently) discovered the same DFA construction [Glus61, MY60].
Those papers used the same underlying FA construction to which they apply the subset
construction1. Unfortunately, neither of them present the construction without the sub-
set construction explicitly. The underlying FA construction was presented in some depth
(with correctness arguments) by Berry and Sethi in [BS86, Alg. 4.4]. In their paper, Berry

and Sethi also relate the construction to the Brzozowski construction. In this chapter,
we adopt the convention that the FA construction (without subset construction) is named
after Berry and Sethi, while the construction with the subset construction is named after

McNaughton, Yamada, and Glushkov. 2

Example 6.41 (Construction (rem-", sym, a-s)): The computation of the auxiliary

sets is not discussed here | see Section 6.8. The resulting FA is shown in Figure 6.12.
We briey mention the state set: start state s is represented in the �gure by q0, 1 � 1 is
represented by q1, and 2�1 by q2. Note that the FA is always isomorphic to the one given in

Figure 6.7 from Example 6.20 since we have only given an encoding of Construction 6.19.
2

We could also have presented an algorithm implementing function useful
s
composed with

the above construction. The algorithm would be Construction (rem-", sym, a-s, use-s).

In Section 6.8, we will discuss how to compute the auxiliary sets given in De�nition 6.36.

In the following section, we consider another coding trick that proves to be particularly
useful in the preceding construction.

6.5.1 Using begin-markers

In this section, we examine a method of making Construction 6.39 more e�cient. One
place to improve the e�ciency of an implementation of the construction, is to treat state

1The underlying construction may actually produce a nondeterministic �nite automata.
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s (the start state) the same as the other states. As the construction is now written, s

is treated in special cases of the de�nitions of the transition function and the set of �nal

states.

Fortunately, we can achieve this goal by concatenating a single symbol to the left of

regular expression E. For example, we concatenate the symbol $ to give a new regular
expression $ �E. In this case, node 1 is the $ node, while any node q in E is now refered to
as 2 � q (this is known as pushing down the node q). Indeed, this gives us an encoding of

all of the states in Construction 6.39. Any state q (where q 2 fsg [ SymnodesE, the state

set of that construction) is encoded as an element of Symnodes$�E by

if q = s then 1 else 2 � q �

In our encoded construction, we can now simply use the state set Symnodes$�E. We also

need to provide encoded versions of the transition relation, and the �nal state set. In some

of the following paragraphs, we refer to the context of the inner let clause of Construc-
tion 6.39.

First, we consider the part of the transition relation that relates to state s:

f (s;E(e); e) j e 2 FirstE g

Under the new encoding, we note that s (which will be encoded as 1) will have transitions
to the encoded states 2 � FirstE. Furthermore, we note that 2 � FirstE = Follow $�E(1).

(This is easily seen by the inductive de�nitions presented in Section 6.8.) We obtain the
following to the encoded part of the transition relation for start state s:

f (1; ($ � E)(e); e) j e 2 Follow $�E(1) g

The other part of the transition relation remains almost the same as before:

f (f; ($ � E)(e); e) j e 2 Follow $�E(f) g

which is identical for the part of the relation involving the start state. We can therefore use
the single expression above for the entire transition relation. We can also give an encoded
version of the set of �nal states:

(2 � LastE) [ if Null (E) then f1g else � �

Since 2 � LastE = Last$�E n f1g (from the de�nition of Last) and Null (E) � 1 2 Last$�E,

we can rewrite the above expression as

Last$�E n f1g [ if 1 2 Last$�E then f1g else � �

Some simpli�cation yields Last$�E.

The use of this encoding is given in the following algorithm detail:

Algorithm detail 6.42 (b-mark): By prepending a symbol ($ in our case) to the regular

expression E, and using the above encoding, we improve Construction 6.39. 2
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Note that (contrary to popular belief) it does not matter which particular symbol is chosen

for the begin-marker. It is common to choose a special symbol so that it is obviously (to

the reader) a begin-marker.

This gives us the following construction:

Construction 6.43 (rem-", sym, a-s, b-mark): Assuming E 2 RE , construct an FA

as follows:

let Q = Symnodes$�E
T = f (f; ($ � E)(e); e) j e 2 Follow$�E(f) g

F = Last$�E
in

(Q;V; T;�; f1g; F )
end

The use of a begin-marker is a rather well-known encoding trick. This particular algorithm

appears in the literature as [Wat93a, Constr. 4.38]. 2

Since this construction produces FAs which are isomorphic to those produced by Construc-
tion (rem-", sym, a-s), we do not give an example here. We will see in Section 6.9 how

the use of a begin-marker can greatly simplify a construction implementation.

6.5.2 Composing the subset construction

We can also compose function useful
s
� subset with the two main constructions of this

section, Constructions (rem-", sym, a-s) and (rem-", sym, a-s, b-mark). One of the
major constructions is the McNaughton-Yamada-Glushkov construction.

Construction 6.44 (McNaughton-Yamada-Glushkov): Construction (rem-", sym,
a-s, subset, use-s) is the McNaughton-Yamada-Glushkov construction. McNaughton
and Yamada originally presented the algorithm in [MY60] while Glushkov independently

derives the algorithm in [Glus61]. See Remark 6.40 for a brief history of this construction.
2

An imperative algorithm implementing this construction is given in Algorithm 6.84. We

present a brief example of an automaton produced by the construction.

Example 6.45 (McNaughton-Yamada-Glushkov): The DFA (with sink state) pro-

duced for regular expression (a[") � (b�) is shown in Figure 6.13. Note that it is isomorphic

to the one shown in Figure 6.8 from Example 6.23. 2

The other resulting construction is (rem-", sym, a-s, b-mark, subset, use-s), which

does not appear in the literature. It is, however, the dual of the Aho-Sethi-Ullman con-

struction (which appears as Construction 6.69 in this chapter). An algorithm implementing

it appears as Algorithm 6.85, where it is shown to be more elegant and concise than the
McNaughton-Yamada-Glushkov construction. An example DFA produced by this con-

struction would be isomorphic to the one given in the preceding example.
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b

b

a

a; ba

a

q0

q1

q2

q3

b

Figure 6.13: DFA produced by the McNaughton-Yamada-Glushkov construction.

6.6 An encoding using derivatives

In this section, we consider an alternative encoding of Construction (rem-") in which

the states are regular expressions. The solid part of the graph in Figure 6.14 indicates
the subpart of the taxonomy which is discussed in this section. For brevity, the new
constructions presented in this section will be derived in a relatively informal manner.

Recall that we used the following state set in Construction (rem-")

Q
0 = fD�(�E)g [ fD�(e;AFT ) j e 2 SymnodesE g

In Section 6.5, we elected to use the set SymnodesE to encode the set appearing as the

second operand of the [ operator above. That left us with the problem of encoding the
remaining state. In this section, we encode each state q by the (unique) item d such that
q = D�(d). The above state set would be encoded as:

f�Eg [ f (e;AFT ) j e 2 SymnodesE g

(Note that the item �E could also have been written as (E; 0;BEF ). We will freely mix
the two item notations, choosing the most appropriate one for a given application.) Given
this, we can provide the following (encoded) version of Construction (rem-").

Construction 6.46 (Encoding (rem-")): Assuming regular expression E, the following

automaton accepts LRE (E):

let Q = f�Eg [ f (e;AFT ) j e 2 SymnodesE g
T = f (q;E(e); (e;AFT)) j (e;BEF ) 2 D�(q) ^ e 2 SymnodesE g
F = f f j f 2 Q ^ E� 2 D�(f) g

in

(Q;V; T;�; f�Eg; F )

end

2
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Figure 6.14: The constructions considered in Section 6.6 are shown as solid circles con-
nected by solid lines.
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Example 6.47 (Alternative encoding of states): Given our example regular expres-

sion, (a [ ") � b�, the three states are Q = f�((a [ ") � b�); (a � [") � b�; (a [ ") � (b�)�g. The

automaton is isomorphic to the one given in Example 6.20. 2

We will now consider a further encoding of the set of states: using function
�!
E to map

each state (item) to a regular expression. In order to facilitate this, we write the transitions

using the signature T 2 Q� V �! P(Q) instead of T as a relation over Q � V � Q. T

can be rewritten, using this new signature, as:

T (q; a) = f (e;AFT ) j (e;BEF ) 2 D�(q) ^ E(e) = a g

Note that we also have the property T (q; a) = T a(D
�(q)). The change of representation

(to regular expressions for states) will be easier with a de�nition of the transition function

which is inductive on the structure of items. The following de�nition provides such an

inductive transition function.

De�nition 6.48 (Transition function t): De�ne transition function t 2 DRE � V �!
P(DRE) such that t(d; a) = T a(D

�(d)). The de�nition (which is given without proof) is
by induction on the structure of DREs (assuming E;E0; E1 2 RE and a 2 V ):

t((E; 0;AFT ); a) = �

t(("; 0;BEF ); a) = �

t((�; 0;BEF ); a) = �

t((b; 0;BEF ); a) = if a = b then f(b; 0;AFT )g else � �

t((E0 [ E1; 0;BEF ); a) = f (E0 [ E1; 1 � v; p) j (E0; v; p) 2 t((E0; 0;BEF ); a) g

[ f (E0 [ E1; 2 � v; p) j (E1; v; p) 2 t((E1; 0;BEF ); a) g

t((E0 � E1; 0;BEF ); a) = f (E0 � E1; 1 � v; p) j (E0; v; p) 2 t((E0; 0;BEF ); a) g

[

if (E0; 0;AFT ) 2 D�(E0; 0;BEF )

then f (E0 � E1; 2 � v; p) j (E1; v; p) 2 t((E1; 0;BEF ); a) g
else �

�

t((E�
; 0;BEF ); a) = f (E�

; 1 � v; p) j (E; v; p) 2 t(E; 0;BEF ) g

t((E+
; 0;BEF ); a) = f (E+

; 1 � v; p) j (E; v; p) 2 t(E; 0;BEF ) g

t((E?
; 0;BEF ); a) = f (E?

; 1 � v; p) j (E; v; p) 2 t(E; 0;BEF ) g

t((E0 [ E1; 1 � w; p); a) = f (E0 [ E1; 1 � v; p
0) j (E0; v; p

0) 2 t((E0; w; p); a) g

t((E0 [ E1; 2 � w; p); a) = f (E0 [ E1; 2 � v; p
0) j (E1; v; p

0) 2 t((E1; w; p); a) g
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t((E0 � E1; 1 � w; p); a) = f (E0 � E1; 1 � v; p
0) j (E0; v; p

0) 2 t((E0; w; p); a) g

[

if (E0; 0;AFT ) 2 D�(E0; w; p)

then f (E0 � E1; 2 � v; p
0) j (E1; v; p

0) 2 t((E1; 0;BEF ); a) g
else �

�

t((E0 � E1; 2 � w; p); a) = f (E0 � E1; 2 � v; p
0) j (E1; v; p

0) 2 t((E1; w; p); a) g

t((E�
; 1 � w; p); a) = f (E�

; 1 � v; p0) j (E; v; p0) 2 t((E;w; p); a) g

[

if (E; 0;AFT ) 2 D�(E;w; p)
then f (E�

; 1 � v; p0) j (E; v; p0) 2 t((E; 0;BEF ); a) g

else �

�

t((E+
; 1 � w; p); a) = f (E+

; 1 � v; p0) j (E; v; p0) 2 t((E;w; p); a) g

[

if (E; 0;AFT ) 2 D�(E;w; p)

then f (E+
; 1 � v; p0) j (E; v; p0) 2 t((E; 0;BEF ); a) g

else �

�

t((E?
; 1 � w; p); a) = f (E?

; 1 � v; p0) j (E; v; p0) 2 t((E;w; p); a) g

Note that the transition relation induced by t is in�nite. In our construction, we would

only use that portion of t which applies to DotsE � V (for our regular expression E). 2

Using the function t, we can de�ne the following construction:

let Q = f�Eg [ f (e;AFT ) j e 2 SymnodesE g
T (q; a) = t(q; a)
F = f f j f 2 Q ^ E� 2 D�(f) g

in

(Q;V; T;�; f�Eg; F )
end

Example 6.49 (Function t): As an example of the use of function t, consider the out-

transitions from (encoded) state �((a [ ") � b�). Some lengthy calculations show that

t(�((a [ ") � b�); a) = f((a�) [ ") � b�g
t(�((a [ ") � b�); b) = f(a [ ") � (b�)�g

t(((a�) [ ") � b�; a) = t((a [ ") � (b�)�; a)

= �

t(((a�) [ ") � b�; b) = t((a [ ") � (b�)�; b)
= f(a [ ") � (b�)�g

2
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As our next encoding step, we represent each of the states (in the previous construction)

q by the regular expression
�!
E (q). This may identify two states since it is possible that

q0 6= q1 while
�!
E (q0) =

�!
E (q1). Fortunately, since the regular expression

�!
E (q) denotes

the right language of state q, only states with the same right language will be identi�ed.

(This is one of the cases in which identifying states is safe | it does not alter the language

accepted by the automaton.) This encoding can therefore be considered an optimization

to the previous construction.

Encoding the transitions of Construction 6.46 yields

f (
�!
E (q0); a;

�!
E (q1)) j (q0; a; q1) 2 T g

In this new automaton, the states will be elements of RE . In a manner analogous

to our use of the general (in�nite) transition function t, we de�ne a general transition
function (which also induces an in�nite relation) on RE . The new transition function,

t
0 2
�!
E (DRE )� V �! P(

�!
E (DRE)) (where

�!
E (DRE) is the image of DRE under

�!
E ), is

de�ned as follows (in terms of function t):

t

0(
�!
E (d); a) =

�!
E (t(d; a))

We do this for all of the lines in the inductive de�nition of t (De�nition 6.48). For example,

consider the line for items of the form (E0 � E1; 0;BEF ). We obtain the following line in

the de�nition of t0(
�!
E (E0 � E1; 0;BEF ); a) =

�!
E (f (E0 � E1; 1 � v; p) j (E0; v; p) 2 t((E0; 0;BEF ); a) g)

[

if (E0; 0;AFT ) 2 D�(E0; 0;BEF )

then
�!
E (f (E0 � E1; 2 � v; p) j (E1; v; p) 2 t((E1; 0;BEF ); a) g)

else �

�

Recall (from page 162) that (E0; 0;AFT ) 2 D�(E0; 0;BEF ) � " 2 LRE (E0) � Null (E0).

Using this equivalence, and moving
�!
E into the sets, yields

f
�!
E (E0 � E1; 1 � v; p) j (E0; v; p) 2 t((E0; 0;BEF ); a) g

[

if Null (E0)

then f
�!
E (E0 � E1; 2 � v; p) j (E1; v; p) 2 t((E1; 0;BEF ); a) g

else �

�
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Rewriting the sets (using the de�nition of
�!
E ) gives

f
�!
E (E0; v; p) � E1 j (E0; v; p) 2 t((E0; 0;BEF ); a) g

[

if Null (E0)

then f
�!
E (E1; v; p) j (E1; v; p) 2 t((E1; 0;BEF ); a) g

else �

�

Using the de�nition of t gives

�!
E (t((E0; 0;BEF ); a)) � E1

[

if Null (E0)

then
�!
E (t((E1; 0;BEF ); a))

else �

�

The above derivation can then be simpli�ed (using the de�nition of t0) to

t

0(E0 � E1; a) = t

0(E0; a) � E1 [ if Null (E0) then t
0(E1; a) else � �

Had we considered all of the other lines in the de�nition of t, we would see that a number of

them are redundant when rewritten for the de�nition of t0 (they are subsumed by the some
of the other lines). This rewriting process is not given in full here; instead, we immediately
present the de�nition of a function which satis�es the requirement on t

0 (though it has a

slightly larger signature).

De�nition 6.50 (Function @): We de�ne function @ 2 RE � V �! P(RE). (For
historical reasons, we write @a(E) instead of @(E; a); this is intended to signify that @a(E)
is the partial derivative of E with respect to a.) The de�nition is by structural induction
on regular expressions:

@a(�) = �

@a(") = �

@a(b) = if a = b then f"g else � � (b 2 V )

@a(E0 [ E1) = @a(E0) [ @a(E1)

@a(E0 � E1) = @a(E0) �E1 [ if Null (E0) then @a(E1) else � �

@a(E
�) = @a(E) � E

�

@a(E
+) = @a(E) � E

�

@a(E
?) = @a(E)

This function contains t0 (when viewed as a transition relation), though the signature is

slightly larger since
�!
E (DRE) � RE . 2

The de�nition given here corresponds exactly to the one given by Antimirov in [Anti94,

Anti95], though his de�nitions are derived in a more language-theoretic manner.
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De�nition 6.51 (Partial derivatives): For regular expression E, we de�ne PDE to be

the image of

f�Eg [ f (e;AFT ) j e 2 SymnodesE g

under function
�!
E . That is (following the de�nition of

�!
E )

PDE = fEg [
�!
E (f (e;AFT ) j e 2 SymnodesE g)

Elements of the set PDE are the partial derivatives of E. 2

Example 6.52 (Partial derivatives): For our example regular expression, (a [ ") � b�,
we have

PD(a[")�b� = f(a [ ") � b
�
; " � b�g

2

Remark 6.53: Our de�nition of partial derivatives corresponds very closely to the one
given by Antimirov in [Anti94, Anti95]. There is, however, one di�erence: start-reachability

is built into Antimirov's de�nition. For example, given regular expression � �a, Antimirov's

de�nition would yield the singleton set f��ag for the partial derivatives, while our de�nition
is PD��a = f� � a; "g. 2

The use of partial derivatives is given by the following algorithm detail:

Algorithm detail 6.54 (pd): Partial derivatives (and transition function @) are used to

encode the automaton in Construction 6.46. 2

Encoding the �nal states of Construction 6.46 is easily done by noticing that E� 2 D�(f) �

" 2 LRE (
�!
E (f)) � Null (

�!
E (f)).

Armed with this, we are �nally in a position to give Antimirov's construction [Anti94,
Anti95].

Construction 6.55 (rem-", pd): Given E 2 RE , we construct automaton

let T (E0
; a) = @a(E

0)

F = f f j f 2 PDE ^ Null (f) g
in

(PDE; V; T;�; fEg; F )

end

2

Antimirov's papers contain much more information on the correctness of this construction
as well as some examples in which the construction produces automata that are much

smaller than those produced by Construction (rem-"). Antimirov derives this construction
in a much more language theoretic way.
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a; b

b

q0 q1

Figure 6.15: FA produced by Antimirov's construction.

b

a; b

a

q0 q1

q2
a; b

Figure 6.16: FA produced by Brzozowski's construction.

Example 6.56 (Antimirov's construction): Using our example expression, (a[ ") � b�,

yields the FA shown in Figure 6.15. The state set is PD(a[")�b�, which we encode as
q0 = (a[ ") � b� and q1 = " � b� in the �gure. Interestingly, this FA is isomorphic to the one
in Example 6.28. 2

We can compose the subset construction (with start-unreachable state removal) to

Antimirov's construction. This yields Construction (rem-", pd, subset, use-s) | a
variant of Brzozowski's construction.

Construction 6.57 (rem-", pd, subset, use-s): The composition of useful
s
� subset

onto Antimirov's construction is a variant of Brzozowski's construction. It is not presented

explicitly here. 2

This corresponds almost exactly to Brzozowski's construction, as presented in [Brzo64].
In the original version, no sink state is constructed. Although we have derived it from

Antimirov's relatively new construction, it was in fact one of the �rst DFA constructions

to be developed, in the 1960s. In [Anti94], Antimirov also derives Brzozowski's construction

in this manner.

Example 6.58 (Brzozowski's construction): Using our example expression, (a[") �b�,

yields the FA shown in Figure 6.16. In the original version, no sink state would have been

constructed. This DFA is isomorphic to the one in Example 6.29. 2
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In our version of Brzozowski's construction, we have states which are elements of

P(PDE) and a transition function T
0 2 P(PDE)� V �! P(PDE) de�ned as

T

0(p; a) = ([ p

0 : p0 2 p : @a(p
0))

A possible further encoding of the resulting DFA is to represent each state2 fE0; : : : ; Ekg

(where each Ek is a partial derivative of E) by a single regular expression E0 [ � � � [ Ek.

Unfortunately, this representation is not unique | we could have chosen a di�erent order
to arrange the elements of the set of partial derivatives. In our variant of Brzozowski's

construction, the associativity, commutativity and idempotence laws of set union would

have allowed us to recognize that fE0; E1g, fE1; E0g and fE0; E1; E0g are the same state.

In the new representation, we would have the states (each of which is a regular expression)

E0 [ E1, E1 [ E0, and E0 [ E1 [ E0, which would are all syntactically di�erent.

In order to recognize these regular expressions as denoting the same state, we de�ne

the following equivalence relation on states.

De�nition 6.59 (Similarity): Two regular expressions, E and F , are similar (written
E � F ) if one can be transformed into the other using the rules E0 [ (E1 [ E2) � (E0 [
E1)[E2 (associativity), E0[E1 � E1[E0 (commutativity), and E0[E0 � E0. Note that
� is an equivalence relation. 2

The states are now elements of [RE ]�. Using similarity, the transition function would be

de�ned as

T ([F ]�; a) = [da(F )]�

where da(F ) is the (full, as opposed to partial) derivative of F with respect to a, as de�ned

below.

De�nition 6.60 (Full derivatives): We de�ne function d 2 RE � V �! RE . (For
historical reasons, we write da(E) instead of d(E; a).) The de�nition is by structural
induction on regular expressions:

da(�) = �

da(") = �

da(b) = if a = b then " else � � (b 2 V )
da(E0 [ E1) = da(E0) [ da(E1)

da(E0 � E1) = da(E0) � E1 [ if Null (E0) then da(E1) else � �

da(E
�) = da(E) � E

�

da(E
+) = da(E) � E

�

da(E
?) = da(E)

Note that the right sides in the above de�nition are regular expressions. This de�nition
corresponds closely to the one given by Brzozowski in [Brzo64]. 2

2Recall that each of the DFA states is a set of states in Antimirov's construction.
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The use of derivatives and similarity yields the classically presented Brzozowski construc-

tion.

Remark 6.61: In the FIRE Engine, similarity is not used. Instead, a total ordering on

regular expressions is de�ned. The [ nodes in the full derivatives are then rotated so that,

for full derivative (E0 [ E1) [ E2, we have E0 < E1 < E2 (where < is the total ordering).
This yields a similarity normal form, which encodes the rules of �. 2

6.7 The dual constructions

In some cases, the dual of a construction may be more e�cient in practice. The correctness

of the dual of a construction can be seen as follows: assume construction f 2 RE �! FA

such that LFA(f(E)) = LRE (E); consider the dual of f , R � f � R; we have LFA((R � f �
R)(E)) = LFA(f(E

R))R = LRE (E
R)R = LRE (E).

In this section, we derive some of the more interesting dual constructions. In Fig-
ure 6.17, the solid part of the graph indicates the subpart of the taxonomy which is dis-
cussed in this section. Note that some of the dual constructions are not considered in this

taxonomy at all (the dashed-line subpart of the taxonomy). We omit them since it appears

di�cult make them more e�cient than their duals (which have already been considered).
Given the de�nition of the dual of function rem", we can present the composition

R � rem" �R � CA.

Algorithm detail 6.62 (rem-"-dual): The use of composite function R � rem" � R
(Transformation 2.120) is detail rem-"-dual. 2

The use of this detail gives the following construction.

Construction 6.63 (rem-"-dual): The composition is (R � rem" �R � CA)(E) =

let Q
0 = f(DR)�(E�)g [ f (DR)�(e;BEF ) j e 2 SymnodesE g

T
0 = f ((DR)�(e;BEF ); E(e); q) j (e;AFT ) 2 q ^ e 2 SymnodesE g

S
0 = f s j s 2 Q0 ^ �E 2 s g

in

(Q0
; V; T

0
;�; S0

; f(DR)�(E�)g)

end

An automaton constructed using this (composite) function has the following properties:

� It has a single �nal state.

� The single �nal state has no out-transitions.

� All out-transitions from a given state are on the same symbol (in V ).

This follows from the duality between this construction and Construction (rem-"). 2
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rem-"-dual

pd pd

subset

use-s

filt

subset

use-s

a-s

e-mark
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use-s subset
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sym
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subset

use-s
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use-s

use-s
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use-s

filtsym

rem-"
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ASU (6.86)

6.27
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Ant. (6.55)

Brz. (6.57)p. 158

Figure 6.17: The constructions considered in Section 6.7 are shown as solid circles con-
nected by solid lines.
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Example 6.64 (Construction (rem-"-dual)): Recalling our example regular expres-

sion, (a [ ") � (b�), we obtain the following item sets for states:

q
00

0

(�((a) [ (")) � ((b)�));

((�(a) [ (")) � ((b)�));

(((a�) [ (")) � ((b)�));
(((a) [ (�")) � ((b)�));

(((a) [ ("�)) � ((b)�));

(((a) [ (")�) � ((b)�));
(((a) [ (")) � (�(b)�));

(((a) [ (")) � ((b�)�));

(((a) [ (")) � ((b)��));

(((a) [ (")) � ((b)�)�)

q
00

1

(�((a) [ (")) � ((b)�));

((�(a) [ (")) � ((b)�));
(((a�) [ (")) � ((b)�));
(((a) [ (�")) � ((b)�));

(((a) [ ("�)) � ((b)�));
(((a) [ (")�) � ((b)�));
(((a) [ (")) � (�(b)�));

(((a) [ (")) � ((�b)�));
(((a) [ (")) � ((b�)�))

q
00

2

(�((a) [ (")) � ((b)�));
((�(a) [ (")) � ((b)�));
(((�a) [ (")) � ((b)�))

As in Example 6.20, the structure of each state is more easily understood if we con-
sider the FA given in Example 6.17. The single �nal state q

00

0 is the set of states (in
Example 6.17) which are reverse reachable (by "-transitions) from q11 | namely the set
fq0; q1; q3; q4; q5; q6; q7; q9; q10; q11g. Similarly, q001 is the set of states reverse reachable from

q8 (that is, q
00

1 = fq0; q1; q3; q4; q5; q6; q7; q8; q9g) and q
00

2 is the set of states reverse reachable
from q2 (q

00

2 = fq0; q1; q2g).

Note that all three states are start states and one of them is �nal. The resulting FA is
shown in Figure 6.18. 2

Just as we introduced Algorithm detail (sym) into Construction (rem-") to encode

most of the set of states by an element of SymnodesE, we can do the same with the above

construction, to give Construction (rem-"-dual, sym) | which is not given here. (Since
the introduction of detail (sym) is only an encoding, Construction (rem-"-dual, sym)
is the dual of Construction (rem-", sym).) It turns out that the same auxiliary sets

(FollowE, FirstE, and LastE) can also be used to improve this construction. This results
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b

b

a

a

q
00

0

q
00

1

q
00

2

Figure 6.18: FA produced by Construction (rem-"-dual)

in the following construction (using Algorithm detail a-s).

Construction 6.65 (rem-"-dual, sym, a-s): Assuming E 2 RE , we use the auxiliary
sets in the following construction:

let f be a new state

in

let Q = ffg [ SymnodesE
T = f (e;E(e); f) j e 2 LastE g
[ f (e;E(e); q) j q 2 FollowE(e) ^ e 2 SymnodesE g

S = FirstE [ if Null (E) then ffg else � �

in

(Q;V; T;�; S; ffg)
end

end

This construction is the dual of the Berry-Sethi construction. It appears in the literature
as [Wat93a, Constr. 4.45]. Note the duality with Construction 6.39. 2

Example 6.66 (Construction (rem-"-dual, sym, a-s)): Using our regular expression,
(a[ ") � b�, the auxiliary sets are the same as those used in Example 6.41 and the FA is the

same as in Figure 6.18 from Example 6.64. In this example, the �nal state f is represented

by q0, state 2 � 1 (the b node in the regular expression) is represented by q1, and state 1 � 1
(the a node) is represented by q2. 2

In Section 6.5.1, we made use of a begin-marker to make Construction (rem-", sym, a-

s) more concise. We can introduce an end-marker (as the dual concept of a begin-marker)
to make the above construction more concise.
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Algorithm detail 6.67 (e-mark): By appending a symbol ($ in our case) to the reg-

ular expression E, and using an encoding similar to the one in Section 6.5.1, we improve

Construction 6.65. 2

Again, it does not matter which symbol is used as our end-marker symbol. The resulting
construction is as follows.

Construction 6.68 (rem-"-dual, sym, a-s, e-mark): Assuming E 2 RE , we con-

struct an FA as follows:

let Q = SymnodesE�$
T = f (e; (E � $)(e); f) j f 2 FollowE�$(e) g

S = FirstE�$
in

(Q;V; T;�; S; f2g)

end

The use of an end-marker is also a well-known encoding trick. This particular algorithm

appears as [ASU86, Example 3.22, p. 140] as well as [Wat93a, Constr. 4.48]. 2

We could compose function useful
s
� subset with Construction (rem-"-dual, sym, a-

s) to get a DFA construction known as Construction (rem-"-dual, sym, a-s, subset,

use-s). Alternatively, we could use the end-marker construction, yielding the following
construction.

Construction 6.69 (Aho-Sethi-Ullman): Construction (rem-"-dual, sym, a-s, e-
mark, subset, use-s) is known as the Aho-Sethi-Ullman construction ([ASU86, Alg. 3.5,
Fig. 3.44] and [Wat93a, Constr. 4.50 and Alg. 4.52]). 2

This construction is known to be one of the most e�cient constructions in practice. For a

comparison of the performance of some of the constructions, see Chapter 14. An imperative

algorithm implementing it is given in Algorithm 6.86. The following is an example of the
Aho-Sethi-Ullman construction.

Example 6.70 (Aho-Sethi-Ullman): Using our running example regular expression
(a [ ") � (b�), we append the end-marker to obtain ((a [ ") � (b�)) � $. We compute the

following auxiliary sets:

� Symnodes((a[")�(b�))�$ = f1 � 1 � 1; 1 � 2 � 1; 2g.

� First((a[")�(b�))�$ = f1 � 1 � 1; 1 � 2 � 1; 2g.

� Follow ((a[")�(b�))�$ = f(1 � 1 � 1; 1 � 2 � 1); (1 � 2 � 1; 1 � 2 � 1); (1 � 1 � 1; 2); (1 � 2 � 1; 2)g.

Unlike our presentation, Aho, Sethi, and Ullman's presentation also removes the sink state

from the DFA. For this example, we also remove the sink state. We have the following two

states q0 = f1 � 1 � 1; 1 � 2 � 1; 2g and q1 = f1 � 2 � 1; 2g. The resulting DFA is shown in

Figure 6.19. 2
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a; b

b

q0 q1

Figure 6.19: DFA produced by the Aho-Sethi-Ullman construction.

6.8 Precomputing the auxiliary sets and Null

In this section, we consider how to precompute the sets Symnodes, First, Last, Follow ,
and predicate Null . They can all be computed using a single recursive traversal of the

tree E 2 RE . This is especially e�cient when the set SymnodesE is encoded as a set of

integers, as is done in FIRE Lite and the FIRE Engine. In the following properties, we give
inductive de�nitions which are based upon the structure of regular expressions.

Property 6.71 (Inductive de�nition of Null ): The following de�nitions follow from

the de�nition of Null :

Null (�) = false

Null (") = true

Null (a) = false

Null (E0 [ E1) = Null (E0) _ Null (E1)
Null (E0 � E1) = Null (E0) ^ Null (E1)

Null (E�

0) = true

Null (E+
0 ) = Null (E0)

Null (E?
0) = true

2

Example 6.72 (Null (E)): Recalling our example (a [ ") � (b�) 2 RE :

Null ((a [ ") � (b�))

= fNull on a � node g

Null (a [ ") ^ Null (b�)

= fNull on [ and � nodes g

(Null (a) _ Null (")) ^ true

= fNull on a and " nodes g

(false _ true) ^ true

= fde�nitions of _ and ^g

true

2
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Property 6.73 (Inductive de�nition of Symnodes): The following de�nitions follow

from the de�nition of Symnodes :

Symnodes� = �

Symnodes" = �

Symnodesa = f0g (the root)

SymnodesE0[E1 = 1 � SymnodesE0 [ 2 � SymnodesE1
SymnodesE0�E1 = 1 � SymnodesE0 [ 2 � SymnodesE1
SymnodesE�

0
= 1 � SymnodesE0

Symnodes
E
+

0
= 1 � SymnodesE0

Symnodes
E
?
0

= 1 � SymnodesE0

2

Example 6.74 (SymnodesE): Recalling our example (a [ ") � (b�) 2 RE :

Symnodes(a[")�(b�)

= fSymnodes on a � node g

1 � Symnodesa[" [ 2 � Symnodesb�

= fSymnodes on [ and � nodes g

1 � (1 � Symnodesa [ 2 � Symnodes") [ 2 � (1 � Symnodesb)

= fSymnodes on a, b, and " nodes g

1 � (1 � f0g [ 2 � �) [ 2 � (1 � f0g)

= f � is associative g

f1 � 1 � 0; 2 � 1 � 0g

= f 0 is the unit of � g

f1 � 1; 2 � 1g

2

Property 6.75 (Inductive de�nition of First): We present an inductive de�nition for

FirstE based upon the structure of E:

First� = �

First" = �

Firsta = f0g (the root)

FirstE0[E1 = 1 � FirstE0 [ 2 � FirstE1
FirstE0�E1 = 1 � FirstE0 [ if Null (E0) then 2 � FirstE1 else � �

FirstE�

0
= 1 � FirstE0

First
E
+

0
= 1 � FirstE0

First
E
?
0

= 1 � FirstE0

2
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Example 6.76 (First): Again, using (a [ ") � (b�) 2 RE :

First(a[")�(b�)

= fFirst on a � node g

1 � Firsta[" [ if Null (a [ ") then 2 � Firstb� else � �

= fde�nition of Null g

1 � Firsta[" [ 2 � Firstb�

= fFirst on [ and � nodes g

1 � (1 � Firsta [ 2 � First") [ 2 � (1 � First b)

= fFirst on a, b and " nodes g

f1 � 1; 2 � 1g

2

Property 6.77 (Inductive de�nition of Last): The following are derived in a similar
manner to First:

Last� = �

Last" = �

Lasta = f0g (the root)
LastE0[E1 = 1 � LastE0 [ 2 � LastE1
LastE0�E1 = 2 � LastE1 [ if Null (E1) then 1 � LastE0 else � �

LastE�

0
= 1 � LastE0

Last
E
+

0
= 1 � LastE0

Last
E
?
0

= 1 � LastE0

2

Example 6.78 (Last): We use the regular expression (a [ ") � (b�):

Last(a[")�(b�)

= fLast on a � node g

2 � Lastb� [ if Null (b
�) then 1 � Lasta[" else � �

= fde�nition of Null g

2 � Lastb� [ 1 � Lasta["

= fLast on � and [ nodes g

2 � (1 � Lastb) [ 1 � (1 � Lasta [ 2 � Last")

= fLast on a, b and " nodes g

f1 � 1; 2 � 1g

2

Before giving an inductive de�nition of Follow , we extend operator �.
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Notation 6.79 (Extension of �): Given i 2 N and A � dom(E) � dom(E), we extend

� as follows:

i �A = f (i � a; i � b) j (a; b) 2 A g

This is purely a notational convenience. 2

Property 6.80 (Inductive de�nition of Follow ): We present an inductive de�nition of

Follow :

Follow� = �

Follow " = �

Follow a = f0g

FollowE0[E1
= 1 � FollowE0

[ 2 � FollowE1

FollowE0�E1
= 1 � FollowE0

[ 2 � FollowE1
[ (1 � LastE0)� (2 � FirstE1)

FollowE
�

0
= 1 � FollowE0

[ (1 � LastE0)� (1 � FirstE0)

Follow
E
+

0
= 1 � FollowE0

[ (1 � LastE0)� (1 � FirstE0)

Follow
E
?
0

= 1 � FollowE0

2

Example 6.81 (Follow): Taking our usual regular expression (a [ ") � (b�):

Follow (a[")�(b�)

= fFollow on a � node g

1 � Follow a[" [ 2 � Follow b� [ (1 � Lasta[")� (2 � Firstb�)

= fde�nitions of Lasta[" and Firstb� g

1 � Follow a[" [ 2 � Follow b� [ f(1 � 1; 2 � 1)g

= fde�nitions of Follow a[" and Follow b� g

2 � (1 � Follow b [ (1 � Lastb � 1 � Firstb)) [ f(1 � 1; 2 � 1)g

= fde�nition of Firstb;Lastb;Follow b g

2 � (1 � � [ (1 � f0g � 1 � f0g)) [ f(1 � 1; 2 � 1)g

= f calculus g

2 � f(1; 1)g [ f(1 � 1; 2 � 1)g

= f calculus g

f(2 � 1; 2 � 1)g [ f(1 � 1; 2 � 1)g

Intuitively, this shows that (in the language denoted by regular expression (a[ ") � (b�)) an
a can be followed by a b and a b can be followed by a b. 2

Remark 6.82: When the integer encoding of SymnodesE is used, the inductive de�nitions
above turn out to be the same ones that are given in, for example, [ASU86]. There are a

number of techniques to speed up the computation of these sets in practice. Of particular
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importance are the methods described by Br�uggemann-Klein in [B-K93a] and by Chang

and Paige in [Chan92, CP92]; a short summary of these methods appears in [Wat93a,

Section 4.5.2]. Br�uggemann-Klein's method works by manipulating the regular expression

into a form which is more suited to the computation of the auxiliary sets. The Chang-

Paige method works by computing the subparts of the auxiliary sets on an `as-needed'
(lazy) basis. 2

6.9 Constructions as imperative programs

In this section, we give some algorithms implementing constructions from the past few

sections. These algorithms are in the form most often seen in text-book and journal

presentations of constructions. We make use of the algorithms presented in Section 2.6.2.1.

We will not concern ourselves with the computation of any of the auxiliary sets or relations.

6.9.1 The item set constructions

We can present an imperative program which computes composite function useful
s
�subset �

rem" � CA | Construction (rem-", subset, use-s).

