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1. INTRODUCTION 

One day a student came to Moon and said, "I understand how to make a 
better garbage collector. We must keep a reference count of the painters to each 
cons." Moon patiently told the student the following story: 

"One day a student came to Moon and said, 'I understand how to make 
a better garbage collector... "" 

Danny Hillis 

In Lisp and similar systems with dynamically allocated stor- 
age, the lifetimes of objects can vary widely. Some objects are 
used to store relatively permanent data and remain in the 
system for long periods of time. Others are used by programs 
to store temporary results: these objects are created, used for a 
short while, then are no longer needed. These short-lived 
objects account for a large proportion of storage use. 

The traditional garbage collection algorithms [1] have the 
defect that storage for objects with short lifetimes is lust as 
cosily as storage for objects with long lifetimes. When  an  
object becomes inaccessible, the t ime needed to recover it is 
independent  of the lifetime of the object. Our  observations of 
large Lisp programs indicate that there is much  to be gained 
in performance by optimizing the special case of recovering 
storage for short-lived objects. 

In this paper, we propose a new  garbage collection algo- 
r i thm that takes account of the lifetimes of objects to improve 
efficiency. To use an  analogy, our  scheme can be thought of 
as "renting" memory  space, where  the storage management  
cast for an  object is proportional to the t ime during which the 
object is used. Traditional methods are more like "buying" 
memory space, since the cost for an  object is paid once and is 
always the same, regardless of how much  the object is used. 
When  large numbers  of objects are used, although each object 
may be used only for a short period of time, the renting 
strategy will cost less overall than  the buying strategy. Our  
garbage collector should also turn  out to be more efficient on 
long-lived objects, since the garbage collector will spend less 
effort continually considering them as candidates for reclama- 
tion. 

We were led to work on the garbage collection problem 
because of the performance needs of applications in artificial 
intelligence (AI). The performance of the new generation of 
object-oriented, message-passing systems, which we believe to 
be the best vehicle for AI applications [15, 17, 20], will rely 
increasingly on the efficiency of storage for short-lived objects. 

ABSTRACT: In previous heap 
storage systems, the cost o f  creating 
objects and garbage collection is 
independent of  the li fetime o f  the 
object, Since objects with short 
lifetimes account for  a large portion 
of storage use, it is worth 
optimizing a garbage collector to 
reclaim storage for  these objects 
more quickly. The garbage collector 
should spend proporlionately less 
effort reclaiming objects with 
longer h'fotimes. We  present  a 
garbage collection algorithm that (1) 
makes storage for  short-lived 
objects cheaper than storage for  
long-lived objects, (2) that operates 
in real t ime--object  creation and 
access t imes are bounded, (3) 
increases locality o f  reference, for  
better virtual m e m o r y  performance, 
(4) works wel l  with multiple 
processors and a large address 
space. 
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Programs that do a lot of internal "thinking" will need lots of 
short-lived objects as "thinking material" before they commit 
themselves to decisions. These programs will need to con- 
struct hypothetical worlds which may eventually be thrown 
away after their purpose has been served. 

Some systems use reference counts instead of garbage col- 
lection, primarily because a reference count system can re- 
claim short-lived objects more quickly. Short-lived objects are 
reusable as soon as they become Inaccessible, that is, when 
their reference counts reach zero. However, reference count 
systems have formidable problems of their own. Reference 
counting cannot reclaim circular structures, as our introduc- 
tory story points out. Circular structures are becoming an 
increasingly important programming technique in sophisti- 
cated AI applications. Making sure reference counts are al- 
ways updated when necessary and kept consistent is some- 
times tricky. Maintaining the reference counts often con- 
sumes a considerable percentage of the total processor time. If 
a large proportion of the objects which are created are even- 
tually lost, garbage collectors which trace the accessible objects 
will be preferred to reference counts, which trace the inacces- 
sible objects. Some have also proposed more complicated sys- 
tems which combine reference counts with garbage collection 
[10, 24}. 

Our garbage collector incorporates a simple extension to a 
garbage collection algorithm devised by Baker [4]. Baker's 
garbage collector performs garbage collection in rea/ t ime--  
the elementary object creation and access operations take 
time which is bounded by a constant, regardless of the size of 
the memory. We would also like a garbage collection algo- 
rithm that will work well on machines with a very large 
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FIGURE 1. Henry Baker's Rea141me Gad3age ~ .  

address space [6]. We believe these properties will be essential 
in making garbage collection practical on the next generation 
of computers. The suggestions described in this paper are 
currently being explored for implementation on the Lisp Ma- 
chine [13, 25], a high performance personal computer cur- 
rently in use at hilT, and on the Apiary [16], a proposed 
multiprocessor machine for object-oriented programming~ 

2. A REVIEW OF BAKER'S ~ R I T H M  
Baker proposes the address space be divided into fromspace 
and tospace. Objects are created (by operations like Lisp's 
CONS) from successive memory locations in tospace. The 
garbage collection process traces accessible objects, incremen- 
tally evacuating objects, moving them from fromspace to tos- 
pace. When no more accessible objects remain in fromspace, 
its memory can be reused. An operation called a flip occurs, 
where the tospace becomes the ffomspace and vice versa. 

When an object is evacuated from fromspace to to- 
space, an invisible pointer (or forwarding pointer) is left in the 
fromspace memory cell pointing at its new location in tos- 
pace. To make an analogy with mail, an invisible pointer is 
like a forwarding address. When a person moves, the post 
office sends mail destined for the old address to the new 
address instead. In addition, the sender should be informed 
that mail should be sent to the new address from then on. 

When a fromspace cell containing an invisible pointer is 
referenced, the link to tospace is followed and the tospace 
object is returned. Furthermore, the original reference is al- 
tered to point to the tospace object. On a microcoded ma- 
chine, this occurs in microcode and is completely transparent 
to the user's program. 

The operations that access components of an object (like 
CAR and CDR in Lisp) check the address to make sure the 
address is in tospace. Any object located in fromspace is evac- 
uated to tospace, and the reference updated. 

When an object is first evacuated to tospace, one of its 
components can point back to fromspace. We would like to 
remove all pointers back to fromspace so that fi'omspace's 
memory can be recycled. Whenever a pointer from tospace to 
fromspace is found, we can remove the pointer by evacuating 
the fromspace object, moving it to tospace, and updating the 
tospace pointer to the newly evacuated object in tospace. This 
process is called scavenging. 

Tospace is divided into two areas: the creation area where 
newly created objects appear, and the evacuation area, which 
contains objects evacuated from fromspace. (In Baker's 
scheme, the creation area was allocated from the highest 
location in tospace downward and the evacuation area was 
allocated from the bottom upward.) 

Scavenging is a process that linearly scans the evacuation 
area of tospace; if a component of an object points to from- 
space, the fromspace object is evacuated to tospace (appended 
to the evacuation area). Like the mark phase of traditional 
garbage collectors, scavenging touches all accessible objects. It 
does so in breadth-first order and does not require a stack. 

