
/ESEARCH
COKINEI/llONS

EdV~

A Real.Time Garbage
Collector Based on the
Lifetimes of Objects
HENRY UEBEIMIAN AND CARL HEWITT ~/~ Artificial Intelligence Laboratory

Henry Lieberman is a
Research Scientist at the M1T

Artificial Intelligence
Laboratory, His research
interests include artificial

intelligence, programming
environments, computer

systems for edueation and
beginning users, and computer

graphics. Arpa Network
address: HENRY @ MIT-A/or

HENRY @ MIT-ML.
Carl Hewitt is Professor of

Computer Science at MIT. His
research interests include

message-passing semantics,
open systems, organization

theory, artificial intelligence,
and scientific communities.

Arl~ Network address: CARL
@ Mrr-At

This research is supported in
part by the Office of Naval

Research under our contract
N00014-75-C-0522, in part by

the Advanced Projects
Research Agency under ARPA
contract N00014-80-C-0505 and

in part by a grant from the
System Development

Foundation.
Authors' Present Address:

Henry Lieberman and Carl
Hewitt, MIT Artificial

Intelligence Laboratory, 545
Technology Square, Room 765.

Cambridge, MA 02139.
Permission to copy without fee

all or part of this material is
granted provided that the

copies are not made or
distributed for direct

commercial advantage, the
ACM copyright notice and the
rifle of the publication and its

date appear, and notice is given
that copying is by permission of
the Asst~ation for Computing

Machinery. To copy otherwise,
or to republish, requires a fee

and/or specific permission.
© 1983 ACM 001-0782/83/

0600-0419 $O0.75.

1. INTRODUCTION

One day a student came to Moon and said, "I understand how to make a
better garbage collector. We must keep a reference count of the painters to each
cons." Moon patiently told the student the following story:

"One day a student came to Moon and said, 'I understand how to make
a better garbage collector... ""

Danny Hillis

In Lisp and similar systems with dynamically allocated stor-
age, the lifetimes of objects can vary widely. Some objects are
used to store relatively permanent data and remain in the
system for long periods of time. Others are used by programs
to store temporary results: these objects are created, used for a
short while, then are no longer needed. These short-lived
objects account for a large proportion of storage use.

The traditional garbage collection algorithms [1] have the
defect that storage for objects with short lifetimes is lust as
cosily as storage for objects with long lifetimes. When an
object becomes inaccessible, the t ime needed to recover it is
independent of the lifetime of the object. Our observations of
large Lisp programs indicate that there is much to be gained
in performance by optimizing the special case of recovering
storage for short-lived objects.

In this paper, we propose a new garbage collection algo-
r i thm that takes account of the lifetimes of objects to improve
efficiency. To use an analogy, our scheme can be thought of
as "renting" memory space, where the storage management
cast for an object is proportional to the t ime during which the
object is used. Traditional methods are more like "buying"
memory space, since the cost for an object is paid once and is
always the same, regardless of how much the object is used.
When large numbers of objects are used, although each object
may be used only for a short period of time, the renting
strategy will cost less overall than the buying strategy. Our
garbage collector should also turn out to be more efficient on
long-lived objects, since the garbage collector will spend less
effort continually considering them as candidates for reclama-
tion.

We were led to work on the garbage collection problem
because of the performance needs of applications in artificial
intelligence (AI). The performance of the new generation of
object-oriented, message-passing systems, which we believe to
be the best vehicle for AI applications [15, 17, 20], will rely
increasingly on the efficiency of storage for short-lived objects.

ABSTRACT: In previous heap
storage systems, the cost o f creating
objects and garbage collection is
independent of the li fetime o f the
object, Since objects with short
lifetimes account for a large portion
of storage use, it is worth
optimizing a garbage collector to
reclaim storage for these objects
more quickly. The garbage collector
should spend proporlionately less
effort reclaiming objects with
longer h'fotimes. We present a
garbage collection algorithm that (1)
makes storage for short-lived
objects cheaper than storage for
long-lived objects, (2) that operates
in real t ime--object creation and
access t imes are bounded, (3)
increases locality o f reference, for
better virtual m e m o r y performance,
(4) works wel l with multiple
processors and a large address
space.

June1983 Volume26 Number6 Communicatlons of the ACM 419

iiiiiii~i
ii!ii~il

!iWi!

I tSF, Miglq ¢ O g / l i l ~ r l / o ~

Programs that do a lot of internal "thinking" will need lots of
short-lived objects as "thinking material" before they commit
themselves to decisions. These programs will need to con-
struct hypothetical worlds which may eventually be thrown
away after their purpose has been served.

Some systems use reference counts instead of garbage col-
lection, primarily because a reference count system can re-
claim short-lived objects more quickly. Short-lived objects are
reusable as soon as they become Inaccessible, that is, when
their reference counts reach zero. However, reference count
systems have formidable problems of their own. Reference
counting cannot reclaim circular structures, as our introduc-
tory story points out. Circular structures are becoming an
increasingly important programming technique in sophisti-
cated AI applications. Making sure reference counts are al-
ways updated when necessary and kept consistent is some-
times tricky. Maintaining the reference counts often con-
sumes a considerable percentage of the total processor time. If
a large proportion of the objects which are created are even-
tually lost, garbage collectors which trace the accessible objects
will be preferred to reference counts, which trace the inacces-
sible objects. Some have also proposed more complicated sys-
tems which combine reference counts with garbage collection
[10, 24}.

Our garbage collector incorporates a simple extension to a
garbage collection algorithm devised by Baker [4]. Baker's
garbage collector performs garbage collection in rea/ t ime--
the elementary object creation and access operations take
time which is bounded by a constant, regardless of the size of
the memory. We would also like a garbage collection algo-
rithm that will work well on machines with a very large

Fromspace Tospace

,-,F----I [ZZ:Z]~ ~ ___ New objects
-'- I / created here

Memory is divided into fromspace and tospace

~ Forwarding address
This object moved L F.~ro[~ace ~ e /
totospace "'11 ""L TheoOiect's L][| movedtohere

- - The con ten ts o f the
old objects are copied.

Evacuating an object moves it from fromspace to tospace

I The contents of ---This object
the scavenged is scavenged
object is ~
evacuated - - ~. "" ~ [
Scavenging an object removes pointers to fromspace

L T ~ c e

After a flip, fromspace and tospace are exchanged

Objects are now
evacuated in the
other direction

FIGURE 1. Henry Baker's Rea141me Gad3age ~ .

address space [6]. We believe these properties will be essential
in making garbage collection practical on the next generation
of computers. The suggestions described in this paper are
currently being explored for implementation on the Lisp Ma-
chine [13, 25], a high performance personal computer cur-
rently in use at hilT, and on the Apiary [16], a proposed
multiprocessor machine for object-oriented programming~

2. A REVIEW OF BAKER'S ~ R I T H M
Baker proposes the address space be divided into fromspace
and tospace. Objects are created (by operations like Lisp's
CONS) from successive memory locations in tospace. The
garbage collection process traces accessible objects, incremen-
tally evacuating objects, moving them from fromspace to tos-
pace. When no more accessible objects remain in fromspace,
its memory can be reused. An operation called a flip occurs,
where the tospace becomes the ffomspace and vice versa.