Algorithm 6.83 (Implementing (rem-", subset, use-s)):

f E 2 RE g
S; T := fD�(�E)g;�;
D;U := �; S;
do U 6= �!

let u : u 2 U ;
D;U := D [ fug; U n fug;

for a : a 2 V !

d := ([ e : (e;BEF ) 2 u ^ E(e) = a : D�(e;AFT ));
if d 62 D ! U := U [ fdg
[] d 2 D ! skip

fi;

T := T [ f(u; a; d)g
rof

od;

F := f f j f 2 D ^ E� 2 f g
f LFA(D;V; T;�; S; F ) = LRE (E)

^ (D;V; T;�; S; F ) 2 DFA

^ Complete(D;V; T;�; S; F ) g

2
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This algorithm is essentially the `deterministic item set construction', given in [Wat93a,

Constr. 5.69].

We can also present the `�ltered' version, using �lterW. In order to do this, we simply

rewrite some of the statements in the above algorithm:

� Assignment S := fD�(�E)g becomes S := fW(D�(�E))g.

� Statement

d := ([ e : (e;BEF ) 2 u ^ E(e) = a : D�(e;AFT ))

is replaced by

d :=W([ e : (e;BEF ) 2 u ^ E(e) = a : D�(e;AFT ))

The resulting algorithm implements Construction (rem-", subset, use-s, Wfilt). This
algorithm does not appear in the literature. In Chapter 14, we see that it displays good

performance in practice. It produces DFAs which are isomorphic to those produced by
Construction (rem-"-dual, sym, a-s, subset, use-s) and the Aho-Sethi-Ullman con-

struction.

6.9.2 The Symnodes constructions

We present an algorithm implementing Construction (rem-", sym, a-s, subset, use-s)

which produces a DFA. Here, the �rst iteration is unrolled to accommodate the special
treatment of the start state in construction (rem-", sym, a-s), and some obvious improve-
ments have not yet been made.

f E 2 RE g
let S = ffsgg : s is a new state;
T := �;

D;U := �; S;
let u : u 2 U ;
f u = fsg g

D;U := D [ fug; U n fug;

for a : a 2 V !

d := ([ p : p 2 u : f e j e 2 FirstE ^ E(e) = a g);
f p 2 u � p = fsg g
if d 62 D ! U := U [ fdg

[] d 2 D ! skip

fi;

T := T [ f(u; a; d)g

rof ;
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do U 6= �!

let u : u 2 U ;

D;U := D [ fug; U n fug;

for a : a 2 V !

d := ([ p : p 2 u : f e j e 2 FollowE(p) ^ E(e) = a g);
if d 62 D ! U := U [ fdg
[] d 2 D ! skip

fi;

T := T [ f(u; a; d)g

rof

od;

F := f d j d 2 D ^ d \ LastE 6= � g [ if Null (E) then S else � �

f LFA(D;V; T;�; S; F ) = LRE (E)

^ (D;V; T;�; S; F ) 2 DFA

^ Complete(D;V; T;�; S; F ) g

Some simpli�cation gives the following algorithm | the McNaughton-Yamada-Glushkov
construction [MY60, Glus61]; it is also given in [Wat93a, Algorithm 4.42].

Algorithm 6.84 (Implementing McNaughton-Yamada-Glushkov):

f E 2 RE g
let S = ffsgg : s is a new state;
T := �;

D;U := S;�;
for a : a 2 V !

d := f e j e 2 FirstE ^ E(e) = a g;

U := U [ fdg;
T := T [ f(fsg; a; d)g

rof ;
do U 6= �!

let u : u 2 U ;
D;U := D [ fug; U n fug;

for a : a 2 V !

d := ([ p : p 2 u : f e j e 2 FollowE(p) ^ E(e) = a g);
if d 62 D ! U := U [ fdg

[] d 2 D ! skip

fi;

T := T [ f(u; a; d)g

rof

od;

F := f d j d 2 D ^ d \ LastE 6= � g [ if Null (E) then S else � �

f LFA(D;V; T;�; S; F ) = LRE (E)
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^ (D;V; T;�; S; F ) 2 DFA

^ Complete(D;V; T;�; S; F ) g

2

To show the simplicity gained by the use of a begin-marker, we give an imperative

algorithm implementing Construction (rem-", sym, a-s, b-mark, subset, use-s):

Algorithm 6.85 (Implementing (rem-", sym, a-s, b-mark, subset, use-s)):

f E 2 RE g

S; T := ff1gg;�;

D;U := �; S;

do U 6= �!

let u : u 2 U ;

D;U := D [ fug; U n fug;
for a : a 2 V !

d := ([ p : p 2 u : f e j e 2 FollowE(p) ^ E(e) = a g);
if d 62 D ! U := U [ fdg
[] d 2 D ! skip

fi;
T := T [ f(u; a; d)g

rof

od;
F := f f j f 2 D ^ f \ Last$�E 6= � g
f LFA(D;V; T;�; S; F ) = LRE (E)
^ (D;V; T;�; S; F ) 2 DFA

^ Complete(D;V; T;�; S; F ) g

2

This algorithm is somewhat more elegant and more practical than the one given as Algo-

rithm 6.84, thanks to the fact that the start state does not require special treatment.

6.9.3 A dual construction

The following algorithm implements the Aho-Sethi-Ullman construction | Construction

(rem-"-dual, sym, a-s, e-mark, subset, use-s).

Algorithm 6.86 (Implementing Aho-Sethi-Ullman):

f E 2 RE g

S; T := fFirstE�$g;�;

D;U := �; S;
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do U 6= �!

let u : u 2 U ;

D;U := D [ fug; U n fug;

for a : a 2 V !

d := ([ p : p 2 u ^ E(p) = a : FollowE�$(p));
if d 62 D ! U := U [ fdg
[] d 2 D ! skip

fi;

T := T [ f(u; a; d)g

rof

od;

F := f f j f 2 D ^ 2 2 f g
f LFA(D;V; T;�; S; F ) = LRE (E)

^ (D;V; T;�; S; F ) 2 DFA

^ Complete(D;V; T;�; S; F ) g

2

This algorithm appears as [ASU86, Alg. 3.5, Fig. 3.44] and as [Wat93a, Constr. 4.50 and
Alg. 4.52].

Comparing this algorithm with the variant of the McNaughton-Yamada-Glushkov algo-
rithm (Algorithm 6.85) shows that the two are very similar, with two notable exceptions:
the assignment to d in the inner repetition, and assignment to F are both considerably
more e�cient to implement in the above construction than in the McNaughton-Yamada-

Glushkov algorithm. The di�erences in e�ciency can be seen clearly from the data pre-

sented in Chapter 14.

6.10 Conclusions

A number of conclusions can be drawn about the taxonomy presented in this chapter:

� The original algorithms were presented in widely di�ering styles (some where aimed
at compiler applications, while others were aimed at digital circuitry applications)

over a period of many years. Interestingly, they can all be related in rather direct
ways. This can be attributed to the following facts:

{ We used a `canonical' construction (directly related to the input regular expres-

sion), in which each state contains the `maximal' amount of information.

{ We introduced various e�cient encodings of the canonical states. Some the en-
codings removed information, allowing states to be safely identi�ed (and there-

fore creating smaller automata).
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{ Some simple algorithmic building blocks (for example "-transition removal, the

subset construction, and start-unreachable state removal) were identi�ed and

factored out. This lead to concise descriptions of the algorithms (as compo-

sitions of functions), and subsequent transformation into imperative programs

was particularly easy. The direct transformation of imperative programs would
have been di�cult.

� The earlier taxonomy presented in [Wat93a] contained two taxonomy trees. The
development of that taxonomy seemed to indicate that the two subfamilies of al-

gorithms were related, but could not be derived from one another. The taxonomy

presented in this chapter shows otherwise: all of the constructions can be derived
from a single canonical construction.

� Many of the constructions produce automata whose states contain information. For

example, the states of the canonical construction are `items', encoding the left and
right languages of the states. This approach had two advantages:

{ The additional information made it easier to argue the correctness of each of

the constructions, especially the canonical construction.

{ The information could be encoded in various ways, leading to more e�cient

constructions.

{ In some cases, the encodings may lead to states being identi�ed | reducing the
size of the produced automata.

� One of the most recently developed constructions (Antimirov's) was also successfully
integrated into the taxonomy.

� All of the constructions were successfully presented as compositions of mathemat-
ical functions (as opposed to only being presented as imperative programs). The

corresponding imperative programs were also presented.

� We can also draw some conclusions about the individual constructions and relation-

ships between them:

{ The Berry-Sethi construction is an encoding of an "-transition removal function

composed with the canonical construction.

{ Antimirov's construction is an encoding of the Berry-Sethi construction. (Note
that Antimirov's construction may produce smaller automata than the Berry-

Sethi construction, meaning that Antimirov's construction is an optimization.)

{ The deterministic item set construction can be improved through the use of

`�lters'. One such �lter yields DeRemer's construction, while another �lter

yields a new construction.

{ The McNaughton-Yamada-Glushkov is the subset construction composed with

the Berry-Sethi construction.
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{ The subset construction composed with the Antimirov's construction is a variant

of Brzozowski's construction.

{ The original version of Brzozowski's construction, with the similarity relation

on regular expressions, is shown to be a further encoding of our variant.

{ From the above three observations, we can conclude that the deterministic item

set construction, the McNaughton-Yamada-Glushkov construction, and Brzo-

zowski's construction are encodings of one another. (It is possible, however,

that Brzozowski's construction produces a smaller DFA.)

{ The Aho-Sethi-Ullman construction is the subset construction composed with

the dual of the Berry-Sethi construction.

{ The new (�lter-based) construction is an encoding of the Aho-Sethi-Ullman

construction.

� The taxonomy presented here was crucial to the development of FIRE Lite, a C++

toolkit of construction algorithms. The structure of the taxonomy tree is reected in
the inheritance hierarchy of FIRE Lite.

� Lastly, we note that there is room for improvement in the taxonomy presented in
this chapter. The constructions which are based upon derivatives were added after
some of the other constructions were taxonomized. As a result, it may be possible

to factor their development even more.



Chapter 7

DFA minimization algorithms

This chapter presents a taxonomy of �nite automata minimization algorithms. Brzo-

zowski's elegant minimization algorithm di�ers from all other known minimization algo-
rithms, and is derived separately. All of the remaining algorithms depend upon computing

an equivalence relation on states. We de�ne the equivalence relation, the partition that it
induces, and its complement. Additionally, some useful properties are derived. It is shown
that the equivalence relation is the greatest �xed point of a function, providing a useful
characterization of the required computation. We derive an upperbound on the number
of approximation steps required to compute the �xed point. Algorithms computing the
equivalence relation (or the partition, or its complement) are derived systematically in the

same framework. The algorithms include Hopcroft's, several algorithms from text-books
(including Hopcroft and Ullman's [HU79], Wood's [Wood87], and Aho, Sethi, and Ullman's
[ASU86]), and several new algorithms or variants of existing algorithms.

An early version of this taxonomy appeared in [Wat93b].

7.1 Introduction

The minimization of deterministic �nite automata is a problem that has been studied since
the late 1950's. Simply stated, the problem is to �nd the unique (up to isomorphism) mini-
mal deterministic �nite automaton that accepts the same language as a given deterministic
�nite automaton. Algorithms solving this problem are used in applications ranging from

compiler construction to hardware circuit minimization. With such a variety of applica-

tions, the number of di�ering presentations also grew: most text-books present their own

variation, while the algorithm with the best running time (Hopcroft's) remains obscure

and di�cult to understand.

This chapter presents a taxonomy of �nite automata minimization algorithms. The

need for a taxonomy is illustrated by the following:

� Most text-book authors claim that their minimization algorithm is directly derived
from those presented by Hu�man [Hu�54] and Moore [Moor56]. Unfortunately,

most text-books present vastly di�ering algorithms (for example, compare [AU92],

191
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[ASU86], [HU79], and [Wood87]), and only the algorithms presented by Aho and Ull-

man and by Wood are directly derived from those originally presented by Hu�man

and Moore.

� While most of the algorithms rely on computing an equivalence relation on states,
many of the explanations accompanying the algorithm presentations do not explicitly

mention whether the algorithm computed the equivalence relation, the partition (of

states) that it induces, or its complement.

� Comparison of the algorithms is further hindered by the vastly di�ering styles of

presentation | sometimes as imperative programs, or as functional programs, but

frequently only as a descriptive paragraph.

For notational convenience, we restrict ourselves to producing minimalComplete DFAs.

This is strictly a notational convenience, as the minimization algorithms can be modi�ed

to work for in-Complete DFAs. A Complete minimized DFA will (in general) have one
more state (a sink state) than a in-Complete minimized DFA.

All except one of the algorithms rely on determining the set of automaton states which
are equivalent1. The algorithm that does not make use of equivalent states is discussed

in Section 7.2. In Section 7.3 the de�nition and some properties of equivalence of states

is given. Algorithms that compute equivalent states are presented in Section 7.4. The
main results of the taxonomy are summarized in the conclusions | Section 7.5. The

minimization algorithm relationships are shown in a `family tree' in Figure 7.1. Unlike in
Chapters 4 and 6, the algorithm and problem details remain implicit in the presentation
of the algorithms. In the family tree, the details are shown as edges, depicting re�nements

of the solution.

The principal computation in most minimization algorithms is the determination of
equivalent (or inequivalent) states | thus yielding an equivalence relation on states. In

this chapter, we consider the following minimization algorithms:

� Brzozowski's �nite automaton2 minimization algorithm as presented in [Brzo62].
This elegant algorithm (Section 7.2) was originally invented by Brzozowski, and has
since been re-invented by a number of others (in some cases without credit to Brzo-
zowski). Given a (possibly nondeterministic) �nite automaton without "-transitions,

this algorithm produces the minimal deterministic �nite automaton accepting the

same language.

� Layerwise computation of equivalence as presented in [Wood87, Brau88, Urba89].

This algorithm (Algorithm 7.18, also known as Wood's algorithm in the literature) is
a straightforward implementation suggested by the approximation sequence arising

from the �xed-point de�nition of equivalence of states.

1Equivalence of states is de�ned later.
2This algorithm also works on nondeterministic �nite automata, in contrast with the other algorithms

which only work on deterministic �nite automata.
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ASU (7.21)

Hopcroft-Ullman (7.24)

(7.28)

imperative program

(7.18)

(7.19) (7.22)

eq. classes eq. classes

lists

optimized list update

Hopcroft (7.26)

Brzozowski (x 7.2)

(x 7.4.6)

pointwise

memoization

approx. from below

Improved

Equivalence of states (x 7.3)

equivalence relation

approx. from above

Naive

(x 7.4.1{7.4.5, 7.4.7)

(x 7.4.1{7.4.5)

layerwise unordered state pairs

(7.27)

(7.23)

(p. 207)

(p. 212)

Figure 7.1: The family trees of �nite automata minimization algorithms. Brzozowski's

minimization algorithm is unrelated to the others, and appears as a separate (single vertex)
tree. Each algorithm presented in this chapter appears as a vertex in this tree. For each
algorithm that appears explicitly in this chapter, the construction number appears in

parentheses (indicating where it appears in this chapter). For algorithms that do not

appear explicitly, a reference to the section or page number is given. Edges denote a
re�nement of the solution (and therefore explicit relationships between algorithms). They

are labeled with the name of the re�nement.
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� Unordered computation of equivalence. This algorithm (Algorithm 7.19, not appear-

ing in the literature) computes the equivalence relation; pairs of states (for consider-

ation of equivalence) are chosen in an arbitrary order.

� Unordered computation of equivalence classes as presented in [ASU86]. This algo-
rithm (Algorithm 7.21) is a modi�cation of the above algorithm computing equiva-

lence of states.

� Improved unordered computation of equivalence. This algorithm (Algorithm 7.22,

not appearing in the literature) also computes the equivalence relation in an arbitrary
order. The algorithm is a minor improvement of the other unordered algorithm.

� Improved unordered computation of equivalence classes. This algorithm (appearing

as Algorithm 7.23 in this dissertation, not appearing in the literature) is a modi-

�cation of the above algorithm to compute the equivalence classes of states. This

algorithm is used in the derivation of Hopcroft's minimization algorithm.

� Hopcroft and Ullman's algorithm as presented in [HU79]. This algorithm (Algo-
rithm 7.24) computes the inequivalence (distinguishability) relation. Although it is
based upon the algorithms of Hu�man and Moore [Hu�54, Moor56], this algorithm

uses some interesting encoding techniques.

� Hopcroft's algorithm as presented in [Hopc71, Grie73]. This algorithm (appearing

here as Algorithm 7.26) is the best known algorithm (in terms of running time com-
plexity) for minimization. As the original presentation by Hopcroft is di�cult to
understand, the presentation in this chapter is based upon the one given by Gries.

� Pointwise computation of equivalence. This algorithm (Algorithm 7.27, appearing in
the literature only in a form suitable for comparing types for structural equivalence)
computes the equivalence of a given pair of states. It draws upon some non-automata

related techniques, such as: structural equivalence of types and memoization of func-

tional programs.

� Computation of equivalence from below (with respect to re�nement). This algorithm

(Algorithm 7.28, not appearing in the literature) computes the equivalence relation

from below. Unlike any of the other known algorithms, the intermediate result of this

algorithm can be used to construct a smaller (although not minimal) deterministic
�nite automaton.

7.2 An algorithm due to Brzozowski

Most minimization algorithms are applied to a DFA. In the case of a nondeterministic FA,
the subset construction (function subset | Transformation 2.121) is applied �rst, followed

by the minimization algorithm. In this section, we consider the possibility of applying
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the subset construction (with start-unreachable state removal) after an (as yet unknown)

algorithm, thus yielding a minimal DFA. We now derive such an algorithm.

Let M0 = (Q0; V; T0;�; S0; F0) be the "-free �nite automaton (not necessarily a DFA)

to be minimized andM2 = (Q2; V; T2;�; S2; F2) be the minimizedComplete DFA such that

LFA(M0) = LFA(M2) (and of course MinC(M2) | see De�nition 2.109). (For the remain-

der of this section we make use of MinimalC (Property 2.111) as opposed to MinC .) Since

we apply the subset construction last, we have some intermediate �nite automaton M1 =
(Q1; V; T1;�; S1; F1) such that M2 = (useful

s
� subset )(M1). (Note that Useful

s
(M2) ^

Complete(M2) holds.) We require that M1 is somehow obtained from M0, and that

LFA(M2) = LFA(M1) = LFA(M0).

From the de�nition of MinimalC(M2) (which appears in Property 2.111), we require

(8 p; q : p 2 Q2 ^ q 2 Q2 ^ p 6= q :
�!
L (p) 6=

�!
L (q)) ^ Useful

s
(M2) ^ Complete(M2)

For all states q 2 Q2 we have q 2 P(Q1) since M2 = (useful
s
�subset )(M1). Property 2.123

of the subset construction gives

(8 p : p 2 Q2 :
�!
L (p) = ([ q : q 2 Q1 ^ q 2 p :

�!
L (q)))

We need a su�cient condition on M1 to ensure MinimalC(M2). The following derivation

gives such a condition:

MinimalC(M2)

� fde�nition of MinimalC (Property 2.111) g

(8 p; q : p 2 Q2 ^ q 2 Q2 ^ p 6= q :
�!
L (p) 6=

�!
L (q)) ^ Useful

s
(M2) ^ Complete(M2)

( fProperty 2.123; M2 = (useful
s
� subset )(M1) g

(8 p; q : p 2 Q1 ^ q 2 Q1 ^ p 6= q :
�!
L (p) \

�!
L (q) = �) ^ Useful

f
(M1)

� fde�nition of Det 0 (Property 2.107) and Useful
s
, Useful

f
(Remark 2.100) g

Det 0(MR

1 ) ^ Useful
s
(MR

1 )

( fProperty 2.107: Det 0(M)( Det(M) g

Det(MR

1 ) ^ Useful
s
(MR

1 )

The required condition on M1 can be established by (writing reversal as a pre�x function)
M1 = (R � useful

s
� subset �R)(M0).

The complete minimization algorithm (for any "-free M0 2 FA) is

M2 = (useful
s
� subset �R � useful

s
� subset �R)(M0)

This algorithm was originally given by Brzozowski in [Brzo62]. A generalization of the al-

gorithm was independently derived by Kameda and Weiner [KW70] just after Brzozowski's

presentation. The origin of this algorithm was obscured when Jan van de Snepscheut pre-
sented the algorithm in his Ph.D dissertation [vdSn85], where the algorithm is attributed
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to a private communication from Professor Peremans of the Eindhoven University of Tech-

nology. Peremans had originally found the algorithm in an article by Mirkin [Mirk65].

Although Mirkin does cite a paper by Brzozowski [Brzo64], it is not clear whether Mirkin's

work was inuenced by Brzozowski's work on minimization. Jan van de Snepscheut's re-

cent book [vdSn93] describes the algorithm, but provides neither a history nor citations
(other than his dissertation) for this algorithm.

7.3 Minimization by equivalence of states

In this section, we lay the foundations for those algorithms which determine the set of
equivalent states. Let M = (Q;V; T;�; S; F ) be a Complete DFA; this particular DFA will

be used throughout this section. We also assume that all of the states of M are start-

reachable, that is Useful
s
(M). Since M is deterministic and Complete , we will also take

the transition relation to be the total function T 2 Q� V �! Q instead of T 2 Q� V �!

P(Q).
In order to minimize the DFA M , we compute an equivalence relation E v Q�Q. In

the following section, we will consider the de�nition of this equivalence relation.

7.3.1 The equivalence relation on states

Given MinimalC(M) � MinC(M), we will derive algorithms which ensure MinimalC(M).
For the remainder of this chapter, we only consider ensuring

(8 p; q : p 2 Q ^ q 2 Q ^ p 6= q :
�!
L (p) 6=

�!
L (q))

The other two conjuncts of MinimalC(M), Useful
s
(M) ^ Complete(M), are trivial to

ensure and are left to the reader.
In order to minimize the DFA M , we compute equivalence relation E (on state set Q)

such that:

(p; q) 2 E � (
�!
L (p) =

�!
L (q))

(This relation is not to be confused with the "-transition relation of an FA which is also
a binary relation on states. The name E has been used to signify `equivalence'.) Since

this is an equivalence relation, we are really interested in unordered pairs of states. It is
notationally more convenient to use ordered pairs instead of unordered pairs.

When two states are found to be equivalent under E, the states (and their transitions)

can be identi�ed, thereby shrinking the automaton.

In order to compute relation E, we need a property of function
�!
L . (This is an intuitive

recursive de�nition of
�!
L which follows from a recursive de�nition of T �.)

Property 7.1 (Function
�!
L ): Function

�!
L satis�es

�!
L (p) = ([ a : a 2 V : fag �

�!
L (T (p; a))) [ (if p 2 F then f"g else � �)
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2

This allows us to give an alternate (but equivalent) characterization of equivalence of states.

Property 7.2 (Equivalence of states): Given the above property, we can rewrite E

into a recursive form. Relation E is the greatest equivalence relation (on Q) such that

(p; q) 2 E � (p 2 F � q 2 F ) ^ (8 a : a 2 V : (T (p; a); T (q; a)) 2 E)

2

We will shortly present E as the greatest �xed point of a continuous function.

De�nition 7.3 (Equivalence relations on Q): We de�ne ERQ to be the set of all

equivalence relations on state set Q. 2

Property 7.4 (ERQ): The set ERQ is a lattice under the re�nement (v) ordering, with

least element IQ and greatest element Q�Q. 2

De�nition 7.5 (Function g): De�ne function g 2 ERQ �! ERQ as g(H) =

f (p; q) j (p; q) 2 H ^ (p 2 F � q 2 F ) ^ (8 a : a 2 V : (T (p; a); T (q; a)) 2 H) g

This function is continuous on the lattice of equivalence relations ERQ. 2

Property 7.6 (Fixed point characterization of E): Relation E is the greatest �xed
point of function g on the lattice of equivalence relations EQ. More formally

E = (MAXvH : H v Q�Q ^ H = g(H) : H)

Note that g(H) v H. 2

For more on this type of �xed point characterization, see [PTB85].

Remark 7.7: Any �xed point of the equivalence in Property 7.2 can be used. In order to

minimize the automaton (instead of simply shrinking it), the greatest �xed point is desired.
2

Property 7.8 (Computing E): Since g is continuous and the lattice is �nite, we can
compute E by successive applications of function g, beginning with the `top' equivalence
relation > = Q� Q. We use the following notation to refer to the result of each step (in

the computation of E) Ek = g
k+1(>) (for k � 0).

We can already make the �rst step, by noting that E0 = g(>) = (Q nF )2 [ F 2. In this
case, we can simplify the de�nition of g (since for all (p; q) 2 E0, p 2 F � q 2 F ) to give

g

0(H) = f (p; q) j (p; q) 2 H ^ (8 a : a 2 V : (T (p; a); T (q; a)) 2 H) g

Note that Ek = g
0k(E0). 2
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Remark 7.9: We can also give an intuitive explanation of equivalence relation Ek at each

step of computing the �xed point. A pair of states p; q are said to be k-equivalent (written

(p; q) 2 Ek) if and only if there is no string w : jwj � k such that w 2
�!
L (p) 6� w 2

�!
L (q).

As a consequence, p and q are k-equivalent (k > 0) if and only if

� they are both �nal or both non-�nal, and

� for all a 2 V , T (p; a) and T (q; a) are (k � 1)-equivalent (by the de�nitions of
�!
L and

T
�).

2

Property 7.10 (E as a greatest �xed point): We can also cast the recursive de�nition

of E as the greatest solution of a set of (perhaps mutually recursive) equivalences. We wish
to obtain a set of jQj2 equivalences with left sides fp;q (for states p; q 2 Q). When a solution

to the system of equivalences is found, we will have fp;q � (p; q) 2 E. We de�ne each of

the jQj2 equations as follows (where p; q 2 Q):

fp;q � (p 2 F � q 2 F ) ^ (8 a : a 2 V : fT (p;a);T (q;a))

The �xed point approximation begins with all of the fp;q � true. At each step in the

approximation, any one of the equations can be updated, bringing the entire system closer

to a solution. Unlike the �xed point approximation sequence outlined in Property 7.8,
the relation given by the fp;q may not be an equivalence relation at every step in �nding

a solution to the system; the �nal solution is, however, the equivalence relation E. An
interesting property (which we will not prove here) is that once an fp;q has become false,
it will not become true at a later step in the approximation sequence (this property is

similar to g(H) v H given in Property 7.6). Algorithms that make use of this method of
computing E are given in Sections 7.4.2{7.4.5 and 7.4.7. This approach is equivalent to
the approach taken in Property 7.8; in can, however, be implemented very e�ciently in
some cases. 2

All previously known algorithms compute E by successive approximation from above

(with respect to v) | a standard approach for computing a greatest �xed point. A new

algorithm in Section 7.4.7 computes E by successive approximation from below. In that
section, the practical importance of this is explained.

7.3.2 Distinguishability

It is also possible to compute E by �rst computing its complement D = :E. Relation D

(called the distinguishability relation on states) is required to satisfy

(p; q) 2 D � (
�!
L (p) 6=

�!
L (q))
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De�nition 7.11 (Distinguishability of states): D is the least (under set containment3,

�) relation such that

(p; q) 2 D � (p 2 F 6� q 2 F ) _ (9 a : a 2 V : (T (p; a); T (q; a)) 2 D)

2

Property 7.12 (Approximating D): As with equivalence relation E, relation D can be
computed by successive approximations (for k � 0)

(p; q) 2 Dk+1 � (p; q) 2 Dk _ (9 a : a 2 V : (T (p; a); T (q; a)) 2 Dk)

with D0 = :E0 = ((Q n F )� F ) [ (F � (Q n F )). For all k � 0 we have Dk = :Ek. We

could have started with the complement � of > (which we used as our starting point for

computing �xed point E); for e�ciency reasons we would start with D0 in practice. We

also have the property that Dk+1 � Dk for k � 0. 2

Remark 7.13: As with Ek, an intuitive explanation of Dk is useful. A pair of states p; q
are said to be k-distinguished (written (p; q) 2 Dk) if and only if there is a string w : jwj � k

such that w 2
�!
L (p) 6� w 2

�!
L (q). As a consequence, p and q are k-distinguished (k > 0,

some authors say k-distinguishable) if and only if

� one is �nal and the other is non-�nal, or

� there exists a 2 V such that T (p; a) and T (q; a) are (k � 1)-distinguished.

2

7.3.3 An upperbound on the number of approximation steps

We can easily place an upperbound on the number of steps in the computation of E. (This

is not the same as the complexity of computing E; instead, we show the number of steps
required in an approximating sequence while computing E.)

Let Ej be the greatest �xed point of the equation de�ning E. We have the sequence of
approximations (where IQ is the identity relation on states):

E0 � E1 � � � � � Ej � IQ

The indices of some of the equivalence relations in the approximation sequence are known:
]IQ = jQj and ]E0 � 2. We can deduce that:

]E0 < ]E1 < � � � < ]Ej � ]IQ = jQj

In the case that ]E0 = 0 (when Q = �), we have that E0 is the greatest �xed point. In

the case that ]E0 = 1, either all states are �nal states, or all states are non-�nal ones; in

3Here, � denotes normal set containment; re�nement does not apply since D is not necessarily an
equivalence relation.
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both cases E0 is the greatest �xed point. In the case that ]E0 = 2, we have i + 2 � ]Ei

(for all i). Since j +2 � ]Ej � ]IQ = jQj we get j � jQj � 2. This gives an upperbound of

(jQj � 2)max 0 steps for the computation (starting at E0) of the greatest �xed point Ej

(using the approximating sequence given in Property 7.8).

A consequence of this upperbound is that E = E(jQj�2)max 0. As we shall see later,
this can lead to some e�ciency improvements to algorithms computing E. This result is
also noted by Wood in [Wood87, Lemma 2.4.1] and by Brzozowski and Seger in [BS95,

Theorem 10.7]. This upperbound also holds for computing D and [Q]E by approximation.

7.3.4 Characterizing the equivalence classes of E

In this section, we give a characterization of the set [Q]E, the set of equivalence classes of

Q under E. The set [Q]E is the largest (under v) paritition P of Q such that

(8 Q0 : Q0 2 P : (8 p; q : p 2 Q0 ^ q 2 Q0 : (p; q) 2 E))

Our derivation proceeds as follows:

(8 Q0 : Q0 2 P : (8 p; q : p 2 Q0 ^ q 2 Q0 : (p; q) 2 E))

� fProperty 7.2 g

(8 Q0 : Q0 2 P :

(8 p; q : p 2 Q0 ^ q 2 Q0 : (p 2 F � q 2 F ) ^ (8 a : a 2 V : (T (p; a); T (q; a)) 2 E)))

� fmove a to outer quanti�cation g

(8 Q0; a : Q0 2 P ^ a 2 V :

(8 p; q : p 2 Q0 ^ q 2 Q0 : (p 2 F � q 2 F ) ^ (T (p; a); T (q; a)) 2 E))

� f introduced equivalence class Q1 explicitly g

(8 Q0; Q1; a : Q0 2 P ^ Q1 2 P ^ a 2 V :

(8 p; q : p 2 Q0 ^ q 2 Q0 : (p 2 F � q 2 F ) ^ (T (p; a) 2 Q1 � T (q; a) 2 Q1)))

Given the last line above, [Q]E is the largest (under v) partition P such that P v fQg
and for all Q0; Q1 2 P; a 2 V :

(8 p; q : p 2 Q0 ^ q 2 Q0 : (p 2 F � q 2 F ) ^ (T (p; a) 2 Q1 � T (q; a) 2 Q1))

As with the sequence used to compute E, we can make the �rst approximation step, leading

to a simpler characterization of [Q]E. To make this more readable, we de�ne an auxiliary

predicate.

De�nition 7.14 (Predicate Splittable): In order to make this quanti�cation more con-

cise, we de�ne

Splittable (Q0; Q1; a) � (9 p; q : p 2 Q0 ^ q 2 Q0 : (T (p; a) 2 Q1 6� T (q; a) 2 Q1))

2
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Given the de�nition of Splittable (and the last line of the derivation above), we can now

characterize [Q]E.

Property 7.15 (Characterization of [Q]E): [Q]E is the largest (under v) partition P

such that P v [Q]E0 and

(8 Q0; Q1; a : Q0 2 P ^ Q1 2 P ^ a 2 V : :Splittable (Q0; Q1; a))

This characterization will be used in the computation of [Q]E. 2

In [AHU74, p. 157{162], the above characterization of [Q]E is stated as the coarsest

partition problem. That problem can be phrased in one of two ways:

� [Q]E is the coarsest partition of Q compatible with fQg and functions Ta 2 Q �! Q

(for all a 2 V ).

� [Q]E is the coarsest partition of Q compatible with [Q]E0 and functions Ta 2 Q �! Q

(for all a 2 V ).

The second formulation includes the �rst step. In that book, only the single function
problem is considered, whereas the above phrasing includes a transition function Ta for
each alphabet symbol a.

When V = fag (jV j = 1), we have the single transition function Ta 2 Q �! Q. This
means that computing [Q]E is the single-function coarsest partition problem. In [PTB85],
a linear time algorithm is given for this problem; the implication is that a DFA over a one
letter alphabet can be minimized in linear time (instead of O(jQj log jQj) for Hopcroft's

algorithm | the best known general algorithm).

7.4 Algorithms computing E, D, or [Q]
E

In this section, we consider several algorithms that compute D, E, or [Q]E. Some of the
algorithms are presented in general terms: computing D and E. Since only one of D or E

is needed (and not both), such a general algorithm would be modi�ed for practical use to
compute only one of the two.

7.4.1 Computing D and E by layerwise approximations

We now present an implementation of the method of computing E outlined in Property 7.8.

The following algorithm computes D and E (where variable k is a ghost variable, used only

for specifying the invariant)
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Algorithm 7.16:

G;H := D0; E0;

Gold;Hold; k := �; Q�Q; 0;

f invariant: G = Dk ^ H = Ek g

do H 6= Hold !

f G 6= Gold ^ H 6= Hold g

Gold;Hold := G;H;

H := g
0(Hold);

G := :H;

f G = :H g

k := k + 1
odf G = D ^ H = E g

2

We can expand the de�nition of function g
0 and give a more detailed computation of G,

yielding

Algorithm 7.17:

G;H := D0; E0;
Gold;Hold; k := �; Q�Q; 0;

f invariant: G = Dk ^ H = Ek g
do H 6= Hold !
f G 6= Gold ^ H 6= Hold g

Gold;Hold := G;H;
G := ([ p; q : (p; q) 2 Gold _ (9 a : a 2 V : (T (p; a); T (q; a)) 2 Gold) : f(p; q)g);

H := ([ p; q : (p; q) 2 Hold ^ (8 a : a 2 V : (T (p; a); T (q; a)) 2 Hold) : f(p; q)g);

f G = :H g
k := k + 1

odf G = D ^ H = E g

2

This algorithm is said to compute D and E layerwise, since it computes the sequences Dk

and Ek. The update of G and H in the repetition can be made with another repetition as

shown in the program now following.

Algorithm 7.18 (Wood's algorithm | Layerwise computation of D and E):

G;H := D0; E0;

Gold;Hold; k := �; Q�Q; 0;

f invariant: G = Dk ^ H = Ek g
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do H 6= Hold !

f G 6= Gold ^ H 6= Hold g

Gold;Hold := G;H;

for (p; q) : (p; q) 2 Hold !

if (9 a : a 2 V : (T (p; a); T (q; a)) 2 Gold)! G;H := G [ f(p; q)g;H n f(p; q)g
[] (8 a : a 2 V : (T (p; a); T (q; a)) 2 Hold)! skip

fi

rof ;

f G = :H g

k := k + 1

odf G = D ^ H = E g

2

The algorithm can be split into two: one computing only D, and the other computing

only E. The algorithm computing only E is essentially the algorithm presented by Wood

in [Wood87, p. 132]. According to Wood, it is based on the work of Moore [Moor56].
Its running time is O(jQj3). Brauer uses some encoding techniques to provide an O(jQj2)
version of this algorithm in [Brau88], while Urbanek improves upon the space requirements

of Brauer's version in [Urba89]. None of these variants is given here. The algorithm
computing only D does not appear in the literature.

With a little e�ort this algorithm can be modi�ed to compute [Q]E.

7.4.2 Computing D, E, and [Q]E by unordered approximation

Instead of computing each Ek (computing E layerwise), we can compute E by considering
pairs of states in an arbitrary order (as outlined in Property 7.10). In the following algo-
rithm, H is the set of all pairs of states (p; q) such that fp;q � true at each step; similarly,

G is the set of all pairs of states (p; q) such that fp;q � false.

Algorithm 7.19:

G;H := D0; E0;

f invariant: G = :H ^ G � D g
do (9 p; q; a : a 2 V ^ (p; q) 2 H : (T (p; a); T (q; a)) 2 G)!

let p; q : (p; q) 2 H ^ (9 a : a 2 V : (T (p; a); T (q; a)) 2 G);
f (p; q) 2 D g

G;H := G [ f(p; q)g;H n f(p; q)g

odf G = D ^ H = E g

2

At each step, the algorithm chooses a pair (p; q) 2 H such that fp;q should not be true.

This algorithm can be split into one computing only D, and one computing only E.
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Remark 7.20: At the end of each iteration step, it may be that H is not an equivalence

relation | see Property 7.10. A slight modi�cation to this algorithm can be made by

adding the pair (q; p) to H whenever (p; q) is added, and also performing the following

assignment before the od:

H := (MAXv J : J � H ^ J = J

� : J);G := :H

Addition of this assignment makes the algorithm compute the re�nement sequence Ek (see

Property 7.10). This assignment may improve the running time of the algorithm if a cheap

method of computing the quanti�ed MAX is used. The algorithm with this improvement
does not appear in the literature. 2

Converting the above algorithm to compute [Q]E yields the following one (which is also

given by Aho, Sethi, and Ullman in [ASU86, Alg. 3.6]):

Algorithm 7.21:

P := [Q]E0;
f invariant: [Q]E v P v [Q]E0 g

do (9 Q0; Q1; a : Q0 2 P ^ Q1 2 P ^ a 2 V : Splittable (Q0; Q1; a))!

let Q0; Q1; a : Q0 2 P ^ Q1 2 P ^ a 2 V ^ Splittable (Q0; Q1; a);
Q
0

0 := f p j p 2 Q0 ^ T (p; a) 2 Q1 g;
f :Splittable (Q0 nQ

0

0; Q1; a) ^ :Splittable (Q
0

0; Q1; a) g
P := P n fQ0g [ fQ0 nQ

0

0; Q
0

0g
od

f (8 Q0; Q1; a : Q0 2 P ^ Q1 2 P ^ a 2 V : :Splittable (Q0; Q1; a)) g
f P = [Q]E g

2

This algorithm has running time O(jQj2).