The scavenger process can be interleaved with object crea- 
tion, evacuating a few fromspace objects to tospace every time 
an object is created. Since only a small amount of work must 
be done whenever an object is created or parts of an object 
are accessed, the garbage collection operates in real time. (See 
Figure 1.) (A more detailed description of the Baker algorithm 
appears in Appendix I.) 

3. SMALL REGIONS OF MEMORY CAN REPLACE" 
BAKER'S SPACES 
We now present a description of our alternative to Baker's 
algorithm. (A more detailed, step-by-step description of this 
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Accessible objects from the condemned region 
will be evacuated to a new region 

FIGURE Z Our Real-Time Gad~acje Collector. 

procedure appears in Appendix II.) We will start with the key 
concepts behind the algorithm and then discuss special-case 
modifications, optimizations, and alternative implementations. 

For the moment, let us pretend that all references to objects 
reside in the heap memory. We will consider other sources of 
object references later. We will retain some of the essential 
aspects of Baker's algorithm. Garbage collecting a space will 
involve moving all the accessib]e objects out of the space, 
evacuating them to another space, then scavenging to remove 
all pointers pointing into the old space so the memory for the 
space can be recycled. 

Our scheme involves two major improvements to Baker's 
algorithm. Baker divides the address space into two halves, 
fromspace and tospace (cutting down the effectively usable 
address space by a factor of 2). In our scheme, the address 
space is allocated in sma/l regions. 

A region is a small set of pages of memory (not necessarily 
contiguous). We will not commit ourselves to a particular size 
for regions, but regions should be small compared to the 
address space. Of course, allocating address space in regions 
opens up the possibility that we will waste some space be- 
cause partially filled regions will occupy memory. However, it 
should be possible to choose the region size large enough to 
minimize the effects of fragmentation of regions. The machine 
should be able to quickly tell, for a given page, to what region 
it belongs. 

We will use these fine divisions of the address space to vary 
the rate of garbage collection for each region, according to the 
age of the region. Recently created regions will contain high 
percentages of garbage and will be garbage collected fre- 
quently. Older regions will contain relatively permanent data 
and will be garbage collected very seldom. 

New objects are created from storage allocated in creation 
regions. At any time, there is a current creation region, in 
which operations like CONS can create new objects. When 
the current creation region is filled, a new one is allocated. 

We introduce a mechanism to keep track of how recent 
each region is, so we can distinguish between data likely to be 

relatively temporary or more permanent. Regions are orga- 
nized into generations. The system keeps track of a current 
generation number; when a creation region is born, it is given 
the current generation number. The current generation num- 
ber is periodically incremented. 

The process of garbage collecting a particular region is initi- 
ated by condemning the region. We will call objects obsolete if 
they reside in a region that has been condemned. Condemn- 
ing a region announces our intention to move all the accessi- 
ble objects out of the region so that we can recycle the mem- 
ory for that region. When we condemn a region, we create 
new regions to hold the objects evacuated out of a con- 
demned region. Each of these evacuation regions inherits the 
same generation number as the condemned region but is 
assigned a version number one higher. The version number of 
a region counts how many times regions of that generation 
have been condemned. 

Objects are evacuated in the same way as in the original 
Baker algorithm. We allocate space for a new object in the 
evacuation region and copy the contents of the old object into 
the new space. An invisible pointer is left in the old memory 
cell pointing to the new object. If we encounter any reference 
to a cell containing an invisible pointer, the reference is up- 
dated to point to the new object. (See Figure 2.) 

The correspondence between our algorithm and Baker's is 
that obsolete areas of memory play the role of fremspace; 
everything else in memory is like Baker's tospace. Condemn- 
ing a region is like Baker's flip operation on a much smaller 
scale. 

4. SCAVENGING IS REDUCED BY GROUPING POINTERS 
FROM OLDER TO NEWER OBJECTS 
In order to release memory for a condemned region we have 
to make sure that no pointers from outside the condemned 
region point to it. This is done, as in Baker's algorithm, by 
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FIGURE 3. Evacuation and Scavenging. 
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scavenging, that is, by linearly scanning all regions that might 
contain a pointer to an obsolete object, evacuating any obso- 
lete object, and updating the reference. 

Let us examine the reasons for performing scavenging. A 
primary reason is to be able to reuse the address space. (Note 
that reusing rea/memory is not an issue in virtual memory 
systems, since paging manages the use of real memory,) If the 
address space is small, it may be necessary to reuse addresses 
which previously held objects which became inaccessible to 
avoid exhausting the address space. Another reason for scav- 
enging is to compact the address space. In systems with large 
address spaces, the page tables themselves may be subject to 
paging, so performance can be improved by compacting the 
address space. Additional reasons for scavenging are con- 
cerned with the disk. It may be necessary to reuse space on 
the disk or compacting the storage on the disk may result in 
reduced disk access time. (See Figure 3.) 

Scavenging is potentially a lot of work, and since our algo- 
rithm is designed to condemn regions at a much faster rate 
than Baker's algorithm does flips, the efficiency of scavenging 
is more crucial for our system. We will attempt to hold down 
the scavenging time by enforcing restrictions on where point- 
ers may point, so that we will have a better chance of know- 
ing where to look to find all references to a condemned 
region. These restrictions will cut down the amount of storage 
that has to be scanned to find and update obsolete references. 

We intend to exploit some empirically observed properties 
of heap storage. Most pointers point backward in time, that is, 
objects tend to point to objects that were created earlier. This 
is because object creation operations like CONS can only 
create backward pointers, since the components of the object 

1960 Generation 1970 Generation 
Pointers may point 
beCk any numbers 
of generations 
Pointers may not point 
directly from older to 
younger objects. 
This pointer 
would not be allowed. 

An object in 1960 may not point directly to an object in 1970 

1960 Generation 1970 Generation 

Pointers forward in time go indirectly through entry tables 

All pointers to 1970 
from earlier generations 
go indirectly through 
this entry table 

1960 Generation 1970 Generation 1980 Generation 

~ ~ - ' ~  1980 may have 
1960cannot I [~x  ] ~ ] pointers to1970 

have pointers ~ _  ~ Entry table must be scavenged 
directly to 1970 ~ I since it may point to 1970 

When 1970 is condemned, 1980 must be scavenged, but not 1960 

FIGURE4. EnW Tables for Forward Pointers Reduce Scavenging. 

must exist before the object itself is created. Pointers which 
point forward in time can only arise as a result of a destruc- 
tive operation like RPLACA which can assign a newer pointer 
as a component of an older object. Since we intend to con- 
demn regions in recent generations more frequently than re- 
gions in older generations, we will try to engineer a scheme 
that reduces scavenging for newer generations at the expense 
of making scavenging more costly for older generations. 