When an object is evacuated from fromspace to to-
space, an invisible pointer (or forwarding pointer) is left in the
fromspace memory cell pointing at its new location in tos-
pace. To make an analogy with mail, an invisible pointer is
like a forwarding address. When a person moves, the post
office sends mail destined for the old address to the new
address instead. In addition, the sender should be informed
that mail should be sent to the new address from then on.

When a fromspace cell containing an invisible pointer is
referenced, the link to tospace is followed and the tospace
object is returned. Furthermore, the original reference is al-
tered to point to the tospace object. On a microcoded ma-
chine, this occurs in microcode and is completely transparent
to the user's program.

The operations that access components of an object (like
CAR and CDR in Lisp) check the address to make sure the
address is in tospace. Any object located in fromspace is evac-
uated to tospace, and the reference updated.

When an object is first evacuated to tospace, one of its
components can point back to fromspace. We would like to
remove all pointers back to fromspace so that fi'omspace's
memory can be recycled. Whenever a pointer from tospace to
fromspace is found, we can remove the pointer by evacuating
the fromspace object, moving it to tospace, and updating the
tospace pointer to the newly evacuated object in tospace. This
process is called scavenging.

Tospace is divided into two areas: the creation area where
newly created objects appear, and the evacuation area, which
contains objects evacuated from fromspace. (In Baker's
scheme, the creation area was allocated from the highest
location in tospace downward and the evacuation area was
allocated from the bottom upward.)

Scavenging is a process that linearly scans the evacuation
area of tospace; if a component of an object points to from-
space, the fromspace object is evacuated to tospace (appended
to the evacuation area). Like the mark phase of traditional
garbage collectors, scavenging touches all accessible objects. It
does so in breadth-first order and does not require a stack.

The scavenger process can be interleaved with object crea-
tion, evacuating a few fromspace objects to tospace every time
an object is created. Since only a small amount of work must
be done whenever an object is created or parts of an object
are accessed, the garbage collection operates in real time. (See
Figure 1.) (A more detailed description of the Baker algorithm
appears in Appendix I.)

3. SMALL REGIONS OF MEMORY CAN REPLACE"
BAKER'S SPACES
We now present a description of our alternative to Baker's
algorithm. (A more detailed, step-by-step description of this

42Q Communications of the ACM June 1983 Volume 26 Number 6

RESEARCH ~ B I m o N s

1960 Generation 1970 Generation 1980 Generation

~ Version 0
Creation
regions

Memory is allocated in small regions
Regions are tagged with generation and version numbers

1960 Generation 1970 Generation 1980 Generation

! 1 v-o
Cmatmn regions

This region is condemned

I I All accessible objects from the [] Version 1
condemned region will be 1 I Evacuation
moved to here regions

Garbage collecting a region is initiated by condemning it
Accessible objects from the condemned region
will be evacuated to a new region

FIGURE Z Our Real-Time Gad~acje Collector.

procedure appears in Appendix II.) We will start with the key
concepts behind the algorithm and then discuss special-case
modifications, optimizations, and alternative implementations.

For the moment, let us pretend that all references to objects
reside in the heap memory. We will consider other sources of
object references later. We will retain some of the essential
aspects of Baker's algorithm. Garbage collecting a space will
involve moving all the accessib]e objects out of the space,
evacuating them to another space, then scavenging to remove
all pointers pointing into the old space so the memory for the
space can be recycled.

Our scheme involves two major improvements to Baker's
algorithm. Baker divides the address space into two halves,
fromspace and tospace (cutting down the effectively usable
address space by a factor of 2). In our scheme, the address
space is allocated in sma/l regions.

A region is a small set of pages of memory (not necessarily
contiguous). We will not commit ourselves to a particular size
for regions, but regions should be small compared to the
address space. Of course, allocating address space in regions
opens up the possibility that we will waste some space be-
cause partially filled regions will occupy memory. However, it
should be possible to choose the region size large enough to
minimize the effects of fragmentation of regions. The machine
should be able to quickly tell, for a given page, to what region
it belongs.

We will use these fine divisions of the address space to vary
the rate of garbage collection for each region, according to the
age of the region. Recently created regions will contain high
percentages of garbage and will be garbage collected fre-
quently. Older regions will contain relatively permanent data
and will be garbage collected very seldom.

New objects are created from storage allocated in creation
regions. At any time, there is a current creation region, in
which operations like CONS can create new objects. When
the current creation region is filled, a new one is allocated.

We introduce a mechanism to keep track of how recent
each region is, so we can distinguish between data likely to be

relatively temporary or more permanent. Regions are orga-
nized into generations. The system keeps track of a current
generation number; when a creation region is born, it is given
the current generation number. The current generation num-
ber is periodically incremented.

The process of garbage collecting a particular region is initi-
ated by condemning the region. We will call objects obsolete if
they reside in a region that has been condemned. Condemn-
ing a region announces our intention to move all the accessi-
ble objects out of the region so that we can recycle the mem-
ory for that region. When we condemn a region, we create
new regions to hold the objects evacuated out of a con-
demned region. Each of these evacuation regions inherits the
same generation number as the condemned region but is
assigned a version number one higher. The version number of
a region counts how many times regions of that generation
have been condemned.

Objects are evacuated in the same way as in the original
Baker algorithm. We allocate space for a new object in the
evacuation region and copy the contents of the old object into
the new space. An invisible pointer is left in the old memory
cell pointing to the new object. If we encounter any reference
to a cell containing an invisible pointer, the reference is up-
dated to point to the new object. (See Figure 2.)

The correspondence between our algorithm and Baker's is
that obsolete areas of memory play the role of fremspace;
everything else in memory is like Baker's tospace. Condemn-
ing a region is like Baker's flip operation on a much smaller
scale.

4. SCAVENGING IS REDUCED BY GROUPING POINTERS
FROM OLDER TO NEWER OBJECTS
In order to release memory for a condemned region we have
to make sure that no pointers from outside the condemned
region point to it. This is done, as in Baker's algorithm, by

1960 Generation

object is /

A forwarding pointer is evacuated (
left in the old object ~ ~ . . _

The contents of the old object
are copied into a new cell

1970 Generation 1980 Generation

Vers 0
I ~ ÷ Creation regions

Regions from 1970 and later must be
scavenged to remove pointers to
the condemned region

Version 1
Evacuation regions

When we encounter a reference to a condemned region
we evacuate the object

1960 Generation 1970 Generation 1980 Generation

This object is evacuate d . . ~ ~ ~ - - ~ Version O
when the scavenger / ~ I / I I Creation regi°ns
discovers a pointer [/ I This object had a pointer to the
to it from outside ~ J conclemnecl region

~ J) It now points
Scavenging results in "~lpf-~F-t4~" to the evacuated object
evacuating the object to here I " ~ J Version 1

Evacuation regions
Scavenging removes pointers to condemned regions
The memory for the condemned region can now be recycled

FIGURE 3. Evacuation and Scavenging.

June1983 Volume26 Number6 Communications of the ACM 421

M S W

scavenging, that is, by linearly scanning all regions that might
contain a pointer to an obsolete object, evacuating any obso-
lete object, and updating the reference.

Let us examine the reasons for performing scavenging. A
primary reason is to be able to reuse the address space. (Note
that reusing rea/memory is not an issue in virtual memory
systems, since paging manages the use of real memory,) If the
address space is small, it may be necessary to reuse addresses
which previously held objects which became inaccessible to
avoid exhausting the address space. Another reason for scav-
enging is to compact the address space. In systems with large
address spaces, the page tables themselves may be subject to
paging, so performance can be improved by compacting the
address space. Additional reasons for scavenging are con-
cerned with the disk. It may be necessary to reuse space on
the disk or compacting the storage on the disk may result in
reduced disk access time. (See Figure 3.)