7.4.3 More e�ciently computing D and E by unordered ap-

proximation

We present another algorithm that considers pairs of states in an arbitrary order. This

algorithm (which also computes D) consists of two nested repetitions. It is essentially the
same as Algorithm 7.19, with a slight change in loop structure.

Algorithm 7.22:

G;H := D0; E0;
f invariant: G = :H ^ G � D g

do (9 p; q; a : a 2 V ^ (p; q) 2 H : (T (p; a); T (q; a)) 2 G)!

let p; a : p 2 Q ^ a 2 V ^ (9 q : (p; q) 2 H : (T (p; a); T (q; a)) 2 G);
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for q : (p; q) 2 H ^ (T (p; a); T (q; a)) 2 G!

G;H := G [ f(p; q)g;H n f(p; q)g

rof

odf G = D ^ H = E g

2

This algorithm can also be modi�ed to compute only D or only E.

At the end of each outer iteration step, it may be that H is not an equivalence relation.

This can be solved with a symmetrical update of H and an assignment to H as can be

done in Algorithm 7.19. This algorithm does not appear in the literature.

Modifying the above algorithm to compute [Q]E is particularly interesting; the modi�ed
algorithm will be used in Section 7.4.5 to derive an algorithm (by Hopcroft) which is the

best known algorithm for DFA minimization. The modi�cation yields:

Algorithm 7.23:

P := [Q]E0;

f invariant: [Q]E v P v [Q]E0 g
do (9 Q1; a : Q1 2 P ^ a 2 V : (9 Q0 : Q0 2 P : Splittable (Q0; Q1; a)))!

let Q1; a : Q1 2 P ^ a 2 V ^ (9 Q0 : Q0 2 P : Splittable (Q0; Q1; a));
Pold := P ;

f invariant: [Q]E v P v Pold g
for Q0 : Q0 2 Pold ^ Splittable (Q0; Q1; a)!

Q
0

0 := f p j p 2 Q0 ^ T (p; a) 2 Q1 g;

P := P n fQ0g [ fQ0 nQ
0

0; Q
0

0g
rof

f (8 Q0 : Q0 2 P : :Splittable (Q0; Q1; a)) g
od

f (8 Q1; a : Q1 2 P ^ a 2 V : (8 Q0 : Q0 2 P : :Splittable (Q0; Q1; a))) g
f P = [Q]E g

2

The inner repetition `splits' each eligible equivalence class Q0 with respect to pair (Q1; a).

(In actuality, some particular Q0 will not be split by (Q1; a) if :Splittable (Q0; Q1; a).)

7.4.4 An algorithm due to Hopcroft and Ullman

From the de�nition of D, we see that a pair (p; q) is in D if and only if p 2 F 6� q 2 F or

there is some a 2 V such that (T (p; a); T (q; a)) 2 D. This forms the basis of the algorithm

considered in this section. With each pair of states (p; q) we associate a set of pairs of
states L(p; q) such that

(r; s) 2 L(p; q)) ((p; q) 2 D ) (r; s) 2 D)
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We start with D0 as our approximation of D. For each pair (p; q) (such that (p; q) 62 D0

| p and q are not already known to be distinguished) we do the following:

� If there is an a 2 V such that we know that (T (p; a); T (q; a)) 2 D then (p; q) 2 D. We
add (p; q) to our approximation of D, along with L(p; q), and for each (r; s) 2 L(p; q)

add L(r; s), and for each (t; u) 2 L(r; s) add L(t; u), etc.

� If there is no a 2 V such that (T (p; a); T (q; a)) 2 D is known to be true, then for

all b 2 V we put (p; q) in the set L(T (p; b); T (q; b)) since (T (p; b); T (q; b)) 2 D )

(p; q) 2 D. If later it turns out that for some b 2 V , (T (p; b); T (q; b)) 2 D, then we
will also put L(T (p; b); T (q; b)) (including (p; q)) in D.

In our presentation of the algorithm, the invariants given are not su�cient to prove the

correctness of the algorithm, but are used to illustrate the method in which the algorithm

works.

Algorithm 7.24:

for (p; q) : (p; q) 2 (Q�Q)!

L(p; q) := �

rof ;
G := D0;

f invariant: G � D

^ (8 p; q : (p; q) 62 D0 : (8 r; s : (r; s) 2 L(p; q) : (p; q) 2 D ) (r; s) 2 D)) g
for (p; q) : (p; q) 62 D0 !

if (9 a : a 2 V : (T (p; a); T (q; a)) 2 G)!

toadd ; added := f(p; q)g;�;

f invariant: toadd � D ^ added � G ^ toadd \ added = �

^ toadd [ added = ([ p; q : (p; q) 2 added : L(p; q)) [ f(p; q)g g
do toadd 6= �!

let (r; s) : (r; s) 2 toadd ;
G := G [ f(r; s)g;
toadd; added := toadd n f(r; s)g; added [ f(r; s)g;

toadd := toadd [ (L(r; s) n added)

od

[] (8 a : a 2 V : (T (p; a); T (q; a)) 62 G)!

for a 2 V : T (p; a) 6= T (q; a)!
f (T (p; a); T (q; a)) 2 D ) (p; q) 2 D g

L(T (p; a); T (q; a)) := L(T (p; a); T (q; a))[ f(p; q)g

rof

fi

roff G = D g

2
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This algorithm has running time O(jQj2) and is given by Hopcroft and Ullman [HU79,

Fig. 3.8]. In [HU79] it is attributed to Hu�man [Hu�54] and Moore[Moor56]. In their

description, Hopcroft and Ullman describe L as mapping each pair of states to a list of

pairs of states. The list data-type is not required here, and a set is used here instead.

It is possible to modify the above algorithm to compute E. Such an algorithm does
not appear in the literature.

7.4.5 Hopcroft's algorithm to compute [Q]E e�ciently

We now derive an e�cient algorithm due to Hopcroft [Hopc71]. This algorithm has also

been derived by Gries [Grie73]. This algorithm presently has the best known running time
analysis of all DFA minimization algorithms.

We begin with Algorithm 7.23. Recall that the inner repetition `splits' each equivalence

class Q0 with respect to pair (Q1; a). An observation (due to Hopcroft) is that once all
equivalence classes have been split with respect to a particular (Q1; a), no equivalence

classes need to be split with respect to the same (Q1; a) on any subsequent iteration step
of the outer repetition [Hopc71, pp. 190{191], [Grie73, Lemma 5]. The observation is
simple to prove: the equivalence classes never grow in size, and we need only prove that

(for all equivalence classes Q0):

:Splittable (Q0; Q1; a)) (8 Q

0

0 : Q
0

0 � Q0 : :Splittable (Q
0

0; Q1; a))

We can use this fact to maintain a set L of pairs, where each pair consists of an equivalence
class and an alphabet symbols. We will then split the equivalence classes with respect to
elements of L. In the original presentations of this algorithm [Hopc71, Grie73], L is a list.

As this is not necessary, we retain L's type as a set; in Chapter 11 (User function 11.7) we
will see an e�cient encoding of L as an array.

P := [Q]E0;
L := P � V ;
f invariant: [Q]E v P v [Q]E0 ^ L � (P � V )

^ L � f (Q1; a) j (Q1; a) 2 (P � V ) ^ (9 Q0 : Q0 2 P : Splittable (Q0; Q1; a)) g
^ L = �) P = [Q]E g

do L 6= �!

let Q1; a : (Q1; a) 2 L;

Pold := P ;

L := L n f(Q1; a)g;
f invariant: [Q]E v P v Pold g
for Q0 : Q0 2 Pold ^ Splittable (Q0; Q1; a)!

Q
0

0 := f p j p 2 Q0 ^ T (p; a) 2 Q1 g;

P := P n fQ0g [ fQ0 nQ
0

0; Q
0

0g;

for b : b 2 V !

if (Q0; b) 2 L! L := L n f(Q0; b)g [ f(Q
0

0; b); (Q0 nQ
0

0; b)g



208 CHAPTER 7. DFA MINIMIZATION ALGORITHMS

[] (Q0; b) 62 L! L := L [ f(Q0

0; b); (Q0 nQ
0

0; b)g

f i

rof

rof

f (8 Q0 : Q0 2 P : :Splittable (Q0; Q1; a)) g
odf P = [Q]E g

The innermost update of L is intentionally clumsy and will be used to arrive at the algo-

rithm given by Hopcroft and Gries. In the update of set L, if (Q0; b) 2 L (for some b 2 V )

and Q0 has been split into Q0 nQ
0

0 and Q
0

0 then (Q0; b) is replaced (in L) by (Q0 n Q
0

0; b)

and (Q0

0; b).
Another observation due to Hopcroft is shown in the following lemma (which is taken

from [Hopc71, pp. 190{191] and [Grie73, Lemma 6]).

Lemma 7.25 (Redundant splitting): Splitting an equivalence class with respect to
any two of (Q0; b), (Q

0

0; b), and (Q0 n Q
0

0; b) (where Q
0

0 � Q0) is the same as splitting the

equivalence class with respect to all three.
Proof:

We only prove that: if an equivalence class Q̂ has been split with respect to (Q0; b) and

(Q0

0; b), then it need not be split with respect to (Q0 nQ
0

0; b). The two remaining cases can
be proven analogously.

:Splittable (Q̂;Q0; b) ^ :Splittable (Q̂;Q
0

0; b)

� fDe Morgan g

:(Splittable (Q̂;Q0; b) _ Splittable (Q̂;Q0

0; b))

� fde�nition of Splittable g

:((9 p; q : p; q 2 Q̂ : T (p; b) 2 Q0 6� T (q; b) 2 Q0)

_ (9 p; q : p; q 2 Q̂ : T (p; b) 2 Q0

0 6� T (q; b) 2 Q0

0))

� f combine existential quanti�cations g

:(9 p; q : p; q 2 Q̂ : (T (p; b) 2 Q0 6� T (q; b) 2 Q0) _ (T (p; b) 2 Q0

0 6� T (q; b) 2 Q0

0))

) fQ0

0 � Q0 g

:(9 p; q : p; q 2 Q̂ : T (p; b) 2 Q0 nQ
0

0 6� T (q; b) 2 Q0 nQ
0

0)

� fde�nition of Splittable g

:Splittable (Q̂;Q0 nQ
0

0; b)

2

Given the lemma above, for e�ciency reasons we therefore choose the smallest two of
the three (comparing jQ0j, jQ

0

0j, and jQ0 n Q
0

0j) in the update of set L. If (Q0; b) 62 L,

then splitting has already been done with respect to (Q0; b) and we add either (Q0

0; b) or

(Q0 n Q
0

0; b) (whichever is smaller) to L. On the other hand, if (Q0; b) 2 L, then splitting
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has not yet been done and we remove (Q0; b) from L and add (Q0

0; b) and (Q0 n Q
0

0; b)

instead.

Lastly, we observe that by starting with P = [Q]E0 = fQ n F;Fg we have already split

Q. As a result, we need only split with respect to either (Q n F; b) or (F; b) (for all b 2 V )

[Hopc71, pp. 190{191], [Grie73, Lemma 7]. This gives the algorithm:

Algorithm 7.26 (Hopcroft):

P := [Q]E0;

if jF j � jQ n F j ! L := fFg � V

[] jF j > jQ n F j ! L := fQ n Fg � V

f i;

f invariant: [Q]E v P v [Q]E0 ^ L � (P � V )

^ L = �) P = [Q]E g
do L 6= �!

let Q1; a : (Q1; a) 2 L;
Pold := P ;
L := L n f(Q1; a)g;

f invariant: [Q]E v P v Pold g
for Q0 : Q0 2 Pold ^ Splittable (Q0; Q1; a)!

Q
0

0 := f p j p 2 Q0 ^ T (p; a) 2 Q1 g;

P := P n fQ0g [ fQ0 nQ
0

0; Q
0

0g;
for b : b 2 V !

if (Q0; b) 2 L! L := L n f(Q0; b)g [ f(Q
0

0; b); (Q0 nQ
0

0; b)g

[] (Q0; b) 62 L!
if jQ0

0j � jQ0 nQ
0

0j ! L := L [ f(Q0

0; b)g
[] jQ0

0j > jQ0 nQ
0

0j ! L := L [ f(Q0 nQ
0

0; b)g
f i

f i

rof

rof

f (8 Q0 : Q0 2 P : :Splittable (Q0; Q1; a)) g

odf P = [Q]E g

2

The running time analysis of this algorithm is complicated and is not discussed here. It is

shown by both Gries and Hopcroft that it is O(jQj log jQj), [Grie73, Hopc71]. A simpler
derivation of the running time of this algorithm is given by Keller and Paige in [KP95].

A very di�erent derivation of this algorithm is given by Keller and Paige in [KP95]. In
their paper, the algorithm is presented as an example of program derivation in their new

framework. Interestingly, their derivation is not only clear, but they also manage to derive

a new version which is more space e�cient than the one presented here.
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7.4.6 Computing (p; q) 2 E

From the problem of deciding the structural equivalence of two types, it is known that

equivalence of two states can be computed recursively by turning the mutually recursive

set of equivalences fp;q (from Property 7.10) into a functional program. If the de�nition

were to be used directly as a functional program, there is the possibility of non-termination.

In order for the functional program to work, it takes a third parameter along with the two
states.

The following program, similar to the one presented in [t-Ei91], computes relation E

pointwise; an invocation equiv (p; q;�) determines whether states p and q are equivalent.

It assumes that two states are equivalent (by placing the pair of states in S, the third
parameter) until shown otherwise.

func equiv (p; q; S)!

if fp; qg 2 S ! eq := true

[] fp; qg 62 S !

eq := (p 2 F � q 2 F );
eq := eq ^ (8 a : a 2 V : equiv (T (p; a); T (q; a); S [ ffp; qgg))

f i;

return eq

cnuf

The 8 quanti�cation can be implemented using a repetition

func equiv (p; q; S)!
if fp; qg 2 S ! eq := true

[] fp; qg 62 S !
eq := (p 2 F � q 2 F );
for a : a 2 V !

eq := eq ^ equiv (T (p; a); T (q; a); S [ ffp; qgg)
rof

fi;

return eq

cnuf

The correctness of this program is shown in [t-Ei91]. Naturally, the guard eq can be used in
the repetition (to terminate the repetition when eq � false) in a practical implementation.

This optimization is omitted here for clarity.

There are a number of methods for making this program more e�cient. From Sec-

tion 7.3.3 recall that E = E(jQj�2)max 0. We add a parameter k to function equiv such that
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an invocation equiv (p; q;�; k) returns (p; q) 2 Ek as its result. It follows that an invoca-

tion equiv (p; q;�; (jQj � 2)max0) returns (p; q) 2 E as its result. The recursion depth is

bounded by (jQj � 2)max 0. The new function is

func equiv (p; q; S; k)!
if k = 0! eq := (p 2 F � q 2 F )

[] k 6= 0 ^ fp; qg 2 S ! eq := true

[] k 6= 0 ^ fp; qg 62 S !

eq := (p 2 F � q 2 F );

for a : a 2 V !

eq := eq ^ equiv (T (p; a); T (q; a); S [ ffp; qgg; k � 1)
rof

fi;

return eq

cnuf

The third parameter S is made a global variable, improving the e�ciency of this algorithm
in practice. As a result, equiv is no longer a functional program in the sense that it now
makes use of a global variable. The correctness of this transformation is shown in [t-Ei91].

We assume that S is initialized to �. When S = �, an invocation equiv (p; q; (jQj �
2)max0) returns (p; q) 2 E; after such an invocation S = �.

Algorithm 7.27 (Pointwise computation of E):

func equiv (p; q; k)!

if k = 0! eq := (p 2 F � q 2 F )
[] k 6= 0 ^ fp; qg 2 S ! eq := true

[] k 6= 0 ^ fp; qg 62 S !
eq := (p 2 F � q 2 F );
S := S [ ffp; qgg;
for a : a 2 V !

eq := eq ^ equiv (T (p; a); T (q; a); k� 1)

rof ;

S := S n ffp; qgg
f i;
return eq

cnuf

2
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The procedure equiv can be memoized4 to further improve the running time in practice.

This algorithm does not appear in the literature.

7.4.7 Computing E by approximation from below

This latest version of function equiv can be used to compute E and D (assuming IQ is the
identity relation on states, and S is the global variable used in Algorithm 7.27):

Algorithm 7.28 (Computing E from below):

S;G;H := �;�; IQ;

f invariant: G � D ^ H � E g

do (G [H) 6= Q�Q!
let p; q : (p; q) 2 ((Q�Q) n (G [H));

if equiv (p; q; (jQj � 2)max 0)! H := H [ f(p; q)g

[] :equiv (p; q; (jQj � 2)max 0)! G := G [ f(p; q)g
f i

odf G = D ^ H = E g

2

Further e�ciency improvements can be made as follows:

� We change the initialization of G to G := D0, equivalently G := ((QnF )�F )[ (F �
(Q n F )).

� As in Remark 7.20, we make use of the fact that E = E
�; obviously E is symmetrical,

halving the required amount of computation | we can update H with the pair (q; p)
whenever we add (p; q). H can also be updated at each iteration step by H := H

�.
In Chapter 11 we will describe an implementation of the above algorithm that uses
data-structures particularly suited to the �-closure operation.

� Make use of the facts that

(p; q) 62 E ) (8 r; s : r 2 Q ^ s 2 Q

^ (9 w : w 2 V � : T �(r; w) = p ^ T �(s;w) = q) : (r; s) 62 E)

(p; q) 2 E ) (8 w : w 2 V � : (T �(p;w); T �(q; w)) 2 E)

The �rst implication states that if p; q are two distinguished states, and r; s are two
states such that there is w 2 V

� and T (r; w) = p ^ T (s;w) = q, then r; s are also
distinguished. The second implication states that if p; q are two equivalent states,

4Memoizing a functional program means that the parameters and the result of each invocation are
tabulated in memory; if the function is invoked again with the same parameters, the tabulated return
value is fetched and returned without recomputing the result.
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and r; s are two states such that there is w 2 V
� and T (p;w) = r ^ T (q; w) = s,

then r; s are also equivalent.

The �rst of the two above facts is particularly di�cult to implement in practice,

since the transition functions would have to be traversed from right to left; this is

backwards for most implementations, as is shown in Chapter 11.

Although this algorithm has worse running time than the O(jQj log jQj) of Hopcroft's

algorithm [Hopc71, Grie73], in practice the di�erence is often not signi�cant (see Chap-

ter 15 where a non-memoizing version of equiv was used). This algorithm has a signi�cant

advantage over all of the known algorithms: although function equiv computes E pointwise

from above (with respect to v, re�nement), the main program computes E from below

(with respect to �, normal set inclusion5). As such, any intermediate result H in the

computation of E is usable in (at least partially) reducing the size of an automaton; all of

the other algorithms presented have unusable intermediate results. This property has use
in reducing the size of automata when the running time of the minimization algorithm is

restricted for some reason (for example, in real-time applications).

7.5 Conclusions

The conclusions about minimization algorithms are:

� A derivation of Brzozowski's minimization algorithm was presented. This derivation

proved to be easier to understand than either the original derivation (by Brzozowski),
or the derivations given by Kameda and by van de Snepscheut. A brief history of
the minimization algorithm was presented, hopefully resolving some misattributions

of its discovery.

� The de�nition of equivalence (relation E) and distinguishability (relation D) as �xed

points of certain functions proved easier to understand than many text-book presen-

tations.

� The �xed point characterization of E made it particularly easy to calculate an up-

perbound on the number of approximation steps required to compute E (or D).

This upperbound later proved useful in determining the running time of some of the

algorithms, and also in making e�ciency improvements to the pointwise algorithm.

� The de�nition of E as a greatest �xed point helped to identify the fact that all of the

(previously) known algorithm computed E from above (with respect to re�nement).

As such, all of these algorithms have intermediate results that are not usable in
minimizing the �nite automaton.

5This is set inclusion, as opposed to re�nement, since the intermediate result H may not be an equiv-
alence relation during the computation.
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� We successfully presented all of the well-known text-book algorithms in the same

framework. Most of them were shown to be essentially the same, with minor di�er-

ences in their loop structures. One exception was Hopcroft and Ullman's algorithm

[HU79], which has an entirely di�erent loop structure. The presentation of that

algorithm (with invariants) in this chapter is arguably easier to understand than
the original presentation. Our presentation highlights the fact that the main data-
structure in the algorithm need not be a list | a set su�ces.

� Hopcroft's minimization algorithm [Hopc71] was originally presented in a style that
is not very understandable. As with Gries's paper [Grie73], we strive to derive this

algorithm in a clear and precise manner. The presentation in this chapter highlights

two important facts: the beginning point for the derivation of this algorithm is one of

the easily understood straightforward algorithms; and, the use of a list data-structure

in both Hopcroft's and Gries's presentation of this algorithm is not necessary | a

set can be used instead.

� This chapter presented several new minimization algorithms, many of which were
variations on the well-known algorithms. Two of the new algorithms (presented in
Sections 7.4.6 and 7.4.7) are not derived from any of the well-known algorithms, and

are signi�cant in their own right.

{ An algorithm was presented that computes the relation E in a pointwise manner.

This algorithm was re�ned from an algorithm used to determine the structural
equivalence of types. Several techniques played important roles in the re�ne-

ment:

� The upperbound on the number of steps required to compute E was used to
improve the algorithm by limiting the number of pairs of states that need

to be considered in computing E pointwise.

� Memoization of the functional-program portion of the algorithm can be
used to reduce the amount of redundant computation.

{ A new algorithm was presented, that computes E from below. This algorithm

makes use of the pointwise computation of E to construct and re�ne an approx-
imation of E. Since the computation is from below, the intermediate results of

this algorithm are usable in (at least partially) reducing the size of the DFA.

This can be useful in applications where the amount of time available for mini-

mization of the DFA is limited (as in real-time applications). In contrast, all of
the (previously) known algorithms have unusable intermediate results.
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Chapter 8

Designing and implementing class libraries

In this part of the dissertation, we will consider the design and implementation of class
libraries of the algorithms derived in Part II. In this chapter, we briey discuss some of

the issues involved in designing, implementing, and presenting class libraries (or toolkits).

The following description of a toolkit is taken from [GHJV95, p. 26]:

A toolkit is a set of related and reusable classes designed to provide useful,

general-purpose functionality. Toolkits don't impose a particular design on
your application; they just provide functionality that can help your application
do its job. They are the object-oriented equivalent of subroutine libraries.

We will use the terms class library, library, and toolkit interchangeably. We will also use
the term client to refer to a program that makes use of classes in the toolkit, or the author
of such a program. The important aspects and design goals of a toolkit are:

� Toolkits do not provide a user interface. (Toolkits that do provide user interfaces
should be placed in the category of `application program'.)

� The classes in the toolkit must have a coherent design, meaning that they are designed
and coded in the same style. They have a clear relationship and a logical class

hierarchy.

� The client interface to the library must be easily understood, permitting clients to

make use of the library with a minimum of reading.

� The e�ciency of using the classes in the toolkit must be comparable to hand-coded

special-purpose routines | the toolkit must be applicable to production quality soft-

ware.

� To provide an educational use for the toolkits, and to allow clients to easily modify

classes and member functions, the method of implementation must be clear and
understandable.

The toolkits described in this part are implemented in the C++ programming language,
which was chosen because of its widespread availability. E�orts were made to refrain from

217
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using obscure features of C++ (such as RTTI or name spaces), or language features not eas-

ily found in other object-oriented programming languages (such as multiple-inheritance).

Throughout this part of the dissertation, we assume that the reader is familiar with

the C++ language and object-oriented terminology (especially the C++ variety). For

the uninitiated, the C++ literature can be divided into three groups: introductions to
C++ [Lipp91, Stro91], advanced C++ [Copl92, SE90], C++ tricks and techniques [HN92,
MeyS92, Murr93], and (of course) the draft standard. Introductions to object-oriented

design and programming can be found in [Booc94, Budd91, MeyB88, Tali94, Wein95].

The general process of library design will not be described here, as there is a large body

of literature discussing this issue. The following books are of particular relevance:

� [GHJV95, Souk94] discuss `design patterns' (not related to our pattern matching

problem) which are used heavily in library design.

� [CE95], [Stro91, Chapter 13] and [Stro94, Chapter 8] provide a general discussion of

C++ library design.

� [MeyB94] is an excellent treatment of the design of a number of loosely coupled
libraries in the Ei�el programming language. Many of the concepts and techniques
discussed in the book are broadly applicable to C++ as well.

� [Plau95, Teal93] discuss the design and implementation of speci�c C++ libraries |
the standard C++ library1 and the IOStreams (input and output) class libraries

respectively.

The toolkit related terms that we will use in this part are de�ned as follows.

De�nition 8.1 (Toolkit terminology): We de�ne the following types of classes:

User: A class intended for use by a client program.

Client: A class de�ned in the client program.

Implementation: A class de�ned in the toolkit for exclusive use by the toolkit. The class
is used to support the implementation of the client classes.

Foundation: Those implementation classes which are simple enough to be reused in other

(perhaps unrelated) class libraries.

Interface: An abstract (pure virtual) class which is declared to force a particular public

interface upon its inheritance descendants.

Base: An inheritance ancestor of a particular class.

Derived: An inheritance descendant of a particular class.

Note that the terms base and derived are relative. 2

1Plauger's book considers the implementation of an early, and now defunct, draft of the standard library



8.1. MOTIVATIONS FOR WRITING CLASS LIBRARIES 219

8.1 Motivations for writing class libraries

There are a number of motivations for creating the class libraries (which will be described

in Chapters 9, 10, and 11):

� Until now, few general purpose toolkits of pattern matchers or �nite automata con-

struction algorithms existed. The �nite automata toolkits that do exist are not

intended for general use in production quality software.

� The level of coherence normally required to implement a toolkit was not previously

possible. The literature on pattern matching algorithms was scattered and in some

places incomplete. With the construction of the taxonomies, all of the algorithms

are described in a coherent fashion, allowing us to base the class library structures
on the taxonomy structure.

� The uniformity of implementation that was possible (given the taxonomies) had two
important e�ects:

{ Clients need not examine the source code in order to make a decision on which

class to use; the quality of the implementations of each of the pattern matchers
is roughly the same.

{ Uniformity gives greater con�dence in the accuracy of relative performance com-
paring di�erent algorithms (as is presented in Part IV of this dissertation).

� The toolkits and the taxonomies can serve as examples of implementation techniques
for class libraries; in particular methods for organizing template classes2 and class

hierarchies.

� Implementing the abstract algorithm can be painless and fun, given the taxonomy

presentation of the algorithms and their correctness arguments.

8.2 Code sharing

One of the main aims of object-oriented programming is that it permits, and even en-
courages, code sharing (or code reuse). The code reuse in object-oriented programming

corresponds neatly with the factoring of common parts of algorithms in the taxonomies.

Although code sharing can be achieved in a number of ways, in this section we discuss
four techniques which could have been used in the design of the toolkits. The �rst discussion
centres around the use of base classes (with virtual member functions) versus templates.

The second discussion concerns the use of composition versus protected inheritance.

2We use the term template class, as opposed to class template suggested by Carroll and Ellis in [CE95].
Our choice was made to correspond to the term generic class used in some other object-oriented program-
ming languages.
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8.2.1 Base classes versus templates

A number of the pattern matching objects have common functionality, and it seems wasteful

to duplicate the code in each of the speci�c types of pattern matchers.

The obvious design involves creating a new base class and factoring the common code

into the base class. Each of the pattern objects would then inherit from this base, and

provide speci�c virtual member functions to obtain the desired functionality. For example,

the Commentz-Walter algorithms all share a common algorithm skeleton; they each have
speci�c shift functions. We could create a CW base class with the functionality of the

skeleton, and provide a virtual `shift distance' member function to obtain the Commentz-

Walter variants.

The advantage of this approach is its elegance. It provides a relatively easy to under-
stand class hierarchy, which largely reects the structure of the taxonomy presented in

Chapter 4. Furthermore, a member function which takes (as parameter) a pointer to a

CW object need not know which particular variant (of a CW object) the pointer points

to, only that the CW object satis�es the general CW functionality. This solution provides
code reuse at both the source language and executable image levels. The disadvantage is
that it would require a virtual function call for every shift. Indeed, if the same technique

was used to factor the common code from the Aho-Corasick variants, it would require a

virtual function call for every character of the input string.

The other approach is to create a template class CW, which takes a `shifter class' as its
template (type) parameter. We would then provide a number of such shifter classes, for

use as template parameters | each giving rise to one of the Commentz-Walter variants.

The primary advantage of this approach is that it is e�cient: when used to implement
the Aho-Corasick algorithms, each character in the input string will require a non-virtual
function call (which may be inlined, unlike virtual function calls). The disadvantages are
twofold: pointers to the variants of the CW algorithms are not interchangeable, and code

will be generated for each of the CW variants. The code reuse is at the source level, and
not at the executable image level.

It is expected that few clients of the toolkits will instantiate objects of di�erent CW
classes, for example. A programmer writing an application using pattern matching is

more likely to choose a particular type of pattern matcher, as opposed to creating objects

of various di�erent types. For this reason, the advantages of the template approach are

deemed to outweigh its disadvantages, and we prefer to use it over base classes in the
toolkits.

8.2.2 Composition versus protected inheritance

Composition (sometimes called the has-a relationship) and protected inheritance (some-

times called the is-a relationship) are two additional solutions to code sharing. We illustrate

the di�erences between these two solutions using an example. When implementing a Set

class, we may wish to make use of an already-existing Array class. There are two ways to

do this: protected inheritance and composition.
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With protected inheritance, class Set inherits from Array in a protected way. Class

Set still gets the required functionality from Array, but the protected inheritance prevents

the is-a relation between Set and Array (that is, we cannot treat a Set as an Array).

The advantage of this approach is that it is elegant, and it is usually the approach taken

in languages such as Smalltalk and Objective-C [Budd91]. The disadvantage is that the
syntax of C++ places the inheritance clause at the beginning of the class declaration of Set,
making it plain to all clients of Set that it is implemented in terms of Array. Furthermore,

protected inheritance (and indeed private inheritance) is one of the rarely-used corners of

C++, and it is unlikely to be familiar to the average programmer [MeyS92, Murr93].

In a composition approach, an object of class Set has (in its private section) an object

of class Array. The Set member functions invoke the appropriate member functions of

Array to provide the desired functionality. The advantage of this approach is that it places
all implementation details in the private section of the class de�nition. The disadvantage

is that it deviates from the accepted practice of inheriting for implementation in some

other languages. It is, however, the standard approach in C++. At �rst glance, it would
appear that composition can lead to some ine�ciency: in our example, an invocation of a
Set member function would, in turn, call an Array member function. These extra function
calls, usually called pass-throughs, are frequently eliminated through inlining.

There are no e�ciency-based reasons to choose one approach over the other. For

this reason, we arbitrarily choose composition because of the potential readability and
understandability problems with protected inheritance.

8.3 Coding conventions and performance issues

At this time, coding in C++ presents at least two problems: the language is not yet stable
(it is still being standardized) and, correspondingly, the standard class libraries are not yet

stable.

In designing the libraries, every e�ort was made to use only those language features
which are well-understood, implemented by most compilers and almost certain to remain in
the �nal language. Likewise, the use of classes from the proposed standard library, or from
the Standard Template Library [SL94], was greatly restricted. A number of relatively simple

classes (such as those supporting strings, arrays, and sets) were de�ned from scratch, in

order to be free of library changes made by the standardizing committee. A future version
of the toolkits will make use of the standard libraries once the International Standards
Organization has approved the C++ standard.

In the object-oriented design process, it is possible to go overboard in de�ning classes

for even the smallest of objects | such as alphabet symbols, and the states of a �nite

automaton. In the interests of e�ciency, we draw the line at this level and make use of

integers for such basic objects.

Almost all of the classes in the toolkits have a corresponding class invariant member

function, which returns TRUE if the class is structurally correct, and FALSE otherwise.
Structural invariants have proven to be particularly useful in debugging and in understand-
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ing the code (the structural invariant is frequently a good �rst place to look when trying

to understand the code of a class). For this reason, they have been left in the released code

(they can be disabled as described in the next section).

We use a slightly non-traditional way of splitting the source code into �les. The public

portion of a class declaration is given in a .hpp �le, while the private parts are included

from a .ppp �le. There is a corresponding .cpp �le containing all of the out-of-line mem-

ber function de�nitions. A .ipp �le contains member functions which can be inlined for

performance reasons. By default the member functions in the .ipp �le are out-of-line. The
inlining can be enabled by de�ning the macro INLINING. To implement such conditional

inlining, the .ipp �le is conditionally included into the .hpp or the .cpp �le. The inlining

should be disabled during debugging or for smaller executable images.

8.3.1 Performance tuning

The algorithms implemented in the taxonomy are already highly tuned from an algorithmic

point of view. Clients that �nd the performance inadequate should take the following steps

in order until the performance is su�cient:

1. Ensure that assertions are disabled (by de�ning the NDEBUG macro | see [ISO90,
Section 7.2]).

2. Enable appropriate compiler optimizations.

3. De�ne macro INLINING to obtain inlining of member functions.

4. Pro�le the code to determine `hot-spots'.

5. Inline any out-of-line functions whose call-overhead is contributing to the hot-spots.

6. De�ne and use special versions of the new and delete operators for the classes that
make extensive use of heap memory (and are contributing to the hot-spots).

7. If a lot of time is spent in copy constructors, convert the o�ending class to make use
of use-counting.

8. When using a class with one or more virtual member functions, and the virtual func-

tion calls are causing hot-spots: atten the class hierarchy, eliminating the virtuality

of the functions and convert calls to them into normal (non-virtual) function calls.
(Note that this is a last resort, since every e�ort has been made to reduce the number

of virtual function calls, and it involves the modi�cation of the library source code.)

9. Contact me.
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8.4 Presentation conventions

In the following chapters, some of the source code of the toolkits will be presented. In the

presentation of a particular source �le, we typeset the program variables in a roman shape.

When the same variable is discussed in running text, we typeset it in an italic shape.

Since composition and templates are preferred over inheritance, very little inheritance

is present in the toolkits. As a result, we will not present any inheritance graphs in this

dissertation.

Each class is presented in a standard format. The following items appear in the de-

scription of a class:

1. The name of the class and whether it is a user-level class (one for use by clients), or

an implementation class (for use by other classes within the toolkit).

2. The Files clause lists the �les in which the class declaration and de�nition are stored.

The names of the �les associated with a class are usually the class name, followed
by .hpp for interface (or header) �les, .ppp for private section �les, .ipp for inline
member function de�nitions, and .cpp for out-of-line de�nition �les. In this clause,
we only mention the root �le name (without the su�x). All �le names are short

enough for use under MS-Dos.

3. The Description clause gives a brief description of the purpose of the class.

4. The optional Implementation clause outlines the implementation of the class.

5. The optional Performance clause gives some suggestions on possible performance
improvements to the implementation of the class.

6. The description ends with the 2 symbol.



224 CHAPTER 8. DESIGNING AND IMPLEMENTING CLASS LIBRARIES



Chapter 9

SPARE Parts: String PAttern REcognition in

C++

This chapter contains a description of a C++ pattern matching toolkit known as the SPARE

Parts (String PAttern REcognition). Both the client interface and aspects of the design
and implementation are considered.

9.1 Introduction and related work

The SPARE Parts is the second generation string pattern matching toolkit from the Eind-
hoven University of Technology. The �rst toolkit (called the Eindhoven Pattern Kit, written

in C, and described in [Wat94a, Appendix A]) is a procedural library based upon the

original taxonomy of pattern matching algorithms [WZ92]. Experience with the toolkit re-
vealed a number of de�ciencies, detailed as follows. The rudimentary and explicit memory
management facilities in C caused a number of errors in the code, and made it di�cult to
perform pattern matching over more than one string simultaneously (in separate threads

of the program) without completely duplicating the code. While the performance of the
toolkit was excellent, some of the speed was due to sacri�ces made in the understandability
of the client interface.

There are other existing pattern matching toolkits, notably the toolkit of Hume and

Sunday [HS91]. Their toolkit consists of a number of implementations of Boyer-Moore type
algorithms | organized so as to form a taxonomy of the Boyer-Moore family of algorithms.

Their toolkit was primarily designed to collect performance data on the algorithms. As a
result, the algorithms are implemented (in C) for speed and they sacri�ce some of the safety
that would normally be expected of a general toolkit. Furthermore, the toolkit does not

include any of the non-Boyer-Moore pattern matching algorithms (other than a brute-force

pattern matcher) | most noticeably, there are no multiple keyword pattern matchers.

The SPARE Parts is a completely redesigned and object-oriented implementation of the

algorithms appearing in Chapter 4. The SPARE Parts is designed to address the shortcom-
ings of both of the toolkits described above. The following are the primary features of the

library:

225
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� The design of the SPARE Parts follows the structure of the taxonomy in Chapter 4

more closely. As a result, the code is easier to understand and debug. In addition,

the SPARE Parts includes implementations of almost all of the algorithms described

in Chapter 4.

� The use of C++ (instead of C) for the implementation has helped to avoid many of

the memory management-related bugs that were present in the original toolkit.

� The client interface to the toolkit is particularly easy to understand and use. The

exibility introduced into the interface does not reduce the performance of the code

in any signi�cant way.

� The toolkit supports multi-threaded use of a single pattern matching object.

The toolkit is presented largely in a top-down fashion | from the client level classes to

the foundation classes. The reader is assumed to have an overview of the taxonomy given
in Chapter 4. Chapter 9 is structured as follows:

� Section 9.2 gives an introduction to the client interface of the toolkit. It includes
some examples of programs which use the SPARE Parts.

� Section 9.3 describes the design decisions that lead to the client interface de�ned

(with the use of abstract classes) in the toolkit.

� The design and implementation of concrete classes (implementing the client interface)

is outlined in Section 9.4.

� Section 9.5 outlines the design and implementation of the foundation classes.

� Section 9.6 presents some experiences with the toolkit and the conclusions of this

chapter.

� Some information on how to obtain and compile the toolkit is given in Section 9.7.

This chapter can also be read e�ectively with the source code of the toolkit.