The idea is to a/low objects to point backward any number 
of generations, but to keep track of forward pointers. By re- 
stricting pointers from older generations to newer generations, 
we can arrange that references to a region will come from 
either the same generation or from younger generations. 
Thus, when a region is condemned, we need not scavenge 
regions in any of the older generations. This will mean it will 
be much faster to reclaim regions in recent generations, since 
there will be comparatively little storage that needs to be 
scavenged. 

What happens when an attempt is made to create a pointer 
from an older generation to a younger generation? Instead of 
pointing directly from the older object to the newer object, we 
require that the older object point indirectly through another 
cell held in an entry table. We now associate with each region 
containing objects another region called its entry table, which 
contains the indirect cells for all pointers to objects in that 
region from older generations. All pointers directly into an 
object-containing region from older generations must lie in 
the entry table. Of course, when the user's program refer- 
ences a pointer which points to an entry table, the link to the 
younger object is automatically followed, so this extra indirec- 
tion is transparent to the user's program. 

When a region R is condemned, only newer generations 
must be scavenged to find and update pointers into the con- 
demned region. Instead of scavenging the older generations, 
the entry table associated with'R is scavenged instead, since 
its purpose is to collect all pointers from older generations. 
Since pointers from older to younger generations are only 
produced by destructive operations like RPLACA, these oper- 
ations must check to see if they might cause an older object 
to point to a younger object. We expect these pointers to be 
relatively rare compared to object creation operations, so the 
size of entry tables should be relatively small compared to the 
size of object regions. This is in keeping with our philosophy 
of making object creation cheap even if it requires a little 
more overhead on object modification. (See Figure 4.) 

What about storage reclamation for the entry tables them- 
selves? How do we recover storage in the entry table when a 
pointer from an older to a younger object becomes inaccessi- 
ble? Since we expect there to be a relatively small number of 
forward pointers, efficiency of storage management for entry 
tables is not as critical an issue as it is for objects. There are 
several alternatives, and here we present a suggestion of Lu- 
cassen's [21]: ff we record the name of the region of the 
originating object with each entry in the entry table, we have 
a means of detecting inaccessible pointers in the entry table. 
When the system completes garbage collection and scaveng- 
ing for a region, it is known that all objects in the region are 
inaccessible, and the system records the region in a list. When 
looking at entry tables, any cell created for an object in an 
inaccessible region is known to be inaccessible. This requires 
that region names are unique, which is not hard to assure, 
and also that entries are not shared, since every forward 
pointer gets its own entry. 

The reader should be sure to understand that it is not 
necessary to wait for scavenging to he completed for one 
condemned region before another region can be condemned. 
Condemning a region starts a wove of scavenging, scanning all 

422 Communications of the ACM June 1983 Volume 26 Number 6 



P 

memory more recent than the condemned region. The wave 
stops when the scan reaches the most recent region, and 
memory for the condemned region is released. Many such 
waves can be present in the system at any time, without 
interfering with each other. Each wave of scavenging just 
needs to keep a pointer saying where it currently is working 
and the pointer is advanced each time more scavenging is 
performed. 

There is some flexibility about the order in which scaveng- 
ing is performed. We would probably recommend always 
scavenging the oldest objects first. Paging during scavenging 
might be reduced by adopting a suggestion of Greenblatt's 
[13], or a similar one by Knuth [19], which would always 
prefer scavenging a resident page to one which is out on the 
disk. 

We should point out that the idea of restricting pointers 
• which point forward in time to go through entry tables is 

independent of the particular method used to accomplish gar- 
bage collection for each generation. It would be possible to 
substitute a more standard mark and sweep algorithm for the 
Baker-style copying garbage collection that we advocate. 

5. OLDER OBJECTS ARE GARBAGE COl JFCTED MORE 
SLOWLY THAN YOUNGER OBJECTS 
The performance of our garbage collector is improved by 
varying the rate at which regions in a generation are con- 
demned according to the age of the objects. A good heuristic 
is to assume that if objects have been around for a long time, 
they are relatively permanent and will continue to be accessi- 
ble. This makes it reasonable to use the generation number 
and version number of a region as a guideline to decide when 
to condemn a region. 

As the objects in a region get older, the operation of garbage 
collecting the region by making the region obsolete and evac- 
uating all its accessible pointers will happen less frequently. 
This will save time that would have been wasted moving 
permanent objects around, at the cost of increasing the time it 
takes to reclaim those objects in the region which do become 
inaccessible. For regions containing mostly objects with long 
lifetimes, this tradeoff will be worthwhile. Young regions will 
contain a high percentage of garbage, so it is advantageous to 
reclaim inaccessible objects in these regions as soon as tx~i  - 
ble. 

Recovering storage for old inaccessible objects is costly, 
since all the more recent memory must be scavenged. Since 
garbage collection is so expensive for old objects, we should 
do it infrequently, so the cost can be amortized over a long 
time period. Recovering storage for new inaccessible objects is 
cheap, since very little storage has to be scavenged. 

Another consideration for deciding when to condemn re- 
glans is that it is necessary to be able to reclaim circular 
structures that cross generation boundaries. Some provision 
for these cycles must be made, otherwise our entry tables, 
which are analogous to reference counts in keeping track of 
references to a region, would inherit the same inability to deal 
with circular structures. Because of locality of reference, we 
expect the number of such cross-generation circular struc- 
tures to be small. The easiest solution is to synchronize the 
condemnation operations, to assure that condemning a region 
implies condemning all regions younger than the condemned 
region. This need not be done every time the region is con- 
demned, since it incurs additional expense; it needs to be 
done only from time to time to assure the circular structures 
are eventually reclaimed. Many regions will contain no for- 
ward pointers, so it might be worth marking these as such to 
avoid extra condemnations solely to recover circular struc- 
tures. 

An additional optimization that might be worthwhile for 
very old objects is to coalesce several adjacent generations. 
Since the number of objects in a generation decays with time, 
old generations may contain few objects. It would reduce 
scavenging time to look for pointers to any generation of a 
group rather than to just one generation, since scavenging for 
old generations requires going through many generations. 
This would reduce the paging time necessary to bring in all 
the pages between a very old generation and the present 
generation. Coalescing generations also tends to decrease the 
number of forward pointers, since combining generatious col- 
lapses the two ends of the pointer into a ~ingle generation. 
This should also reduce the number of cross-generation circu- 
lar structures. 

6. WEAK POINTERS ARE TREATED LIKE FORWARD 
POINTERS 
Normally, having a pointer to an object is an indication that 
the object is needed by some active program, and the garbage 
collector is only allowed to recover an object if no pointers 
exist to it. A few Lisp systems allow another kind of pointer, 
called a weak pointer, which does not protect the object 
pointed to from garbage collection. Why are weak pointers 
useful? Sometimes it is desirable to keep track of all currently 
available objects of a certain type in a list, so the user can ask, 
"What are all the objects I currently, have?" But even if the 
user's program forgets about a certain object, the global list of 
all objects still points to the object, preventing it from being 
garbage collected. Or, representing part/whole relationships 
may require parts to have bockpointers to a containing object, 
which should not necessarily protect that object fi'om garbage 
collection. 