Scavenging is potentially a lot of work, and since our algo-
rithm is designed to condemn regions at a much faster rate
than Baker's algorithm does flips, the efficiency of scavenging
is more crucial for our system. We will attempt to hold down
the scavenging time by enforcing restrictions on where point-
ers may point, so that we will have a better chance of know-
ing where to look to find all references to a condemned
region. These restrictions will cut down the amount of storage
that has to be scanned to find and update obsolete references.

We intend to exploit some empirically observed properties
of heap storage. Most pointers point backward in time, that is,
objects tend to point to objects that were created earlier. This
is because object creation operations like CONS can only
create backward pointers, since the components of the object

1960 Generation 1970 Generation
Pointers may point
beCk any numbers
of generations
Pointers may not point
directly from older to
younger objects.
This pointer
would not be allowed.

An object in 1960 may not point directly to an object in 1970

1960 Generation 1970 Generation

Pointers forward in time go indirectly through entry tables

All pointers to 1970
from earlier generations
go indirectly through
this entry table

1960 Generation 1970 Generation 1980 Generation

~ ~ - ' ~ 1980 may have
1960cannot I [~x] ~] pointers to1970

have pointers ~ _ ~ Entry table must be scavenged
directly to 1970 ~ I since it may point to 1970

When 1970 is condemned, 1980 must be scavenged, but not 1960

FIGURE4. EnW Tables for Forward Pointers Reduce Scavenging.

must exist before the object itself is created. Pointers which
point forward in time can only arise as a result of a destruc-
tive operation like RPLACA which can assign a newer pointer
as a component of an older object. Since we intend to con-
demn regions in recent generations more frequently than re-
gions in older generations, we will try to engineer a scheme
that reduces scavenging for newer generations at the expense
of making scavenging more costly for older generations.

The idea is to a/low objects to point backward any number
of generations, but to keep track of forward pointers. By re-
stricting pointers from older generations to newer generations,
we can arrange that references to a region will come from
either the same generation or from younger generations.
Thus, when a region is condemned, we need not scavenge
regions in any of the older generations. This will mean it will
be much faster to reclaim regions in recent generations, since
there will be comparatively little storage that needs to be
scavenged.

What happens when an attempt is made to create a pointer
from an older generation to a younger generation? Instead of
pointing directly from the older object to the newer object, we
require that the older object point indirectly through another
cell held in an entry table. We now associate with each region
containing objects another region called its entry table, which
contains the indirect cells for all pointers to objects in that
region from older generations. All pointers directly into an
object-containing region from older generations must lie in
the entry table. Of course, when the user's program refer-
ences a pointer which points to an entry table, the link to the
younger object is automatically followed, so this extra indirec-
tion is transparent to the user's program.

When a region R is condemned, only newer generations
must be scavenged to find and update pointers into the con-
demned region. Instead of scavenging the older generations,
the entry table associated with'R is scavenged instead, since
its purpose is to collect all pointers from older generations.
Since pointers from older to younger generations are only
produced by destructive operations like RPLACA, these oper-
ations must check to see if they might cause an older object
to point to a younger object. We expect these pointers to be
relatively rare compared to object creation operations, so the
size of entry tables should be relatively small compared to the
size of object regions. This is in keeping with our philosophy
of making object creation cheap even if it requires a little
more overhead on object modification. (See Figure 4.)

What about storage reclamation for the entry tables them-
selves? How do we recover storage in the entry table when a
pointer from an older to a younger object becomes inaccessi-
ble? Since we expect there to be a relatively small number of
forward pointers, efficiency of storage management for entry
tables is not as critical an issue as it is for objects. There are
several alternatives, and here we present a suggestion of Lu-
cassen's [21]: ff we record the name of the region of the
originating object with each entry in the entry table, we have
a means of detecting inaccessible pointers in the entry table.
When the system completes garbage collection and scaveng-
ing for a region, it is known that all objects in the region are
inaccessible, and the system records the region in a list. When
looking at entry tables, any cell created for an object in an
inaccessible region is known to be inaccessible. This requires
that region names are unique, which is not hard to assure,
and also that entries are not shared, since every forward
pointer gets its own entry.

The reader should be sure to understand that it is not
necessary to wait for scavenging to he completed for one
condemned region before another region can be condemned.
Condemning a region starts a wove of scavenging, scanning all

422 Communications of the ACM June 1983 Volume 26 Number 6

P

memory more recent than the condemned region. The wave
stops when the scan reaches the most recent region, and
memory for the condemned region is released. Many such
waves can be present in the system at any time, without
interfering with each other. Each wave of scavenging just
needs to keep a pointer saying where it currently is working
and the pointer is advanced each time more scavenging is
performed.

There is some flexibility about the order in which scaveng-
ing is performed. We would probably recommend always
scavenging the oldest objects first. Paging during scavenging
might be reduced by adopting a suggestion of Greenblatt's
[13], or a similar one by Knuth [19], which would always
prefer scavenging a resident page to one which is out on the
disk.

We should point out that the idea of restricting pointers
• which point forward in time to go through entry tables is

independent of the particular method used to accomplish gar-
bage collection for each generation. It would be possible to
substitute a more standard mark and sweep algorithm for the
Baker-style copying garbage collection that we advocate.

5. OLDER OBJECTS ARE GARBAGE COl JFCTED MORE
SLOWLY THAN YOUNGER OBJECTS
The performance of our garbage collector is improved by
varying the rate at which regions in a generation are con-
demned according to the age of the objects. A good heuristic
is to assume that if objects have been around for a long time,
they are relatively permanent and will continue to be accessi-
ble. This makes it reasonable to use the generation number
and version number of a region as a guideline to decide when
to condemn a region.

As the objects in a region get older, the operation of garbage
collecting the region by making the region obsolete and evac-
uating all its accessible pointers will happen less frequently.
This will save time that would have been wasted moving
permanent objects around, at the cost of increasing the time it
takes to reclaim those objects in the region which do become
inaccessible. For regions containing mostly objects with long
lifetimes, this tradeoff will be worthwhile. Young regions will
contain a high percentage of garbage, so it is advantageous to
reclaim inaccessible objects in these regions as soon as tx~i -
ble.

Recovering storage for old inaccessible objects is costly,
since all the more recent memory must be scavenged. Since
garbage collection is so expensive for old objects, we should
do it infrequently, so the cost can be amortized over a long
time period. Recovering storage for new inaccessible objects is
cheap, since very little storage has to be scavenged.

Another consideration for deciding when to condemn re-
glans is that it is necessary to be able to reclaim circular
structures that cross generation boundaries. Some provision
for these cycles must be made, otherwise our entry tables,
which are analogous to reference counts in keeping track of
references to a region, would inherit the same inability to deal
with circular structures. Because of locality of reference, we
expect the number of such cross-generation circular struc-
tures to be small. The easiest solution is to synchronize the
condemnation operations, to assure that condemning a region
implies condemning all regions younger than the condemned
region. This need not be done every time the region is con-
demned, since it incurs additional expense; it needs to be
done only from time to time to assure the circular structures
are eventually reclaimed. Many regions will contain no for-
ward pointers, so it might be worth marking these as such to
avoid extra condemnations solely to recover circular struc-
tures.