9.2 Using the toolkit

In this section, we describe the client interface of the toolkit and present some examples
of programs using the toolkit. The design issues that lead to the current client interface

are not described here, but rather in Section 9.3.
The client interface de�nes two types of abstract pattern matchers: one for single

keyword pattern matching, and one for multiple keyword pattern matching. (A future

version of SPARE Parts can be expected to include classes for regular expression pattern
matching | for example, an implementation of the algorithm described in Chapter 5.) All

of the single keyword pattern matching classes have constructors which take a keyword.
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Likewise, the multiple keyword pattern matchers have constructors which take a set of

keywords. Both types of pattern matchers make use of call-backs (to be explained shortly)

to register matched patterns. In order to match patterns using the call-back mechanism,

the client takes the following steps (using single keyword pattern matching as an example):

1. A pattern matching object is constructed (using the pattern as the argument to the

constructor).

2. The client calls the pattern matching member function PMSingle::match, passing

the input string and a pointer f to a client de�ned function which takes an int and

returns an int1. (This function is called the call-back function.)

3. As each match is discovered by the member function, the call-back function is called;

the argument to the call is the index (into the input string) of the symbol immediately

to the right of the match. (If there is no symbol immediately to the right, the length

of the input string is used.)

4. If the client wishes to continue pattern matching, the call-back function returns the
constant TRUE, otherwise FALSE.

5. When no more matches are found, or the call-back function returns FALSE, the
member function PMSingle::match returns the index of the symbol immediately to
the right of the last symbol processed.

We now consider an example of single keyword pattern matching.

Example 9.1 (Single keyword matching): The following program searches an input
string for the keyword hisher, printing the locations of all matches along with the set of

matched keywords:

#include "com-misc.hpp"

#include "pm-kmp.hpp"

#include <iostream.h>

static int report( int index ) f

cout << index << \n;

return( TRUE );

g

int main( void ) f 10

auto PMKMP Machine( "hisher" );

Machine.match( "hishershey", &report );

1The integer return value is a Boolean value; recall that TRUE and FALSE have type int in C and
C++. A recent draft of the C++ standard indicates that bool will be a new type (and a new keyword);
the compilers used in the development of the SPARE Parts do not support this yet.
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return( 0 );

g

The header �le com-misc.hpp provides a de�nition of constants TRUE and FALSE.

Header �le pm-kmp.hpp de�nes the Knuth-Morris-Pratt pattern matching class, while

header �le iostream.h de�nes the input and output streams, including the standard out-

put cout. Function report is our call-back function, simply printing the index of the match

(to the standard output), and returning TRUE to continue matching. The main function

(the program mainline) creates a local KMP machine, with keyword hisher. The machine

is then used to �nd all matches in string hishershey. (Recall that, in C and C++, a
pointer to the beginning of the string is passed to membermatch, as opposed to the entire

string.) 2

In addition to the KMP algorithm de�ned in pm-kmp.hpp, other single keyword pattern
matchers are de�ned in header �le bms.hpp, which contains suggestions for instantiating

some of the Boyer-Moore variants. Additionally, a brute-force single keyword pattern
matcher is de�ned in pm-bfsin.hpp.

Multiple keyword pattern matching is performed in a similar manner, as the following
example shows.

Example 9.2 (Multiple keyword matching): The following program searches an input
string for the keywords his, her, and she, printing the locations of all matches:

#include "com-misc.hpp"

#include "string.hpp"

#include "set.hpp"

#include "acs.hpp"

#include <iostream.h>

static int report( int index, const Set<String>& M ) f

cout << index << M << \n;

return( TRUE );

g 10

int main( void ) f

auto Set<String> P( "his" );

P.add( "her" ); P.add( "she" );

auto PMACOpt Machine( P );

Machine.match( "hishershey", &report );

return( 0 );

g

Header �le string.hpp de�nes a string class, while set.hpp de�nes a template class
for sets of objects. Header �le acs.hpp de�nes the Aho-Corasick pattern matching classes.

Function report is our call-back function, simply printing the index of the match (to the
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standard output) and the set of keywords matching, and returning TRUE to continue

matching. Note that the call-back function has a di�erent signature for multiple keyword

pattern matching: it takes the index of the symbol to the right of the match, and the set

of keywords matching with index as their right end-point.

Themain function (the programmainline) creates a local ACmachine from the keyword
set. The machine is then used to �nd all matches in string hishershey. 2

In the following two sections, we consider ways to use the SPARE Parts more e�ciently in

certain application domains.

9.2.1 Multi-threaded pattern matching

One important design feature (as a result of the call-back client interface) of the SPARE

Parts is that it supports multi-threading. This can lead to high performance in applications

hosted on multi-threading operating systems. For example, consider an implementation

of a keyword grep application, in which 1000 �les are to be searched for occurrences of a
given keyword. The following are three potential solutions:

� In a sequential solution, a single pattern matching object is constructed and each of
the 1000 �les are scanned (in turn) for matches.

� In a na��ve multi-threaded solution, 1000 threads are created (each corresponding to
one of the input �les). Each of the threads construct a pattern matching object,

which is then used to search the �le.

� An e�cient solution is to create a single matching object, with 1000 threads sharing
the single object. Each of the threads proceeds to search its �le, using its own
invocation of member function PMSingle::match.

The last (most e�cient) solution would not have been possible without the call-back client
interface. The technical reasons why this is possible are considered further in Section 9.3.

9.2.2 Alternative alphabets

The default structure in the SPARE Parts is to make use of the entire ASCII character

set as the alphabet. This can be particularly ine�cient and wasteful in cases where only

a subset of these letters are used. For example, in genetic sequence searching, only the

letters a, c, g, and t are used. The SPARE Parts facilitates the use of smaller alphabets
through the use of normalization. Header �le alphabet.hpp de�nes a constant ALPHA-

BETSIZE (which, by default is CHAR MAX). The alphabet which SPARE Parts uses is
the range [0;ALPHABETSIZE ). An alternative alphabet can be used by rede�ning AL-

PHABETSIZE, and mapping the alternative alphabet in the required range. The mapping
is performed by functions alphabetNormalize and alphabetDenormalize, both declared in

alphabet.hpp (by default, these functions are the identity functions). The only require-

ment is that the functions map 0 to 0 (this is used to identify the end of strings).



230 CHAPTER 9. SPARE PARTS: STRING PATTERN RECOGNITION IN C++

Example 9.3 (Genetic sequence alphabet): In the genetic sequence example, we

would make use of the following version of header alphabet.hpp:

#include <assert.h>

#de�ne ALPHABETSIZE 5

inline char alphabetNormalize( const char a ) f

switch( a ) f

case 0: return( 0 );

case a: return( 1 );

case c: return( 2 );

case g: return( 3 );

case t: return( 4 ); 10

default: assert( !"Non-genetic character" );

g

g

inline char alphabetDenormalize( const char a ) f

switch( a ) f

case 0: return( 0 );

case 1: return( a );

case 2: return( c );

case 3: return( g ); 20

case 4: return( t );

default: assert( !"Non-genetic image" );

g

g

2

9.3 Abstract pattern matchers

In this section, we briey consider the two abstract pattern matching classes which are
used to de�ne the client interfaces of single and multiple keyword pattern matchers.

User class 9.4 (PMSingle)

Files: pm-singl

Description: Class PMSingle de�nes the call-back client interface outlined in Exam-

ple 9.1. The brute-force, Knuth-Morris-Pratt, and Boyer-Moore classes implement

the de�ned interface.

Implementation: As an abstract class, there is no implementation.

2
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User class 9.5 (PMMultiple)

Files: pm-multi

Description: This class de�nes the call-back client interface outlined in Example 9.2.

The brute-force, Aho-Corasick, and Commentz-Walter classes implement the de�ned

interface.

Implementation: As an abstract class, there is no implementation.

2

The use of call-backs in the client interface warrants some further explanation. As

mentioned in Section 9.2, the use of call-backs allows multiple threads to make use of a

single pattern matching object. Let us consider another possible (perhaps more obvious)

client interface. In the alternative interface, member functions are provided to:

� Restart the matcher with a new input string

� Determine if there is a valid match

� Return the location of the current match

� Advance to the next match

The pattern matcher must contain state information such as: a pointer to the input string,

the index of the current match, and a Boolean variable indicating if there is a valid match.
Since all of this information is contained in a pattern matcher, multi-threaded use of a

single object is not possible.
Although the call-back client interface must maintain the same state information, the

information is stored in variables local to the match member function. Each thread making

use of a pattern matcher has its own invocation of match, and therefore its own state
information.

The call-back interface is not without its disadvantages. The most noticeable one is
that call-backs require the client to write a function (in particular a free-standing function,
as opposed to a member function of some other class) for use as the call-back function. This

requirement may force the client to adopt a design approach that is not entirely object-
oriented (due to the free-standing function). In practice, this disadvantage has proven to

be relatively minor compared to the gains.

9.4 Concrete pattern matchers

In this section, we describe the classes which implement the interface de�ned by classes

PMSingle and PMMultiple. The treatment of each of the families of classes includes any

auxiliary (non-foundation) classes used. A summary of the classes and their template
parameters (if any) is given in Section 9.4.6. We �rst consider the brute-force pattern

matchers, followed by the KMP, AC, CW, and BM pattern matchers.
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9.4.1 The brute-force pattern matchers

The brute-force pattern matchers are the most basic of the classes. While they are easy

to understand, they are not intended for use in production quality software; they are used

for benchmarking the other pattern matchers.

User class 9.6 (PMBFSingle, PMBFMulti)

Files: pm-bfsin, pm-bfmul

Description: The brute-force pattern matchers are na��ve implementations of pattern

matchers. They are only intended to form a baseline, against which the other (more

e�cient) classes can be measured. As a result, they are not intended for serious use.

Implementation: The implementations correspond (roughly) to Algorithm 4.10.

Performance: Instead of improving the performance of these classes, the client should

make use of one of the other pattern matcher classes.

2

9.4.2 The KMP pattern matcher

User class 9.7 (PMKMP)

Files: pm-kmp

Description: This pattern matcher implements the Knuth-Morris-Pratt single keyword
pattern matching algorithm. It inherits from PMSingle and implements the interface

de�ned there.

Implementation: This class maintains the pattern keyword and a FailIdx representing

the indexing failure function. The implementation of member function match corre-
sponds to Algorithm 4.84.

2

Implementation class 9.8 (FailIdx)

Files: failidx

Description: Class FailIdx is the indexing failure function for use in PMKMP. The con-

structor takes a keyword. The only interesting member function is one to apply the
failure function.

Implementation: The class contains an array (of size jpj+ 1 for keyword p) of integers,
representing the function. The constructor implements the classic KMP precompu-

tation | see [Wat94a, Appendix A].

2
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9.4.3 The AC pattern matchers

We now consider the Aho-Corasick family of pattern matchers. As the derivation in Sec-

tion 4.3 shows, all of the Aho-Corasick variants share the same algorithm skeleton. The

primary di�erence is in the mechanism used to compute the transition function on an in-
put symbol. For speed, the AC algorithm skeleton is implemented via a template class as

opposed to a base class (see Section 8.2.1). A number of variants (instantiations) of the

Aho-Corasick objects are declared in the header acs.hpp, which is intended for client use.

Implementation class 9.9 (PMAC)

Files: pm-ac

Description: Template class PMAC implements the skeleton of the AC algorithms. The
template argument must be one of the ACMachine: : : classes (called a transition

machine) which is used to compute the next transition. The class inherits from PM-

Multiple and implements the corresponding interface. The header �le is not intended
to be used directly by clients; use acs.hpp instead.

Implementation: The implementation contains an ACMachine: : : object. The PMAC

constructor passes the keyword set to the transition machine constructor. The im-
plementation of member function match is taken from Algorithm 4.47.

Performance: The class is already highly tuned. The member functions of the transition
machine (the template argument) should be inline for high performance.

2

9.4.3.1 AC transition machines and auxiliary classes

The transition machines are used in the AC skeleton (template class PMAC). The variety of
transition machines corresponds to the di�erent methods of computing the next transition

discussed in Section 4.3.

Implementation class 9.10 (ACMachineOpt)

Files: acmopt

Description: This class provides an implementation of the optimized Aho-Corasick tran-

sition function, as described in Section 4.3.2. Member functions are provided to
compute the next state (make a transition) and to compute the output (matched
keywords) of a particular state (these member functions are the minimum interface

required by template PMAC). It implements function f and Output (see De�ni-

tions 4.49 and 4.44).

Implementation: The class contains a Gamma and an ACOutput. The member functions
are pass-throughs to these classes.
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2

Implementation class 9.11 (ACMachineFail)

Files: acmfail

Description: Class ACMachineFail implements the Aho-Corasick failure function method

of computing the next transition, as described in Section 4.3.5.

Implementation: The class contains an EFTrie (an extended trie function �ef ) and an

ACOutput. The computation of the transition function is done with a linear search,

as detailed in Section 4.3.5. The output member function is simply a pass-through

to the ACOutput.

2

Implementation class 9.12 (ACMachineKMPFail)

Files: acmkmpfl

Description: Class ACMachineKMPFail is an implementation of the (multiple keyword)
Knuth-Morris-Pratt method of computing the next transition, as described in Sec-
tion 4.3.6.

Implementation: The class contains an FTrie and an ACOutput. The transition function
is computed by linear search | see Section 4.3.6.

Performance: Most ine�ciencies are due to the di�erence between this class and ACMa-

chineFail, as mentioned in the comment after Algorithm 4.76 on page 75.

2

Implementation class 9.13 (Gamma)

Files: acgamma

Description: Class Gamma implements the `optimized' Aho-Corasick transition function
f . The constructor takes an FTrie and an FFail. The main member function

computes the image of the function, given a State and a character.

Implementation: Class Gamma is implemented via a StateTo< SymbolTo<State> >.
The constructor performs a breadth-�rst traversal of the trie, using the failure func-

tion to compute function f .

Performance: There are methods of computing function f directly from the keyword

set without the FTrie. Computing the trie and the failure function independently
is more costly (in both space and time), but provides a modular separation of the

functions and keeps the constructor for Gamma manageable.
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2

Implementation class 9.14 (EFTrie)

Files: aceftrie

Description: Class EFTrie implements the extended forward trie | function �ef (see

De�nition 4.68). The constructor takes an FTrie.

Implementation: This class is implemented with a StateTo< SymbolTo<State> >. The

constructor simply copies the FTrie and extends it.

Performance: The performance could be signi�cantly increased by not copying the trie

from scratch. Unfortunately, this is not possible because a single FTrie is used to

construct the EFTrie and the ACOutput objects in ACMachineFail so the States of

the EFTrie and the ACOutput objects correspond.

2

Implementation class 9.15 (ACOutput)

Files: acout

Description: ACOutput implements the Aho-Corasick output function Output (see Def-
inition 4.44). The constructor takes the set of keywords, the corresponding forward
trie (FTrie), and the corresponding forward failure function (FFail).

Implementation: This class contains a StateTo< Set<String> >. The constructor per-
forms a breadth-�rst traversal of the trie, using the failure function to compute
function Output | implementing the algorithm given in [WZ92].

Performance: The high performance of this class depends quite heavily upon the use-

counting of class String (see User class 9.34).

2

9.4.4 The CW pattern matchers

As outlined in Section 4.4, all of the Commentz-Walter variants share a common algorithm

skeleton. The di�erence lies in how the safe shift distance is computed. For this reason, the
skeleton is de�ned as a template class as follows. The variants of the Commentz-Walter

algorithm are de�ned (via typedef) in header cws.hpp.

User class 9.16 (PMCW)

Files: pm-cw
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Description: Class PMCW implements the Commentz-Walter skeleton. It inherits from

PMMultiple and implements the public interface de�ned there. The template argu-

ment must be one of the CWShift: : : classes. The argument provides the safe shift

distance during the scanning of the string.

Implementation: A PMCW contains a shifter object, an RTrie (a reverse trie for scan-

ning the string), and a CWOutput (output function for detecting a match). The
constructor passes the set of keywords through to the sub-objects. The implementa-

tion of member function match is taken directly from Algorithm 4.93.

Performance: Improvements in performance can most easily be gained by improving the

shifter objects or the implementation of the reverse trie and output function. The

member functions of the safe shift objects should be inline, since they are simple and
they are called repeatedly in the inner repetition of match.

2

9.4.4.1 Safe shifters and auxiliary functions

The safe shifter classes form the basis of the Commentz-Walter algorithms. The derivation
of the safe shifts is covered in Section 4.4. The choice of which one to use in a given
application is dominated by a tradeo� between precomputation time and greater shift dis-

tances. For applications in which the input string is relatively short, class CWShiftNLA

has the fastest precomputation but provides the smallest shift distances. (Actually, CW-

ShiftNaive provides a shift distance of 1; it is intended only for use in benchmarking the

algorithms.) For an application in which the time to scan the string outweighs the time
for precomputation, CWShiftRLA is the best choice.

Implementation class 9.17 (CWShiftNaive)

Files: cwshnaiv

Description: CWShiftNaive implements a na��ve safe shift distance of 1 in the Commentz-
Walter algorithm. This class is intended for benchmarking use, as opposed to serious

applications.

Implementation: The implementation is trivial since no data is stored. The shift distance
member function simply returns 1.

2

Implementation class 9.18 (CWShiftNLA)

Files: cwshnla

Description: This class implements the `no-lookahead' shift distance of De�nition 4.101.
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Implementation: The class contains a single shift function. In the constructor, local D1

and D2 shift functions are constructed. These shift functions are combined into a

single shift. In the description in 4.4 the combining of the two would be done as the

input string is scanned. They are combined at precomputation time for performance

and space reasons.

Performance: The performance would be di�cult to improve as the D1 and D2 shift

functions are already combined at precomputation time.

2

Implementation class 9.19 (CWShiftWBM)

Files: cwshwbm

Description: Class CWShiftWBM implements the `weak Boyer-Moore' shift distance |
see De�nition 4.136.

Implementation: The implementation is through D1, D2, and CharBM. The amount of
shift distance contributed by each of the three functions are combined as the input

string is scanned.

Performance: Since the shift distance is combined at string-scanning time, it is important
that auxiliary functions such as min and max are inline functions.

2

Implementation class 9.20 (CWShiftNorm)

Files: cwshnorm

Description: This class implements the `normal' Commentz-Walter shift function | see
De�nition 4.125.

Implementation: The implementation is similar to that of CWShiftWBM, with the ex-
ception that the CharBM is replaced by a CharCW.

Performance: See the performance clause for CWShiftWBM.

2

Implementation class 9.21 (CWShiftOpt)

Files: cwshopt

Description: Class CWShiftOpt is an implementation of the `optimized'Commentz-Walter

shift distance | see De�nition 4.107.
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Implementation: The implementation is similar to that of CWShiftWBM, except that

the D1 and CharBM are replaced by a DOpt.

Performance: See the performance clause for CWShiftWBM.

2

Implementation class 9.22 (CWShiftRLA)

Files: cwshrla

Description: This class implements the `right lookahead' shift function as de�ned in
De�nition 4.140.

Implementation: The implementation is similar to CWShiftOpt, with the addition of a

CharRLA.

Performance: See the performance clause for CWShiftWBM.

2

Implementation class 9.23 (CharCW, CharBM, CharRLA)

Files: cwchar, cwcharbm, cwcharrl

Description: These three classes are the shift functions which are based upon a single
character (the �rst mismatching character). The de�nitions of the functions can be

found (respectively) in De�nitions 4.122, 4.128, and 4.138.

Implementation: Classes CharBM and CharRLA are implemented through a single ar-
ray, while CharCW is implemented through two nested arrays. Their constructors

all make breadth-�rst traversals of the reverse trie. The shift member functions are
trivial lookups.

2

Implementation class 9.24 (D1, D2, DOpt)

Files: cwd1, cwd2, cwdopt

Description: These three classes implement the Commentz-Walter shift component func-
tions d1, d2, and dopt (see De�nitions 4.97 and 4.105). Classes D1 and D2map a State

to an integer, while DOpt maps a State and a character to an integer.

Implementation: The implementations of D1 and D2 are in terms of StateTo< int >,

with DOpt as StateTo< SymbolTo< int > >. The constructors take an RTrie which
they traverse, implementing Algorithms 5.27 and 5.28 (for D1 and D2) and the dopt
precomputation algorithm given in [WZ95].
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Performance: The derivations of the precomputation algorithms in [WZ95] indicate that

the currently implemented algorithms are not likely to be improved.

2

Implementation class 9.25 (CWOutput)

Files: cwout

Description: CWOutput implements the Commentz-Walter output function (which de-
termines if a match has been found). The class maps a State (from the reverse trie)

to a string if the State corresponds to a keyword. There is a member function which
reports if a given State corresponds to a keyword.

Implementation: The implementation uses a StateTo<String*>. If the entry is 0, then

the corresponding State does not correspond to a keyword. If the entry is not 0, the

entry points to the corresponding keyword. The constructor takes an EFTrie and
the set of keywords.

2

9.4.5 The BM pattern matchers

Like the Aho-Corasick and the Commentz-Walter algorithms, all variants of the Boyer-

Moore algorithm share a common skeleton. Again, the skeleton is implemented as a tem-

plate class, with the template parameters being used to instantiate the di�erent possible
variants. Examples of how to instantiate some of the variants are given in header �le

bms.hpp. The structure of these variants of the BM algorithms are derived fully in Sec-
tion 4.5.

User class 9.26 (PMBM)

Files: pm-bm

Description: This template function implements the Boyer-Moore variants derived in
Section 4.5. It inherits from PMSingle and implements the public interface de�ned

there. The class takes three template parameters:

� A `match order' which is used to compare the keyword to the input string. It
must be one of the STrav: : : classes.

� A `skip loop' which is used to skip portions of the input text that cannot possibly

contain a match. The argument must be one of the SL: : : classes.

� A `match information' shift distance class which is used to make larger shifts

through the input string, after a match attempt. The argument must be one of

the BMShift: : : classes.
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For more on each of these three components, see Section 4.5.

Implementation: The implementation contains a copy of the keyword and an object of
each of the template arguments. The implementation is taken directly from Algo-

rithm 4.177.

Performance: A fast implementation relies on the skip loop, match order, and shifter
member functions all being inline.

2

The Boyer-Moore class PMBM takes three template arguments, making it one of the

more complex template classes. We now consider an example of an instantiation of the
class.

Example 9.27 (Instantiating template class PMBM): The �rst of the template ar-

guments is the match order. For this, we select the `reverse' match order class STravREV.

As our `skip loops', we select class SLFast1. For our shifter, we select BMShift11 shifter
class. We can now declare a pattern matching object for string hehshe as follows:

#include "bms.hpp"

static PMBM< STravREV, SLFast1, BMShift11<STravREV> > M( "hehshe" );

Note that the same string traverser class must appear as the �rst template argument

to PMBM and as the template argument to the shifter class. 2

9.4.5.1 Safe shifters and auxiliary functions

The match orders, the skip loops, and the shifters form the core of the implementation of

the BM algorithm variants. The match order classes will be described in Implementation
classes 9.39. The skip loop classes (class names starting with SL: : : ) and the shifters

(class names starting with BMShift: : : ) are described below, along with some of the shift
components.

Implementation class 9.28 (SLNone, SLSFC, SLFast1, SLFast2)

Files: bmslnone, bmslsfc, bmslfst1, bmslfst2

Description: The skip loop classes are used to skip portions of the input string in which

no matches are possible. SLNone makes no shift through the input string (it is only

included for completeness, since it is derived in Section 4.5.1 and in [HS91]).

Implementation: All of the implementations follow directly from Section 4.5.1. The
constructors simply take the pattern keyword. Some of the skip loops store lookup

tables to compute the shift distance. In the case of SLSFC, the shift distance is 1.
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Performance: The current implementations are for maximumperformance in time. Space

is sacri�ced in favour of speed. All of the member functions should be inlined.

2

Implementation class 9.29 (BMShiftNaive)

Files: bmshnaiv

Description: The na��ve shift distance class, BMShiftNaive, provides a safe shift distance

of 1. It is intended only for benchmarking purposes.

2

Implementation class 9.30 (BMShift11, BMShift12)

Files: bmsh1-1, bmsh1-2

Description: These two classes implement two of the possible shift distances considered
in Section 4.5.2 on page 110. Both classes are template classes, which expect a string

traverser (STrav: : : ) class as their template argument. The particular traverser used
in the instantiation must be the same traverser class used as the match order in
PMBM.

Implementation: Class BMShift11 makes use of an S1 and a Char1, while BMShift12

makes use of an S1 and a Char2. In both cases, the two shift components are
combined during the scanning of the string. The template argument is used to
instantiate the correct versions of the component shift functions.

Performance: Since the shift components are combined during the scanning of the input
string, the performance could be improved by combining them in the constructor.

2

Implementation class 9.31 (Char1, Char2)

Files: bmchar1, bmchar2

Description: These two classes are shift components, implementing functions char1 and
char2 given in De�nition 4.174. Since these two functions depend upon the particular

match order in use, these two classes are de�ned as template classes. The template

argument must be one of the STrav: : : classes.

Implementation: The de�nitions of functions char 1 and char2 contain MIN quanti�ca-

tions. As a result, the constructors perform a linear search to compute the functions.
The linear search is general, since it makes use of the template argument (the string

traverser).
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Performance: When STravFWD or STravREV are used as the template argument, the

linear search can be performed more e�ciently (as in the classical Boyer-Moore pre-

computation). Such traverser speci�c precomputation can be written as template

instantiation overriding functions. (This has not yet been done | it should be done

by clients who require higher performance from the SPARE Parts.)

2

Implementation class 9.32 (S1)

Files: bms1

Description: This class implements the s1 shift component given in De�nition 4.174. As

with shift components char 1 and char2, this class depends upon the particular string

traverser in use. S1 is a template class which expects a string traverser as its template
argument.

Implementation: See the implementation of classes Char1 and Char2.

Performance: See Char1 and Char2.

2
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9.4.6 Summary of user classes

In this section, we present two tables which summarize the various user classes for pattern

matching. The �rst table summarizes the descendents of abstract single keyword pattern

matching class PMSingle. All three of the concrete classes are described along with their

possible template arguments (if any):

Class Description

PMBFSingle Brute-force pattern matcher

PMKMP Knuth-Morris-Pratt pattern matcher

PMBM Boyer-Moore pattern matcher template

Three template arguments required, as follows:
Match orders

STravFWD Forward (left to right)
STravREV Reverse (right to left)

STravOM Optimal mismatch (increasing frequency)

STravRAN Random
Skip loops

SLNone No skip

SLSFC Leftmost keyword symbol compared
(always 1 symbol shift)

SLFast1 Rightmost symbol compared

SLFast2 Rightmost symbol compared
(greater shift)

Shifters

BMShiftNaive Shift of one symbol
BMShift11 Shift without mismatching symbol

information
BMShift12 Shift with mismatching symbol

information

The following table summarizes the concrete class descendents of the abstract multiple
keyword pattern matcher class PMMultiple. Two of them are template classes and their

possible template arguments are summarized as well:
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Class Description

PMBFMulti Brute-force pattern matcher

PMAC Aho-Corasick pattern matcher template

Single template argument required:
Transition machines

ACMachineOpt Optimal transition function

ACMachineFail Failure function with extended trie
ACMachineKMPFail Knuth-Morris-Pratt failure function

with forward trie

PMCW Commentz-Walter pattern matcher template
Single template argument required:

Shifters

CWShiftNaive Shift of one symbol

CWShiftNLA No lookahead symbol used

CWShiftWBM Weak Boyer-Moore
CWShiftNorm Normal Commentz-Walter
CWShiftOpt Optimized Commentz-Walter
CWShiftRLA Lookahead right one symbol

9.5 Foundation classes

In this section, we consider the design and implementation of the foundation classes and

functions. These classes and functions are not of primary concern to the client, but are
used to construct classes which form the client interface. Some of these classes are reused

in the FIRE Lite | a toolkit of �nite automata algorithms described in Chapter 10.

A number of these classes will be replaceable by standard library classes once the draft

C++ standard becomes stable and implementations of the draft standard start to appear.

9.5.1 Miscellaneous

A number of header �les and their corresponding de�nitions do not fall into a particular

category. Header com-misc.hpp contains de�nitions of constants TRUE and FALSE and

integer maximum and minimum functions max and min.

Implementation class 9.33 (State)

Files: state

Description: Tries and �nite automata require the de�nition of states. This header con-
tains a de�nition of states and some constants, in particular an INVALIDSTATE

and a FIRSTSTATE. The FIRSTSTATE is used (by convention) as the start state
in tries and �nite automata.
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Implementation: State is not de�ned as a class. Instead, it is typedef'd to be an integer

for e�ciency reasons.

2

User class 9.34 (String)

Files: string

Description: The raw string conventions in C and C++ are too rudimentary to be used

e�ectively and safely. This class provides a higher level (and safer) mechanism for

using strings. The interfaces provides members for indexing the individual characters
in the string, copying strings, assignment, length of the string, and an output operator

(stream insertion).

Implementation: The class is implemented through use-counting with a private class.
This makes assignment and copying of strings particularly e�cient, but it adds an

additional level of indirection to many of the operations. The cost of the extra
indirection was found to be negligible compared to the cost of creating complete
copies of strings.

Performance: The length of the string is kept in the private class. It requires a complete
traversal of the string, using standard function strlen. Since this can be particularly
ine�cient for very large strings, it could be replaced with more e�cient methods of

determining the length when the string is constructed from a �le. The ine�ciency of

the extra indirection will very likely be removed (when examining individual charac-
ters of the string) by a good optimizing compiler.

2

9.5.2 Arrays, sets, and maps

In this section, we describe the basic template classes used to construct more complex
objects.

Implementation class 9.35 (Array)

Files: array

Description: As with strings, the raw C and C++ facilities for arrays are not safe and

exible enough for our purposes. An Array template class constructs arrays of objects

of class T. The operators available in raw arrays are provided. Notable additions are:

bounds-checked indexing into the array, a stream insertion operator (assuming that
class T has an insertion operator), and the ability to resize the array dynamically.
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Implementation: An Array is implemented by an array of objects, an apparent size (to

the client), and real size (for dynamic resizing). The class constant growthSize is used

during resize operations to allocate some extra elements; these extra elements can be

used later to avoid another call to the memory allocator.

Performance: The copy constructor and the assignment operator both make copies of

the underlying array. This costly operation could be avoided through the use of use-

counting. The class constant growthSize is a tuning constant which is 5 by default.

Other values may provide higher performance in certain circumstances.

2

Implementation class 9.36 (Set)

Files: set

Description: Sets of objects are used in a variety of places. The template class Set

implements a set of objects of class T. Common set operations (such as element add,
remove, union, membership tests, size) are available, as well as a rudimentary iterator

facility, and an insertion operator. The class is replaceable by a standard one, once

the draft C++ standard is stable. The current draft of the standard proposes to use
the Standard Template Library by Stepanov and Lee [SL94]. The Standard Template

Library de�nition puts forth a more complex set of iterators than needed in the SPARE

Parts.

Implementation: The implementation is via an Array. This makes management of the
size of the set particularly simple. Most of the member functions of Set are simple

pass-throughs to the corresponding Array members.

Performance: The performance is most easily improved through modi�cations in class
Array.

2

Implementation class 9.37 (StateTo)

Files: stateto

Description: Template class StateTo implements a function mapping a State to an object
of class T. Member functions are provided for setting up the function, applying the

function, and for adjusting the range of states in the domain.

Implementation: StateTo is implemented in terms of an Array. The member functions

are mostly pass-throughs to the Array members.

Performance: Since the implementation is through class Array, the performance of StateTo

is most easily improved by improving Array.
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2

Implementation class 9.38 (SymbolTo)

Files: symbolto

Description: Template class SymbolTo implements a function from characters to an

object of class T. The characters in the domain are assumed to be in the range

[0;ALPHABETSIZE ). Member functions are provided for setting up the function

and for applying it.

Implementation: Class SymbolTo is implemented in terms of an Array. The member

functions are mostly pass-throughs to the Array members.

Performance: The performance is most easily improved through improvements to class
Array.

2

9.5.3 Tries and failure functions

Tries and failure functions form the basis for the multiple keyword pattern matching al-
gorithms. Tries and match orders (for use in the Boyer-Moore algorithms) are both im-

plemented in terms of string traversers. String traversers, tries, and failure functions are

described in this section.

Implementation class 9.39 (STravFWD, STravREV, STravOM, STravRAN)

Files: stravfwd, stravrev, stravom, stravran

Description: String traversers are synonymous with match orders (from Chapter 4). For
a given string of length n, a string traverser is a bijection on [0; n). It can be

used to traverse the characters of the string in a particular order. Class STravFWD

corresponds to the identity function, which traverses the string in the left to right
direction. Class STravREV allows one to traverse the string in the right to left
direction. Classes STravOM and STravRAN correspond (respectively) to an optimal

mismatch order (see Algorithm detail 4.151) and a random order. The latter two

classes are used primarily in the Boyer-Moore algorithms, while the �rst two �nd use

in class Trie. All of the traversers have constructors which take a keyword.

Implementation: Since class STravFWD implements the identity function, it does not
contain any private data. Class STravREV only contains the length of the keyword
in order to implement the bijection. The other traversers have not yet been imple-

mented.

Performance: Since these classes are used to consider the characters in strings, it is

important that they are inlined.
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2

Implementation class 9.40 (Trie)

Files: trie, tries

Description: Template class Trie implements tries [Fred60]. The template parameter

must be one of the string traverser classes. Trie has a constructor which takes a set
of strings, yielding the corresponding trie. The string traverser determines in which

order the strings are traversed in the constructor. Using STravFWD as the template

parameter gives a forward trie (see De�nition 4.26), while using STravREV gives a

reverse trie (see De�nition 4.13). Forward and reverse tries are typedef'd in header

tries.hpp; this header is intended for use by clients.

There are a special set of member functions to perform breadth-�rst traversals of the

trie, and to determine the depth (when the trie is considered as a tree) of a particular

State (since each State corresponds to a string, the depth of the State is equal to the
length of the string).

Implementation: Trie is implemented using a StateTo< SymbolTo<State> >. An ad-

ditional StateTo maps States to integers, keeping track of the depth of the States
for the breadth-�rst traversals. Almost all of the member functions are simple pass-

throughs. The constructor uses the depth-�rst method of constructing the trie from
the set of strings.

Performance: The use of nested mappings (StateTos and SymbolTos) is highly e�cient
in time, but it is known that tries can be implemented much more space e�ciently,
as in [AMS92]. The disadvantage to such an implementation is that each transition

requires more time.

2

Implementation class 9.41 (Fail)

Files: fail, fails

Description: Failure functions are implemented using template class Fail. Fail has a

constructor which takes a Trie as parameter. The type of trie (forward or reverse)
determines the type of failure function constructed (forward or reverse). Conse-

quently, the template argument to Fail must be either STravFWD or STravREV.
The template argument is only used to determine the type of the Trie taken as pa-

rameter by the constructor. Header fails.hpp contains typedefs of the forward

and reverse tries; this header �le is intended for use by clients.

Implementation: A failure function is implemented as a StateTo<State>. The construc-
tor uses a standard breadth-�rst traversal of the Trie (see [WZ92] or Chapter 5 for

algorithms constructing failure functions from tries).
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Performance: The performance can only be improved through improvements to class

StateTo.

2

9.6 Experiences and conclusions

Designing and coding the SPARE Parts lead to a number of interesting experiences in class

library design. In particular:

� The SPARE Parts comprises 5787 lines of code in 59 .hpp, 32 .cpp, 43 .ppp, and 49

.ipp �les.

� Compiling the �les, with the Watcom C++32 Version 9.5b compiler, shows that
the size of the object code varies very little for the various types of pattern matchers.

� The taxonomy presented in Chapter 4 was critical to correctly implementing the
many complex precomputation algorithms.

� Designing and structuring generic software (reusable software such as class libraries)
is much more di�cult than designing software for a single application. The general
structure of the taxonomy proved to be helpful in guiding the structure of the SPARE

Parts.

� One of the debugging session lead to the discovery of a bug in the code for precom-
putation of failure functions. Further inspection showed that the C++ code was

correctly implemented from the abstract algorithm presented in [WZ92, Part II]. Un-

fortunately, part of the abstract algorithm used a depth-�rst traversal of a trie, while

the postcondition called for a breadth-�rst traversal.

� In Chapter 13, we consider the relative performance of the algorithms implemented
in the SPARE Parts. It is also helpful to consider how the implementations in the

SPARE Parts fare against commercially available tools such as the fgrep program.
Four fgrep-type programs were implemented (using the SPARE Parts), correspond-

ing to the Knuth-Morris-Pratt, Aho-Corasick, Boyer-Moore, and Commentz-Walter
algorithms. The four tools were benchmarked informally against the fgrep imple-

mentation which is sold as part of the MKS toolkit for MS-Dos. The resulting

times (to process a 984149 byte text �le, searching for a single keyword) are:

fgrep variant MKS KMP BM AC CW

Time (sec) 3.9 5.1 4.2 4.7 4.0

These results indicate that using a general toolkit such as the SPARE Parts will result

in performance which is similar to carefully tuned C code (such as MKS fgrep).
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Detailed records were kept on the time required for designing, typing, compiling (and �xing

syntax errors), and debugging the toolkit. The time required to implement the toolkit is

broken down as follows (an explanation of each of the tasks is given below):

Task Design Typing Compile/Syntax Debug Total

Time (hrs:min) 6:00 13:40 10:05 5:15 35:00

Most of these times are quite short compared to what a software engineer could expect
to spend on a project of comparable size. The following paragraphs explain exactly what

each of the tasks entailed:

� The design phase involved the creation of the inheritance hierarchy and the decla-

ration (on paper) of all of the classes in the toolkit. (A C++ declaration provides

names and signatures of functions, types, and variables, whereas a de�nition pro-

vides the implementation of these items.) The design phase proceeded exceptionally

smoothly, thanks to a number of things:

{ The inheritance hierarchy followed directly from the structure of the taxonomy.

{ The decisions on the use of templates (instead of virtual functions | see Chap-
ter 8) and call-backs were made on the basis of experience gained with the FIRE

Engine. These decisions were also somewhat forced by the e�ciency require-
ments on the toolkit, as well as the need for multi-threading.

{ Representation issues, such as the selection of data structures, were resolved
using experience gained with the earlier Eindhoven Pattern Kit.