Weak pointers are not followed by tracing in garbage collec- 
tion schemes. In our scheme, objects connected by weak 
pointers would not be subject to evacuation. Implementing 
weak pointers poses a problem since we do not want to leave 
dangling references. When the object pointed to by a weak 
pointer is recycled, the weak pointer should be set to null. 
Thus weak pointers have to be controlled, and we can use 
the same mechanism to restrict weak pointers as we do for 
forward pointers. Weak pointers are constrained to point indi- 
rectly through entry tables in the same manner as forward 
pointers. When a region is condemned, it becomes easier to 
find all the weak pointers into the condemned region. When 
an object is recycled, the pointer in the entry table is modi- 
fied. We assume the number of weak pointers is relatively 
small compared to ordinary, strong pointers. 

7. VALUE CELLS AND STACKS MAY NEED SPECIAL 
CONSIDERATION 
In presenting our garbage collection algorithms, we acted as if 
all pointers to objects were resident in the object memory 
itself. However, most present day Lisp implementations also 
involve internal stacks, which store control state information 
and variables. In shallow binding implementations of Lisp 
such as MacLisp and Lisp Machine Lisp, each atomic symbol 
representing a variable has a value cell associated with it to 
hold its current value. We must consider object references 
that reside in these places as well as those stored in object 
memory. (Alternatively, deep binding or lexical binding im- 
plementations of Lisp store values in data objects called envi- 
ronments and are not subject to this problem.) 

The stack and value cells must be scavenged for pointers to 
obsolete objects before the memory for a condemned region 
may be recovered. No modification to our algorithm is essen- 
tial, if we agree that value cells and stacks are to be treated as 
objects, even though they are not user-accessible objects in 
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FIGURE 5. Scavenging the Stack. 

many implementations. Conceptually, we will consider the 
stack to be part of the "oldest" generation, since it is always 
present in the system. Value cells should be part of the oldest 
generation too, regardless of when they are actually created, 
since they are usually "permanent." When a reference to an 
object is created from the stack or from a value cell to an 
object, this will create a forward pointer, which must go 
through the entry table of the object. Thus, when the entry 
table is scavenged, all stack slots and value cells pointing to 
objects in its region will be scavenged. 

Since in many Lisp systems, the performance of PUSH and 
POP operations on the stack is critical, it may be necessary to 
optimize these operations. Since objects stored on the stack 
are likely to be very temporary and modifications occur at a 
high rate, we might like some way of avoiding creating entry 
table pointers for each stack reference. A solution is to always 
consider the stack as part of the youngest generation instead 
of the oldest, so that no entry table pointers are kept for it. 
The stack must then be scavenged for each condemned re- 
gion. 

Two tricks make it possible to save some work in scaveng- 
ing the stack. First, ff more than one region is condemned at a 
time, it might pay to scavenge the stack for several con- 
demned regions simultaneously rather than each individually. 
Second, keeping track of the top of the stack as  it is pushed 
and popped may result in having to scavenge fewer objects. 
We observe that after a region is condemned, no new refer- 
ences may be created directly to objects in the condemned 
region, since our algorithm provides for evacuation of the 
object in that case. Popping the stack can'remove references 

to a condemned region, but pushing objects on the stack can 
never result in new references to a condemned region. The 
number of references to a condemned region can only de- 
crease due to pushing and popping after the region is con- 
demned. Therefore, scavenging can always stop at the point 
where the scavenger meets either the current top of the stack, 
or the top of the stack at the time the region was condemned, 
whichever is lower. (See Figure 5.) 

A suggestion which might help performance is to notice 
that the lifetime of short-lived objects is approximately 
(though not exactly!) correlated with pushing and popping the 
stack. This suggests that a good time to expect a lot of garbage 
is when returning from functions. This might lead to a policy 
of condemning regions after a certain number of stack peps. 

Using linear stacks for temporary storage is a popular tech- 
nique mainly because it has the property that we seek for our 
garbage collector: temporary storage is reclaimed quickly after 
becoming inaccessible. When Lisp calls a function, the argu- 
ments are pushed on a stack and automatically popped off 
when the function returns. The storage used for the argu- 
ments on the stack is immediately reusable as soon as the 
function returns. However, sticking to a strict stack discipline 
has its well-known problems, leading to the traditional funarg 
problem of Lisp [23]. Object-oriented languages do not follow 
a stack discipline, and we would like temporary storage in 
these languages to be efficient. 

There is currently a sharp discrepancy between cheap 
stack storage and expensive heap storage. It should be the 
case that holding on to an object only slightly longer is only 
slightly more expensive. We would like to reduce reliance on 
stacks, yet retain reasonable efficiency. Our hope is that we 
can reduce the cost of garbage collection in the case of tempo- 
rary storage so that it is competitive with using a stack for 
temporary storage. 

8. HOW GOOD IS THE PERFORMANCE OF OUR 
GARBAGE COI.I.ECTOR? 
Judging garbage collection algorithms is tricky. These algo- 
rithms are heavily dependent on the empirical properties of 
data used by programs, and their performance depends upon 
whether certain kinds of operations are cheap or expensive in 
the underlying machine. We believe our algorithm has the 
potential for good performance, considering tradeoffs appropri- 
ate for the machines that will be prevalent in the next couple 
of years and the needs of large-scale AI software. 

The primary reason we expect good performance from our 
garbage collector is that it takes into consideration the life- 
times of objects. Our garbage collector should be more effi- 
cient than traditional alternatives for objects with short life- 
times, since it recovers the storage for these objects quickly 
after the object becomes inaccessible. Our garbage collector 
should be more efficient for objects with long lifetimes since 
the garbage collector wastes less time repeatedly examining 
objects that remain accessible for long periods. 

One way to think about the efficiency of garbage collectors 
is to ask the question, "How much work does the garbage 
collector have to do per memory cell reclaimed?" Since the 
purpose of garbage collection is to recycle memory, more 
efficient garbage collectors should do as little work as possible 
to collect the garbage. We assert that considering the lifetime 
of objects results in reducing the amount of work necessary 
per inaccessible object recovered. 

All the work our garbage collector does occurs in either the 
evacuation or scavenging phases. How does the amount of 
work for each phase compare with conventional alternatives? 
Since regions in younger generations are condemned more 
frequently than regions in older generations, most of the scav- 
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enging time is spent in younger generations. We make the 
plausible assumption that the proportion of garbage is higher 
in younger generations than older generations. Thus most of 
the scavenging time is spent where there is the highest pro- 
portion of inaccessible objects, which tends to minimize the 
amount of scavenging that needs to be performed per inacces- 
sible object. 