An additional optimization that might be worthwhile for
very old objects is to coalesce several adjacent generations.
Since the number of objects in a generation decays with time,
old generations may contain few objects. It would reduce
scavenging time to look for pointers to any generation of a
group rather than to just one generation, since scavenging for
old generations requires going through many generations.
This would reduce the paging time necessary to bring in all
the pages between a very old generation and the present
generation. Coalescing generations also tends to decrease the
number of forward pointers, since combining generatious col-
lapses the two ends of the pointer into a ~ingle generation.
This should also reduce the number of cross-generation circu-
lar structures.

6. WEAK POINTERS ARE TREATED LIKE FORWARD
POINTERS
Normally, having a pointer to an object is an indication that
the object is needed by some active program, and the garbage
collector is only allowed to recover an object if no pointers
exist to it. A few Lisp systems allow another kind of pointer,
called a weak pointer, which does not protect the object
pointed to from garbage collection. Why are weak pointers
useful? Sometimes it is desirable to keep track of all currently
available objects of a certain type in a list, so the user can ask,
"What are all the objects I currently, have?" But even if the
user's program forgets about a certain object, the global list of
all objects still points to the object, preventing it from being
garbage collected. Or, representing part/whole relationships
may require parts to have bockpointers to a containing object,
which should not necessarily protect that object fi'om garbage
collection.

Weak pointers are not followed by tracing in garbage collec-
tion schemes. In our scheme, objects connected by weak
pointers would not be subject to evacuation. Implementing
weak pointers poses a problem since we do not want to leave
dangling references. When the object pointed to by a weak
pointer is recycled, the weak pointer should be set to null.
Thus weak pointers have to be controlled, and we can use
the same mechanism to restrict weak pointers as we do for
forward pointers. Weak pointers are constrained to point indi-
rectly through entry tables in the same manner as forward
pointers. When a region is condemned, it becomes easier to
find all the weak pointers into the condemned region. When
an object is recycled, the pointer in the entry table is modi-
fied. We assume the number of weak pointers is relatively
small compared to ordinary, strong pointers.

7. VALUE CELLS AND STACKS MAY NEED SPECIAL
CONSIDERATION
In presenting our garbage collection algorithms, we acted as if
all pointers to objects were resident in the object memory
itself. However, most present day Lisp implementations also
involve internal stacks, which store control state information
and variables. In shallow binding implementations of Lisp
such as MacLisp and Lisp Machine Lisp, each atomic symbol
representing a variable has a value cell associated with it to
hold its current value. We must consider object references
that reside in these places as well as those stored in object
memory. (Alternatively, deep binding or lexical binding im-
plementations of Lisp store values in data objects called envi-
ronments and are not subject to this problem.)

The stack and value cells must be scavenged for pointers to
obsolete objects before the memory for a condemned region
may be recovered. No modification to our algorithm is essen-
tial, if we agree that value cells and stacks are to be treated as
objects, even though they are not user-accessible objects in

June 1983 Volume 26 Number 6 Communications of the ACM 423

iiiiiiii~,i iiiiii!!!;
RESEMCN C O t t ~ B I / l l ~ $

Push "~

Pop ,~

Stack

When the region is condemned, the top of the stack is here

Region containing objects

No new pointers to a region can be created after it is condemned

Push ,~X

Pop ,~

Stack

Popping may remove objects from the stack
Old top of stack was here

New top
of stack ~

Region containing objects

Scavenging may stop when it reaches the new top of the stack

Push

Pop ,J/

~ Pushing may add objects to the stack

Old top of stack was here

New objects pushed on the stack
cannot reference the
condemned region

Stack Region containing objects

Scavenging stops where the stack top was when region condemned

FIGURE 5. Scavenging the Stack.

many implementations. Conceptually, we will consider the
stack to be part of the "oldest" generation, since it is always
present in the system. Value cells should be part of the oldest
generation too, regardless of when they are actually created,
since they are usually "permanent." When a reference to an
object is created from the stack or from a value cell to an
object, this will create a forward pointer, which must go
through the entry table of the object. Thus, when the entry
table is scavenged, all stack slots and value cells pointing to
objects in its region will be scavenged.

Since in many Lisp systems, the performance of PUSH and
POP operations on the stack is critical, it may be necessary to
optimize these operations. Since objects stored on the stack
are likely to be very temporary and modifications occur at a
high rate, we might like some way of avoiding creating entry
table pointers for each stack reference. A solution is to always
consider the stack as part of the youngest generation instead
of the oldest, so that no entry table pointers are kept for it.
The stack must then be scavenged for each condemned re-
gion.

Two tricks make it possible to save some work in scaveng-
ing the stack. First, ff more than one region is condemned at a
time, it might pay to scavenge the stack for several con-
demned regions simultaneously rather than each individually.
Second, keeping track of the top of the stack as it is pushed
and popped may result in having to scavenge fewer objects.
We observe that after a region is condemned, no new refer-
ences may be created directly to objects in the condemned
region, since our algorithm provides for evacuation of the
object in that case. Popping the stack can'remove references

to a condemned region, but pushing objects on the stack can
never result in new references to a condemned region. The
number of references to a condemned region can only de-
crease due to pushing and popping after the region is con-
demned. Therefore, scavenging can always stop at the point
where the scavenger meets either the current top of the stack,
or the top of the stack at the time the region was condemned,
whichever is lower. (See Figure 5.)

A suggestion which might help performance is to notice
that the lifetime of short-lived objects is approximately
(though not exactly!) correlated with pushing and popping the
stack. This suggests that a good time to expect a lot of garbage
is when returning from functions. This might lead to a policy
of condemning regions after a certain number of stack peps.

Using linear stacks for temporary storage is a popular tech-
nique mainly because it has the property that we seek for our
garbage collector: temporary storage is reclaimed quickly after
becoming inaccessible. When Lisp calls a function, the argu-
ments are pushed on a stack and automatically popped off
when the function returns. The storage used for the argu-
ments on the stack is immediately reusable as soon as the
function returns. However, sticking to a strict stack discipline
has its well-known problems, leading to the traditional funarg
problem of Lisp [23]. Object-oriented languages do not follow
a stack discipline, and we would like temporary storage in
these languages to be efficient.

There is currently a sharp discrepancy between cheap
stack storage and expensive heap storage. It should be the
case that holding on to an object only slightly longer is only
slightly more expensive. We would like to reduce reliance on
stacks, yet retain reasonable efficiency. Our hope is that we
can reduce the cost of garbage collection in the case of tempo-
rary storage so that it is competitive with using a stack for
temporary storage.

8. HOW GOOD IS THE PERFORMANCE OF OUR
GARBAGE COI.I.ECTOR?
Judging garbage collection algorithms is tricky. These algo-
rithms are heavily dependent on the empirical properties of
data used by programs, and their performance depends upon
whether certain kinds of operations are cheap or expensive in
the underlying machine. We believe our algorithm has the
potential for good performance, considering tradeoffs appropri-
ate for the machines that will be prevalent in the next couple
of years and the needs of large-scale AI software.

The primary reason we expect good performance from our
garbage collector is that it takes into consideration the life-
times of objects. Our garbage collector should be more effi-
cient than traditional alternatives for objects with short life-
times, since it recovers the storage for these objects quickly
after the object becomes inaccessible. Our garbage collector
should be more efficient for objects with long lifetimes since
the garbage collector wastes less time repeatedly examining
objects that remain accessible for long periods.