� Once the foundation classes were declared and de�ned, typing the code amounted to
a simple translation of guarded commands to C++.

� The times required for compilation and syntax checking were minimized by using a
very fast integrated environment (Borland C++) for initial development. Only the

�nal few compilations were done using the (slower, but more thoroughly optimizing)
Watcom C++ compiler. The advantages of using a fast development environment

on a single user personal computer should not be underestimated.

� Since the C++ code in the toolkit was implemented directly from the abstract al-

gorithms (for which correctness arguments are given), the only (detected) bugs were
those involving typing errors (such as the use of the wrong variable, etc.). Corre-

spondingly, little time needed to be spent on debugging the toolkit.

9.7 Obtaining and compiling the toolkit

The SPARE Parts is available for anonymous ftp from ftp.win.tue.nl in directory:

/pub/techreports/pi/watson.phd/spare/
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The toolkit, and some associated documentation, are combined into a tar �le. A number

of di�erent versions of this �le are stored | each having been compressed with a di�erent

compression utility.

The SPARE Parts has been successfully compiled with Borland C++ Versions 3.1

and 4.0, and Watcom C++32 Version 9.5b on MS-Dos and Microsoft Windows 3.1
platforms. Since the Watcom compiler is also a cross-compiler, there is every reason to
believe that the code will compile for Windows NT or for IBM OS/2. The implemen-

tation of the toolkit makes use of only the most basic features of C++, and it should be

compilable using any of the template-supporting Unix based C++ compilers.

A version of the SPARE Parts will remain freely available (though not in the public

domain). Contributions to the toolkit, in the form of new algorithms or alternative imple-

mentations, are welcome.
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Chapter 10

FIRE Lite: FAs and REs in C++

This chapter describes a C++ �nite automata toolkit known as FIRE Lite (FInite automata

and Regular Expressions; Lite since it is the smaller and newer cousin of the FIRE Engine

toolkit, also from the Eindhoven University of Technology). The client interface and aspects
of the design and implementation are also described.

10.1 Introduction and related work

FIRE Lite is a C++ toolkit implementing �nite automata and regular expression algorithms.
The toolkit is a computing engine, providing classes and algorithms of a low enough level

that they can be used in most applications requiring �nite automata or regular expressions.
Almost all of the algorithms derived in Chapter 6 are implemented. This chapter serves

as an introduction to the client interface of the toolkit and the design and implementation

issues of the toolkit.

10.1.1 Related toolkits

There are several existing �nite automata toolkits. They are:

� The Amore system, as described in [JPTW90]. The Amore package is an implemen-
tation of the semigroup approach to formal languages. It provides procedures for the

manipulation of regular expressions, �nite automata, and �nite semigroups. The sys-

tem supports a graphical user-interface on a variety of platforms, allowing the user to
interactively and graphically manipulate the �nite automata. The program is written

(portably) in the C programming language, but it does not provide a programmer's
interface. The system is intended to serve two purposes: to support research into lan-

guage theory and to help explore the e�cient implementation of algorithms solving

language theoretic problems.

� The Automate system, as described in [CH91]. Automate is a package for the sym-

bolic computation on �nite automata, extended regular expressions (those with the

253
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intersection and complementation operators), and �nite semigroups. The system pro-

vides a textual user-interface through which regular expressions and �nite automata

can be manipulated. A single �nite automata construction algorithm (a variant of

Thompson's) and a single deterministic �nite automata minimization algorithm is

provided (Hopcroft's). The system is intended for use in teaching and language the-
ory research. The (monolithic) program is written (portably) in the C programming
language, but provides no function library interface for programmers.

According to Pascal Caron (at the Universit�e de Rouen, France), a new version of

Automate is being written in the Maple symbolic computation system.

� The FIRE Engine, as described in [Wat94b, Wat94c]. The FIRE Engine was the �rst of
the toolkits from the Computing Science Faculty in Eindhoven. It is an implemen-

tation of all of the algorithms appearing in two early taxonomies of �nite automata

algorithms which appeared in [Wat93a, Wat93b]. The toolkit is somewhat larger
than FIRE Lite (the FIRE Engine is 9000 lines of C++) and has a slightly larger and

more complex public interface. The more complex interface means that the toolkit
does not support multi-threaded use of a single �nite automaton.

� The Grail system, as described in [RW93]. Grail follows in the tradition of such toolkits
as Regpack [Leis77] and INR [John86], which were all developed at the University of

Waterloo, Canada. It provides two interfaces:

{ A set of `�lter' programs (in the tradition of Unix). Each �lter implements an
elementary operation on �nite automata or regular expressions. Such operations
include conversions from regular expressions to �nite automata, minimization of

�nite automata, etc. The �lters can be combined as aUnix `pipe' to create more
complex operations; the use of pipes allows the user to examine the intermediate
results of complex operations. This interface satis�es the �rst two (of three)
aims of Grail [RW93]: to provide a vehicle for research into language theoretic

algorithms, and to facilitate teaching of language theory.

{ A raw C++ class library provides a wide variety of language theoretic objects

and algorithms for manipulating them. The class library is used directly in the
implementation of the �lter programs. This interface is intended to satisfy the

third aim of Grail: an e�cient system for use in application software.

The provision of the C++ class interface in Grail makes it the only toolkit with aims similar

to those of the FIRE Engine and of FIRE Lite. In the following section, we will highlight
some of the advantages of FIRE Lite over the other toolkits.

10.1.2 Advantages and characteristics of FIRE Lite

The advantages to using FIRE Lite, and the similarities and di�erences between FIRE Lite

and the existing toolkits are:
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� FIRE Lite does not provide a user interface1. Some of the other toolkits provide user

interfaces for the symbolic manipulation of �nite automata and regular expressions.

Since FIRE Lite is strictly a computing engine, it can be used as the implementation

beneath a symbolic computation application.

� The toolkit is implemented for e�ciency. Unlike the other toolkits, which are imple-

mented with educational aims, it is intended that the implementations in FIRE Lite

are e�cient enough that they can be used in production quality software.

� Despite the emphasis on e�ciency in FIRE Lite the toolkit still has educational value.

The toolkit bridges the gap between the easily understood abstract algorithms ap-

pearing in Chapter 6 and practical implementation of such algorithms. The C++
implementations of the algorithms display a close resemblance to their abstract coun-

terparts.

� Most of the toolkits implement only one of the known algorithms for constructing

�nite automata. For example, Automate implements only one of the known construc-

tions. By contrast, FIRE Lite provides implementations of almost all of the known
algorithms for constructing �nite automata. Implementing many of the known algo-

rithms has several advantages:

{ The client can choose between a variety of algorithms, given tradeo�s for �nite

automata construction time and input string processing time.

{ The e�ciency of the algorithms (on a given application) can be compared.

{ The algorithms can be studied and compared by those interested in the inner
workings of the algorithms.

10.1.3 Future directions for the toolkit

A number of improvements to FIRE Lite will appear in future versions:

� Presently, FIRE Lite implements only acceptors. Transducers (as would be required for
some types of pattern matching, lexical analysis, and communicating �nite automata)

will be implemented in a future version.

� A future version of the toolkit will include support for extended regular expressions,
i.e. regular expressions containing intersection or complementation operators.

� Basic regular expressions and automata transition labels are represented by charac-

ter ranges. A future version of FIRE Lite will permit basic regular expressions and

transition labels to be built from more complex data-structures. For example, it will

be possible to process a string (vector) of structures. (Version 2.0 of Grail included a

similar improvement.)

1A rudimentary user interface is included for demonstration purposes.
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10.1.4 Reading this chapter

The toolkit is presented largely in a top-down fashion. The chapter is structured as follows:

� Section 10.2 gives an introduction to the client interface of the toolkit. It includes

some examples of programs which use FIRE Lite.

� Section 10.3 gives an overview of the structure of the toolkit.

� Section 10.4 outlines the client interfaces to regular expressions and �nite automata.

� Section 10.5 presents the concrete classes which implement the interface de�ned in

the abstract classes.

� Section 10.6 outlines the design and implementation of the foundation classes. Some

of the foundation classes in the SPARE Parts have been reused in FIRE Lite. Those
classes have not been described here again | they can be found in Chapter 9.

� Section 10.7 presents some experiences with using the toolkit, and the conclusions of
this chapter.

� Some information on how to obtain and compile the toolkit is given in Section 10.8.

10.2 Using the toolkit

In this section, we describe the client interface to the toolkit | including some examples
which use the toolkit. The issues in the design of the current client interface are described

in Section 10.4.
There are two components to the client interface of FIRE Lite: regular expressions (class

RE) and �nite automata (classes whose names begin with FA: : : ). We �rst consider regular

expressions and their construction.
Regular expressions are implemented through class RE. This class provides a variety of

constructors and member functions for constructing complex regular expressions. Stream

insertion and extraction operators are also provided. (The public interface of RE is rather
fat, consisting of a number of member functions intended for use by the constructors of

�nite automata.) The following example constructs a regular expression.

Example 10.1 (Regular expression): The following program constructs a simple reg-

ular expression and prints it:

#include "re.hpp"

#include <iostream.h>

int main(void) f

auto RE e( B );

auto RE f( CharRange( a, z ) );
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e.concatenate( f );

e.or( f );

e.star();

cout << e; 10

return( 0 );

g

The header re.hpp de�nes regular expression class RE. The program �rst constructs

two regular expressions. The �rst is the single symbol B. The second regular expression is
a CharRange | a character range. The RE constructed corresponds to the range [a; z] of

characters. No particular ordering is assumed on the characters, though most platforms use
the ASCII ordering. Character ranges can always be used as atomic regular expressions.

The program concatenates regular expression f onto e and then unions f onto e. Finally,

the Kleene closure operator is applied to regular expression e. The �nal regular expression,

which is ((B � [a; z]) [ [a; z])�, is output (in a pre�x notation) to standard output. 2

The abstract �nite automata class de�nes the common interface for all �nite automata;
it is de�ned in faabs.hpp. A variety of concrete �nite automata are provided in FIRE

Lite; they are declared in header fas.hpp. There are two ways to use a �nite automaton.

In both of them the client constructs a �nite automaton, using a regular expression as
argument to the constructor. The two are outlined as follows:

1. In the simplest of the two, the client program calls �nite automaton member function

FAAbs::attemptAccept, passing it a string and a reference to an integer. The member

function returns TRUE if the string was accepted by the automaton, FALSE other-
wise. Into the integer reference it places the index (into the string) of the symbol to

the right of the last symbol processed.

2. In the more complex method, the client takes the following steps (which resemble
the steps required in using a pattern matcher mentioned in Chapter 9):

(a) The client calls the �nite automaton member function FAAbs::reportAll, pass-
ing it a string and a pointer to a function which takes an integer and returns
an integer. As in the SPARE Parts (Chapter 9), the function is the call-back

function.

(b) The member function processes the input string. Each time the �nite automaton
enters a �nal state (while processing the string), the call-back function is called.

The argument to the call is the index (into the input string) of the symbol

immediately to the right of the symbol which took the automaton to the �nal
state.

(c) To continue processing the string, the call-back function returns TRUE, other-
wise FALSE.

(d) When the input string is exhausted, the call-back function returns FALSE, or
the automaton becomes stuck (unable to make a transition on the next input
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symbol) the member function FAAbs::reportAll returns the index of the symbol

immediately to the right of the last symbol on which a successful transition was

made.

The following is an example of the use of a �nite automaton.

Example 10.2 (Finite automaton): The following program fragment takes a regular

expression, constructs a �nite automaton, and processes an input string:

#include "com-misc.hpp"

#include "re.hpp"

#include "fas.hpp"

#include <iostream.h>

static int report( int ind ) f

cout << ind << \n;

return( TRUE );

g

10

void process( const RE& e ) f

auto FARFA M( e );

cout << M.reportAll( "hishershey", &report );

return;

g

Header com-misc.hpp provides the de�nition of constants TRUE and FALSE, while

header fas.hpp gives the declarations of a number of concrete �nite automata. Function

report is used as the call-back function; it simply prints the index and returns TRUE to
continue processing. Function process takes an RE and constructs a local �nite automa-

ton (of concrete class FARFA). It then uses the automaton processes string hishershey,
writing the �nal index to standard output before returning. 2

Given these examples, we can now demonstrate a more complex use of a �nite automa-
ton.

Example 10.3 (Regular expression pattern matching): In this example, we imple-

ment a generalized Aho-Corasick pattern matcher (GAC | as in Section 5.1) which per-
forms regular expression pattern matching. Since regular expression pattern matching is

not presently included in the SPARE Parts, this example illustrates how FIRE Lite could be

used to implement such pattern matching for a future version of the SPARE Parts. (This

example also highlights the fact that the call-back mechanism in FIRE Lite is very similar

to the mechanism in the SPARE Parts.)

#include "re.hpp"

#include "fas.hpp"
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#include "string.hpp"

class PMRE f

public:

PMRE( const RE& e ) : M( e ) fg

int match( const String& S, int cb( int ) ) f

return( M.reportAll( S, cb ) );

g 10

private:

FARFA M;

g;

Headers re.hpp, fas.hpp, and string.hpp have all been explained before. Class
PMRE is the regular expression pattern matching class. Its client interface is modeled

on the pattern matching client interfaces used in Chapter 9. The class has a private �nite

automaton (in this case an FARFA) which is constructed from an RE. (Note that the
constructor of class PMRE has an empty body, since the constructor of FARFA M does all
of the work.) The member function PMRE::match takes an input string and a call-back

function. It functions in the same way as the call-back mechanism in Chapter 9. The

member function is trivial to implement using member FAAbs::reportAll. Whenever the
�nite automaton enters an accepting state, a match has been found and it is reported. 2

An important feature of FIRE Lite (like SPARE Parts) is that the call-back client interface
implicitly supports multi-threading. See Section 9.2.1 for a discussion of call-back functions
and multi-threading.

10.3 The structure of FIRE Lite

It is helpful to have an overview of the structure of FIRE Lite and some of the main classes

in the toolkit. In this section, we give such an overview.

In the construction algorithms of Chapter 6, the �nite automata that are produced
have states containing extra information. In particular, the canonical construction pro-

duces automata whose states are dotted regular expressions, or items. Some of the other
constructions produce automata with sets of items for states, or sets of positions for states,

and so on.

The constructions of Chapter 6 appear as the constructors (taking a regular expression)
of various concrete �nite automata classes in FIRE Lite. It seems natural that mathematical
concepts such as items, sets of items, positions, and sets of positions will also appear in

such an implementation. The only potential problem is the performance overhead inherent

in implementing automata with states which are sets of items, etc.

The solution used in FIRE Lite is to implement states with internal structure as abstract-
states during the construction of a �nite automaton. The �nite automata is constructed

using the abstract-states (so that the constructor corresponds to one of the algorithms in
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Chapter 6). Once the automaton is fully constructed, the abstract-states are too space

and time consuming for use while processing a string (for acceptance by the automaton).

Instead, we map the abstract-states (and the transition relations, etc) to States (which are

simply integers) using a StateAssoc object. Once the mapping is complete, the abstract-

states, their transition relations, and the StateAssoc object can be destroyed.
For all of the �nite automata which are constructed from abstract-states, the construc-

tor takes an initial abstract-state which is used as a `seed' for constructing the remaining
states and the transition relation. For performance reasons, we wish to make the �nite

automaton constructor a template class whose template argument is the abstract-state

class (this would avoid virtual function calls). Unfortunately, most compilers which are

presently available do not support template member functions (which have recently been

added to the draft C++ standard). As a result, we are forced to make the entire �nite au-
tomata class into a template class. The main disadvantage is that this reduces the amount

of object code sharing (see Chapter 8 for a discussion of the di�erences between source and

object code sharing and templates versus inheritance).

Most of the abstract-state classes have constructors which take a regular expression.
As a result, an RE can be used as argument to most of the �nite automata classes | a
temporary abstract-state will be constructed automatically.

There are three types of abstract-states, corresponding to �nite automata with "-

transitions (see class FAFA), "-free �nite automata, and deterministic �nite automata.
Classes of a particular variety of abstract-state all share the same public interface by
convention; the template instantiation phase of the compiler detects deviations from the

common interface. For more on the three types of abstract-state, see Implementation
classes 10.8, 10.11, and 10.13. For examples of particular abstract-state classes, see Sec-

tion 10.5.4.

The transition relations on States are implemented by classes StateStateRel (for "-
transitions), TransRel (for nondeterministic transitions), and DTransRel (for deterministic
transitions).

10.4 REs and abstract FAs

In this section, we consider the client interface to regular expressions and the abstract
�nite automaton class. The multi-threading aspects of the �nite automaton interface is

not discussed since these aspects are parallel to those presented in Section 9.2.1.

User class 10.4 (RE)

File: re, reops

Description: Class RE supports regular expressions. The client interface supports the

construction of regular expressions, using all of the operators given in Chapter 2.

Operators for stream insertion and extraction are also supported. A number of
special-purpose member functions provide information that is primarily used in �nite



10.4. RES AND ABSTRACT FAS 261

automata constructions. These member functions could have been made protected

or private (to hide them from clients), however, this would have required the �nite

automata classes to be friends of class RE.

Implementation: Regular expression are implemented as expression trees, with RE be-

ing a node in the tree. (Note that this corresponds to the tree de�nition of regular

expressions presented in Chapter 6.) RE contains an operator (the operator enumer-

ations are de�ned as class REops in header reops.hpp), instead of deriving speci�c

operator nodes from RE; this was done for simplicity. RE contains pointers to left
and right subexpressions. Some of the member functions (which are used by �nite

automata constructors) perform a tree traversal on their �rst invocation; the informa-

tion is cached in the RE node, implementing a form of memoization. An alternative
implementation would be to store the regular expression as a string in pre�x notation

| as is done in Grail [RW93].

Performance: For higher performance, more of the member functions could make use of
memoization. It is not clear if the regular expression data structures used in FIRE

Lite are more e�cient than those used in Grail.

2

User class 10.5 (FAAbs)

File: faabs

Description: This abstract class provides the client interface to all of the �nite automata
classes. It de�nes the member functions shown in the examples in Section 10.2. For

clarity, we present the header faabs.hpp here:

=� (c) Copyright 1995 by Bruce W. Watson �=

== FIRE Lite class library.
== $Revision:$
== $Date:$
#ifndef FAABS HPP

#de�ne FAABS HPP

#de�ne IN FAABS HPP

#include "string.hpp"

10

== Give a generic interface to the �nite automata in FIRE
== Lite. This interface di�ers from the one in the FIRE
== Engine. The new interface makes use of `call-backs' in
== the same way that the SPARE Parts class library does.

class FAAbs f

public:
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== In the concrete classes, there will be constructors

== from regular expressions, etc.

20

== Is the input String accepted? This member returns the

== TRUE if the string is accepted. The int& parameter will

== contain the index to the right of the last character

== processed.

virtual int attemptAccept( const String& S,

int& index ) const = 0;

== Process the input String, calling back whenever an

== accepting state is entered. The return value is the

== index to the right of the last character processed. 30

== At each call-back, the index to the right of the last

== processed symbol is passed. If the call-back function

== returns FALSE, the acceptance attempt is aborted.

virtual int reportAll( const String& S,

int callBack (int) ) const = 0;

== How many states in this �nite automaton?

virtual int numStates() const = 0;

g;

40

#undef IN FAABS HPP

#endif

Implementation: As an abstract class, there is no implementation.

2

10.5 Concrete FAs

A number of concrete �nite automata are provided to implement the client interface de�ned

by FAAbs. A summary of the classes and their template arguments (if any) is given in

Section 10.5.5. The automata are divided into three types: automata with "-transitions,

automata without "-transitions, and deterministic automata. All of the classes have names

that are pre�xed by FA. Some of the classes are in fact templates. The following sections
contain descriptions of the di�erent classes. All �nite automata are declared in header

fas.hpp.
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10.5.1 Finite automata

There are two classes (User class 10.6 | a non-template class, and User class 10.7 | a

template class) implementing �nite automata with "-transitions.

User class 10.6 (FACanonical)

File: fa-canon

Description: This class is a non-template �nite automaton class. It implements the

canonical �nite automata construction algorithm (see Construction 6.15). It inherits

from FAAbs and implements the required interface.

Implementation: The class is implemented by maintaining the dot movement relation

(as an ItemItemRel), the set of CharRange nodes (as a NodeSet), and the set of
labels of these nodes (as a NodeTo<CharRange>). The simulation of the automaton

is trivially implemented, with a single helper function.

Performance: The implementation of the main member functions is straight-forward.
Performance can be improved by improving the components.

2

User class 10.7 (FAFA)

File: fa-fa

Description: This �nite automata template class inherits from FAAbs and implements
that public interface. The template argument must be one of the abstract-state
classes (names beginning with AS: : : ). The constructor takes an object of class

AS: : : and uses it to construct the "-transition relation and the labeled transition
relation as well as a single start state and the set of �nal states. Most of the abstract-
state classes have constructors which take an RE, enabling us to use an RE as the
argument to the FAFA constructor.

Implementation: The abstract-states are described further in Implementation class 10.8.
Making the whole of class FAFA a template class would not be necessary if we could
make the constructor a template member function. The template argument is only

used in the construction of local variables in the constructor. At this time, most C++

compilers do not yet support template member functions. Making the whole class a
template class has the disadvantage that code sharing is only done at the source level

and objects of two di�erent instantiations of the template are not interchangeable
according to the language de�nition, even though their subobjects have identical

types.

The constructor assumes that its argument (an object of the abstract-state class) is

the start state. It uses a reachability based algorithm to construct the rest of the tran-

sition relations, and the set of �nal states. A StateAssoc object (see Implementation
class 10.24) is used to give names to each of the abstract-states.
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Performance: The performance is already highly tuned. It may be improved by using

use-counting in the abstract-states.

2

Implementation class 10.8 (AS: : : )

File: as...

Description: This family of classes implements abstract-states. An abstract-state is one

which contains more information than a usual State. The various classes do not have

a common inheritance ancestor to ensure a consistent interface since the return types

of some of the member functions must vary depending upon the abstract-state class.

Instead, the common interface is established by convention | errors are detected by

the template instantiating phase of the compiler.

Implementation: Each of the abstract-states is described individually in Section 10.5.4.

2

10.5.2 "-free �nite automata

The "-free �nite automata are also implemented via both a template and a non-template

class. All of the automata of this type (including instantiations of the template) are

declared in header fas.hpp.

User class 10.9 (FARFA)

File: fa-rfa

Description: This non-template "-free �nite automaton class inherits from FAAbs and

implements the public interface de�ned there. This class corresponds to the re-

duced �nite automata de�ned in the original taxonomy of construction algorithms,
[Wat93a]. The constructor takes a regular expression.

Implementation: This class is implemented through a pair of PosnSets (representing the

sets First and Last from Chapter 6), a PosnPosnRel (representing the Follow rela-

tion), a NodeTo<CharRange> (mapping the `positions' to their labels in the regular
expression), and an int (representing the Boolean Null | whether the automaton

should accept "). These components are constructed from the RE argument to the
constructor.

Performance: The implementation is already highly tuned. The only area for improve-

ment would be in use-counting the subobjects.

2
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User class 10.10 (FAEFFA)

File: fa-effa

Description: This template class inherits from FAAbs and implements the �nite automata

interface. The template argument must be one of the "-free abstract-states (classes

with names beginning with ASEF: : : ). Again, most of the abstract-states have con-

structors which take an RE, allowing us to use a regular expression as argument to

the FAEFFA.

Implementation: The implementation corresponds very closely to that of FAFA (see
User class 10.7).

2

Implementation class 10.11 (ASEF: : : )

File: asef...

Description: This family of classes implement "-free states for use as template argument

to class FAEFFA. Their interface closely parallels that of the AS: : : classes.

Implementation: Same as the AS: : : classes.

2

10.5.3 Deterministic �nite automata

The deterministic �nite automata are only implemented by a template class. Instead of

manually instantiating the template, the client should include the header fas.hpp which
declares the di�erent variants.

User class 10.12 (FADFA)

File: fa-dfa

Description: FADFA is a template class which inherits from FAAbs and implements the

interface de�ned there. The template argument must be one of the deterministic

abstract-state classes | classes with names beginning with ASD: : : . As with the
other abstract-state classes, the deterministic ones usually have constructors which

take an RE | meaning that we can use an RE as argument to the FADFA construc-
tor.

Implementation: The implementation parallels that of class FAFA (see User class 10.7).

2

Implementation class 10.13 (ASD: : : )
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File: asd...

Description: These classes implement deterministic abstract-states for use as template
arguments to class FADFA. Their (common) interface parallels that of the AS: : :

classes.

Implementation: Same as the AS: : : classes.

2

10.5.4 Abstract-states classes

Three of the �nite automata classes de�ned so far are template classes, which expect

their template argument to be an abstract-state. As a result, there are three primary

types of abstract-state. The "-free and deterministic abstract-states have names pre�xed

(respectively) with ASEF: : : and ASD: : : . The other abstract-states have names pre�xed
with AS: : : . The types of abstract-states have been grouped together according to their

general implementation ideas (as taken from Chapter 6).

Implementation class 10.14 (ASItems, ASEFItems, ASDItems)

File: asitems, asefitem, asditems

Description: These abstract-states all implement constructions which are based upon
sets of items (dotted regular expressions).

Implementation: They all maintain a ItemItemRel (representing the dot movement re-

lation). The �rst abstract-state to be constructed must have an RE as its argument;
the dot movement relation is obtained from the RE. The remaining abstract-states
are constructed from a private constructor.

Performance: These classes all pay a large penalty due to keeping their own ItemItemRel

(the dot movement relation). Use-counting ItemItemRel or its subobjects would make
a signi�cant improvement.

2

Implementation class 10.15 (ASDItemsDeRemer, ASDItemsWatson)

File: asditder, asditwat

Description: These two abstract-states implement the �ltered deterministic abstract-
states based upon sets of items.

Implementation: Their implementation is similar to those in Implementation class 10.14.

Additionally, objects of these classes all maintain their own copy of the �lter, which

is applied after the closure operation.
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Performance: These classes su�er from the same performance penalties as the ones in

Implementation class 10.14.

2

Implementation class 10.16 (ASEFPosnsBS, ASEFPosnsBSdual)

File: asefpbs, asefpbsd

Description: These two abstract-states are used in the constructions which are based
upon `positions' in a regular expression (see Constructions 6.39 and 6.65). The �rst

class implements the Berry-Sethi construction, while the second one implements the

dual of the Berry-Sethi construction (see Chapter 6).

Implementation: The implementation is via a local PosnPosnRel (the Follow relation)

and a local PosnSet (the Last relation). The �rst abstract-state is constructed from

an RE (from which it obtains the PosnPosnRel and the PosnSet). The remaining
ones are constructed using a private constructor.

Performance: As with the item based abstract-states (Implementation class 10.14, for

example), these classes su�er a penalty for keeping a local copy of the PosnPosnRel.

This can be alleviated by use-counting PosnPosnRel.

2

Implementation class 10.17 (ASDPosnsMYG, ASDPosnsASU)

File: asdpmyg, asdpasu

Description: These two abstract-states are deterministic versions of the abstract-state
classes described in Implementation class 10.16. The �rst implements the McNaughton-

Yamada-Glushkov construction, while the second one implements the Aho-Sethi-
Ullman construction (see Chapter 6).

Implementation: The implementation parallels that given in Implementation class 10.16.

Performance: These classes have the same performance problems as ASEFPosnsBS and
ASEFPosnsBSdual.

2

Implementation class 10.18 (ASEFPDerivative, ASDDerivative)

File: asefpder, asdderiv

Description: These abstract-state classes are used to represent a derivative (a regular

expression or a set of regular expressions) in Antimirov's and Brzozowski's con-
structions. Most of the member functions (required of the ASEF: : : and ASD: : :

interfaces) are derivative operations on the regular expression representation.
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Implementation: This class contains a local copy of the regular expression that it rep-

resents. The abstract-state member functions are pass-throughs to the derivatives

member functions of class RE.

Performance: The copying and comparison operations on regular expressions can be
particularly slow. The performance of this class could be signi�cantly improved by

use-counting RE.

2

10.5.5 Summary of concrete automata classes

The following table presents a summary of the various concrete automata classes and their

template arguments (if any):

Class Description

FACanonical Canonical automaton

FAFA Automaton template, with "-transitions
Single template argument required:

Abstract states

ASItems Item sets (canonical)

FARFA "-free automaton

FAEFFA Automaton template, without "-transitions

Single template argument required:
Abstract states

ASEFItems Items sets (no �lter)

ASEFPosnsBS Berry-Sethi
ASEFPosnsBSdual dual of Berry-Sethi
ASEFPDerivative Antimirov

FADFA Deterministic automaton template
Single template argument required:

Abstract states

ASDItems Items sets (no �lter)

ASDItemsDeRemer Items sets (DeRemer �lter)
ASDItemsWatson Items sets (W �lter)

ASDPosnsMYG McNaughton-Yamada-Glushkov
ASDPosnsASU Aho-Sethi-Ullman

ASDDerivative Brzozowski

10.6 Foundation classes

A number of the foundation classes presented in Chapter 9 and used in the SPARE Parts

have been reused in FIRE Lite. They are: State, String, Array, Set, and StateTo. In
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addition to the corresponding headers, FIRE Lite also makes use of headers com-misc.hpp

and com-opt.hpp for various miscellaneous declarations and de�nitions.

In this section, we consider the additional foundation classes that have been de�ned

for use in FIRE Lite. We begin with character ranges (and sets of them) which are used

as atomic regular expressions. We then continue with bit vectors (bit strings) and sets of
integers, followed by transition relations and other relations.

10.6.1 Character ranges

Instead of restricting atomic regular expression and transition labels (in �nite automata)

to single characters, we permit the use of a range of characters (assuming some ordering

on the characters, such as the ASCII ordering). Such a range of characters is denoted by

it upper and lower (inclusive) bounds, represented by a CharRange. Sets of such character

ranges can be combined in a Set<CharRange>, or in CRSet in which the CharRanges may

be split so that they are disjoint.

Implementation class 10.19 (CharRange)

File: charrang

Description: This class is used to represent a range of characters (under the character
ordering of the execution platform | usually ASCII). A CharRange can be con-
structed by specifying the lower and upper (inclusive) bounds, or a single character.

Member functions include one (taking a character) which determines if the character
falls within the range. An ordering is also de�ned on the CharRanges.

Implementation: The lower and upper bounds are simply stored privately. The ordering
member function implements the lexicographic order on pairs of characters.

Performance: This class is used so heavily that all of the (small) member functions must

be inline.
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Implementation class 10.20 (CRSet)

File: crset

Description: CharRanges can be combined into a CRSet. As the CharRanges are added,

they may be split so that none of them in a CRSet overlap. (Splitting, instead of
joining, is used since CRSets are used to implement deterministic �nite automata.)
A CRSet is useful for constructing deterministic �nite automata. Two CRSets can

be combined into one. There are member functions to iterate over the set.

Implementation: The class is implemented via an Array<CharRange>. The member
functions to add new character ranges ensures that the elements of the array do not

overlap.
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Performance: All of the member functions are small enough to be inline.

2

10.6.2 States, positions, nodes, and maps

The de�nition of State is borrowed from the SPARE Parts. The concepts of items and

positions (in a regular expression) are de�ned in a similar way. Additionally, mappings

from a state, a position, or a node to some type T are de�ned.

Implementation class 10.21 (StatePool)

File: st-pool

Description: This class represents a set of states (starting at constant FIRSTSTATE)

which can be assigned one-by-one for use in constructing �nite automata.

Implementation: An integer is stored to track the last state allocated.

2

Implementation class 10.22 (Node, Posn)

File: node, posn

Description: The nodes and the positions (those nodes that are labeled with a symbol)
of the tree representation of a regular expression are denoted by a Node (respectively

Posn).

Implementation: For simplicity, nodes and positions are encoded as integers representing

their pre-order traversal order. Their de�nition is via typedefs.

2

Implementation class 10.23 (NodeTo, PosnTo)

File: nodeto, posnto

Description: These two classes operate in a manner similar to StateTo (see Implementa-

tion class 9.37). They are template classes that implement maps from nodes (respec-
tively positions) to objects of the argument class. The member classes correspond

roughly to those in StateTo.

Implementation: As with StateTo, classes NodeTo and PosnTo are implemented using

Array.

2
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Implementation class 10.24 (StateAssoc)

File: st-assoc

Description: This template class takes a single template parameter | usually one of the

abstract-state classes. The constructor of StateAssoc takes a reference to a StatePool.

It associates States with objects of the template argument class by assigning a new

State to each new object that is looked up. Due to possible ambiguity, it is not
possible to use State as the template argument.

Implementation: The implementation is through an Array, which is linearly searched
during lookups. Any other (perhaps more e�cient) implementation would have to

make some assumptions on the template argument.

2

10.6.3 Bit vectors and sets

In this section, we describe bit vectors and integer sets for the basis for storing sets of
States.

Implementation class 10.25 (BitVec)

File: bitvec

Description: Class BitVec implements strings of bits. Typical operations, such as bitwise
and, or, exclusive or, complement, and shift are provided. Additional member func-
tions are provided to determine if a particular bit is set, and to set a particular bit.
The binary operators require that the two BitVecs be of the same width (in number

of bits). This class can be replaced by the bit vector class in the draft of the C++
standard.

Implementation: The class is implemented as Array< unsigned int >. Taken end-to-

end, these integers form the bit vector. Most of the member functions operate at

the array level. Special member functions are provided to index a particular bit,
according to its position in the array of integers and its shift distance from the right.

Performance: A low level class like this should be implemented in assembly language for

best performance. The bit index calculation member functions are heavily used and
must be inline. The current performance is almost optimal for portable C++.

2

Implementation class 10.26 (IntSet)

File: intset
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Description: Class IntSet implements set of unsigned integers. Typical set operations

are supported. This class performs more e�ciently than would Set< unsigned int

>. There is a restriction: the largest integer that can be stored must be set by the

client (it will not automatically grow as with template class Set).

Implementation: The class is implemented through BitVec. Most of the member func-

tions are simple pass-throughs to BitVec members.

Performance: Most of the member functions are simple and should be inlined.

2

Implementation class 10.27 (StateSet, NodeSet, PosnSet)

File: stateset, nodeset, posnset

Description: These three classes support sets of States, Nodes, and Posns (respectively).
They are used in the construction of automata and in the processing of strings. Most
of the typical set operations, such as union, intersection, di�erence, membership, and

cardinality, are supported.

Implementation: Since State, Node, and Posn are all typedef'd as int, these sets are

all typedef'd as IntSet.

2

Implementation class 10.28 (ItemSet)

File: itemset

Description: Sets of items (dotted regular expressions) are represented by ItemSet. There

are two types of items: those that are a dot before a node in the regular expression
tree, and those that are a dot after a node. The usual set operations are available.

This class is more e�cient than using template class Set.

Implementation: The dots before and the dots after are stored as two separate NodeSets.

The set operations are simple pass-throughs to the underlying NodeSet members.

Performance: The member functions are simple enough to be inlined.

2
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10.6.4 Transitions

Individual transitions and sets of transitions are implemented as individual classes for use

in transition relations of �nite automata.

Implementation class 10.29 (TransPair)

File: tr-pair

Description: A TransPair represents a transition: a destination State and a CharRange

label. The member functions consist only of access members.

Implementation: The class is little more than a struct with access member functions.

Performance: All of the member functions must be inline.

2

Implementation class 10.30 (Trans)

File: trans

Description: A Trans implements a set of transitions. Over and above the usual set
operations, it includes members to compute the image (a StateSet) of the Trans under

a character. The class is used to implement nondeterministic transition relations.

Implementation: The implementation is through a Array<TransPair>. Additionally,
an integer is used to store the width of the StateSet returned by the image function.

2

Implementation class 10.31 (DTrans)

File: dtrans

Description: DTrans represents a deterministic set of transitions. As with Trans, it

includes a number of set operations. A member function computes the image (a

State) of the DTrans under a character; if there is no applicable transition, the image
is constant INVALIDSTATE. The class is used to implement deterministic transition

relations.

Implementation: The implementation uses a Array<TransPair>. The member func-

tions used to construct the set of transition functions assume that the caller (the
code adding the transitions) will ensure that the set remains deterministic.

2
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10.6.5 Relations

Relations are used to implement "-transitions and labeled transitions. The di�erent types

of relations are used for di�erent types of automata, depending upon the type of states

used in the automata.

Implementation class 10.32 (IntIntRel)

File: in-inrel

Description: A binary relation on integers is implemented using a IntIntRel. The image

(or the reexive and transitive closure) of an integer or an IntSet can be computed (as
an IntSet). Pairs of integers can be added or removed from the relation. Additionally,

the cross product of two IntSets can be added to the relation.

Implementation: The implementation uses an Array<IntSet>. Most of the member

functions simply make use of the underlying Array or IntSet member functions.

Performance: The reexive and transitive closure member function could be imple-

mented more e�ciently.

2

Implementation class 10.33 (StateStateRel, NodeNodeRel, PosnPosnRel)

File: st-strel, no-norel, po-porel

Description: The four classes represent binary relations on States, Nodes, and Posns
(respectively). See IntIntRel for an explanation of the member functions available.

These classes are used directly in the �nite automata implementations.

Implementation: The classes are typedefs of IntIntRel.

2

Implementation class 10.34 (ItemItemRel)

File: it-itrel

Description: ItemItemRels are binary relations on items (dotted regular expressions).

As with IntIntRel, the usual relation member functions are implemented. Additional

member functions allow new pairs to be added to the relation.

Implementation: Since the ItemSets are already split into the before and after the node

components, we store the ItemItemRel as four NodeNodeRels representing the follow-
ing pair types:

� Before-nodes and before-nodes
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� Before-nodes and after-nodes

� After-nodes and before-nodes

� After-nodes and after-nodes

The member functions make use of the three sub-objects.

Performance: The performance depends entirely upon that of NodeNodeRel.

2

Implementation class 10.35 (TransRel)

File: transrel

Description: Class TransRel implements a nondeterministic labeled transition relation.

The class is used to implement the (non-") transitions in �nite automata. Member

functions are available to compute the image of a StateSet and a character and to
add transition triples (source State, label, destination State) to the relation.

Implementation: The class uses a StateTo<Trans>. Most of the member functions are

pass-throughs to the Trans members.