Our algorithm tends to require fewer evacuations per ob- 
ject for older objects at the expense of more evacuations per 
object for younger objects, as compared with the standard 
Baker algorithm. Our algorithm is at least no worse in this 
respect than Baker's since the rate of condemnation can al- 
ways be adjusted so that the average number of evacuations 
per object is comparable. 

Baker [5] considers another criterion for the efficiency of 
garbage collection: the density of accessible objects. A garbage 
collector is good if it maintains a high proportion of accessible 
objects to inaccessible objects in the address space, especially 
in primary memory for virtual memory systems. A problem 
with our algorithm is that it introduces fragmentation, since 
partially filled regions will waste some space, lowering the 
average density of accessible objects. However, just like the 
ffagmentatior~ problem in paging systems, the region size 
should be chosen so that fragmentation is not a significant 
source of inefficiency. 

To maintain a high density of accessible objects, it is neces- 
sary to remove inaccessible objects as soon as possible. If we 
grant the hypothesis that most of the garbage occurs in 
younger generations, then most of the garbage will be re- 
moved quickly, since the rate of garbage collection is faster for 
younger generations. 

9. WHAT ASPECTS OF PROGRAM BEHAVIOR AFFECT 
EFFICIENCY OF GARBAGE COIJ.ECTION? 
A next step in trying to determine whether our garbage col- 
lection scheme would be feasible involves observing the be- 
havior of currently existing large-scale Lisp programs. The 
few simple kinds of measurements we describe below would 
help greatly in predicting the performance of our proposals. 
To our knowledge, no currently existing Lisp system is instru- 
mented in such a way that the kinds of measurements we 
suggest are easily obtainable. We would strongly encourage 
readers to try to collect such data for their systems. 

Rate of Object Creation. How fast are objects created? 
Average Lifetime of Objects. How fast do objects become 

inaccessible? If there is a high proportion of short-lived ob- 
jects, our proposals become advantageous. 

Proportion of Forward versus Backward Pointers. How often 
do pointers point to objects that are younger than themselves 
versus pointing to older objects? Forward pointers can only be 
created by object modification operations or by creation of 
circular structures, not by creation of noncircular objects. De- 
layed evaluation (also called suspended or lazy evaluation) 
also results in creating forward pointers, but these can be 
implemented using invisible pointers, which are eventually 
removed in the course of garbage collection. The proportion of 
forward pointers will depend to some extent on the program- 
ming style adopted. A high percentage of pointers pointing to 
older objects bodes well for our scheme. 

The Average "Length" of Pointers. How much locality is 
there in the program? Do pointers often point to nearby ob- 
jects or to objects far away? Our proposal would fare well 
with programs which naturally have a high degree of locality 
of reference. 

We believe it is plausible to expect that empirical observa- 
t/ons would bear out our assumptions about program behav- 
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ior and justify the design choices in our garbage collector. 
Certainly the trends are in the direction of programs with 
increased locality and toward programs that rely on object 
creation rather than modification. 

Our future research plans include constructing a simulator 
that will allow us to test the behavior of real programs and to 
pick sensible values for parameters such as region size for a 
wide variety of conditions. Precise determination of how well 
our garbage collector will perform on real programs and com- 
parison with more conventional alternatives must await ac- 
tual implementation and measurement. 

10. USERS CAN PREDICT THE LIFETIMES OF OBJECTS 
TO HELP THE GARBAGE COLLECTOR 
Often a sophisticated user is in a position to know whether a 
particular object is likely to be relatively temporary or more 
permanent. The system should be able to take advantage of 
such knowledge to improve the performance of the program. 
It might be advantageous to supply the user with several 
different flavors of object creation operations, so that the sys- 
tem can choose the best allocation strategy appropriate for 
that kind of object. An operation could be supplied which 
creates objects directly in some older generation, rather than 
in the currentgeneration. Of course, this decision will have 
no effect upon the semantics of the program; it will only affect 
the efficiency of garbage collection. 

Adjusting the region size can control the efficiency of using 
short term versus long term memory. Short-lived objects 
should be allocated in small regions, so the storage for the 
object will be recovered very soon after it is abandoned. On 
the other hand, long-lived objects should be allocated from 
larger regions. This saves the system the trouble of having to 
frequently evacuate the object from generation to generation 
at the cost of having to wait longer before the storage can be 
recovered. Larger regions also reduce the expense of interre- 
gion pointers. 

Since we expect that most storage is used for short-lived 
objects, we recommend that objects be created in short term 
memory by default. System primitives, like Lisp's PUTPROP, 
that expect to create relatively permanent objects can use 
longer term versions of CONS. 

Being able to take advantage of a priori knowledge of the 
lifetimes of objects may become important for some kinds of 
systems. Trends are developing toward systems which create 
many structures which are known to be permanent at the 
time they are created. Several recently developed languages 
for artificial intelligence research produce some types of data 
which never become inaccessible. 

Current implementations of new pattern-directed invoca- 
tion languages like AMORD [9] or ETHER [18] do not have 
any operations that completely remove or let go of assertions 
in the database. Once an assertion is made, it remains forever, 
though belief in the assertion may be renounced by further 
processing. Description languages such as KRL [7] or OMEGA 
[2] currently have this characteristic as well. (However, future 
versions of ETHER and OMEGA are developing a notion of 
viewpoints, which may allow some knowledge to become 
inaccessible and be reclaimed.) These languages have not yet 
been applied to sufficiently large problems so that reclamation 
becomes an important issue in present day implementations. 

Databases for business applications also may have the prop- 
erty that records are virtually permanent once created. Im- 
provements in computer technology will make keeping data 
for long periods feasible, through storage hierarchies that 
make older data progressively harder to access, but never 
impossible. Very large address spaces may obviate the need 
for reuse of the address space. We may reasonably expect 

t 
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computers in the next generation that may be able to run for 
weeks to years without needing to reuse address space [26]. 
Write-once media such as video disks may be used for sec- 
ondary storage, so that reusing or compacting secondary stor- 
age space becomes less of an issue. 

Under circumstances such as these, knowing that data is 
permanent helps the garbage collector avoid performing too 
much work scavenging, for example, trying to find inaccessi- 
ble objects where there are none. The need for garbage collec- 
tion is not totally eliminated in these systems, however, as 
processing of individual database entries, indexing and re- 
trieval may require creating short-lived objects. 

11. OUR GARBAGE COIJ.ECTOR IS SUITABLE FOR 
PARAI.I.EL PROCESSOR MACHINES 
Since processors are continually getting cheaper, mnltiproces- 
sor machines will soon appear. The incentive for using multi- 
ple processor machines is especially important for AI applica- 
tious. Our garbage collection scheme has been designed to be 
suitable for implementation on multiple processor machines. 