One way to think about the efficiency of garbage collectors
is to ask the question, "How much work does the garbage
collector have to do per memory cell reclaimed?" Since the
purpose of garbage collection is to recycle memory, more
efficient garbage collectors should do as little work as possible
to collect the garbage. We assert that considering the lifetime
of objects results in reducing the amount of work necessary
per inaccessible object recovered.

All the work our garbage collector does occurs in either the
evacuation or scavenging phases. How does the amount of
work for each phase compare with conventional alternatives?
Since regions in younger generations are condemned more
frequently than regions in older generations, most of the scav-

424 Communications of the ACM June 1983 Volume 26 Number 6

enging time is spent in younger generations. We make the
plausible assumption that the proportion of garbage is higher
in younger generations than older generations. Thus most of
the scavenging time is spent where there is the highest pro-
portion of inaccessible objects, which tends to minimize the
amount of scavenging that needs to be performed per inacces-
sible object.

Our algorithm tends to require fewer evacuations per ob-
ject for older objects at the expense of more evacuations per
object for younger objects, as compared with the standard
Baker algorithm. Our algorithm is at least no worse in this
respect than Baker's since the rate of condemnation can al-
ways be adjusted so that the average number of evacuations
per object is comparable.

Baker [5] considers another criterion for the efficiency of
garbage collection: the density of accessible objects. A garbage
collector is good if it maintains a high proportion of accessible
objects to inaccessible objects in the address space, especially
in primary memory for virtual memory systems. A problem
with our algorithm is that it introduces fragmentation, since
partially filled regions will waste some space, lowering the
average density of accessible objects. However, just like the
ffagmentatior~ problem in paging systems, the region size
should be chosen so that fragmentation is not a significant
source of inefficiency.

To maintain a high density of accessible objects, it is neces-
sary to remove inaccessible objects as soon as possible. If we
grant the hypothesis that most of the garbage occurs in
younger generations, then most of the garbage will be re-
moved quickly, since the rate of garbage collection is faster for
younger generations.

9. WHAT ASPECTS OF PROGRAM BEHAVIOR AFFECT
EFFICIENCY OF GARBAGE COIJ.ECTION?
A next step in trying to determine whether our garbage col-
lection scheme would be feasible involves observing the be-
havior of currently existing large-scale Lisp programs. The
few simple kinds of measurements we describe below would
help greatly in predicting the performance of our proposals.
To our knowledge, no currently existing Lisp system is instru-
mented in such a way that the kinds of measurements we
suggest are easily obtainable. We would strongly encourage
readers to try to collect such data for their systems.

Rate of Object Creation. How fast are objects created?
Average Lifetime of Objects. How fast do objects become

inaccessible? If there is a high proportion of short-lived ob-
jects, our proposals become advantageous.

Proportion of Forward versus Backward Pointers. How often
do pointers point to objects that are younger than themselves
versus pointing to older objects? Forward pointers can only be
created by object modification operations or by creation of
circular structures, not by creation of noncircular objects. De-
layed evaluation (also called suspended or lazy evaluation)
also results in creating forward pointers, but these can be
implemented using invisible pointers, which are eventually
removed in the course of garbage collection. The proportion of
forward pointers will depend to some extent on the program-
ming style adopted. A high percentage of pointers pointing to
older objects bodes well for our scheme.

The Average "Length" of Pointers. How much locality is
there in the program? Do pointers often point to nearby ob-
jects or to objects far away? Our proposal would fare well
with programs which naturally have a high degree of locality
of reference.

We believe it is plausible to expect that empirical observa-
t/ons would bear out our assumptions about program behav-

RESEARCH CONTRIBUTIONS

ior and justify the design choices in our garbage collector.
Certainly the trends are in the direction of programs with
increased locality and toward programs that rely on object
creation rather than modification.

Our future research plans include constructing a simulator
that will allow us to test the behavior of real programs and to
pick sensible values for parameters such as region size for a
wide variety of conditions. Precise determination of how well
our garbage collector will perform on real programs and com-
parison with more conventional alternatives must await ac-
tual implementation and measurement.

10. USERS CAN PREDICT THE LIFETIMES OF OBJECTS
TO HELP THE GARBAGE COLLECTOR
Often a sophisticated user is in a position to know whether a
particular object is likely to be relatively temporary or more
permanent. The system should be able to take advantage of
such knowledge to improve the performance of the program.
It might be advantageous to supply the user with several
different flavors of object creation operations, so that the sys-
tem can choose the best allocation strategy appropriate for
that kind of object. An operation could be supplied which
creates objects directly in some older generation, rather than
in the currentgeneration. Of course, this decision will have
no effect upon the semantics of the program; it will only affect
the efficiency of garbage collection.

Adjusting the region size can control the efficiency of using
short term versus long term memory. Short-lived objects
should be allocated in small regions, so the storage for the
object will be recovered very soon after it is abandoned. On
the other hand, long-lived objects should be allocated from
larger regions. This saves the system the trouble of having to
frequently evacuate the object from generation to generation
at the cost of having to wait longer before the storage can be
recovered. Larger regions also reduce the expense of interre-
gion pointers.

Since we expect that most storage is used for short-lived
objects, we recommend that objects be created in short term
memory by default. System primitives, like Lisp's PUTPROP,
that expect to create relatively permanent objects can use
longer term versions of CONS.

Being able to take advantage of a priori knowledge of the
lifetimes of objects may become important for some kinds of
systems. Trends are developing toward systems which create
many structures which are known to be permanent at the
time they are created. Several recently developed languages
for artificial intelligence research produce some types of data
which never become inaccessible.

Current implementations of new pattern-directed invoca-
tion languages like AMORD [9] or ETHER [18] do not have
any operations that completely remove or let go of assertions
in the database. Once an assertion is made, it remains forever,
though belief in the assertion may be renounced by further
processing. Description languages such as KRL [7] or OMEGA
[2] currently have this characteristic as well. (However, future
versions of ETHER and OMEGA are developing a notion of
viewpoints, which may allow some knowledge to become
inaccessible and be reclaimed.) These languages have not yet
been applied to sufficiently large problems so that reclamation
becomes an important issue in present day implementations.

Databases for business applications also may have the prop-
erty that records are virtually permanent once created. Im-
provements in computer technology will make keeping data
for long periods feasible, through storage hierarchies that
make older data progressively harder to access, but never
impossible. Very large address spaces may obviate the need
for reuse of the address space. We may reasonably expect

t

June1983 Volume26 Number6 Communications of the ACM 425

RESF.~CH ~WI~T IONS

computers in the next generation that may be able to run for
weeks to years without needing to reuse address space [26].
Write-once media such as video disks may be used for sec-
ondary storage, so that reusing or compacting secondary stor-
age space becomes less of an issue.

Under circumstances such as these, knowing that data is
permanent helps the garbage collector avoid performing too
much work scavenging, for example, trying to find inaccessi-
ble objects where there are none. The need for garbage collec-
tion is not totally eliminated in these systems, however, as
processing of individual database entries, indexing and re-
trieval may require creating short-lived objects.

11. OUR GARBAGE COIJ.ECTOR IS SUITABLE FOR
PARAI.I.EL PROCESSOR MACHINES
Since processors are continually getting cheaper, mnltiproces-
sor machines will soon appear. The incentive for using multi-
ple processor machines is especially important for AI applica-
tious. Our garbage collection scheme has been designed to be
suitable for implementation on multiple processor machines.