2

Implementation class 10.36 (DTransRel)

File: dtransre

Description: Class DTransRel is a deterministic labeled transition relation. The class
is used as the transition relation in deterministic �nite automata. The member

functions correspond to those in TransRel.

Implementation: The class uses a StateTo<DTrans>. The member functions are pass-
throughs to the DTrans member functions.

2

10.7 Experiences and conclusions

A large number of people (worldwide) have made use of the FIRE Engine, and a number of
people have started using FIRE Lite. As a result, a great deal of experience and feedback

has been gained with the use of the �nite automata toolkits. Some of these are listed here.

� The FIRE Engine and FIRE Lite toolkits were both created before the SPARE Parts.

Without experience writing class libraries, it was di�cult to devise a general purpose
toolkit without having a good idea of what potential users would use the toolkit for.

FIRE Lite has evolved to a form which now resembles the SPARE Parts (for example,
the use of call-back functions).
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� The FIRE Engine interface proved to be general enough to �nd use in the following

areas: compiler construction, hardware modeling, and computational biology. The

additional exibility introduced with the FIRE Lite (the call-back interface and multi-

threading) promises to make FIRE Lite even more widely applicable.

� Thanks to the documentation and structure of the FIRE Engine and FIRE Lite, they

have both been useful study materials for students of introductory automata courses.

� The SPARE Parts was developed some two years after the taxonomy in Chapter 4

had been completed. By contrast, FIRE Lite was constructed concurrently with the

taxonomy presented in Chapter 6. As a result, the design phase was considerably

more di�cult (than for the SPARE Parts) without a solid and complete foundation
of abstract algorithms.

� After maintaining and modifying several upgrades of the FIRE Engine, FIRE Lite is
likely to be considerably easier to maintain and enhance.

10.8 Obtaining and compiling FIRE Lite

FIRE Lite is available for anonymous ftp from ftp.win.tue.nl in directory:

/pub/techreports/pi/watson.phd/firelite/

The toolkit (and any related documentation) is combined into a tar �le. A number of
di�erent versions of this �le are stored | each having been compressed with a di�erent

compression utility.
FIRE Lite was primarily developed under Watcom C++32 Version 9.5b on MS-Dos.

The toolkit was also successfully compiled with Borland C++ Versions 3.1 and 4.0 under
Microsoft Windows 3.1. A number of people have successfully ported the FIRE Engine

to Unix platforms and there is every reason to believe that FIRE Lite will also be easy to

port to any platform with a good C++ compiler.
As with the SPARE Parts, a version of FIRE Lite will remain freely available (though I

retain the copyright on my code). Contributions to FIRE Lite are welcome.



Chapter 11

DFA minimization algorithms in FIRE Lite

In this chapter, we describe the implementation of the DFA minimization algorithms in
the �nite automata toolkit known as FIRE Lite.

11.1 Introduction

The FIRE Lite �nite automata toolkit contains a number of implementations of DFA min-
imization algorithms as member functions of the C++ class FADFA.

Other toolkits that are available are also described (and compared to FIRE Lite) in
Chapter 10. Only the Grail toolkit supports C++ class libraries of �nite automata in the
same way as FIRE Lite. While Grail supports a number of things that FIRE Lite does not
(such as string elements that are not characters, but more complex structures), it does not

have a selection of minimization algorithms as extensive as those in FIRE Lite.
Providing clients of FIRE Lite with a number of di�erent minimization algorithms has

proven to be useful. As we shall see in Chapter 15, each of the algorithms has a di�erent
performance pro�le (when graphed against statistics on the DFAs to be minimized). As

a result, the choice of which algorithm to use will depend upon the client's particular

application area.
To a large extent, these implementations are inherited from the previous Eindhoven

�nite automata toolkit known as the FIRE Engine. FIRE Lite was described in detail in
Chapter 10.

This chapter is structured as follows:

� Section 11.2 provides a description of each of the algorithms.

� Section 11.3 describes the foundation classes that are used by the minimization al-
gorithms.

� Section 11.4 presents the conclusions of this chapter.

Since the minimization member functions are part of the de�nition of class FADFA (and
therefore the member functions are bundled with the toolkit), no separate information is

provided on obtaining and compiling the minimization algorithms.
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11.2 The algorithms

As in the taxonomy presented in Chapter 7, we implement two basic types of algorithms:

Brzozowski's minimization algorithm and the minimization algorithms based upon com-

puting an equivalence relation on states. In the next two sections, these two types of

algorithms are presented.

11.2.1 Brzozowski's algorithm

Brzozowski's algorithm involves two applications of a function which reverses the DFA

and makes it deterministic (since the reversal of a DFA is not necessarily deterministic).

Template class FADFA has a member function to reverse the automaton and perform the

subset construction. This member function is then used in Brzozowski's minimization

algorithm.

User function 11.1 (void FADFA::reverse)

File: fa-dfa

Description: This member function is used to reverse a deterministic �nite automaton.
It reverses all of the transitions of the automaton and makes the automaton deter-

ministic. It has no return value.

Implementation: Member function reverse uses the deterministic abstract state mech-
anism to reverse the automaton. It uses class ASDReverse, which is local to class
FADFA. The local class assists in constructing the reverse of the transition relation.

2

User function 11.2 (void FADFA::minBrzozowski)

File: fa-dfa

Description: This member function implements Brzozowski's minimization algorithm. It
minimizes the FADFA on which it is called and it has no return value.

Implementation: This function makes two calls to member function FADFA::reverse.

2

11.2.2 Equivalence relation algorithms

As described in Chapter 7, a number of the minimization algorithms are based upon the
computation of an equivalence relation on states (of the DFA). In this section, we describe

the implementation of a number of these algorithms. Some special member functions are
provided to assist in the actual compression of the FADFA once the equivalence relation has

been computed. In Section 11.3, we will consider some foundation classes which implement

equivalence relations.
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Implementation function 11.3 (void FADFA::compress)

File: fa-dfa

Description: Given some equivalence relation on States, this member function compresses
the FADFA. For each equivalence class of the relation, it constructs a State in the new

automaton. Since some of the minimizationmember functions construct a StateEqRel

and some others construct a StateStateSymRel, this member function is overloaded

to deal with both.

Implementation: This member traverses the set of equivalence classes of its argument,

constructing a new State for each of them. It also constructs a DTransRel, represent-

ing the transition relation, and a new set of �nal States.

2

Implementation function 11.4 (State FADFA::split)

File: fa-dfa

Description: This member function is used by some of the minimization algorithms to
split equivalence classes of the equivalence relation. It takes a pair of States p and
q, a CharRange a, and a reference to a StateEqRel. It assumes that the p and q are
representatives of their particular equivalence classes. It splits the equivalence class

of p into the set of States that have a transition to the equivalence class of q on a, and

those that do not. If there was a successful split, p will be a representative of one of
the new equivalence classes (resulting from the split) and the unique representative

of the other new equivalence class is returned. The special State INVALIDSTATE is
returned if the split was not successful.

Implementation: The implementation is a trivial one. It makes use of the StateEqRel

received as argument, and the DTransRel of the automaton.

2

Given these basic helper member functions, we are now in a position to describe the
minimization algorithms themselves.

User function 11.5 (void FADFA::minDragon)

File: fa-dfa

Description: This member function is an implementation of [ASU86, Algorithm 3.6,
p. 141], presented as Algorithm 7.21 in this dissertation. It is named the `Dragon'

minimization algorithm after Aho, Sethi, and Ullman's `Dragon book'.

Implementation: The algorithm is a straightforward implementation of Algorithm 7.21.
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2

User function 11.6 (void FADFA::minHopcroftUllman)

File: fa-dfa

Description: This member function is an implementation of Hopcroft and Ullman's min-

imization algorithm [HU79], appearing as Algorithm 7.24 in this dissertation.

Implementation: This algorithm computes the distinguishability relation D. Initially,

pairs of States that are distinguishable are those pairs where one is �nal and the other
is non-�nal. The transition relation is followed in reverse, marking distinguishable

pairs. The iteration terminates when all distinguishable States have been considered.

Performance: The algorithm can be expected to run quite slowly since the implementa-

tion of the transition relation DTransRel is optimized for forward transitions.

2

User function 11.7 (void FADFA::minHopcroft)

File: fa-dfa

Description: This function implementsHopcroft's minimization algorithm [Hopc71]. The

algorithm is presented as Algorithm 7.26 in this dissertation.

Implementation: The member function uses some encoding tricks to e�ciently imple-

ment the abstract algorithm. The combination of the out-transitions of all of the
States is stored in a CRSet named C. Set L from the abstract algorithm is imple-
mented as a StateTo< int >. L is interpreted as follows: if State q is a representative,
then the following pairs still require processing (they would be in set L in the abstract
algorithm):

([q]; C0); : : : ; ([q]; CL[q]�1)

The remaining pairs do not require processing:

([q]; CL[q]); : : : ; ([q]; CjCj)

This implementation facilitates quick scanning of L for the next valid State-CharRange
pair to be considered.

2

Implementation function 11.8 (int FADFA::areEq)

File: fa-dfa
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Description: This member function is a helper to FADFA::minWatson. It implements

Algorithm 7.27 described in Section 7.4.6.

Implementation: This member function takes two more parameters than the abstract

algorithm: a StateEqRel and a StateStateSymRel. These parameters are used to dis-

cover equivalence (or distinguishability) of States earlier than the abstract algorithm
would.

Performance: This member function should use memoization.

2

User function 11.9 (void FADFA::minWatson)

File: fa-dfa

Description: This member function implements the new minimization algorithm appear-

ing in Section 7.4.7. This algorithm is particularly interesting since it computes the
equivalence relation from the safe side. If follows that this algorithm is usable in real-
time applications, where some minimization is desired once a deadline has expired
(see Section 7.4.7). The present implementation does not support interruptions in

the computation of the equivalence relation.

Implementation: Helper member function FADFA::areEq is used.

2

11.3 Foundation classes

Some simple foundation classes are needed only by the minimization member functions of
FIRE Lite.

Implementation class 11.10 (StateStateSymRel)

File: sssymrel

Description: This class is used to implement symmetrical relations on States. In some

of the minimization algorithms, a symmetrical relation is used to keep track of the

States which have been compared to one another for equivalence.

Implementation: The implementation closely parallels that of class StateStateRel (see
Implementation class 10.33). The member functions are modi�ed to accomodate the

symmetry requirement.

2

Implementation class 11.11 (StateEqRel)
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File: st-eqrel

Description: Class StateEqRel implements an equivalence relation on States. It is used
to accumulate the approximations of relation E for minimizing an FADFA. There are

member functions for accessing a unique set of equivalence class representatives and

for iterating over the equivalence classes of the relation. Other members are provided

to split equivalence classes and to merge equivalence classes.

Implementation: The implementation is via a StateTo<StateSet*>. Two States that be-

long to the same equivalence class point to the same StateSet. This allows extremely

fast tests for equivalence. The other member functions are simple manipulations of

these structures.

2

Implementation class 11.12 (ASDReverse)

File: asdrever

Description: This abstract deterministic state (see Section 10.5.4 for more on abstract
states) is used to compute the transition relation and new set of �nal states while

reversing an FADFA.

Implementation: The implementation maintains a StateSet (representing the current
states) and pointers to the components of the FADFA.

2

11.4 Conclusions

A number of the minimization algorithms derived in Chapter 7 have been implemented
in FIRE Lite. Although the algorithms have been quite easy to present in an abstract

manner in Chapter 7, the work required to implement them was anything but easy. The

C++ implementations are usually several times more verbose than the abstract algorithms.

The algorithms with the best running time analysis (such as Hopcroft's) also have the

most intricate data structures | and therefore, require the most attention in a C++

implementation. Conversely, a minimization algorithm such as Brzozowski's has no data
structures and is particularly simple to implement in FIRE Lite. In Chapter 15, we will see

how this di�erence in di�culty of implementation can a�ect the running time in practice.
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The performance of the algorithms
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Chapter 12

Measuring the performance of algorithms

We consider briey some of the issues involved in collecting algorithm performance data.

Little is known about the real-life performance of the algorithms derived and implemented

in the preceding two parts of this dissertation. Such information is crucial to choosing an
appropriate algorithm for a given application. In this part, we present performance data
for a number of the most important algorithms.

The commercial success of software and hardware products is frequently dictated by
the product's performance in practice. As a result, a great deal is known about methods
for collecting performance data. Unfortunately, most of what is known relates to collect-

ing benchmarking data for marketing purposes. Collecting and presenting benchmarking
(performance) data in a fair way is particularly di�cult. The guiding principles used in
collecting and analyzing the data given in this part are as follows:

� The performance data should be normalized since we are primarily interested in
relative performances of the algorithms.

� To present performance data that is independent of the particular machine used, we
execute the benchmarks on a variety of hardware. The relative performance of the
algorithms can then be compared across hardware platforms.

� Execute the benchmarks on a single-user machine with little or no operating system
overhead.

� Since the benchmarking code should be compiled with compiler optimizations en-

abled, the assembly language output from the compiler should be inspected to en-

sure that the compiler does not eliminate signi�cant amounts of code. (This actually
occurred during the collection of the benchmarking data presented in Chapter 13. A
great deal of work was required to prevent the optimizing compiler from `optimizing

away' the benchmarking code.)

� If a multiple-user operating system is used (such as Unix), ensure that the bench-
marker is the only person logged-in, and that no non-standard background tasks are

executed.
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� Use a machine with su�cient physical memory so that demand-paging e�ects are

negligible. We ignore the e�ects of caching, since they are usually inherent in the

hardware, and are a�ected minimally by the operating system.

� Make use of vast amounts of input data for the algorithms. The distribution of the

input data is chosen to represent a typical use of the algorithm in practice, e.g. the

pattern matching algorithms were tested using English language input data (and

the resulting English distribution of words, word lengths, and letter frequencies).

Since this is only representative of English text searches, we also make use of genetic
sequence data as input; the genetic sequences typically consist of longer patterns

than those in English, and have a four letter alphabet.

� Collect a number of statistics on the input data and the program performance. Later,

statistical analysis can be used to determine the relevant parameters, which can then

be selected for presentation.

� Using the presented performance data, make clear recommendations about which
algorithm to use in a given situation.

� The performance data should be compared against the theoretical space and time
predictions and against other benchmarking results.

This part is structured as follows:

� Chapter 13 presents performance data for some of the pattern matching algorithms

implemented in the SPARE Parts. The algorithms selected were those expected to
have the best tradeo� of precomputation time versus pattern matching performance.

� In Chapter 14, we consider the performance of a number of the FA construction

algorithms implemented in FIRE Lite. We compare the performance of most of the
well-known algorithms.

� The performance of the DFA minimization algorithms (implemented in FIRE Lite) is

presented in Chapter 15.



Chapter 13

The performance of pattern matchers

This chapter presents performance data on some pattern matching algorithms, and recom-

mendations for the selection of an algorithm (given a particular application). The pattern

matching problem, and algorithms solving it, are considered in Chapter 4.

The performance of all of the algorithms (running on a variety of workstation hard-
ware) was measured on two types of input: English text and genetic sequences. The input
data, which is the same as that used in the benchmarks of Hume and Sunday [HS91],

were chosen to be representative of two of the typical uses of pattern matching algorithms.
The di�erences between natural language text and genetic sequences serve to highlight the

strengths and weaknesses of each of the algorithms. Until now, the performance of the

multiple-keyword algorithms (Aho-Corasick and Commentz-Walter) had not been exten-
sively measured.

The Knuth-Morris-Pratt and Aho-Corasick algorithms performed linearly and con-

sistently (on widely varying keyword sets), as their theoretical running time predicts.
The Commentz-Walter algorithm (and its variants) displayed more interesting behaviour,
greatly out-performing even the best Aho-Corasick variant on a large portion of the input
data. The recommendations section of this chapter details the conditions under which a

particular algorithm should be chosen.
An early version of this chapter appeared as [Wat94a].

13.1 Introduction and related work

Each of the algorithms tested involves some sort of precomputation on the set of keywords.
Since the time involved in pattern matching usually far outweighs the time involved in

precomputation, the performance of the precomputation algorithms is not discussed in
this dissertation.

Performance data for the following selection of algorithms are presented in this chapter:

� The Knuth-Morris-Pratt (KMP) algorithm| Algorithm 4.84, appearing on page 77.

� Two variants of the Aho-Corasick (AC) algorithm: the `optimized' version (AC-OPT

| Algorithm 4.53 appearing on page 64), and the failure function version (AC-FAIL
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| Algorithm 4.72 appearing on page 73).

� Two variants of the Commentz-Walter (CW) algorithm: the normal Commentz-

Walter algorithm (CW-NORM | Algorithm 4.4.5, appearing on page 95), and the

weak Boyer-Moore algorithm (CW-WBM| Algorithm 4.4.7, appearing on page 97).

All of the algorithms considered in this chapter have worst-case running time linear in the

length of the input string. The running time of the AC-OPT algorithm is independent of

the keyword set, while that of the KMP, AC-FAIL, CW-NORM, and CW-WBM algorithms

depends (linearly in the case of CW-WBM and CW-NORM) upon the length of the shortest

keyword in the keyword set. The KMP, AC-FAIL, CW-NORM, and CW-WBM algorithms
can be expected to depend slightly on the keyword set size. Unfortunately, little is known

about the relative performance (in practice) of the multiple-keyword algorithms. Only the

Aho-Corasick algorithms are used extensively. The Commentz-Walter algorithms are used
rarely (if ever), due to the di�culty in correctly deriving the precomputation algorithms

for the CW algorithms.
The performance of the single-keyword algorithms in practice has been studied:

� In [Smit82], Smit compares the theoretical running time and the practical running

time of the Knuth-Morris-Pratt algorithm, a rudimentary version of the Boyer-Moore

algorithm, and a brute-force algorithm.

� In [HS91], Hume and Sunday constructed a taxonomy and explored the performance
of most existing versions of the single-keyword Boyer-Moore pattern matching algo-

rithm. Their extensive testing singled out several particularly e�cient versions for
use in practical applications.

� In [Pirk92], Pirklbauer compares several versions of the Knuth-Morris-Pratt algo-
rithm, several versions of the Boyer-Moore algorithm, and a brute-force algorithm.

Since Pirklbauer did not construct a taxonomy of the algorithms, the algorithms are

somewhat di�cult to compare to one another and the testing of the Boyer-Moore

variants is not quite as extensive as the Hume and Sunday taxonomy.

We adopt the approach (due to Hume and Sunday) of evaluating the algorithms on two
types of input data: natural language input strings, and input strings encoding genetic

(DNA) information. In order to compare our test results with those of Hume and Sunday,

we use a superset of the test data they used in [HS91].

This chapter is structured as follows:

� Section 13.2 briey outlines the algorithms tested.

� Section 13.3 describes the testing methodology, including the test environment, test

data (and related statistics), and testing problems that were encountered.

� Section 13.4 presents the results of the testing. Most of the results are presented in

the form of performance graphs.

� Section 13.5 gives the conclusions and recommendations of this chapter.
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13.2 The algorithms

To re-cap what is known from Chapter 4, the algorithms to be considered are:

� The Knuth-Morris-Pratt algorithm (KMP). This algorithm combines the use of in-

dexing into the input string (and the single-keyword pattern) with a precomputed
`failure function' to simulate a �nite automaton. The algorithm never backtracks in

the input string.

� The optimized Aho-Corasick algorithm (AC-OPT). This algorithm uses a Moore

machine to �nd matches. The Moore machine detects all matches ending at any

given character of the input string. The algorithm never backtracks in the input

string (it is an on-line algorithm) and examines each character of the input string

only once.

� The failure function Aho-Corasick algorithm (AC-FAIL). This algorithm is similar to

the AC-OPT algorithm. The Moore machine used in AC-OPT is compressed into two

data-structures: a forward trie, and a failure function. These two data-structures can
be stored more space-e�ciently than the full Moore machine, with a penalty to the

running time of the algorithm. The algorithm never backtracks in the input string,
but it may examine a single character more than once before proceeding; despite this,
it is still linear in the length of the input string.

� The Commentz-Walter algorithms (CW). In all versions of the CW algorithms, a com-
mon program skeleton is used with di�erent shift functions. The CW algorithms are

similar to the Boyer-Moore algorithm. A match is attempted by scanning backwards
through the input string. At the point of a mismatch, something is known about the
input string (by the number of characters that were matched before the mismatch).
This information is then used as an index into a precomputed table to determine

a distance by which to shift before commencing the next match attempt. The two

di�erent shift functions compared in this chapter are: the multiple-keyword Boyer-
Moore shift function (CW-WBM) and the Commentz-Walter normal shift function

(CW-NORM). Recall (from our weakening steps in Section 4.4) that the CW-NORM

shift function always yields a shift that is at least as great as that yielded by the
CW-WBM shift function.

The precomputation required for each of these algorithms is described in [WZ92].

We are interested in measuring the time required to �nd all matches in a large input
string. In order to do this, we use an algorithm skeleton which repeatedly advances to the
next match, registering each one. To eliminate the overhead of function calls, and obtain

the raw performance of each of the algorithms, we inline all of the member function calls by

hand. For each of the algorithms to be tested, this yields a program which �nds all matches
in an input string. Interestingly, after inlining, these algorithms are in C [ISO90, KR88],

with all C++ features being eliminated during the inlining. The resulting C code is
the same as that given in the earlier version of this paper [Wat94a, Appendix A]. The C
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language was used in order to extract the maximumperformance from the implementations

| on most workstations, the C compiler is the one with the highest quality of optimization.

Having all function calls inlined means that the benchmarking versions of the toolkit will

have higher performance than the version for client use. The data presented in this chapter

is useful for considering the relative performance of the algorithms.

E�orts were made to implement the algorithms as e�ciently as possible, while preserv-

ing readability. For example, in the algorithms used in the performance tests, indexing
(as opposed to pointers) was used when accessing characters of the input string; most

optimizing compilers are able to `pointerize' such indices. (The pattern matching toolkit

presented in [Wat94a, Appendix A] contains pointer versions of the algorithms which can

be used with non-optimizing compilers.)

The performance of the precomputation algorithms was not extensively measured.
Some simple measurements, however, indicate that all of the algorithms required simi-

lar precomputation times for a given set of keywords.

13.3 Testing methodology

The performance of each of the pattern matching algorithms is linear in the size of the input
string. The performance of the AC variants and the KMP algorithm is largely independent
of the keyword set, while the CW algorithms running time depends on the keyword set.
The testing of these algorithms is intended to determine the relative performance of the

algorithms on two types of test data (each having di�erent characteristics):

� English text was chosen as the �rst type of input data since it is the most common
input to pattern matching programs such as fgrep.

� DNA sequences were chosen as the second type of input data since genome mapping

projects make heavy use of pattern matching algorithms, and the characteristics of
the input data are unlike the natural language input data.

The testing of the algorithms is also intended to explore the dependence of the performance
of the Commentz-Walter algorithms upon the keyword sets.

13.3.1 Test environment

The tests were performed on a DEC Alpha workstation (running OSF/1) with a 100 Mhz

clock. A smaller number of tests were also performed on a HP Snake workstation and a
Sun Sparc Station 1+. The tests showed that the relative performance data gathered

on the Alpha is typical of what could be found on other high performance workstations.

During all tests, only one user (the tester) was logged-in. Typical Unix background
processes ran during the tests. Since the running time of the algorithm was obtained

using the getrusage system call, these background processes did not skew the algorithm
performance data. The data-structures used in the testing were all in physical memory
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during the tests. No page faults were reported by getrusage, and all data was accessed

before the timed run (to ensure that they were in physical memory). Methods of disabling

the cache memory were not explored. All of the frequently accessed data-structures were

too large (frequently a megabyte) to �t in a �rst level cache. The linear memory access

behaviour of all of the algorithms means that performance skewing due to caching e�ects
was negligible.

13.3.2 Natural language test data

The test data is a superset of that used by Hume and Sunday [HS91]. The input alphabet

consists of the 52 upper-case and lower-case letters of the alphabet, the space, and the new-

line characters. The input string is a large portion (999952 bytes) of the bible, organized
as one word per line. Each algorithm was run 30 times over the input string, e�ectively

giving an input string of approximately 28 Megabytes in length (assuming that a Megabyte
is 220 bytes). The bible was chosen as input since Hume and Sunday used it (and we wish

to facilitate comparison of our data with that of Hume and Sunday), and it is freely

redistributable.

Some data on the words making up the input string is shown in the following table:

Word length Number of words

1 4403
2 32540

3 55212
4 43838
5 23928

6 13010
7 9946
8 6200
9 4152
10 1851

11 969

12 407

13 213

14 83
15 22

16 5

17 1

There are a total of 196780 words; the mean word length is 4:08 and the standard deviation

is 1:97.

The single-keywords sets are the same as those used by Hume and Sunday. They consist

of 500 randomly chosen words, 428 of which appear in the input string. Some data on the

keywords are shown in the following table:
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Word length Number of words

1 0

2 1
3 14

4 47

5 68

6 103

7 79
8 79
9 49

10 29
11 14
12 9

13 7
14 0

15 0
16 1

Note that there are no words of length 1, 14, or 15. The mean word length is 6:95 and the

standard deviation is 2:17.

The multiple-keyword sets were all subsets of the words appearing in the input string.

Preliminary testing showed that the performance of the algorithms (on English text) is

almost entirely independent of the number of matches in the input string (providing that

some sensible method of registering matches is used). A total of 4174 di�erent keyword
sets were generated using a random number generator ran1 appearing in [PTVF92, p. 280].

The relatively even distribution of keyword set sizes can be seen in the following table:
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Keyword set size Number of sets

1 212

2 217
3 206

4 193

5 199

6 200

7 217
8 206
9 234

10 202
11 235
12 219

13 210
14 210

15 177
16 221
17 196
18 222
19 200

20 198

The mean keyword set size is 10:47 and the standard deviation is 5:73.

An additional statistic (concerning the multiple-keyword sets) was recorded: the length
of the shortest keyword in any given keyword set; for a given keyword set the CW-WBM

and CW-NORM shift distances are bounded above by the length of the shortest keyword
in the set. The data are as follows:

Length of shortest keyword Number of keyword sets

1 4
2 196

3 1033

4 1698
5 719

6 286
7 100

8 70

9 47
10 12

11 5

12 2

13 1

14 1
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The mean is 4:19 and the standard deviation is 1:36.

13.3.3 DNA sequence test data

The test data consists of the input string used by Hume and Sunday [HS91], and randomly

generated keyword sets. The input alphabet consists of the four letters a, c, g, and t

(standing for adenine, guanine, cytosine, and thymine, respectively) used to encode DNA,

and the new-line character. The input string is a portion (997642 bytes) of the GenBank

DNA database, as distributed by Hume and Sunday. Each algorithm was run 30 times

over the input string, e�ectively giving an input string of approximately 28 Megabytes in

length.

A total of 450 keyword sets were randomly chosen (the keywords are all substrings of

the input string). Within each keyword set, all keywords were of the same length. The

keyword sets were distributed evenly with set sizes ranging from 1 to 10 and keyword

lengths ranging from 100 to 900 (in increments of 100).

13.4 Results

The performance of the algorithms was measured on thirty iterations over the input string.
The running time on both types of test data was found to be independent of the number

of matches found in the input string. This is mostly due to the fact that the algorithms
register a match by recording one integer, and incrementing a pointer | cheap operations
on most processors.

The performance of each algorithm was graphed against the size of the keyword sets,
and against the lengths of the shortest keyword in a set. Graphing the performance against
other statistics (such as the sum of the lengths of the keywords, or the length of the longest

keyword in a set) was not found to be helpful in comparing the algorithms.

13.4.1 Performance versus keyword set size

For each algorithm, the average number of megabytes (of natural language input string)
processed per second was graphed against the size of the keyword set. The four graphs

(corresponding to AC-FAIL, AC-OPT, CW-WBM, and CW-NORM) are superimposed in

Figure 13.1.

As predicted, the AC-OPT algorithm has performance independent of the keyword set
size. The AC-FAIL algorithm has slightly worse performance, with a slight decline as the

keyword set size increases. The CW-WBM and CW-NORM algorithms perform similarly
to one another, with the CW-NORM algorithm performing slightly better. This follows

from the fact that the shift predicate used in the CW-WBM algorithm is a weakening of

the one used in the CW-NORM algorithm (see Section 4.4). The performance of both
CW algorithms decreases noticeably with increasing keyword set sizes, eventually being

outperformed by the AC-OPT algorithm at keyword set sizes greater than 13.
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Figure 13.1: Algorithm performance (in megabytes/second) versus keyword set size. The
performance lines of the CW-WBM and CW-NORM algorithms are almost coincidental
(shown as the solid descending line).

Figure 13.2 presents the ratio of the CW-WBM performance to the CW-NORM per-

formance | clearly showing CW-NORM outperforming CW-WBM. The �gure also shows

that the performance gap between the two algorithms widens somewhat with increasing
keyword set size.

The AC algorithms displayed little to no variance in performance for a given keyword

set size. The median performance data (with +1 and �1 standard deviation bars) for
AC-FAIL are shown in Figure 13.3, while those for AC-OPT are shown in Figure 13.4.
In both graphs, the standard deviation bars are very close to the median, indicating that
both algorithms display very consistent performance for a given keyword set size.

The CW algorithms displayed a large variance in performance, as is shown in Fig-

ures 13.5 and 13.6 (for CW-WBM and CW-NORM, respectively). These �gures show a
noticeable narrowing of the standard deviation bars as keyword set size increases. The

variance in both algorithms is almost entirely due to the variance in minimum keyword
length for a given keyword set size.

For each algorithm, the average number of megabytes of DNA input string processed per

second was graphed against keyword set size. The results are superimposed in Figure 13.7.

The performance of the algorithms on the DNA data was similar to their performance
on the natural language input data. The performance of the AC-OPT algorithm was

independent of the keyword set size, while the performance of the AC-FAIL algorithm
declined slightly with increasing keyword set size.
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Figure 13.2: The ratio of CW-WBM performance to CW-NORM performance versus key-
word set size. Some data-points are greater than 1:00 (although theoretically this should
not occur), reecting timing anomalies due to the limited timer resolution.
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Figure 13.3: Performance variation (in megabytes/second) versus keyword set size for the

AC-FAIL algorithm. Median performance is shown as a diamond, with +1 and �1 standard
deviation bars.
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Figure 13.4: Performance variation (in megabytes/second) versus keyword set size for the
AC-OPT algorithm.
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Figure 13.5: Performance variation (in megabytes/second) versus keyword set size for the

CW-WBM algorithm.
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Figure 13.6: Performance variation (in megabytes/second) versus keyword set size for the
CW-NORM algorithm.
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Figure 13.7: Algorithm performance (in megabytes/second) versus keyword set size, for

the DNA test data. The performance of the CW-NORM and CW-WBM algorithms are

almost coincidental, shown as the descending solid line.
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Figure 13.8: Algorithm performance (in megabytes/second) versus the length of the short-
est keyword in a given set. The performance of the CW-WBM and CW-NORM algorithms
are almost coincidental (shown as the ascending solid line).

The performance of the CW algorithms, which declined with increasing keyword set
size, was consistently better than the AC-OPT algorithm. In some cases, the CW-NORM
algorithm displayed a �ve to ten-fold improvement over the AC-OPT algorithm.

13.4.2 Performance versus minimum keyword length

For each algorithm, the average number of megabytes processed per second was graphed
against the length of the shortest keyword in a set. For the multiple-keyword tests the

graphs are superimposed in Figure 13.8.

Predictably, the AC-OPT algorithm has performance that is independent of the key-
word set. The AC-FAIL algorithm has slightly lower performance, improving with longer

minimum keywords. The average performance of the CW algorithms improves almost
linearly with increasing minimum keyword lengths. The low performance of the CW al-

gorithms for short minimum keyword lengths is explained by the fact that the CW-WBM

and CW-NORM shift functions are bounded above by the length of the minimumkeyword
(see Chapter 4). For sets with minimum keywords no less than than four characters, the
CW algorithms outperform the AC algorithms.

As predicted, the CW-NORM algorithm outperforms the CW-WBM algorithm. The

performance ratio of the CW-WBM algorithm to the CW-NORM algorithm is shown in
Figure 13.9. The �gure indicates that the performance gap is wide with small minimum

keyword lengths, and diminishes with increasing minimum keyword lengths. (This e�ect
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Figure 13.9: The ratio of CW-WBM performance to CW-NORM performance versus the
length of the shortest keyword in a set. Some data-points are greater than 1:00, reecting
timing anomalies due to the limited timer resolution.

of the diminishing performance gap is partly due to the distribution of keyword lengths in

the test data.)

The AC-FAIL algorithm displayed some variance in performance, as shown in Fig-
ure 13.10. The apparent greater variance for shorter minimum keyword lengths is partially

due to the distribution of keyword lengths in the test data. The AC-OPT algorithm showed
practically no variance in performance, as shown in Figure 13.11.

The CW algorithms displayed a large variance in performance for given minimum key-
word lengths. The median performance (with +1 and �1 standard deviation bars) of the

CW-WBM algorithm are shown in Figure 13.12, while those for CW-NORM are shown
in Figure 13.13. The variance increases with increasing shortest keyword length. At a
shortest keyword length of 11, the variance decreases abruptly due to the distribution of

the shortest keyword lengths of the keyword sets; there are few keyword sets with shortest
keyword length greater than 10 characters. The variance in the performance of the CW

algorithms is due to the variance in keyword set size (for any given minimum keyword
length).

The performance in megabytes of DNA input string processed per second of each al-

gorithm was also graphed against keyword length1. The results are superimposed in Fig-

ure 13.14. The performance of the algorithms on the DNA data was similar (though not as
dramatic) to their performance on the natural language input data. The performance of

1Recall that the keywords in a given keyword set were all of the same length.
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Figure 13.10: Performance variation (in megabytes/second) versus the length of the short-
est keyword in a set for the AC-FAIL algorithm.
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Figure 13.11: Performance variation (in megabytes/second) versus the length of the short-

est keyword in a set for the AC-OPT algorithm.
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Figure 13.12: Performance variation (in megabytes/second) versus the length of the short-
est keyword in a set for the CW-WBM algorithm.
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Figure 13.13: Performance variation (in megabytes/second) versus the length of the short-

est keyword in a set for the CW-NORM algorithm.
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Figure 13.14: Algorithm performance (in megabytes/second) versus the length of the key-
words in a given set, for the DNA test data. The performance of the CW-NORM and
CW-WBM algorithms are almost coincidental, shown as the ascending solid line.

the AC-OPT algorithm was independent of the keyword length. Unlike on the natural lan-

guage input, the AC-FAIL algorithm displayed no noticeable improvement with increasing
keyword length; the performance of the AC-FAIL algorithm was little more than half of
the performance of the AC-OPT algorithm.

As in the natural language tests, the performance of the CW algorithms improved with
increasing keyword length. The rate of performance increase was considerably less than
on the natural language input (see Figure 13.8). On the DNA input, the CW algorithms

displayed median performance at least twice that of the AC-OPT algorithm.

13.4.3 Single-keywords

For the single-keyword tests, the average performance (of each algorithm) is graphed
against the length of the keyword and superimposed in Figure 13.15.

The KMP, AC-FAIL, and AC-OPT algorithms displayed performance that was largely
independent of the keyword length. The AC-OPT algorithm outperformed the other two,

while the KMP algorithm displayed the worst performance. Although the KMP algorithm

is similar in structure to the AC-FAIL algorithm, the heavy use of indexing (as opposed

to the use of pointers in AC-FAIL) in the KMP algorithm degrades its performance. (The

use of indexing makes the KMP algorithm more space e�cient than the AC algorithms.)
The performance of the CW algorithms improved almost linearly with the length of the

keyword, with the CW-NORM algorithm outperforming the CW-WBM algorithm.
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Figure 13.15: Algorithm performance (in megabytes/second) versus the length of the (sin-
gle) keyword. The performance of the KMP and AC-FAIL algorithms are shown as the
coincidental dotted horizontal line, while those of the CW-WBM and CW-NORM algo-
rithms are shown as the coincidental ascending solid line.
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Figure 13.16: Performance variation (in megabytes/second) versus the (single) keyword
length for the KMP-FAIL algorithm.

The variance of the performance of the KMP and the AC-FAIL algorithms was minor,
as shown in Figures 13.16 and 13.17 (respectively). The AC-OPT algorithm displayed no
noticeable variance over the entire range of keyword lengths, as is shown in Figure 13.18.
The CW algorithms showed some variance (increasing with longer keyword lengths) as

shown in Figures 13.19 and 13.20 respectively.

The performance of the algorithms on the single keyword test data is in agreement with
the data collected by Hume and Sunday [HS91].

13.5 Conclusions and recommendations

The conclusions of this chapter fall into two categories: general conclusions regarding

the algorithms and testing them, and conclusions relating to the performance of speci�c

algorithms. The general conclusions are:

� The relative performance of the algorithms did not vary across the testing platforms
(the DEC Alpha, HP Snake, and Sun Sparc Station 1+ workstations).

� Testing the algorithms on two vastly di�ering types of input (English text and DNA
sequences) indicates that varying such factors as alphabet size, keyword set size, and

smallest keyword length can produce very di�erent rates of performance increase or
decrease.
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Figure 13.17: Performance variation (in megabytes/second) versus the (single) keyword
length for the AC-FAIL algorithm.
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Figure 13.19: Performance variation (in megabytes/second) versus the (single) keyword
length for the CW-WBM algorithm.
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Figure 13.20: Performance variation (in megabytes/second) versus the (single) keyword

length for the CW-NORM algorithm.
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� Comparing algorithm performance to keyword set size and shortest keyword length

proved to be more useful (in selecting an algorithm) than comparing performance to

other statistics.

The speci�c performance conclusions are:

� The performance of the AC-OPT algorithm was independent of the keyword sets.
The AC-FAIL and KMP algorithm performance increased slightly with increasing

shortest keyword length and decreased with increasing keyword set size.

� The performance of the CW algorithms improved approximately linearly with in-

creasing length of the shortest keyword in the keyword set. The rate of increase was

much greater with natural language input than with DNA input. The performance

of the CW algorithms declined sharply with increasing keyword set size.

� For a given keyword set size and shortest keyword length, the AC and KMP algo-
rithms displayed little or no variance (in performance). The CW algorithms displayed

slightly more variance in performance.