On a multiprocessor system in which several processors 
share common memory, an attractive way to exploit parallel- 
ism is to allocate processors to be scavengers, performing the 
scavenging task concurrently with worker processors, which 
run user programs. Care must be taken to avoid timing errors 
and contention for shared resources. The major potential 
trouble spot with our scheme occurs when objects are being 
evacuated. Objects can be evacuated either by a worker who 
references an obsolete object or by a scavenger. The danger 
here is that one processor may attempt to evacuate an obso- 
lete object, creating a new object, and before the invisible 
pointer to the new object is installed, another processor may 
try to evacuate the same object. Evacuation operations on the 
memory must have sufficient synchronization to prevent this. 

We prefer a multiprocessor architecture such as the Apiary 
[16] in which each worker processor has its own memory, not 
shared by other processors. We will briefly describe how our 
algorithm can be extended to operate on such a machine. 

Each worker maintains its own storage, allocates its own 
regions, condemns them periodically, evacuating and scaveng- 
ing exactly as described for the single processor case, A con- 
sideration arises when a worker must reference an object 
which lives on another worker. Such an object may reside in 
a condemned region and need evacuation. Another considera- 
tion is that when a region is condemned, pointers to that 
region from other machines must be scavenged. 

On the Apiary, each worker maintains two tables to man- 
age pointers that reference objects residing on other workers. 
The first table is an exit table for references to other machines. 
When an object on another machine is referenced, a message 
is sent out over the network to fetch the object, so the user's 
program objects on other machines do not have to be treated 
differently than objects on one's own machine. We arrange 
that a worker receiving a request for an object first checks to 
see whether the object is obsolete, and if so, evacuates it, 
returning the evacuated object. This assures that workers will 
never reference condemned regions on other machines. 

Each worker also has an interest table, which keeps track of 
references to objects on that worker from other machines. 
When a region on a worker is condemned, the interest table 
must be scavenged since it may reference the condemned 
region. Here our solution to the problem of forward pointers 
comes in handy. We can require all pointers from other ma- 
chines to go indirectly through the entry table in the same 
manner as we required for forward pointers. This reduces the 
amount of work during scavenging, and the extra overhead 

on intermachine pointers (which we assume to be relatively 
rare compared to intramachine pointers) should not be signifi- 
cant. 

12. CHEAPER SHORT TERM MEMORY MAY IMPROVE 
PROGRAMMING STYLE 
It is our hope that making the use of short-lived objects 
cheaper will lead to improvements in program clarity. Often, 
complications in program structure are motivated by the need 
to avoid creating short-lived objects for intermediate results. 

Here is an example of how the cost of short-lived objects 
can affect design decisions in programming, Consider the 
problem of writing a matrix multiplication routine in Lisp to 
operate on matrices represented as lists of rows, each row 
represented as a list of numbers. 

(13 I )×(57  6)--(149 252 ) 

This example would be represented as 

(MATRIX-MULTIPLY'((1 2)(3 4})'((5 6)(7 8))) 
evaluates to ((19 22} (43 50)} 

Let us imagine that as part of our mathematics library we 
already have a function which takes the dot product of vec- 
tors and a function which produces the transpose of a matrix: 

(DOT-PRODUCT '(1 2) '(5 7}) evaluates to 19 
(TRANSPOSE '{(5 6) (7 8))) evaluates to ((5 7) (6 8))) 

The usual procedure for multiplying a matrix is to compute 
the elements of the product by multiplying elements of the 
rows of the first matrix by elements of the columns of the 
second matrix. Using the transpose procedure, we can turn 
the columns of the second matrix into rows, so that they "line 
up" with the rows of the first matrix, then use the dot prod- 
uct function to multiply corresponding rows. This solution is 
elegantly expressed as follows: 

Define MATRIX-MULTIPLY of a LEFT-MATRIX and a RIGHT- 
MATRIX: 

Let COLUMNS be the TRANSPOSE of RIGHT-MATRIX. 
Create a list whose elements are: 

For each ROW in the LEFr-MATRIX, 
Create a list whose elements am: 

For each COLUMN in the COLUMNS matrix, 
the DOT-PRODUCT of the ROW and the COLUMN. 

(The actual Lisp code corresponding to the descriptions of 
algorithms in this section appears in Appendix HI.) This solu- 
tion has a potential efficiency problem: the TRANSPOSE 
function creates a new list that is thrown away after the 
matrices are multiplied. 

In a conventional Lisp system, using lists like this is expen- 
sive, since the lists are created and only used for a short time 
before being subject to garbage collection. This leads program- 
mers to try to optimize out the creation of intermediate list 
structure. Instead of doing a "two-pass" procedure over the 
matrix, one to transpose, another to multiply, we can use 
instead a more complicated "one-pass" procedure. Instead of 
creating a new list whose elements are in a convenient order, 
the one-pass procedure extracts the appropriate elements 
from the columns of the matrix when needed. Especially if 
multiplications of small matrices are frequent, the following 
version might be considerably faster in a conventional Lisp 
system: 

Define MATRIX-MULTIPLY-WITHOUT-TRANSPOSING 
of LEI~I'-MATRIX and RIGHT-MATRIX: 

Create a list whose elements am: 
For each ROW in the LEFt-MATRIX, 
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Create a list whose elements are: 
For COLUMN-INDEX from 0 to the number of columns of 
RIGHT-MATRIX: 

The IX)T-PRODUCT-COLUMN of 
the ROW, 
the RIGHT-MATRIX, and 
the COLUMN-INDEX. 

This now forces us to write a new DOT-PRODUCT routine 
which can extract the elements of the second vector from the 
columns of the matrix. This duplicates some of the knowledge 
we already had in the DOT-PRODUCT function. 
Define DOT-PRODUCT-COLUMN of a ROW, a MATRIX, and a 
COLUMN-INDEX; 

If the ROW is empty, return 0. 
Otherwise, return the sum of: 

the product of 
The FIRST element of the row, 
and the element indexed by COLUMN-INDEX of the FIRST 
element of the MATRIX. 

and the DOT-PRODUCT-COLUMN of 
the RLST of the ROW, 
the REST of the MATRIX, 
and the COLUMN-INDEX. 

Instead of being able to modularly build a solution using the 
TRANSPOSE and DOT-PRODUCT functions we already had, 
we were forced to write new lower level routines. The need 
to avoid using short-lived objects encourages more complex 
and obscure programming techniques. 

This example is an illustration of a general situation where 
an N-pass procedure will use data objects to store the output 
of intermediate passes. There is a temptation to substitute a 
one-pass procedure to avoid using storage for intermediate 
results, but this procedure has to be more complicated and 
specialized, because the code inside the loop must do a little 
piece of all of the passes. 