On a multiprocessor system in which several processors
share common memory, an attractive way to exploit parallel-
ism is to allocate processors to be scavengers, performing the
scavenging task concurrently with worker processors, which
run user programs. Care must be taken to avoid timing errors
and contention for shared resources. The major potential
trouble spot with our scheme occurs when objects are being
evacuated. Objects can be evacuated either by a worker who
references an obsolete object or by a scavenger. The danger
here is that one processor may attempt to evacuate an obso-
lete object, creating a new object, and before the invisible
pointer to the new object is installed, another processor may
try to evacuate the same object. Evacuation operations on the
memory must have sufficient synchronization to prevent this.

We prefer a multiprocessor architecture such as the Apiary
[16] in which each worker processor has its own memory, not
shared by other processors. We will briefly describe how our
algorithm can be extended to operate on such a machine.

Each worker maintains its own storage, allocates its own
regions, condemns them periodically, evacuating and scaveng-
ing exactly as described for the single processor case, A con-
sideration arises when a worker must reference an object
which lives on another worker. Such an object may reside in
a condemned region and need evacuation. Another considera-
tion is that when a region is condemned, pointers to that
region from other machines must be scavenged.

On the Apiary, each worker maintains two tables to man-
age pointers that reference objects residing on other workers.
The first table is an exit table for references to other machines.
When an object on another machine is referenced, a message
is sent out over the network to fetch the object, so the user's
program objects on other machines do not have to be treated
differently than objects on one's own machine. We arrange
that a worker receiving a request for an object first checks to
see whether the object is obsolete, and if so, evacuates it,
returning the evacuated object. This assures that workers will
never reference condemned regions on other machines.

Each worker also has an interest table, which keeps track of
references to objects on that worker from other machines.
When a region on a worker is condemned, the interest table
must be scavenged since it may reference the condemned
region. Here our solution to the problem of forward pointers
comes in handy. We can require all pointers from other ma-
chines to go indirectly through the entry table in the same
manner as we required for forward pointers. This reduces the
amount of work during scavenging, and the extra overhead

on intermachine pointers (which we assume to be relatively
rare compared to intramachine pointers) should not be signifi-
cant.

12. CHEAPER SHORT TERM MEMORY MAY IMPROVE
PROGRAMMING STYLE
It is our hope that making the use of short-lived objects
cheaper will lead to improvements in program clarity. Often,
complications in program structure are motivated by the need
to avoid creating short-lived objects for intermediate results.

Here is an example of how the cost of short-lived objects
can affect design decisions in programming, Consider the
problem of writing a matrix multiplication routine in Lisp to
operate on matrices represented as lists of rows, each row
represented as a list of numbers.

(13 I)×(57 6)--(149 252)

This example would be represented as

(MATRIX-MULTIPLY'((1 2)(3 4})'((5 6)(7 8)))
evaluates to ((19 22} (43 50)}

Let us imagine that as part of our mathematics library we
already have a function which takes the dot product of vec-
tors and a function which produces the transpose of a matrix:

(DOT-PRODUCT '(1 2) '(5 7}) evaluates to 19
(TRANSPOSE '{(5 6) (7 8))) evaluates to ((5 7) (6 8)))

The usual procedure for multiplying a matrix is to compute
the elements of the product by multiplying elements of the
rows of the first matrix by elements of the columns of the
second matrix. Using the transpose procedure, we can turn
the columns of the second matrix into rows, so that they "line
up" with the rows of the first matrix, then use the dot prod-
uct function to multiply corresponding rows. This solution is
elegantly expressed as follows:

Define MATRIX-MULTIPLY of a LEFT-MATRIX and a RIGHT-
MATRIX:

Let COLUMNS be the TRANSPOSE of RIGHT-MATRIX.
Create a list whose elements are:

For each ROW in the LEFr-MATRIX,
Create a list whose elements am:

For each COLUMN in the COLUMNS matrix,
the DOT-PRODUCT of the ROW and the COLUMN.

(The actual Lisp code corresponding to the descriptions of
algorithms in this section appears in Appendix HI.) This solu-
tion has a potential efficiency problem: the TRANSPOSE
function creates a new list that is thrown away after the
matrices are multiplied.

In a conventional Lisp system, using lists like this is expen-
sive, since the lists are created and only used for a short time
before being subject to garbage collection. This leads program-
mers to try to optimize out the creation of intermediate list
structure. Instead of doing a "two-pass" procedure over the
matrix, one to transpose, another to multiply, we can use
instead a more complicated "one-pass" procedure. Instead of
creating a new list whose elements are in a convenient order,
the one-pass procedure extracts the appropriate elements
from the columns of the matrix when needed. Especially if
multiplications of small matrices are frequent, the following
version might be considerably faster in a conventional Lisp
system:

Define MATRIX-MULTIPLY-WITHOUT-TRANSPOSING
of LEI~I'-MATRIX and RIGHT-MATRIX:

Create a list whose elements am:
For each ROW in the LEFt-MATRIX,

~26 Communications of the ACM June 1983 Volume 26 Number 6

RESEARCH COKINBVriONS

Create a list whose elements are:
For COLUMN-INDEX from 0 to the number of columns of
RIGHT-MATRIX:

The IX)T-PRODUCT-COLUMN of
the ROW,
the RIGHT-MATRIX, and
the COLUMN-INDEX.

This now forces us to write a new DOT-PRODUCT routine
which can extract the elements of the second vector from the
columns of the matrix. This duplicates some of the knowledge
we already had in the DOT-PRODUCT function.
Define DOT-PRODUCT-COLUMN of a ROW, a MATRIX, and a
COLUMN-INDEX;

If the ROW is empty, return 0.
Otherwise, return the sum of:

the product of
The FIRST element of the row,
and the element indexed by COLUMN-INDEX of the FIRST
element of the MATRIX.

and the DOT-PRODUCT-COLUMN of
the RLST of the ROW,
the REST of the MATRIX,
and the COLUMN-INDEX.

Instead of being able to modularly build a solution using the
TRANSPOSE and DOT-PRODUCT functions we already had,
we were forced to write new lower level routines. The need
to avoid using short-lived objects encourages more complex
and obscure programming techniques.

This example is an illustration of a general situation where
an N-pass procedure will use data objects to store the output
of intermediate passes. There is a temptation to substitute a
one-pass procedure to avoid using storage for intermediate
results, but this procedure has to be more complicated and
specialized, because the code inside the loop must do a little
piece of all of the passes.

Another approach for reducing inefficiency due to creating
objects to store intermediate results is program transformation
[8, 14]. The hope is that a smart compiler could replace a
program which uses temporary storage with another equiva-
lent version that did not, much as in our two versions of
matrix multiplication. We consider research in program trans-
formation techniques extremely valuable, but program trans-
formation is no substitute for an efficient garbage collector.

Besides introducing difficulty in debugging (the system
must be able to relate bugs in the transformed version of the
program to bugs in the original), programs may use short-lived
objects in a dynamic way which might thwart static compila-
tion. The lifetime of objects is often short, but unpredictable,
and we would like our system to deal with this kind of object
efficiently. The simplest class of short-lived objects are those
created by a procedure for its own use and abandoned when
the procedure returns. This is the kind of procedure that is
most amenable to optimization by program transformation
systems. There is another kind of procedure, represented by
the matrix multiplication example, where a procedure creates
an object that is returned and then used temporarily by some
caller of the procedure. These are much more difficult to
compile out, especially in compilers that allow separate com-
pilation of procedures.