� As predicted in Section 4.4, the CW-NORM algorithm outperforms the CW-WBM al-
gorithm. Under certains conditions, the di�erence in performance can be substantial.
(Furthermore, the cost of precomputation for the two algorithms is approximately
the same.)

� The AC-OPT algorithm always outperforms the AC-FAIL algorithm; both require

similar precomputation, but the AC-FAIL data structures can be made more space
e�cient.

� On the single-keyword tests:

{ The single-keyword test results were consistent with those presented by Hume
and Sunday [HS91].

{ The AC-FAIL algorithm always outperforms the KMP algorithm.

{ In most cases, the CW algorithms outperform the AC algorithms.

� In [Aho90, p. 281], A.V. Aho states that

In practice, with small numbers of keywords, the Boyer-Moore aspects of

the Commentz-Walter algorithm can make it faster than the Aho-Corasick
algorithm, but with larger numbers of keywords the Aho-Corasick algo-
rithm has a slight edge.

Although Aho's statement is correct, with the performance data presented in this

report, we are able to state more precisely the conditions under which the Commentz-
Walter algorithms outperform the Aho-Corasick algorithms.
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� On the multiple-keyword natural language tests, the CW algorithms outperformed

the AC algorithms when the length of the shortest keyword was long (in general,

at least four symbols) and the keyword set size was small (in general, fewer than

thirteen keywords). The performance di�erence between the CW algorithms and the

AC algorithms was frequently substantial.

� On the DNA tests, the CW algorithms substantially outperformed the AC algorithms.

On these tests the keyword length was at least 100 and the number of keywords in
the set was no more than 10. The DNA results show that the CW algorithms can

yield much higher performance than the often-used AC-OPT algorithm in areas such

as genetic sequence pattern matching.

For applications involving small alphabets and long keywords (such as DNA pattern
matching), the performance of the CW-NORM algorithm makes it the algorithm of choice.

Only when the keyword set size is much larger than ten keywords should the AC-OPT

algorithm be considered.
The following procedure can be used to choose a pattern matching algorithm for a

natural language pattern matching application:

if performance independent of keyword set is required then

AC-OPT

else

if multiple-keyword sets are used then
if fewer than thirteen keywords and the shortest keyword length is at least four then
CW-NORM

else

choose an AC algorithm
�

else (single-keyword sets)

if space is severely constrained then

KMP
else

if the keyword length is at least two then
CW-NORM

else

choose an AC algorithm

�

�

�

�

An AC algorithm can be chosen as follows:

if space e�ciency is needed then

AC-FAIL
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else

AC-OPT

�



Chapter 14

The performance of FA construction

algorithms

This chapter presents performance data on a number of FA (and DFA) construction al-

gorithms. The time required to construct an FA was measured (for each of the construc-
tions) as well as the time required for a single transition (for each of the types of FAs).
The implementations given in FIRE Lite and the FIRE Engine were used (see Chapter 10).

Additionally, we present recommendations for selecting a construction. The algorithms
discussed here are a selection of the ones derived in the taxonomy in Chapter 6.

14.1 Introduction

Most of what is known about the relative performance of the automata construction algo-
rithms is anecdotal. As with the minimization algorithms, most software engineers choose a
construction algorithm that is simple or easy to understand. Such choices should, however,
be based upon performance data about the algorithms.

In this chapter, we present performance data on eight of the most e�cient and easiest

to implement constructions.
This chapter is structured as follows:

� In Section 14.2, we list the algorithms used in collecting the performance data.

� The testing methodology used in benchmarking the algorithms is described in Sec-

tion 14.3.

� The results of the benchmarking are presented in Section 14.4.

� Lastly, the conclusions and recommendations of this chapter are given in Section 14.5.

14.2 The algorithms

The algorithms tested were derived in Chapter 6. They have also been implemented in
FIRE Lite. The implementations are discussed in detail in Chapter 10. For convenience,
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we will put the algorithms in two groups: those producing an FA, and those producing a

DFA. The FA constructions are:

� The canonical construction (TH, since it is a variant of Thompson's construction),

appearing as Construction 6.15 in this dissertation.

� The Berry-Sethi construction (BS), given here as Construction 6.39 (rem-", sym,

a-s).

� The dual of the Berry-Sethi construction (BS-D), appearing as Construction 6.65

(rem-"-dual, sym, a-s).

The DFA constructions are:

� The Aho-Sethi-Ullman construction (ASU) | Construction 6.69 (rem-"-dual, sym,

a-s, e-mark, subset, use-s).

� The deterministic item set construction (IC) | Construction (rem-", subset, use-
s) on page 156.

� DeRemer's construction (DER) | Construction (rem-", subset, use-s, Xfilt) on

page 159.

� The �ltered item set construction (FIC) | Construction (rem-", subset, use-s,
Wfilt) on page 158.

� The McNaughton-Yamada-Glushkov construction (MYG), given as Construction 6.44

(rem-", sym, a-s, subset, use-s).

For speci�c information on these algorithms, see Chapter 6.
Noticeably absent from this list are the derivatives-based algorithms (Brzozowski's and

Antimirov's algorithms). The derivatives in these algorithms are the states. In their pure

forms, the derivatives are stored as regular expressions. The space and time required to

store and manipulate the regular expressions proved to be extremely costly, when compared
to the representations of states used in some of the other constructions. The derivative-

based algorithms consistently performed 5 to 10 times slower than the next slowest algo-
rithm (the IC algorithm, in particular). Indeed, the preliminary testing could only be done
for the smallest regular expressions without making use of virtual memory (which would

further degrade their performance). No doubt the use of clever coding tricks would improve

these algorithms greatly | though such coding tricks would yield a new algorithm.

14.3 Testing methodology

This section gives an overview of the methods used in gathering the test data. We begin
with the details of the test environment, followed by the details of the methods used to

generate the regular expressions for input to the algorithms.
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14.3.1 Test environment

All of the tests were performed on an IBM-compatible personal computer running MS-

Dos. The machine has an Intel Pentium processor with a 75 Mhz clock, an o�-chip

cache of 256 kilobytes and main memory of 8 megabytes. During all of the tests, no other
programs which could consume processing power were installed.

The test programs were compiled with the Watcom C++32 compiler (version 9.5a)

with optimizations for speed. TheWatcom compiler is bundled with anMS-Dos extender

(used to provide virtual memory for applications with large data-structures) known as

DOS/4GW. Since the use of virtual memory could a�ect the performance data, all data-

structures were made to �t in physical memory.

Timing was done by reprogramming the computer's built-in counter to count microsec-

onds. This reprogramming was encapsulated within a C++ timer class which provided

functionality such as starting and stopping the timer. Member functions of the class also
subtracted the overhead of the reprogramming from any particular timing run.

14.3.2 Generating regular expressions

A large number of regular expressions were randomly generated. As in Chapter 13, we used

the random number generator appearing in [PTVF92, p. 280]. The regular expressions were
generated as follows:

1. A height in the range [2; 5] was randomly chosen for the parse tree of the regular
expression. (Larger heights were not chosen for memory reasons; smaller heights were

not chosen since the constructions were performing close to the clock resolution.)

2. A regular expression of the desired height was generated, choosing between all of the

eligible operators1 with equal probability.

3. For the leaves, � and " nodes were never chosen. The � was omitted, since such reg-

ular expressions prove to be uninteresting (they simply denote the empty language).
Similarly, the " was omitted, since the same e�ect is obtained by generating ? nodes.

The following table shows the number of nodes in an RE and the number of REs with

that number of nodes.

1Some operators will not be eligible. For example, to generate an RE of height 3, only the unary or
binary operators can appear at the root.
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Number of nodes Number of REs

2 500

4 84
5 118

6 59

7 246

8 346

9 279
10 413
11 251

12 264
13 227
14 196

15 131
16 73

17 73
18 75
19 45
20 40
21 17

22 12
23 6
24 5

25 1
26 1

There are a total of 3462 REs; the mean size is 9.63 nodes and the standard deviation

is 4.72. The distribution of the number of nodes reects the way in which the regular

expressions were generated. Note that there are no regular expressions with a single node
or with three nodes. These were omitted since the time to construct an FA from such small
REs was usually below the resolution of the timer. (Two node regular expressions were

used since they contain a � or a + node at the root. All of the constructions require more

time to construct an automaton corresponding to such an expression.) Furthermore, it is
not possible to generate lengthy strings in the language of such regular expressions.

In the following table, we give the number of symbol nodes in an RE and the number

of REs with that number of nodes.
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Number of symbol nodes Number of REs

1 500

2 247
3 657

4 773

5 553

6 367

7 181
8 114
9 45

10 17
11 6
12 2

The mean number of symbol nodes is 4.00 nodes and the standard deviation is 1.99.

Other statistics on the regular expressions were also collected, such as the height of the

REs, the star-height of the REs, and some measure of the inherent nondeterminism in the
REs2. These statistics did not prove to be useful in considering the performance of the
algorithms.

14.3.3 Generating input strings

For each type of automaton (FA, "-free FA, and DFA), we also present data on the time
required to make a single transition. In order to measure this, for each RE used as input

to the constructions we generate a string in the pre�x of the language denoted by the RE.

Strings of length up to 10000 symbols were generated.
The constructed automaton processes the string, making transitions, while the timer

is used to measure the elapsed time. The time was divided by the number of symbols
processed, yielding the average time for a single transition.

14.4 Results

The performance data will be presented in three sections. First, we present the time re-

quired to construct an automaton. Next, we present the size of the constructed automaton.

Lastly, we consider the time required to make a single transition.

14.4.1 Construction times

For each of the generated regular expressions and each of the constructions, we measured
the number of microseconds to construct the automaton. For many applications, the

2One estimate of such nondeterminism is the ratio of alternation (union) nodes and � or + nodes to
the total number of nodes in the regular expression.
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Figure 14.1: Median construction times for FA constructions graphed against the number
of nodes in the regular expressions. Note that BS and BS-D are superimposed as the higher
ascending line.

construction time can be the single biggest factor in determining which construction to

use.
First, the constructions are divided into two groups: those producing an FA (not a

DFA), and those producing a DFA. The median performance of these two groups of con-

structions was graphed against the number of nodes in the regular expressions in Fig-
ures 14.1 and 14.2 respectively. All three of the algorithms in the �rst group are predicted
to perform linearly in the number of nodes in the input regular expression. In Figure 14.1,
the performance of the BS and BS-D constructions was nearly identical, as could be pre-

dicted from their duality relationship given in Chapter 6. They both performed somewhat
worse than the TH algorithm. The apparent jump in construction time (of the TH algo-

rithm) for 25 node regular expressions is due to the fact that only a single such expression

was generated. Had more regular expressions been generated, the median performance
would have appeared as a straight line (following the linear performance predicted for the

TH algorithm).

The scale on Figure 14.2 shows that the second group of constructions were much

slower than the �rst group. The ASU construction was by far the fastest, with FIC and

MYG being the middle performers, and DER and IC being the slowest. In the range of
20 to 26 nodes, all of the constructions displayed peaks in their construction times. In
these cases, some of the generated regular expressions have corresponding DFAs which are

exponentially larger | forcing all of the constructions to take longer.

We now consider the performance of the same two groups of constructions, graphed
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Figure 14.2: Median construction times for DFA constructions graphed against the number
of nodes in the regular expressions. The lowest line is ASU performance, while the middle
pair of lines are MYG and FIC; the highest pair of lines is DER and IC.

against the number of symbol nodes in the regular expressions. The graphs appear in
Figures 14.3 and 14.4 respectively. These two graphs present similar information to Fig-

ures 14.1 and 14.2.
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Figure 14.3: Median construction times for FA constructions graphed against the number
of symbol nodes in the regular expressions. The BS and BS-D performance is identical,

graphed as the higher line.
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Figure 14.4: Median construction times for DFA constructions graphed against the number

of symbol nodes in the regular expressions. The best performance was delivered by ASU,
followed by FIC and MYG and lastly by DER and IC.
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Figure 14.5: The number of states in the FA is graphed against the number of nodes in
the regular expression used as input for the TH, BS, and BS-D constructions. Note that
the BS and BS-D constructions produce automata of identical size.

14.4.2 Constructed automaton sizes

The size of each of the constructed automata was measured. The amount of memory
space consumed by an automaton is directly proportional to the number of states in the

automaton, and this data can be used to choose a construction based upon some memory
constraints. Since the exact amount of memory (in bytes) consumed depends heavily on

the compiler being used, we present the data in state terms.
Again, we group the non-DFA producing constructions and the DFA constructions.

Figures 14.5 and 14.6 give the automata sizes versus number of nodes in the regular ex-

pressions, for the two groups of constructions. The former �gure shows that the size of the
TH-generated automata can grow quite rapidly. The BS and BS-D constructions produce
automata of identical size (as can be seen from their derivations in Chapter 6). In the

second �gure (Figure 14.6), we can identify two interesting properties of the constructions:
ASU and FIC produce automata of the same size, as do the pair IC and MYG. Given

the superior performance of ASU (over FIC), there is little reason to make use of FIC.

Similarly, the MYG construction out-performs IC, and there is no reason to use IC since
the automata will be the same size.



320 CHAPTER 14. THE PERFORMANCE OF FA CONSTRUCTION ALGORITHMS

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30

States

Number of nodes

Group 2

ASU
DER
IC

FIC
MYG

Figure 14.6: The number of states in the DFA is graphed against the number of nodes in
the regular expression used as input for the ASU, DER, FIC, IC, and MYG constructions.
Note that the FIC and ASU constructions produceDFAs of identical size (the superimposed

lower line), as did the pair IC and MYG (the superimposed higher line).
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Figure 14.7: The number of states in the FA is graphed against the number of symbol
nodes in the regular expression used as input for the TH, BS, and BS-D constructions.
Note that the BS and BS-D constructions produce automata of identical size (the lower

ascending line).

Figures 14.7 and 14.8 give the automata sizes versus number of symbol nodes in the
regular expressions, for the two groups of constructions. These two graphs provide similar

information to that given in Figures 14.5 and 14.6.

14.4.3 Single transition performance

The time required to make a single transition was measured for FAs (using TH), "-free FAs

(using BS), and DFAs (using FIC). The median time for the transitions has been graphed
against the number of states in Figure 14.9. (Note that, for a given number of states, the
number of each of the di�erent types of automata varied.) The more general FAs displayed

the slowest transition times, since the current set of states is stored as a set of integers, and
the "-transition and symbol transition relations are stored in a general manner. The "-free

FAs displayed much better performance, largely due to the time required to compute

"-transition closure in an automaton with "-transitions. With the simple array lookup
mechanism used in DFAs, it is not surprising that their transitions are by far the fastest
and are largely independent of the number of states in the DFA.

The individual performance data for FAs, "-free FAs, and DFAs are shown in Fig-

ures 14.10, 14.11, and 14.12. The variance for general FAs and "-free FAs is quite large.
In both cases, the time for a single transition depends upon the number of states in the

current state set. The variance for a DFA transition appears to be quite large. This is
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Figure 14.8: The number of states in the DFA is graphed against the number of symbol
nodes in the regular expression used as input for the ASU, DER, FIC, IC, and MYG

constructions. Note that the ASU and FIC constructions produce DFAs of identical size,
as do the MYG and IC pair.
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Figure 14.10: Performance variance for a single transition in microseconds (�s) in an FA,

versus the number of states. Also included are +1 and �1 standard deviation bars.
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Figure 14.11: Performance variance for a single transition in microseconds (�s) in a "-free
FA, versus the number of states. Also included are +1 and �1 standard deviation bars.
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Figure 14.12: Performance variance for a single transition in microseconds (�s) in a DFA,
versus the number of states. Also included are +1 and �1 standard deviation bars.

largely due to the fact that single transitions are around the resolution of the timer, mean-
ing that other factors play a role. Such factors include arti�cial ones such as clock jitter

and real ones such as instruction cache misses.

14.5 Conclusions and recommendations

The conclusions of this chapter are:

� The fact that some constructions derived in Chapter 6 are encodings of one another
(and some others are duals of one another) can be seen in the data.

{ The BS and BS-D algorithms (they are duals of one another) have the same
performance characteristics.

{ The ASU and FIC algorithms construct automata of the same size. This can

been predicted by comparing the algorithm for Construction (rem-", subset,

use-s, Wfilt) on page 185 with Algorithm 6.86.

{ Interestingly, IC and MYG produce automata of the same size. Indeed, the re-

sulting DFAs will always be isomorphic since their underlying FA constructions

(Constructions 6.19 and 6.39, respectively) are simply encodings of one another.

� The advantages of the `�lters' introduced in Section 6.4.1 can be seen in the per-

formance of IC, which is worse than either DER or FIC. Furthermore, IC produces
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larger automata than either DER or FIC.

� As was shown in Chapter 6, the BS and BS-D constructions produce automata with
sizes linear in the number of symbol nodes in the input regular expression.

� Predictably, the subset construction (with start-unreachable state removal) is a costly
operation. All of the DFA construction algorithms were signi�cantly slower than the

general FA constructions.

� ASU is the subset construction composed with BS-D, while MYG is the subset con-

struction composed with BS. Given the identical performance of BS and BS-D, it is

interesting to note that ASU was signi�cantly faster than MYG. Furthermore, ASU
produced smaller DFAs than MYG.

� The time to make a transition can vary widely for di�erent types of automata. As
such, it can be an important factor in choosing a type of automaton.

{ Both FAs with "-transitions and "-free FAs have transition times that depend
upon the number of states in the automaton, however, FAs with "-transitions

have signi�cantly longer transition times.

{ DFAs have transition times which are largely independent of the size of the
automaton3. These times were around the resolution of the clock4.

The following procedure can be used to choose a �nite automata construction algorithm:

Choices := fTH, BS, BS-D, ASUg;
if construction time is important then

Choices := Choices \ fTH, BS, BS-Dg
�;

if automaton size is important then
Choices := Choices \ fBS, BS-D, ASUg

�;
if transition time is important then
Choices := Choices \ fBS, BS-D, ASUg

�

3Although, inspecting the implementation reveals that very dense transition graphs will yield more
costly transitions than a sparse transition graph.

4This does not invalidate the results, since the average transition time is taken over a large number of
transitions.
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Chapter 15

The performance of DFA minimization

algorithms

In this chapter, we present data on the performance of �ve DFA minimization algorithms

implemented in FIRE Lite (see Chapter 11). The algorithms tested were derived in the
taxonomy of DFA minimization algorithms in Chapter 7, and are implemented in FIRE

Lite.

15.1 Introduction

Very little is known about the performance of DFA minimization algorithms in practice.

Most software engineers choose an algorithm by reading their favourite text-book, or by at-
tempting to understand Hopcroft's algorithm| the best known algorithm, with O(n log n)
running time. The data in this chapter will show that somewhat more is involved in choos-

ing the right minimization algorithm. In particular, the algorithms appearing in a popular
formal languages text-book [HU79] and in a compiler text-book [ASU86] have relatively
poor performance (for the chosen input data). Two of the algorithms which could be

expected to have poor performance1 actually gave impressive results in practice. Recom-

mendations for software engineers will be given in the conclusions of this chapter.

In short, this chapter is structured as follows:

� Section 15.2 gives an outline of the �ve algorithms tested.

� Section 15.3 explains the methodology used in gathering the test data.

� The performance data for the �ve algorithms are presented in Section 15.4.

� The conclusions and recommendations of this chapter are given in Section 15.5.

1They are Brzozowski's algorithm (which uses the costly subset construction) and a new algorithm
which has exponential worst-case running time.
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15.2 The algorithms

The �ve algorithms are derived in Chapter 7 and their corresponding implementations are

described in detail in Chapter 11. Here, we give a brief summary of each of the algorithms

(and an acronym which will be used in this chapter to refer to the algorithm):

� The Brzozowski algorithm (BRZ), derived in Section 7.2. It is unique in being able

to process a FA (not necessarily a DFA), yielding a minimal DFA which accepts the

same language as the original FA.

� The Aho-Sethi-Ullman algorithm (ASU), appearing as Algorithm 7.21. It computes
an equivalence relation on states which indicate which states are indistinguishable

(see Chapter 7). The appearance of this algorithm in [ASU86] has made it one of

the most popular algorithms among implementors.

� The Hopcroft-Ullman algorithm (HU), appearing as Algorithm 7.24. It computes the

complement of the relation computed by the Aho-Sethi-Ullman algorithm. Since this
algorithm traverses transitions in the DFA in their reverse direction, it is at a speed
disadvantage in most DFA implementations (including the one used in FIRE Lite and
the FIRE Engine).

� The Hopcroft algorithm (HOP), presented as Algorithm 7.26. This is the best known

algorithm (in terms of running time analysis) with running time of O(n log n) (where
n is the number of states in the DFA).

� The new algorithm (BW) appearing as Algorithm 7.28 in the taxonomy. It com-
putes the equivalence relation (on states) from below (with respect to the re�nement
ordering). The practical importance of this is explained in Section 7.4.7.

These algorithms are the only ones implemented in FIRE Lite.

15.3 Testing methodology

This section gives an overview of the methods used in gathering the test data. The test

environment is identical to that used in collecting the FA construction performance data

(Chapter 14). However, we consider the methods used to generate the DFAs for input to
the algorithms.

One caveat about the distribution of the test data used in collecting the benchmarks

is in order. In practice, DFAs are usually obtained from one of two sources: they are

constructed from regular expressions2, or they are generated from some other speci�cation3.

In the �rst case, the DFAs have certain characteristics: they are usually not very large, they
have relatively sparse transition graphs, and the alphabet frequently consists of the entire

2This is common in pattern matching and compiler lexical analysis applications of DFAs.
3This is common in modeling digital circuits.
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ASCII character set. In the second case, the DFAs can potentially consist of thousands of

states, with dense transition graphs and relatively small (even binary or ternary) alphabets.

The FIRE Lite is best structured for obtaining DFAs from regular expressions | as would

be done in tools such as lex or grep | and so we only consider the minimization of

the �rst group of DFAs. Due to the memory limitations of the test environment and some
space ine�ciencies in FIRE Lite, we only consider the minimization of relatively smallDFAs
(fewer than 25 states). Although it is possible to extrapolate the performance data, the

performance of the algorithms on much larger DFAs is di�cult to forecast.

Random regular expressions were generated (using FIRE Lite and the techniques outlined

in Chapter 14). The DFAs were constructed from the regular expressions, using the `item

set' construction | Construction (rem-", subset, use-s) appearing on page 156. Some

data on the constructed DFAs is as follows:

Number of states Number of DFAs

2 1585

3 395

4 541
5 490

6 454
7 303
8 266

9 232

10 150
11 104
12 85
13 61
14 37

15 25
16 27
17 20

18 15
19 10

20 9

21 8
22 9

23 7

There are a total of 4833 DFAs; the mean size is 5.24 states and the standard deviation
is 3.65. Clearly, the DFA sizes are not evenly distributed. The size distribution of the

DFAs results from the distribution of the randomly generated REs.
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Figure 15.1: Median performance (in microseconds to minimize) versus DFA size.

15.4 Results

For each of the random DFAs and each of the �ve algorithms, we measured the time
in microseconds (�s) required to construct the equivalent (accepting the same language)

minimal DFA.

The performance of the algorithms was graphed against the number of states in the

original DFA. Graphing the performance against the number of edges in the original DFA

was not found to be useful in evaluating the performance of the algorithms. The algo-
rithms can be placed in two groups, based upon their performance. In order to aid in the

comparison of the algorithms, we present graphs for these two groups separately.

The �rst group (ASU and HU) are the slowest algorithms; the graph appears in Fig-

ure 15.1. The HU algorithm was the worst performer of the �ve algorithms. It traverses the

transitions (in the input DFA) in the reverse direction. A typical implementation of a DFA
does not favour this direction of traversal. The ASU algorithm performed slightly better,

although its performance is also far slower than any of BRZ, HOP, or BW. The second
group (BRZ, HOP, and BW) are signi�cantly faster; the corresponding graph appears in

Figure 15.2. Note that this graph uses a di�erent scale from the one in Figure 15.1. The

data point (for 17 states) for the BW algorithm was dropped, since (at that point) the
algorithm was more than 30 times slower than any of the other algorithms in this group.

The complete (unedited, including the 17 state data point) data for the BW algorithm is
presented in Figure 15.8.

We now turn to the performance of the individual algorithms. (The graphs to be

presented use di�erent scales for the y axis. For direct comparison between the graphs,
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Figure 15.2: Median performance (in microseconds to minimize) versus DFA size.

use the superimposed graphs, Figures 15.1 and 15.2.) The performance variance of ASU
and HU are shown in Figures 15.3 and 15.3 respectively. Both of these algorithms display
quite small variance in performance for a given size of input.

The performance variance of BRZ, HOP, and BW are shown in Figures 15.5, 15.6,

and 15.7. BRZ and HOP both display quite small variance in performance, while the per-
formance variance for BW is very large in some cases. Figure 15.7 shows the performance

variance for the BW algorithm with the 17 state DFA data point removed. Figure 15.8
shows all of the BW performance variance data (including the 17 state data point). Al-

though the BW algorithm usually displays O(n log n) performance (in the tested range of
DFA sizes), the latter graph shows that, for certain input DFAs, the BW algorithm can
occasionally give exponential performance. In the following paragraph, we briey describe

one type of DFA which can cause this behaviour.

Figure 15.9 gives part of a DFA which can cause the BW algorithm's exponential run-

ning time. (See Chapter 7 for a more in-depth discussion of the algorithm.) Depending
upon the numbering (integer encoding in the implementation) of the states, the algorithm
may begin by testing states p and q for equivalence. The algorithm considers each alphabet

symbol (a; b; : : :) in turn. Beginning with a, it determines whether p00 and q
0

0 are equivalent;

recursively, this entails determining if the pairs (p000; q
00

0) and (p001; q
00

1) are equivalent. Even-

tually, the algorithm must determine if p01 and q
0

1 are equivalent, etc. This unfortunate �rst

choice of states is due to the fact that the integer encoding of the states is used to choose
the �rst pair of states for consideration. Had the integer representations of the states been

permuted, a di�erent pair of states would have been chosen as the starting point and the
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Figure 15.3: Performance variance (in microseconds to minimize) versus DFA size for the

ASU minimization algorithm, including +1 and �1 standard deviation bars.
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Figure 15.4: Performance variance (in microseconds to minimize) versus DFA size for the
HU minimization algorithm, including +1 and �1 standard deviation bars.
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Figure 15.5: Performance variance (in microseconds to minimize) versus DFA size for the

BRZ minimization algorithm, including +1 and �1 standard deviation bars.
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HOP minimization algorithm, including +1 and �1 standard deviation bars.
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Figure 15.9: Part of a DFA which causes exponential running time in the BW algorithm.

exponential behaviour would not have occured.

15.5 Conclusions and recommendations

We can draw the following conclusions from the data presented in this chapter4:

� Given their relative performance, the �ve algorithms can be put into two groups, the
�rst consisting of ASU and HU, and the second consisting of BRZ, HOP, and BW.

� The HU algorithm has the lowest performance of all of the algorithms. This is largely

due to the fact that it traverses the transitions of the DFA in the reverse direction
| a direction not favoured by most practical implementations of DFAs.

� The ASU algorithm also displays rather poor performance. Traditionally, the algo-

rithm has been of interest because it is easy to understand, as we saw in Chapter 7.
The simplicity of BRZ minimization algorithm makes it even more suitable for teach-

ing purposes.

� The HOP algorithm is the best known algorithm (in term of theoretical running

time), with O(n log n) running time. Despite this, it is the worst of the second group

of algorithms. With its excellent theoretical running time, it will outperform the
BRZ and BW algorithms on extremely large DFAs. With memory constraints, we
were unable to identify where the crossing-point of their performance is.

4Keeping in mind the caveats mentioned in Section 15.3
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� The BRZ algorithm is extremely fast in practice, consistently outperforming Hopcroft's

algorithm (HOP). This result is surprising, given the simplicity of the algorithm. The

implementation of this algorithm constructs an intermediate DFA; the performance

can be further improved by eliminating this intermediate step.

� The new algorithm (BW) displayed excellent performance. The algorithm is fre-

quently faster than even Brzozowski's algorithm. Unfortunately, this algorithm can

be erratic at times | not surprising given its exponential running time. The algo-

rithm can be further improved using memoization | see Section 7.4.7.

Given these conclusions, we can make the following recommendations:

1. Use the new algorithm (BW, appearing as Algorithm 7.28 in this dissertation), es-

pecially in real-time applications (see Section 7.4.7 for an explanation of why this

algorithm is useful for real-time applications). If the performance is still insu�cient,

modify the algorithm to make greater use of memoization.

2. Use Brzozowski's algorithm (derived in Section 7.2), especially when simplicity of
implementation or consistent performance is desired. The algorithm is able to deal
with an FA as input (instead of only DFAs), producing the minimal equivalent DFA.
When a minimization algorithm is being combined with a FA construction algorithm,

Brzozowski's minimization algorithm is usually the best choice. The DFA construc-
tion algorithms are usually signi�cantly slower than the FA construction algorithms,
as is shown in Chapter 14. For this reason, a FA construction algorithm combined
with Brzozowski's minimization algorithm will produce the minimalDFA faster than
a DFA construction algorithm combined with any of the other minimization algo-

rithms.

Brzozowski's algorithm can be further improved by eliminating the DFA which is
constructed in an intermediate step.

3. Use Hopcroft's algorithm (Algorithm 7.26) for massive DFAs. It is not clear from
the data in this chapter precisely when this algorithm becomes more attractive than
the new one or Brzozowski's.

4. The two most-commonly taught text-book algorithms (the Aho-Sethi-Ullman algo-

rithm, Algorithm 7.21, and the Hopcroft-Ullman algorithm, Algorithm 7.24) do not
appear to be good choices for high performance. Even for simplicity of implementa-
tion, Brzozowski's algorithm is better.

The following procedure can be used to choose a deterministic �nite automata minimization

algorithm:

Choices := fBRZ, BW, HOPg;

if easy of understanding is important then

Choices := Choices \ fBRZ, BWg
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�;

if the application has real-time deadlines then

Choices := Choices \ fBWg

�;

if asymptotic performance is important then
Choices := Choices \ fHOPg

�;

if good average-case performance is important then

Choices := Choices \ fBRZg

�;
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Chapter 16

Conclusions

The conclusions of this dissertation are summarized in this chapter. We �rst present the
more general conclusions. Some chapters are accompanied by speci�c conclusions. A

selection of those conclusions will be presented as well.

16.1 General conclusions

The general conclusions are:

� Each of the taxonomies presented in this dissertation covers an area of computer sci-
ence which has been active for at least thirty-�ve years. The original presentations of

the algorithms di�er vastly in their purposes (the intended use of the algorithms) and
presentation styles. A great deal of reverse engineering was required to identify the
inner workings of the algorithms. Additionally, one of the most powerful techniques

in computing science, abstraction, was most helpful in �nding the common threads
in the families of algorithms.

� The main goal of this research was to improve the accessibility of the algorithms.

This has been achieved in a number of ways, thanks to the fact that some of the
research has already been reported in preliminary papers:

{ The taxonomies have been used at a number of institutes as reference material

for teaching.

{ The toolkits have been used in industry for the creation of reliable software
components and at universities for teaching the essential concepts of reusable

software construction.

{ The performance data has been used extensively by software engineers to select
high performance algorithms for applications.

� The research reported in this dissertation ranges from the more theoretical tax-
onomies and algorithm derivations to the very practical toolkits and algorithm per-
formance benchmarks. Although these areas seem to be at opposite ends of the

spectrum, it proved useful as well as easy to consider them together.
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� The taxonomies are more than just surveys. They explain and classify the algorithms

in such depth that the corresponding literature (the original articles describing the

algorithms and subsequent surveys) is no longer required reading. Similarly, some

existing implementations of well-known algorithms are made obsolete by the toolkits,

since the toolkits contain implementations of many di�erent algorithms solving the
same problem.

� A single taxonomy construction methodology and framework was successfully used to

develop taxonomies for three totally di�erent problems in computing science. How-

ever, successfully using the same methodology does not necessarily mean that all of
the algorithms must be derived using the same formalisms. The formalisms used for

each of the three problems can be described as follows:

{ Pattern matching. The algorithms were derived as imperative programs, with

a largely formal approach to the derivation.

{ Finite automata construction. The constructions were given as mathematical
functions, each being derived as the composition of a number of other functions.
Algorithms implementing the functions were also considered, although outside

the framework of the taxonomy.

{ Deterministic �nite automata minimization. The minimization algorithms were

derived as a mixture of the two formalisms mentioned above.

� In constructing the taxonomies, we did not adhere strictly to Jonkers' methodology.
In his dissertation, at least one of the algorithms was derived in a formal manner. In
the taxonomies in this dissertation, a relatively liberal approach to the interpretation
of the details is adopted.

� It does not appear that taxonomies could be constructed for all types of algorithm

families. The algorithms treated in this dissertation have something signi�cant in
common: they all have simple speci�cations of both the input and the output. In

particular, it is not clear how easy it would be to taxonomize algorithms such as
those based upon heuristics.

� Some of the algorithms treated in the taxonomies are usually considered to be inacces-

sible in the standard literature. For example, the e�cient Commentz-Walter pattern

matching algorithm and Hopcroft's deterministic �nite automata minimization algo-
rithm are both relatively di�cult to understand. The re�nement-based derivation

of these algorithms, and their corresponding implementations in the toolkits, should
make them more accessible than before.

� Truly capitalizing on the organization provided by the taxonomies required the con-

struction of the toolkits. Even with the taxonomies, constructing the toolkits still
required a remarkable number of software engineering decisions. Conclusions can be

drawn for both algorithm theoreticians and software engineers:
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{ Part III points out that the completion of a taxonomy still leaves a number of

software engineering decisions. Some examples of these decisions are those that

lead to the call-back public interface in the class libraries | and the consequent

possibility of multi-threading.

{ The nature of the taxonomies, in which commonparts of algorithms are factored,

can be used to great e�ect in reusing parts of class libraries. As outlined in
Chapter 8, a number of design issues surround reuse, for example abstract classes

and virtual member functions versus templates.

� The toolkits began as a sidetrack from the primary task of developing the taxonomies.
With the taxonomies in-hand, the toolkits were implemented extremely rapidly |

eliminating much of the development time usually required for such toolkits. Two
clearly identi�able aspects of the toolkits were inuenced by the taxonomies:

{ Since all of the abstract algorithms were presented (in the taxonomies) in the
same formalism, it was possible to create a coherent toolkit with the C++

classes making use of a common set of foundation classes.

{ The inheritance hierarchy is usually one of the most di�cult parts of a class
library to design. Given a taxonomy family tree, the corresponding class inher-
itance hierarchy was easy to structure.

� Toolkits which provide more than one algorithm solving the same problem are di�-

cult to use e�ectively without information on the performance of the algorithms in
practice. The information in Part IV provides data (and analysis of the data) and

recommendations on the use of algorithms in the toolkits.

� Part IV shows that the algorithms with the best theoretical complexity are not always
the fastest in practice, even on non-trivial input.

� Experience with the object-oriented toolkits (and with older C toolkits) show that the
object-oriented approach to toolkit design does not a�ect the algorithm performance

signi�cantly.

� At �rst glance, it may appear that the taxonomies only serve to classify existing
algorithms. By combining the taxonomy details in new ways, or by making use

of techniques developed during the taxonomization, it is possible to construct new
algorithms. In particular, the following interesting algorithms were derived:

{ The use of `predicate weakening' was used in Chapter 4 to derive interesting
new variants of the Commentz-Walter multiple-keyword pattern matching algo-

rithms.

{ A new regular expression pattern matching algorithm was developed in Chap-
ter 5 | answering an open question posed by A.V. Aho.



344 CHAPTER 16. CONCLUSIONS

{ A number of new �nite automata construction algorithms were derived in Chap-

ter 6. Unfortunately, the performance data presented in Chapter 14 shows that

several of these algorithms are not particularly useful in practice. Some do,

however, serve the purpose of being easy to understand.

{ A new deterministic �nite automata minimization algorithm, the only existing

algorithm suitable for use in real-time applications, was derived in Chapter 7.

16.2 Chapter-speci�c conclusions

Some of the chapter-speci�c conclusions are:

� Chapter 4. The Aho-Corasick and the multiple keyword Knuth-Morris-Pratt pattern

matching algorithms all share a common skeleton. They di�er only in the implemen-
tation of a particular Moore machine transition function. Similarly, the Commentz-

Walter algorithms also share a common skeleton, di�ering in the shift function used
to skip portions of the input string.

� Chapter 4. The technique of `predicate weakening' was extremely useful in developing
new shift functions for both the Commentz-Walter and the Boyer-Moore pattern

matching algorithms.

� Chapter 4. Another taxonomy of pattern matching algorithms, due to Hume and

Sunday, was easily incorporated into the taxonomy in this dissertation.

� Chapter 5. There is a Boyer-Moore type algorithm for regular expression pattern
matching (see Chapter 5 for the algorithm and its precomputation), answering an
open question posed by A.V. Aho in [Aho80, p. 342]. The derivation relied heavily

on techniques developed for the taxonomy of keyword pattern matching algorithms,
and it is doubtful that the algorithm could have been easily invented without the use
of these techniques. Preliminary testing of the algorithm shows that it is frequently
faster than a generalization of the Aho-Corasick algorithm.

� Chapter 6. The earlier taxonomy presented in [Wat93a] contained two taxonomy

trees. The derivations presented there seemed to indicate that the two subfamilies
of algorithms were related, but could not be derived from one another. The taxon-

omy presented in this dissertation shows that they can all be derived from a single

`canonical' algorithm.

� Chapter 6. The canonical algorithm encoded the `maximal' amount of information

in states. All of the other algorithms were derived by either changing the represen-
tation of the states or by omitting some of the information, thereby merging states.

Furthermore, all of the algorithms were derived as compositions of mathematical

functions.
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� Chapter 6. Even the most recent algorithms, such as those presented by Antimirov

in [Anti94, Anti95] and by Antimirov and Watson in [AW95], were incorporated into

the taxonomy.

� Chapter 7. Brzozowski's minimization algorithm proved to be extremely easy to

derive and to understand. Unfortunately, it does not appear possible to derive it

from the other minimization algorithms. In the past, the origins of this algorithm

have also been accidentally misattributed.

� Chapter 7. A new minimization algorithm, suitable for real-time applications, was

derived. The algorithm computes a relation (for use in minimization) as a �xed

point, from the safe side. This implies that its intermediate computations are usable
in reducing the size of (but perhaps not minimizing) the DFA.