Another approach for reducing inefficiency due to creating 
objects to store intermediate results is program transformation 
[8, 14]. The hope is that a smart compiler could replace a 
program which uses temporary storage with another equiva- 
lent version that did not, much as in our two versions of 
matrix multiplication. We consider research in program trans- 
formation techniques extremely valuable, but program trans- 
formation is no substitute for an efficient garbage collector. 

Besides introducing difficulty in debugging (the system 
must be able to relate bugs in the transformed version of the 
program to bugs in the original), programs may use short-lived 
objects in a dynamic way which might thwart static compila- 
tion. The lifetime of objects is often short, but unpredictable, 
and we would like our system to deal with this kind of object 
efficiently. The simplest class of short-lived objects are those 
created by a procedure for its own use and abandoned when 
the procedure returns. This is the kind of procedure that is 
most amenable to optimization by program transformation 
systems. There is another kind of procedure, represented by 
the matrix multiplication example, where a procedure creates 
an object that is returned and then used temporarily by some 
caller of the procedure. These are much more difficult to 
compile out, especially in compilers that allow separate com- 
pilation of procedures. 

The optimization may also depend on the outcome of run- 
time events, making it impossible for any static optimizer to 
perform the optimization. A third class involves using a short- 
lived object as part of some data structure and later modifying 
it, making the object inaccessible within a short time. Some 
uses of these objects are not correlated with the procedure 
calling stack at all, and program transformation systems will 
have little success with these. 

For example, a user may keep a directory, which contains 
objects like files which the user may choose to delete at any 
time. The exact moment at which a file is deleted is com- 
pletely unpredictable by a program transformation system, 
and therefore a garbage collector is necessary. 

Our aim is to make the use of short-lived objects more 
efficient, so that the creation of short-lived objects is not 
much worse than allocating temporary results on a stack. If 
programmers are not severely penalized in terms of efficiency 
for choosing cleaner programming styles, we hope that they 
will continue to improve their programming styles, 

APPENDIX I. THE BAKER REAL-TIME GARBAGE 
COl J.ECTION ALGORITHM 
We present a summary of Henry Baker's original algorithm. 

The CREATE operation creates objects, like Hsp'$ CONS. ACCESS 
retrieves a component of an object, like Lisp's CAR and CDR, or 
accesses a subscripted element of an array. MODIFY performs assign- 
ments to components of objects, like Lisp's RPLACA and RPLACD, or 
storing into a subscripted element of an array. 

The address space is divided into two semispaces, fromspace and 
tospace. Object creation happens in tospace and the semispaces are 
exchanged in a flip when tospace fills. 

Define CREATE an object, given an INrFIAL-CONTENTS: 
If the INrHAL-CONTENTS is in FROMSPACE, 

EVACUATE the INH'IA~CONTENTS to TOSPACE. 
Allocate memory space at the location CREATE-OBJECTS-FROM- 
HERE. 
Fill the memory with its INITIAL-CONTENTS. 
Advance the CREATE-OBJECTS-FROM-HERE pointer past the new 
object. 
Call the SCAVENGER to perform a bit of the work to reclaim 
memory. 
Return the pointer to the new object. 

Define ACCESS an ELEMENT of an OBJECT: 
If the CONTENTS of the cell containing the ELEMENT is in 
TOSPACE, return it. 
If it's in FROMSPACE, 

Check to see if the cell contains an INVISIBLE-POINTER 
[which means it has already been evacuated.] 
If so, change the ELEMENT to 

where the INVISIBLE-POINTER paints 
and return that forwarded object. 

If it's in FROMSPACE and there's no INVISIBLE-POINTER, 
EVACUATE it from FROMSPACE to TOSPACE. 
Update the ~ N T  of the OBJECT to point to the new 
object in TOSPACE, 
and return the new object in TOSPACE. 

When an object in fromspace is accessed, it is 
EVACUATEd, moving it to tospace. An INVISIBLE POINTER 
is left behind so references to it will still work. 

Define EVACUATE an OLD-OBJECT: 
If the OLD-OBJECT is in FROMSPACE, 

Copy the OLD-OBJECT into the EVACUATION area of 
TOSPACE, 

creating a NEW-OBJECT. 
Leave an INVISIBLE-POINTER in the old cell to the NEW-OB- 
JEEr. 
Return the NEW-OBJECT. 

If the OLD-OBJECT is in TOSPACE, just return it. 

The SCAVENGER makes sure all objects in tospace also 
have their components in tospace. There is a variable 
SCAVENGER-SLICE that controls how much work in re- 
claiming storage is performed every time an object is created. 
There is a pointer SCAVENGE-HERE that points to the next 
object to be scavenged. 
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Define the SCAVENGER: 
Repeat the following until either 

No more UNSCAVENGED objects remain in the 
EVACUATION area of TOSPACE, or the loop has been re- 
peated SCAVENGER-SLICE times: 

SCAVENGE the object at the location SCAVENGE-HERE by 
EVACUATING each element which lies in FROMSPACE, 
moving that element to TOSPACE, 
and changing the element to point to the TOSPACE object. 

Advance the SCAVENGE-HERE pointer. 
When no more UNSCAVENGED objects are left, 

do a FLIP, exchanging FROMSPACE and TOSPACE. 

Define the procedure to MODIFY an ELEMENT of an OBJECT to have 
a NEW-CONTENTS: 

If the N E W - C O ~  is in FROMSPACE, 
EVACUATE the NEW-CONTENTS, yielding an object in 
TOSPACE. 
Store the TOSPACE object NEW-CONTENTS into the cell 

containing the EI.EMENT of the OBJECT. 

APPENDIX II. OUR REAL-TIME GARBAGE COI.I.ECTOR 
Creation and access are shnflar to Baker's, except that instead of 
fromspace and tospace, memory is allocated in regions: creation re- 
gions to create objects, evacuation regions to move objects from older 
to newer regions. Instead of Baker's flips, regions are condemned, 
which causes the accessible objects to begin to move out of the region. 
Condemning a region starts scavenging to remove pointers to the 
region. When scavenging is complete, the memory for the region can 
be recycled. 

The description that appears here has been somewhat simplified for 
expository purpas~. We have omitted oxle for handling the stack, 
value cells, storage management for entry tables, and multiprocessing, 
These considerations have been discussed in the body of the paper, 
and modifications to the algorithms below to incorporate them are 
straightfi~rward. 

Define CREATE an object, given an INrHAL-CONTENTS: 
If INITIAIA2ONTENTS is OBSOLETE [its region was 
c o N D ~ ] ,  

EVACUATE the INrI1AIACONTENTS. 
If there's no more room in the current CREATION r e ,  on. 

Make a new CREATION region from which to create objects. 
inherilLq 8 GENERATION and VERSION numbers from the 
previous one. 

Call the SCAVENGER coroutine to incrementally try to reclaim 
memory. 
If the POPULATION of the current generation is high enough, 

Start a new GENFA~TION by 
Incrementing the CURRENT-GENERATION-NUMBER. 