The optimization may also depend on the outcome of run-
time events, making it impossible for any static optimizer to
perform the optimization. A third class involves using a short-
lived object as part of some data structure and later modifying
it, making the object inaccessible within a short time. Some
uses of these objects are not correlated with the procedure
calling stack at all, and program transformation systems will
have little success with these.

For example, a user may keep a directory, which contains
objects like files which the user may choose to delete at any
time. The exact moment at which a file is deleted is com-
pletely unpredictable by a program transformation system,
and therefore a garbage collector is necessary.

Our aim is to make the use of short-lived objects more
efficient, so that the creation of short-lived objects is not
much worse than allocating temporary results on a stack. If
programmers are not severely penalized in terms of efficiency
for choosing cleaner programming styles, we hope that they
will continue to improve their programming styles,

APPENDIX I. THE BAKER REAL-TIME GARBAGE
COl J.ECTION ALGORITHM
We present a summary of Henry Baker's original algorithm.

The CREATE operation creates objects, like Hsp'$ CONS. ACCESS
retrieves a component of an object, like Lisp's CAR and CDR, or
accesses a subscripted element of an array. MODIFY performs assign-
ments to components of objects, like Lisp's RPLACA and RPLACD, or
storing into a subscripted element of an array.

The address space is divided into two semispaces, fromspace and
tospace. Object creation happens in tospace and the semispaces are
exchanged in a flip when tospace fills.

Define CREATE an object, given an INrFIAL-CONTENTS:
If the INrHAL-CONTENTS is in FROMSPACE,

EVACUATE the INH'IA~CONTENTS to TOSPACE.
Allocate memory space at the location CREATE-OBJECTS-FROM-
HERE.
Fill the memory with its INITIAL-CONTENTS.
Advance the CREATE-OBJECTS-FROM-HERE pointer past the new
object.
Call the SCAVENGER to perform a bit of the work to reclaim
memory.
Return the pointer to the new object.

Define ACCESS an ELEMENT of an OBJECT:
If the CONTENTS of the cell containing the ELEMENT is in
TOSPACE, return it.
If it's in FROMSPACE,

Check to see if the cell contains an INVISIBLE-POINTER
[which means it has already been evacuated.]
If so, change the ELEMENT to

where the INVISIBLE-POINTER paints
and return that forwarded object.

If it's in FROMSPACE and there's no INVISIBLE-POINTER,
EVACUATE it from FROMSPACE to TOSPACE.
Update the ~ N T of the OBJECT to point to the new
object in TOSPACE,
and return the new object in TOSPACE.

When an object in fromspace is accessed, it is
EVACUATEd, moving it to tospace. An INVISIBLE POINTER
is left behind so references to it will still work.

Define EVACUATE an OLD-OBJECT:
If the OLD-OBJECT is in FROMSPACE,

Copy the OLD-OBJECT into the EVACUATION area of
TOSPACE,

creating a NEW-OBJECT.
Leave an INVISIBLE-POINTER in the old cell to the NEW-OB-
JEEr.
Return the NEW-OBJECT.

If the OLD-OBJECT is in TOSPACE, just return it.

The SCAVENGER makes sure all objects in tospace also
have their components in tospace. There is a variable
SCAVENGER-SLICE that controls how much work in re-
claiming storage is performed every time an object is created.
There is a pointer SCAVENGE-HERE that points to the next
object to be scavenged.

June1983 Volume26 Number6 Communications of the ACM 427

i!il

RESEARCH CONTRmmONS

Define the SCAVENGER:
Repeat the following until either

No more UNSCAVENGED objects remain in the
EVACUATION area of TOSPACE, or the loop has been re-
peated SCAVENGER-SLICE times:

SCAVENGE the object at the location SCAVENGE-HERE by
EVACUATING each element which lies in FROMSPACE,
moving that element to TOSPACE,
and changing the element to point to the TOSPACE object.

Advance the SCAVENGE-HERE pointer.
When no more UNSCAVENGED objects are left,

do a FLIP, exchanging FROMSPACE and TOSPACE.

Define the procedure to MODIFY an ELEMENT of an OBJECT to have
a NEW-CONTENTS:

If the N E W - C O ~ is in FROMSPACE,
EVACUATE the NEW-CONTENTS, yielding an object in
TOSPACE.
Store the TOSPACE object NEW-CONTENTS into the cell

containing the EI.EMENT of the OBJECT.

APPENDIX II. OUR REAL-TIME GARBAGE COI.I.ECTOR
Creation and access are shnflar to Baker's, except that instead of
fromspace and tospace, memory is allocated in regions: creation re-
gions to create objects, evacuation regions to move objects from older
to newer regions. Instead of Baker's flips, regions are condemned,
which causes the accessible objects to begin to move out of the region.
Condemning a region starts scavenging to remove pointers to the
region. When scavenging is complete, the memory for the region can
be recycled.

The description that appears here has been somewhat simplified for
expository purpas~. We have omitted oxle for handling the stack,
value cells, storage management for entry tables, and multiprocessing,
These considerations have been discussed in the body of the paper,
and modifications to the algorithms below to incorporate them are
straightfi~rward.

Define CREATE an object, given an INrHAL-CONTENTS:
If INITIAIA2ONTENTS is OBSOLETE [its region was
c o N D ~] ,

EVACUATE the INrI1AIACONTENTS.
If there's no more room in the current CREATION r e , on.

Make a new CREATION region from which to create objects.
inherilLq 8 GENERATION and VERSION numbers from the
previous one.

Call the SCAVENGER coroutine to incrementally try to reclaim
memory.
If the POPULATION of the current generation is high enough,

Start a new GENFA~TION by
Incrementing the CURRENT-GENERATION-NUMBER.

Allocate memory space at the location CREATE-OBJECTS-FROM-
HERE.
Fill the memory for the object with its 1NrrlAL-CONTENTS.
Advance the CRFA~TE-OBJECI~FROM-HERE pointer past the new
object.
Retum the pointer to the new object.

Define the SCAVENGER:
Each ~-ne an object is created,

do SCAVENGER~_,ICE steps of the following procedure:
Look for a region which is scheduled to be CONDEMNED.

A region is CONDEMNED when it is considered likely to contain
garbage:
Young regions are CONDEMNED frequently, older ones more
seldom.

SCAVENGE for all pointers into the CONDEMNED region.
Abandon the memory for the CONDEMNED region

when the scavenger has removed all pointers to it.

Define CONDEMN a REGION:
Mark the REGION as being CONDEMNED.
Allocate a new EVACUATION-REGION whose

GENERATION number is taken from the CONDEMNED region,
and

whose VERSION number is one higher than the CONDEMNED
region.

Define ACCESS an ELEMENT of an OBJECT:
If the CONTENTS of the cell containing the E I .EME~ isn't
O B S O ~ ,

then return it.
If the CONTENTS is O B S O ~ [resides in a CONDEMNED re-
gion],

Check to see if the cell contains an INVISIBLE-POINTER
[which means it has already been evacuated.]
If so, change the EI.EMENT to

where the INVISIBLE-POINTER points
and return that forwarded object.

If it's OBSOLETE, and there's no INVISIBLE-POINTER,
EVACUATE it.