� Chapter 9. Designing and structuring generic software is much more di�cult than
designing software for a single application. The general structure of the pattern

matching taxonomy proved to be helpful in guiding the structure of the SPARE Parts.

� Chapter 10. Finite automata toolkits, such as the FIRE Engine and FIRE Lite, have

proven to be general enough to �nd use in the following areas: compiler construction,
hardware modeling, and computational biology.

� Chapter 15. Despite its exponential worst-case running time, Brzozowski's minimiza-
tion algorithm has excellent practical performance for realistic input. Additionally,
the new minimization algorithm also displays excellent practical running time, even
though it also has exponential worst-case running time.

16.3 A personal perspective

The research reported in this dissertation, and my experiences while performing and writing

it, show that a delicate balance between the practical and the theoretical is crucial to a
computer scientist.
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Chapter 17

Challenges and open problems

While the research reported in this dissertation has answered a number of questions, and
brought some order to the �eld of regular language algorithms, it has also suggested some

new directions for research. The following problems (which are of various levels of di�cult)
are suitable for Master's or Ph.D students:

1. Keyword pattern matching:

(a) Expand the taxonomy to include Commentz-Walter and Boyer-Moore algo-
rithms which retain information about previous matches, for reuse in subsequent
match attempts (see Remark 4.156).

(b) Consider the use of `match orders' (Section 4.5) for the Commentz-Walter
multiple-keyword algorithms.

(c) Construct taxonomies of: approximate pattern matching algorithms, multi-
dimensional pattern matching algorithms, and tree and graph pattern matching

algorithms.

2. The new regular expression pattern matching algorithm:

(a) Explore the use of other weakenings, and use `strategies' (Section 4.4) to cata-
logue them.

(b) Explore the use of a left lookahead symbol.

(c) Quantify the e�ects (on the performance of the algorithm) of the type of �nite
automaton used (deterministic or nondeterministic automata; with or without

"-transitions).

(d) Consider a version of the algorithm which reuses previous match information.

3. Extend the research to di�erent pattern matching problems, such as multi-dimensional

pattern matching and tree pattern matching.

4. The taxonomy of �nite automata constructions:
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(a) Modify the algorithms to include the construction of Moore machines and Mealy

machines (regular transducers).

(b) Include the construction of tree automata and graph automata.

5. SPARE Parts:

(a) Add tree pattern matching to the toolkit.

(b) Expand the toolkit to deal with strings of (C++) objects, instead of only char-
acters.

6. FIRE Lite:

(a) Add regular transductions to the toolkit.

(b) Expand the toolkit to deal with strings of (C++) objects, instead of only char-

acters.

(c) Implement the minimization algorithms that are not presently included in the
toolkit.

7. The performance of DFA minimization algorithms:

(a) Benchmark the minimization algorithms for the types of DFA which typically
arise in digital circuit applications.
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�p, see pre�x ordering
�s, see su�x ordering
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�, see right take
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�, see algorithm details, orders, decreas-
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ac, see algorithm details, Aho-Corasick
ac-fail, see algorithm details, Aho-Corasick,

failure function

ac-opt, see algorithm details, Aho-Corasick,

optimized
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ACMachineFail, 234, 235, 244

ACMachineKMPFail, 234, 244

ACMachineOpt, 233, 244
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acmkmpfl, 234

acmopt, 233
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ACOutput, 233{235

acs.hpp, 228, 233
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AFT, see item dot position, after
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100, 364
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Watson's �lter, 142{144, 154, 157{160,
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Alpha, 290, 305

alphabet.hpp, 229, 230
alphabetDenormalize, 229

alphabetNormalize, 229
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Amore, 253, 353
Antimirov,V.M., i, 142, 171{174, 189, 190,
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274

array, 245
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Automate, 253{255, 351

automaton completion, 28, 361

b-mark, see algorithm details, begin-marker

Backhouse, R., i, 350

Baeza-Yates, R., 92, 116, 350, 352
BEF, see item dot position, before
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267, 268, 312, 350
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bm, see algorithm details, Boyer-Moore
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bmchar2, 241
bmcw, see algorithm details, Commentz-
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BMShift12, 241, 243
BMShift: : : , 239, 240

BMShiftNaive, 241, 243

bmshnaiv, 241

bmslfst1, 240

bmslfst2, 240

bmslnone, 240
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bmslsfc, 240

bool, 227

Borland, 250, 251, 276

Boyer, R.S., 38, 39, 41, 42, 44{46, 50,

57, 82, 85, 92, 95{97, 99, 101{103,

110, 112, 115{117, 121, 122, 124,

135{139, 225, 228, 230, 237, 239,
240, 242{244, 247, 249, 288, 289,

308, 344, 347, 350, 355, 357

Boyer-Moore

match order, 101{103, 107{111, 365

match procedure, 102{105, 107{110,

365

shift function, 99, 101, 103{105, 107,

108, 110, 368
skip loop, 106, 107, 109{111, 368

Brauer, W., 203, 350

Broy, M., 38, 350

Br�uggemann-Klein, i, 163, 184, 350

Brzozowski, J.A., i, 142, 163, 173{175,

190{196, 200, 213, 267, 268, 278,
282, 312, 327, 328, 336, 345, 350

C, 38, 225, 227, 228, 245, 249, 253, 254,
289, 290, 343, 353

C++, 5, 6, 42, 190, 217, 218, 221, 225{
228, 244{246, 249{251, 253{255,
260, 263, 271, 276, 277, 282, 289,

313, 343, 348, 349, 351, 353{357
CA, see constructions, canonical

Champarnaud, J.M., i, 351

Chang, C.-H., 184, 351

char, 109{111, 241, 242

Char1, 241, 242
Char2, 241, 242

CharBM, 237, 238
char bm , 96, 97, 99

CharCW, 237, 238

char cw , 94{96

charrang, 269

CharRange, 257, 263, 269, 272, 279, 280

CharRLA, 238

char rla , 98, 99

codom, see codomain

codomain, 9, 361

com-misc.hpp, 228, 244, 258, 268

com-opt.hpp, 268

Commentz-Walter, B., 41, 42, 44, 45, 50,
53, 82, 85, 86, 89, 92, 94, 95, 97,
106, 108, 112, 113, 115, 116, 121{

123, 129, 135{137, 139, 220, 231,

235{239, 244, 249, 287{290, 308,

342{344, 347, 351

Complete , see �nite automata, complete

complete , see automaton completion
composition, 9, 10, 21, 29, 32, 33, 80, 153,

155{157, 165, 173, 175, 179, 184,

195, 358
constructions

canonical, 151{153, 155{157, 175, 184,
361

Corasick, M.J., 41{44, 50, 51, 57, 62, 66,

69, 70, 73, 81, 82, 111, 112, 115,
116, 137, 220, 228, 231, 233{235,
239, 244, 249, 258, 287{289, 308,
344, 349

cout, 228
Crochemore, M., i, 351
CRSet, 269, 280

crset, 269
current, 134
cw, see algorithm details, Commentz-Walter

cw-opt, see algorithm details, Commentz-

Walter, optimized
cwchar, 238
cwcharbm, 238

cwcharrl, 238

cwd1, 238
cwd2, 238

cwdopt, 238
cwout, 239

CWOutput, 236, 239

cws.hpp, 235
CWShift: : : , 236
CWShiftNaive, 236, 244

CWShiftNLA, 236, 244
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CWShiftNorm, 237, 244

CWShiftOpt, 237, 238, 244

CWShiftRLA, 236, 238, 244

CWShiftWBM, 237, 238, 244

cwshnaiv, 236

cwshnla, 236

cwshnorm, 237

cwshopt, 237

cwshrla, 238

cwshwbm, 237

D1, 237, 238

d1, 89{98, 115, 126{130, 136, 238

D2, 237, 238

d2, 89{98, 115, 126{130, 136, 238

Darlington, J., 38, 351

dbm , 96

dbmcw , 92, 95
DEC, 290, 305

decouple, see weakening strategy, de-
couple

dee1, 130

dee2, 130
delete, 222

DeRemer, F.L., 142, 159, 189, 268, 312,
351

Det , see �nite automata, deterministic prop-
erty

Det 0, see �nite automata, deterministic

property, weak
DFA, see �nite automata, deterministic

Dijkstra, E.W., 38, 351

discard, see weakening strategy, discard

conjunct
DMM, see Moore machines, deterministic

D, see dot relations, movement
�D, see dot relations, movement (in�nite)

dnopt , 93, 94

dom, see domain

con-, see O
domain, 9, 12, 18, 145{147, 150, 153, 183,

362
DOpt, 238

dopt , 90, 91, 93, 98, 238

dot relations

hop, 150, 151, 153, 168, 369

movement, 149{151, 153, 155, 158, 161,

162, 166, 168{170, 172, 175, 184,

185, 362

movement (in�nite), 149, 150, 362

Dots, see items (of a regular expression)

dottings, see items (of a regular expres-
sion)

DRE, see regular expressions, dotted

DTrans, 273, 275

dtrans, 273

dtransre, 275

DTransRel, 260, 275, 279, 280

duplicate, see weakening strategy, du-

plicate conjunct

 �
E , see regular expression, left of dot
�!
E , see regular expression, right of dot

"-removal, 29, 32, 33, 141, 143, 153, 155{

157, 175, 184, 367

general, 29, 368

e, see problem details, end-points

e-mark, see algorithm details, end-marker

Earley, J., 159, 352

e�r, 131

EFTrie, 234, 235, 239

Eindhoven Pattern Kit, 225, 250

ell, 133

emm, 132, 133

empty string, 13{21, 23{25, 28{33, 47, 51{

56, 59{68, 70{79, 81{83, 85, 86,

88, 89, 91{94, 96{98, 101, 103{
105, 107, 110, 118{122, 125, 127{

131, 134, 136, 141{163, 165{185,
187, 189, 192, 195, 196, 260, 262{

266, 268, 273, 275, 312, 313, 315,
321{325, 329, 347, 358, 363, 367,

368

enc, see encoding function

encoding function, 62, 63, 66{68, 70, 362
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enlarge, see weakening strategy, enlarge

range

"-free, see �nite automata, "-free

equiv , see equivalence procedure

equivalence class, 12, 22, 174, 200, 201,

203{205, 207{209

equivalence procedure, 210{213, 363
equivalence relations

on states, 197, 363

ER, see equivalence relations, on states

FA, see �nite automata

FA, 262

fa-canon, 263

fa-dfa, 265, 278{281

fa-effa, 265
fa-fa, 263

fa-rfa, 264

FA: : : , 256
FAAbs, 261{265

::attemptAccept, 257
::reportAll, 257{259

faabs, 261
faabs.hpp, 257, 261

FACanonical, 263, 268

FADFA, 265, 266, 268, 277{279, 282

::areEq, 280, 281
::compress, 279

::minBrzozowski, 278
::minDragon, 279

::minHopcroft, 280

::minHopcroftUllman, 280

::minWatson, 281
::reverse, 278

::split, 279

FAEFFA, 265, 268

FAFA, 260, 263, 265, 268

Fail, 248
fail, 248

FailIdx, 232

failidx, 232

fails, 248

fails.hpp, 248

failure function

forward, 71{78, 363

indexing, 75{78, 363

reverse, 71, 129{131, 363

ff , see failure function, forwardb
ff , see failure function, indexing

fr, see failure function, reverse

FALSE, 221, 227, 228, 244, 257, 258

false, 8, 180, 198, 203, 210

Fan, J.-J., 91, 352

FARFA, 258, 259, 264, 268

fas.hpp, 257{259, 262, 264, 265

fast, see algorithm details, skip loops,

fast

FFail, 234, 235

fgrep, 249, 290

filt, see algorithm details, �lters

�lters

DeRemer's, 145, 159, 370

Watson's, 143, 157{159, 185, 268, 370

�nal, 134

�nal-unreach. removal, 28, 370

�nite automata, 4, 5, 19{25, 28{30, 32, 33,
120, 124, 125, 137, 138, 141, 151,

156, 158, 161{163, 165, 173, 175,
177{179, 194{196, 253, 260, 262,
286, 311, 312, 314{316, 318, 319,
321{325, 328, 336, 363, 371, 373

"-free, 23{25, 28{30, 118, 119, 142,
143, 153, 195, 260, 264{266, 268,

315, 321{323, 325, 363

complete, 22, 23, 25{28, 30, 184, 186{

188, 192, 195, 196, 361

deterministic, 4, 5, 25{27, 29, 30, 33,
57, 120, 141, 142, 156, 158, 159,

163, 165, 166, 173, 174, 179, 180,
184{188, 190{192, 194{196, 201,

205, 207, 214, 277, 278, 286, 311,
312, 315{322, 324, 325, 327{336,

345, 348, 362, 371, 373

minimality of, 26{28, 195, 196, 365
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deterministic property, 25, 28, 30, 195,

362

weak, 25, 195, 362

useful, 24, 26, 28, 370

�nal, 24, 128, 136, 195, 370
start, 24, 26, 28, 124, 125, 195, 196,
370

FIRE Engine, 175, 180, 250, 253, 254, 275{

277, 311, 328, 345, 356

FIRE Lite, 5, 175, 180, 190, 244, 253{259,

261, 268, 269, 275{277, 281, 282,

286, 311, 327{329, 345, 348
First, see symbol nodes, �rst

FIRSTSTATE, 244, 270

Follow , see symbol nodes, follow relation
FReachable, 23, 24

ft, see algorithm details, tries, forward
FTrie, 234, 235

fwd, see algorithm details, match orders,

forward

Gamma, 233, 234
getrusage, 290, 291
Glushkov, V.M., 142, 163, 165, 166, 186,

188{190, 267, 268, 312, 352
Grail, 254, 255, 261, 277, 355
grep, 136, 137, 229, 329
Gries, D., 194, 207{209, 214, 352

growthSize, 246

H, see transduction, helper function
Hemerik, C., i, 376

Hopcroft, J.E., 191, 194, 201, 205, 207{
209, 213, 214, 254, 280, 282, 327,

328, 336, 342, 349, 352, 353

HP, 290, 305
Hu�man, D.A., 191, 194, 207, 353

Hume, S.C., 38, 42, 99, 104, 113, 225, 287,
288, 291, 294, 305, 308, 344, 353

IBM, 251, 313, 351

in-inrel, 273

index of equivalence relation, 12, 199, 200,
358

indices, see algorithm details, string in-

dexing

INLINING, 222

INR, 254, 353

int, 227, 238, 264, 272, 280

Intel, 313

IntIntRel, 273, 274

IntSet, 271{274

intset, 271

INVALIDSTATE, 244, 273, 279

iostream.h, 228

isomorphism, 21, 22, 26, 358

it-itrel, 274

item dot, 146, 148, 149, 151{153, 155, 157{

159, 161, 162, 166, 168, 169, 172,
175, 177, 184, 185, 358

item dot position

after, 146{148, 150, 153, 155, 158, 161,
162, 166, 168{170, 172, 175, 184,
185, 358

before, 146{148, 150, 153, 155, 157,
158, 161, 162, 166, 168{171, 175,
184, 185, 360

ItemItemRel, 263, 266, 274

items (of a regular expression), 147{151,

169, 362

ItemSet, 272, 274
itemset, 272

Jonkers, H., i, 38, 342, 353

Kameda, T., i, 195, 213, 354

kbm , 96
kbmcw , 92, 93, 96

kcw , 90, 94{96

Keller, J.P., 209, 353

Klint, P., i, 352

kmp-fail, see algorithm details, KMP, fail-

ure function

knla , 89, 90

knopt , 93, 95, 96

Knuth, D.E., 41, 42, 44, 50, 51, 57, 73,

78, 81, 82, 112, 115, 116, 228, 230,
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232, 234, 243, 244, 249, 287{289,

344, 353

kopt , 91{93, 95, 99

kropt , 98, 99

Kruseman Aretz, F.E.J., i, 376
kwbm , 97

language

of a �nite automaton, 22{24, 26{30,

32, 33, 141, 175, 184, 186{188, 195,
365

of a regular expression, 16, 17, 117,

141, 146, 152, 153, 162, 166, 170,

172, 175, 184, 186{188, 365

LFA, see language, of a �nite automaton
 �
L , see left language
�!
L , see right language
LRE , see language, of a regular expression

Last, see symbol nodes, last
Lee, M., 246, 355

van Leeuwen, J., i, 349, 354

left drop, 13, 51, 53{56, 59, 61, 63, 64, 66,
73, 75{77, 79, 82, 83, 85, 86, 99,
101, 103, 105, 107, 110, 118, 119,

121, 122, 127, 130
left language, 22{25, 27, 30, 31, 80, 119{

125, 127, 128, 132, 134, 136, 137,
152, 365

left take, 13, 51, 53{56, 59{61, 63, 64, 66,

69{77, 79, 82, 83, 85{88, 97{99,
101, 103, 105, 107, 110, 118, 119,
121{123, 125, 127, 137

lex, 329

lla, see algorithm details, lookahead, left

ls, see algorithm details, linear search

main, 228, 229

Marcelis, A.J.J.M., 38, 354
match, see Boyer-Moore, match procedure

match, 228, 231{233, 236

match set, 91{93, 95, 96, 365
MAX , see quanti�cation, maximum

max, 16, 70, 71, 73{77, 200, 210{212

max, 237, 244

MAX�p
, see quanti�cation, maximumpre-

�x

MAXv , see quanti�cation, maximumpar-

tition
MAX�s

, see quanti�cation, maximumsuf-
�x

McNaughton, R., 142, 163, 165, 166, 186,

188{190, 267, 268, 312, 354

mi, see algorithm details, match informa-

tion

Microsoft, 251, 276
MIN , see quanti�cation, minimum

Min, see �nite automata, deterministic,

minimality of
min, 237, 244

MinC, see �nite automata, deterministic,
minimality of

Minimal , see �nite automata, determinis-

tic, minimality of
MinimalC , see �nite automata, determin-

istic, minimality of
Mirkin, B.G., 196, 354

MKS, 249
MM, see Moore machines
mo, see Boyer-Moore, match order

mo, see algorithm details, match orders
Moore machines, 21, 23, 25, 32, 67, 365

deterministic, 25, 26, 32, 68, 80, 362

Moore, E.F., 7, 19, 21, 23, 25, 28, 31, 57,

66{69, 78, 80{82, 112, 191, 194,
203, 207, 289, 344, 348, 354

Moore, J.S., 38, 39, 41, 42, 44{46, 50,

57, 82, 85, 92, 95{97, 99, 101{103,

110, 112, 115{117, 121, 122, 124,
135{139, 225, 228, 230, 237, 239,

240, 242{244, 247, 249, 288, 289,
308, 344, 347, 350, 355, 357

Morris, J.H., 41, 42, 44, 50, 51, 57, 73,

78, 81, 82, 112, 115, 116, 228, 230,
232, 234, 243, 244, 249, 287{289,
344, 353

MS , see match set
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MS-Dos, 136, 223, 249, 251, 276, 313

N, see naturals

naturals, 9, 10, 13, 18, 89, 90, 92{94, 96,

98, 99, 106, 109, 126{128, 183, 366

non-zero, 9, 18, 366
N+, see naturals, non-zero

NDEBUG, 222

near-opt, see algorithm details, Commentz-
Walter, near opt.

new, 222

nla, see algorithm details, lookahead, none

no-norel, 274

Node, 270, 272, 274
node, 270

NodeNodeRel, 274
NodeSet, 263, 272
nodeset, 272

NodeTo, 263, 264, 270

nodeto, 270

none, see algorithm details, skip loops,
none

norm, see algorithm details, Commentz-
Walter, normal

Null, 145, 162, 164, 170{172, 174, 178,
180{182, 186, 264

O, see `big-oh'
obm, see algorithm details, Boyer-Moore

okw, see problem details, one keyword
om, see algorithm details, match orders,

optimal mismatch

OS/2, 251
Output , see Aho-Corasick, output func-

tion

P, see powerset

p, see algorithm details, pre�xes
p+, see algorithm details, orders, increas-

ing pre�xes

p�, see algorithm details, orders, decreas-
ing pre�xes

Paige, R., i, 184, 209, 351, 353, 355

partial derivatives, 172{174, 366

pattern matching, 47, 49, 51, 53{56, 59,

61, 63, 64, 66, 73, 75{78, 80, 82,

86, 101, 103, 107, 110, 366

end-point registration, 59, 61, 63, 64,

66, 73, 75{78, 80, 366
indexing, 76{78, 366

regular expression, 117{119, 122, 127,

368

PM , see pattern matching

PM e, see pattern matching, end-point reg-

istrationdPM e, see pattern matching, end-point reg-
istration, indexing

PD, see partial derivatives

pd, see algorithm details, partial deriva-
tives

Pentium, 313
PerfMatch, 99, 101, 104, 105, 107, 108

Perrin, D., 78, 81, 354

Pirklbauer, K., 288, 355
pm-ac, 233
pm-bfmul, 232
pm-bfsin, 232

pm-bfsin.hpp, 228
pm-bm, 239
pm-cw, 235

pm-kmp, 232
pm-kmp.hpp, 228
pm-multi, 231

pm-singl, 230

PMAC, 233, 244
PMBFMulti, 232, 244

PMBFSingle, 232, 243

PMBM, 239{241, 243

PMCW, 235, 236, 244
PMKMP, 232, 243

PMMultiple, 231, 233, 236, 243
PMRE, 259

::match, 259

PMSingle, 230{232, 239, 243

::match, 227, 229

po-porel, 274
Posn, 270, 272, 274
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posn, 270

PosnPosnRel, 264, 267, 274

PosnSet, 264, 267, 272

posnset, 272

PosnTo, 270

posnto, 270

Potho�, A., i, 353

powerset, 8, 9, 13, 14, 16, 19{23, 25, 29,

31, 32, 62, 67, 78{81, 91, 118, 119,

132, 153, 168, 170, 171, 174, 195,

196

Pratt, V.R., 41, 42, 44, 50, 51, 57, 73,

78, 81, 82, 112, 115, 116, 228, 230,
232, 234, 243, 244, 249, 287{289,

344, 353

pref, see pre�xes

pre�x ordering, 15, 358

pre�xes, 14, 15, 18, 24, 55{57, 60{64, 66{
76, 78{81, 128, 129, 132, 367

Prob, see probability

probability, 102, 367

problem details

end-points, 42{44, 48, 57{64, 73, 75,

77, 84, 100, 112, 362

one keyword, 44{46, 48, 58, 75, 77, 84,
96, 99{101, 103, 107, 110, 135, 366

process, 258

q-decouple, see weakening strategy, de-
couple, quanti�cation

q-split, see weakening strategy, split, quan-
ti�cation

quanti�cation

existential, 9, 11, 29, 68, 70, 71, 124,

125, 137, 153, 199, 200, 202{208,
212

intersection, 31, 80

maximum, 11, 18, 53, 56, 94, 95, 118,
125{127

maximum partition, 197

maximum pre�x, 129

maximum su�x, 61, 71, 74

minimum, 10, 11, 83, 85, 87{90, 92{

96, 98, 104{106, 108, 109, 122, 125,

126

union, 10, 13{15, 22, 23, 29{33, 47,

49, 51, 59, 75, 76, 79, 81, 99, 101,

111, 117, 126, 127, 132, 134, 174,

184{188, 195, 196, 202, 206

universal, 11, 12, 17, 18, 22, 24{26,

28{31, 52, 55, 68, 74, 101, 102,

105, 108, 109, 121, 123{125, 128,

131, 133, 134, 137, 195{198, 200{
210, 212

R, see reals

r-opt, see algorithm details, Commentz-
Walter, right optimized

ran1, 292

Raymond, D.R., i, 355

Rch, 135

RE, see regular expressions

RE, 256{261, 263{268

re, 260

re.hpp, 257, 259

Reach, 23, 132, 133, 135

reals, 9, 102, 367

re�nement, 12, 196{198, 200, 204, 213,

358, 365

R�egnier, M., 92, 350

Regpack, 254, 354

regular expression

left of dot, 148, 152, 362

right of dot, 148, 149, 152, 153, 168,
170{172, 362

regular expressions, 16, 17, 29, 115, 145,

146, 148{151, 161, 162, 165, 168,

170{172, 174, 175, 178{182, 184{
187, 253, 260, 313{315, 329, 367

dotted, 146, 148, 149, 168, 170, 171,
362

Rem, M., i

rem", see "-removal

rem-", see algorithm details, "-removal
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rem-"-dual, see algorithm details, "-removal

(dual)

remove", see "-removal, general

REops, 261

reops, 260

reops.hpp, 261

report, 228, 258
rev, see algorithm details, match orders,

reverse

reverse, 278

right drop, 13, 51, 53, 82, 86, 118, 119,
122, 127

right language, 22, 24, 26, 27, 31, 152, 153,

195, 196, 198, 199, 365
right take, 13, 51{53, 82, 86{88, 90{98,

118, 119, 122, 123, 127

rla, see algorithm details, lookahead, right

RPM , see pattern matching, regular ex-
pression

rt, see algorithm details, tries, reverse
RTrie, 236, 238

s, see algorithm details, su�xes
s+, see algorithm details, orders, increas-

ing su�xes
s�, see algorithm details, orders, decreas-

ing su�xes
S1, 241, 242

Set, 220, 221, 235, 246, 268, 269, 271, 272

set, 246

set cardinality, 12, 13, 21, 25{27, 30, 31,
51{53, 57, 63, 64, 66, 68, 69, 73,

75{78, 83, 86{99, 101{111, 118,

122{125, 128, 130{134, 136, 137,

198{201, 203, 204, 207{213, 232,

280

set.hpp, 228
Sethi, R., i, 142, 162, 163, 165, 178{180,

185, 187, 189{191, 204, 267, 268,

279, 312, 328, 336, 349, 350
sfc, see algorithm details, skip loops, �rst

character

shift , see Boyer-Moore, shift function

similarity, 174, 175, 358

sl , see Boyer-Moore, skip loop

sl, see algorithm details, skip loops

SL: : : , 239, 240

SLFast1, 240, 243

SLFast2, 240, 243

slfc, see algorithm details, skip loops,

least frequent

SLNone, 240, 243

SLprime, 134

SLSFC, 240, 243

Smit, G. de V., 288, 355

Snake, 290, 305

van de Snepscheut, J.L.A., 195, 196, 213,

355

Sparc Station, 136, 290, 305

SPARE Parts, 5, 225{227, 229, 242, 246,
249{251, 256{259, 268, 270, 275,
276, 286, 345, 348

split, see weakening strategy, split

Splittable, 200, 201, 204, 205, 207{209

SReachable, 23, 24

sssymrel, 281

set, 132{134

st-assoc, 270

st-eqrel, 282

st-pool, 270

st-strel, 274

Standard Template Library, 221, 246, 355

start-unreach. removal, 28, 32, 33, 80, 143,
156, 157, 163, 165, 173, 179, 184,
195, 370

State, 234, 235, 238, 239, 244{246, 248,
260, 264, 268, 270{275, 279{282

state, 244

StateAssoc, 260, 263, 270, 271

StateEqRel, 279, 281, 282

StatePool, 270, 271

StateSet, 272, 273, 275, 282

stateset, 272

StateStateRel, 260, 274, 281

StateStateSymRel, 279, 281
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StateTo, 234, 235, 238, 239, 246, 248, 249,

268, 270, 275, 280, 282

stateto, 246

Stepanov, A., 246, 355

STrav: : : , 239, 241
STravFWD, 242, 243, 247, 248
stravfwd, 247

STravOM, 243, 247

stravom, 247

STravRAN, 243, 247

stravran, 247

STravREV, 240, 242, 243, 247, 248
stravrev, 247

String, 235, 245, 268

string, 245
string.hpp, 228, 259

strlen, 245
struct, 273

Su, K.-Y., 91, 352

subset , see subset construction, �nite au-
tomata

subset, see algorithm details, subset con-
struction

subset construction
�nite automata, 29{31, 33, 156, 157,

165, 173, 179, 184, 194, 195, 369

Moore machines, 32, 80, 369
subsetmm, see subset construction, Moore

machines

su�, see su�xes

su�x ordering, 15, 16, 61, 68, 69, 358
su�xes, 14{16, 52, 53, 59{64, 67{71, 73,

74, 76, 78, 80, 81, 83, 85, 86, 88{

93, 95, 96, 118, 119, 122{125, 128{

134, 136, 369
Sun, 136, 290, 305

Sunday, D., 38, 42, 99, 104, 113, 225, 287,
288, 291, 294, 305, 308, 344, 353

sym, see algorithm details, Symnodes en-

coding
symbol nodes, 145, 150, 153, 155, 157,

158, 161, 162, 164{166, 169, 172,

175, 177{181, 183, 185, 369

�rst, 145, 162, 164, 177{183, 185{187,

264, 364

follow relation, 145, 162, 164, 177, 179,

180, 182, 183, 186{188, 264, 267,

364

last, 145, 162, 164, 165, 177, 178, 180,

182, 183, 186, 187, 264, 267, 365
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Summary

A number of fundamental computing science problems have been studied since the 1950s

and 1960s. For each of these problems, numerous solutions (in the form of algorithms)

have been developed over the years. In these collections of solutions, we can identify the
following three de�ciencies:

1. Algorithms solving the same problem are di�cult to compare to one another. This

could be due to the use of di�erent programming languages, paradigms, styles of
presentation | or simply the addition of unnecessary details.

2. Collections of algorithm implementations solving a problem are di�cult to �nd. Some
of the algorithms are presented in a relatively obsolete manner, either using a now-
defunct notation or obsolete programming language, making it di�cult to either
implement the algorithm or �nd an existing implementation.

3. Little is known about the comparative practical running time performance of the
algorithms. The lack of existing implementations in one and the same framework,

especially of some of the older algorithms, has made it di�cult to determine the

running time characteristics of the algorithms. Selection of an algorithm must then
be made on the basis of the theoretical running time, or simply by guessing.

In this dissertation, a solution to each of these de�ciencies is presented. To present the
solutions, we use the following three fundamental computing science problems:

1. Keyword pattern matching in strings. Given a �nite non-empty set of keywords

(the patterns) and an input string, �nd the set of all occurrences of a keyword as a
substring of the input string.

2. Finite automata (FA) construction. Given a regular expression, construct a �nite

automaton which accepts the language denoted by the regular expression.

3. Deterministic �nite automata (DFA) minimization. Given a DFA, construct the

unique minimal DFA accepting the same language.

In the following paragraphs, we will outline the solutions presented for each of the de�-
ciencies.
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The di�culty in comparing algorithms is overcome by creating a taxonomy of algorithms

for a given problem. Each of the algorithms is rewritten in a common notation and is ex-

amined to determine the essential ingredients that distinguish it from any other algorithm.

These ingredients (known as details) can take the form of problem details (a restriction

on the class of problems solved), or algorithm details (some correctness-preserving change
to the algorithm to improve e�ciency). Once each algorithm has been reduced in such a
way, it can be characterized by its set of details. In presenting the taxonomy, the common

details of several algorithms can be factored and presented together. In this fashion, a

`family tree' of the algorithms is constructed, showing clearly what any two algorithms

have in common and where they di�er. Because the root of the family tree is a na��ve,

and correct, algorithm and the details are applied in a correctness-preserving manner, the

correctness argument for each of the algorithms is implicit in the taxonomy.
The common notation and presentations in the taxonomies enable us to implement

the algorithms uniformly, in the form of a class library (also known as a toolkit). The

factoring of essential details, inherent in the taxonomies, leads to factoring of common
components in the inheritance hierarchy of the class library. Object-oriented concepts,

such as virtual (or deferred) member functions, inheritance and template classes, prove to
be useful in presenting a coherent class library, the structure of which reects the taxonomy

from which it was created. For the �rst time, most (if not all) solutions are presented in a

single class library, giving clients of the library a large choice of objects and functions.
With a class library that contains most of the known solutions, we are �nally able to

gather data on the performance of the algorithms in practice. Since the algorithms are
taken from a single class library which was implemented by one person, and the quality of

implementation of the class library is homogeneous, the relative performance data gathered
(comparing algorithms) is not biased by the implementation. This performance data allows
software engineers to make more informed decisions (based upon their needs, and the

characteristics of their input data) concerning which algorithm and therefore which objects
and functions to use in their applications.

The development of the taxonomies has not been without its spin-o�s. In each of the

three taxonomies presented, signi�cant new algorithms have been developed. These algo-

rithms are also implemented in the corresponding class libraries. The techniques developed
in the taxonomy of pattern matching algorithms proved to be particularly useful in deriv-
ing an algorithm for regular expression pattern matching, and in doing so, answering an

open question posed by A.V. Aho in [Aho80, p. 342].



Samenvatting (Dutch summary)

Er bestaan een aantal fundamentele problemen in de informatica die al sinds begin jaren
50 en 60 bestudeerd worden. Voor elk van deze problemen zijn er in de loop der tijd een

groot aantal oplossingen (in de vorm van algoritmen) ontwikkeld. Bij deze oplossingen

kunnen we drie verschillende tekortkomingen onderscheiden:

1. Algoritmen die �e�en en hetzelfde probleem oplossen zijn moeilijk met elkaar te verge-

lijken. Dit kan worden veroorzaakt door het gebruik van verschillende programmeer-
talen, paradigmata, presentatiestijlen of eenvoudigweg door toevoeging van onnodige
details.

2. Collecties van implementaties van algoritmen die hetzelfde probleem oplossen, zijn

moeilijk te vinden. Sommige algoritmen worden op een vrij obsolete manier gepresen-
teerd (hetzij door het gebruik van een achterhaalde notatie dan wel door toepassing
van verouderde programmeertalen). Dit maakt het moeilijk de algoritme te imple-
menteren of een bestaande implementatie te vinden.

3. Er is weinig bekend over de relatieve snelheid van de algoritmen in de praktijk.
Omdat implementaties in �e�en en hetzelfde raamwerk ontbreken (vooral daar waar

het oudere algoritmen betreft), is het moeilijk om de snelheidskarakteristieken te
bepalen. De keuze van de algoritme moet dan gemaakt worden op basis van de
theoretische snelheid of gewoon door gissen.

In dit proefschrift wordt voor ieder van deze tekortkomingen een oplossing gepresenteerd
aan de hand van de volgende drie fundamentele informatica-problemen:

1. Patroonherkenning in symboolrijen. Uitgaande van een eindige niet-lege verzameling
van sleutelwoorden (de patronen) en een invoerrij, vind de verzameling voorkomens

van een sleutelwoord als een subrij van de invoerrij.

2. Constructie van eindige automaten (FA). Gegeven een reguliere expressie, construeer

een eindige automaat die de taal van de reguliere expressie accepteert.

3. Minimalisatie van deterministische eindige automaten (DFA). Gegeven een DFA,
construeer de unieke minimale DFA die dezelfde taal accepteert.

In de volgende alinea's zullen de oplossingen voor de drie verschillende tekortkomingen
kort uiteengezet worden.
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De moeilijkheid van het vergelijken van algoritmen wordt opgelost door een taxonomie

van algoritmen voor een gegeven probleem te cre�eren. Iedere algoritme wordt herschreven

in een gemeenschappelijke notatie. Daarnaast wordt bekeken wat de essenti�ele ingredi�enten

zijn die de verschillende algoritmen van elkaar onderscheiden. Deze ingredi�enten of 'details'

kunnen ingedeeld worden in probleem-details (een restrictie op het soort problemen dat
opgelost wordt) of in algoritme-details (een correctheid-behoudende transformatie van de
algoritme ter verbetering van de e�ciency). Zodra een algoritme op een dergelijke manier

ontleed is, kan deze gekarakteriseerd worden op basis van de verzameling details. In de

taxonomie kunnen de gemeenschappelijke details van twee algoritmen gefactoriseerd en

gemeenschappelijk gepresenteerd worden. Op deze manier wordt er een stamboom van

algoritmen gecre�eerd, die duidelijk aangeeft in welke opzichten verschillende algoritmenmet

elkaar overeenkomen dan wel van elkaar verschillen. Omdat de wortel van de stamboom
een na��eve (en correcte) algoritme is, en de details in een correctheidbehoudende manier

toegepast worden, is het correctheidsargument voor iedere algoritme impliciet aanwezig in

de taxonomie.
De algemene notatie en presentaties in de taxonomie�en stellen ons in staat om de

algoritmen op uniforme wijze, in de vorm van een class library (ofwel toolkit), te imple-
menteren. De factorisering van essenti�ele details, inherent aan de taxonomie�en, leidt tot

factorisering van algemene componenten in de inheritance hierarchy van de class library.

Object-geori�enteerde concepten, zoals virtual (of deferred) member functions, inheritance
en template classes, blijken nuttig voor het presenteren van een coherente class library
waarvan de structuur de corresponderende taxonomie weergeeft. Voor het eerst worden
vrijwel alle oplossingen gepresenteerd in �e�en enkele class library, waardoor de gebruikers

van de bibliotheek een grote keuze hebben uit objecten en functies.
Met een class library die bijna alle bekende oplossingen bevat, zijn we eindelijk in

staat om gegevens ten aanzien van de praktijkprestaties van de algoritmen te verzamelen.

Aangezien de algoritmen afkomstig zijn uit �e�en enkele class library welke ge��mplementeerd
is door �e�en en dezelfde persoon en de kwaliteit van de implementatie van de class library
homogeen is, zijn de relatieve gegevens ten aanzien van de prestaties van de algoritmen niet

be��nvloed door de implementatie. Deze gegevens stellen software-ingenieurs in staat om

(afhankelijk van hun behoeften en de aard van hun input data) beter gefundeerde keuzen
te maken met betrekking tot de in hun applicaties te gebruiken algoritmen en de daarbij
behorende objecten en functies.

De ontwikkeling van de taxonomie�en heeft bovendien enkele bijprodukten opgeleverd.

In ieder van de drie taxonomie�en die gepresenteerd worden, zijn belangrijke nieuwe algorit-
men ontwikkeld. Deze algoritmen zijn ook ge��mplementeerd in de corresponderende class

libraries. De technieken ontwikkeld in de taxonomie van de patroonherkenning-algoritmen
bleken vooral nuttig te zijn voor de ontwikkeling van een algoritme voor reguliere expressie

patroonherkenning, waarmee een oplossing wordt gegeven voor een open probleem gesteld

door A.V. Aho in 1980 [Aho80, p. 342].
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