Allocate memory space at the location CREATE-OBJECTS-FROM- 
HERE. 
Fill the memory for the object with its 1NrrlAL-CONTENTS. 
Advance the CRFA~TE-OBJECI~FROM-HERE pointer past the new 
object. 
Retum the pointer to the new object. 

Define the SCAVENGER: 
Each ~-ne an object is created, 

do SCAVENGER~_,ICE steps of the following procedure: 
Look for a region which is scheduled to be CONDEMNED. 

A region is CONDEMNED when it is considered likely to contain 
garbage: 
Young regions are CONDEMNED frequently, older ones more 
seldom. 

SCAVENGE for all pointers into the CONDEMNED region. 
Abandon the memory for the CONDEMNED region 

when the scavenger has removed all pointers to it. 

Define CONDEMN a REGION: 
Mark the REGION as being CONDEMNED. 
Allocate a new EVACUATION-REGION whose 

GENERATION number is taken from the CONDEMNED region, 
and 

whose VERSION number is one higher than the CONDEMNED 
region. 

Define ACCESS an ELEMENT of an OBJECT: 
If the CONTENTS of the cell containing the E I .EME~ isn't 
O B S O ~ ,  

then return it. 
If the CONTENTS is O B S O ~  [resides in a CONDEMNED re- 
gion], 

Check to see if the cell contains an INVISIBLE-POINTER 
[which means it has already been evacuated.] 
If so, change the EI.EMENT to 

where the INVISIBLE-POINTER points 
and return that forwarded object. 

If it's OBSOLETE, and there's no INVISIBLE-POINTER, 
EVACUATE it. 

Update the E I .EME~ of the OBJECT to point to the 
EVACUATED object, 
and return that new object. 

Define EVACUATE an OLD-OBJECT: 
If the OLD-OBJECT is OBSOLETE [in a CONDEMNED region] 
Copy the object to an EVACUATION region 

of the same GENERATION as the region containing the OLD- 
OBJECT 
and whose VERSION number is one higher, 

creating a NEW-OBJECT. 
Store the contents of OLD-OBJECT into the NEW-OBJECT. 
Leave an INVISIBLE-POINTER in the old cell to the NEW-OBJECT, 
and return the NEW-OBJECT. 

The  scavenger  removes  pointers  to obsolete objects by  
evacua t ing  such  objects. As soon as the  scavenger  is f in ished 
removing  all such  pointers,  t he  m e m o r y  for the  region can  be  
reclaimed. 

Define SCAVENGE for pointers to a CONDEMNED-REGION: 
Repeat the following for each region 
in the GENERATION of the CONDEMNED-REGION, 
and the ENTRY TABLE for the CONDEMNED-REGION, 
and all GENERATIONS more recent than the GENERATION of the 
CONDEMNED-REGION: 

For each OBJECT in each REGION: 
SCAVENGE the OBJECT, 

looking for pointers to the CONDEMNED-REGION. 

Define SCAVENGE an OBJECT, which may point to a CONDEMNED- 
REGION: 

Check to see if any element of the OBJECT points to the 
CONDEMNED-REGION. 

If it does, EVACUATE the element of the OBJECT and modify 
the element of the OBJECT to point to the evacuated object. 

Define the procedure to MODIFY an ELEMENT of an OBJECT 
to have a NEW-CONTENTS: 
If the NEW-CONTENTS is OBSOLE'IE, 
EVACUATE the NEW-CONTENTS. 

Is the GENERATION of the NEW-CONTENTS 
younger than the GENERATION of the OBJECT?. 

No, store the object NEW-CONTENTS into the cell containing 
the ELEMENT of the OBJECT. 

If it is, create a new ENTRY for the OBJECT in the ENTRY 
TABLE of the NEW-CONTENTS. 

Modify the cell containing the E l . E ~ N T  of the OBJECT to 
point to the ENTRY. 

Modify the ENTRY to point to the NEW-CONTENTS. 
Otherwise, store the NEW-CONTENTS in the cell containing 

the EI.I~VIENT of the OBJECT directly. 
If the OLD-CONTENTS of the cell pointed to a younger object, 
Remove its entry in the ENTRY TABLE. 

APPENDIX m.  LISP CODE FOR THE MATRIX 
MULTIPLICATION EXAMPLE 

First, the solution which transposes the right matrix. 

426 Communications of the ACM June 1983 Volume 26 Number 6 



RF.$~¢H ~'lrlmflglr/o@$ 

(DEFUN DOT-PRODUCT (LEFT-VECTOR RIGHT-VECTOR) 
(COND ((OR (NULL LEFT-VECTOR) (NULL RIGHT-VECTOR)) 0) 

((+ (* (CAR LEFT-VECTOR) (CAR RIGHT-VECTOR)) 
(DOT-PRODUCT 
((]DR LEFT-VECTOR) 
(CDR RIGHT-VECTOR])]])} 

(DEFUN TRANSPOSE (MATRL~ 
(COND ((NULL (CAR MATRIX)) NIL) 

(iCONS (MAPCAR 'CAR MATRIX} 
O'RANSPOSE (MAPCAR 'CDR 
MATmx)))))) 

{DEFUN MATRIX-MULTIPLY (LEFT-MATRIX RIGHT-MATRIX) 
(LET ({COLUMNS ('HL~SPOSE RIGHT-MATRIX)}} 

~,~"CAR 
'(LAMBDA (ROW) 

(MAPCAR 
'(LAMBDA (COLUMN} 

(DOT-PRODUCT ROW 
COLUMN}} 

COLUMNS)) 
I~FT-MATRLX))) 

The following solution, which avoids transposing the ma- 
trix, replaces MATRIX-MULTIPLY-WITHOUT-TRANSPOS- 
ING for MATRIX-MULTIPLY and  DOT-PRODUCT-COLUMN 
for DOT-PRODUCT: 

{DEFUN MATRIX-MULTIPLY-WITHOUT-TRANSPOSING 
{LEFT-MATRIX RIGHT-MATRLX) 

0~taPCAR 
'flXMVIBDA (ROW 

(LET {(COLUMN-INDEX 0) 
(MAPCAR 
'{LAMBDA (COLUMN 

0aROG1 (DOT-PRODUCT-COLUMN 
ROW 
RIGHT-MATRIX 
COLUMN-INDEX) 
(SETQ COLUMN-INDEX 
{+ COLUMN-INDEX 1.)))) 

(cAR RIGHT-MATmX)))} 
LEFT-MATRLX)) 

(DEFUN DOT-PRODUCT-COLUMN 
(ROW MATRIX COLUMN-INDEX) 

(COND ((NULL ROW) 0} 
((+ (* (CAR ROW} 

(NTH COLUMN-INDEX (CAR MATRIX))) 
03OT-PRODUCT-COLUMN 

(CDR ROW} 
(CDR MATRLX) 
COLUMN-INDEX)))}) 
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