Update the E I .EME~ of the OBJECT to point to the
EVACUATED object,
and return that new object.

Define EVACUATE an OLD-OBJECT:
If the OLD-OBJECT is OBSOLETE [in a CONDEMNED region]
Copy the object to an EVACUATION region

of the same GENERATION as the region containing the OLD-
OBJECT
and whose VERSION number is one higher,

creating a NEW-OBJECT.
Store the contents of OLD-OBJECT into the NEW-OBJECT.
Leave an INVISIBLE-POINTER in the old cell to the NEW-OBJECT,
and return the NEW-OBJECT.

The scavenger removes pointers to obsolete objects by
evacua t ing such objects. As soon as the scavenger is f in ished
removing all such pointers, t he m e m o r y for the region can be
reclaimed.

Define SCAVENGE for pointers to a CONDEMNED-REGION:
Repeat the following for each region
in the GENERATION of the CONDEMNED-REGION,
and the ENTRY TABLE for the CONDEMNED-REGION,
and all GENERATIONS more recent than the GENERATION of the
CONDEMNED-REGION:

For each OBJECT in each REGION:
SCAVENGE the OBJECT,

looking for pointers to the CONDEMNED-REGION.

Define SCAVENGE an OBJECT, which may point to a CONDEMNED-
REGION:

Check to see if any element of the OBJECT points to the
CONDEMNED-REGION.

If it does, EVACUATE the element of the OBJECT and modify
the element of the OBJECT to point to the evacuated object.

Define the procedure to MODIFY an ELEMENT of an OBJECT
to have a NEW-CONTENTS:
If the NEW-CONTENTS is OBSOLE'IE,
EVACUATE the NEW-CONTENTS.

Is the GENERATION of the NEW-CONTENTS
younger than the GENERATION of the OBJECT?.

No, store the object NEW-CONTENTS into the cell containing
the ELEMENT of the OBJECT.

If it is, create a new ENTRY for the OBJECT in the ENTRY
TABLE of the NEW-CONTENTS.

Modify the cell containing the E l . E ~ N T of the OBJECT to
point to the ENTRY.

Modify the ENTRY to point to the NEW-CONTENTS.
Otherwise, store the NEW-CONTENTS in the cell containing

the EI.I~VIENT of the OBJECT directly.
If the OLD-CONTENTS of the cell pointed to a younger object,
Remove its entry in the ENTRY TABLE.

APPENDIX m. LISP CODE FOR THE MATRIX
MULTIPLICATION EXAMPLE

First, the solution which transposes the right matrix.

426 Communications of the ACM June 1983 Volume 26 Number 6

RF.$~¢H ~'lrlmflglr/o@$

(DEFUN DOT-PRODUCT (LEFT-VECTOR RIGHT-VECTOR)
(COND ((OR (NULL LEFT-VECTOR) (NULL RIGHT-VECTOR)) 0)

((+ (* (CAR LEFT-VECTOR) (CAR RIGHT-VECTOR))
(DOT-PRODUCT
((]DR LEFT-VECTOR)
(CDR RIGHT-VECTOR])]])}

(DEFUN TRANSPOSE (MATRL~
(COND ((NULL (CAR MATRIX)) NIL)

(iCONS (MAPCAR 'CAR MATRIX}
O'RANSPOSE (MAPCAR 'CDR
MATmx))))))

{DEFUN MATRIX-MULTIPLY (LEFT-MATRIX RIGHT-MATRIX)
(LET ({COLUMNS ('HL~SPOSE RIGHT-MATRIX)}}

~,~"CAR
'(LAMBDA (ROW)

(MAPCAR
'(LAMBDA (COLUMN}

(DOT-PRODUCT ROW
COLUMN}}

COLUMNS))
I~FT-MATRLX)))

The following solution, which avoids transposing the ma-
trix, replaces MATRIX-MULTIPLY-WITHOUT-TRANSPOS-
ING for MATRIX-MULTIPLY and DOT-PRODUCT-COLUMN
for DOT-PRODUCT:

{DEFUN MATRIX-MULTIPLY-WITHOUT-TRANSPOSING
{LEFT-MATRIX RIGHT-MATRLX)

0~taPCAR
'flXMVIBDA (ROW

(LET {(COLUMN-INDEX 0)
(MAPCAR
'{LAMBDA (COLUMN

0aROG1 (DOT-PRODUCT-COLUMN
ROW
RIGHT-MATRIX
COLUMN-INDEX)
(SETQ COLUMN-INDEX
{+ COLUMN-INDEX 1.))))

(cAR RIGHT-MATmX)))}
LEFT-MATRLX))

(DEFUN DOT-PRODUCT-COLUMN
(ROW MATRIX COLUMN-INDEX)

(COND ((NULL ROW) 0}
((+ (* (CAR ROW}

(NTH COLUMN-INDEX (CAR MATRIX)))
03OT-PRODUCT-COLUMN

(CDR ROW}
(CDR MATRLX)
COLUMN-INDEX)))})

A d m o w l e d g m e n t , We would like to t h a n k David Moon, w h o
is imp lemen t ing garbage collection for the Lisp Machine , for
discussions concern ing the ideas presented here a n d for find-
ing bugs in our earlier proposals.

Tom Knight and Gerry Sussman were a m o n g the first to
become concerned about the feasibility of the Baker a lgor i thm
because of locality problems a n d the lengthy interval b e t w e e n
flips. The i r conce rn he lped mot iva te our work. We would like
to t h a n k Richard Sta l lman for help w i th the va lue cell prob-
l em and for suggesting several plausible al ternat ives to specific
aspects of our proposals. C o m m e n t s on a n earlier draft f rom
Donald Knuth and from an a n o n y m o u s rev iewer substant ia l ly
improved our a lgor i thm a n d its presenta t ion in this paper. We
also t h a n k Danny Hilli.~ for his koan about garbage collection
at the beg inning of this paper.

We would like to t h a n k Hal Abelson, Russell Atkinson,
Giuseppe Attardi, Henry Baker, A lan Bawden, Peter Deutsch,

Richard Greenblat t , Danny Hillis, Jack Holloway, Dan In~ll.~,
Ted Kaehler, Kenne th Kahn, Tom Knight, Wil l iam Kornfeld,
Marc LeBrun, John Lucassen, Dexter Pratt, Dave Robson, JonL
Whi te and David Wise for the i r helpful c o m m e n t s on this
paper, and Priscilla Cobb for proofreading help.

REFERENCES
1. Allen, J. Anatomy of Lisp. McGraw-Hill, New York, 1979.
2. Attardi, G., and Hewitt, C. Knowledge embedding in the description system

OMEGA. Presented at the American Association for Artificial Intelligence
Conf., Stanford Univ., Stanford, Calif., 1980.

3. Baker, H. Actor systems for real time computation. Tech. Rept. TR-197,
MIT Lab. for Computer Science, Cambridge, Mass., 1978.

4. Baker, H.G. List processing in real time on a serial computer. Commun.
ACM 21, 4 (April 1978) 280-294.

5. Baker, H. The paging behavior of the Cheney list copying algorithm. Tech.
Note 1, Symbolics, Inc., Cambridge, Mass., 1980.

6. Bishop, P. Computer systems with a very large address space and garbage
collection. Tech. Rept. TR-178, MIT Lab. for Computer Science, Cambridge,
Mass., May 1977.

7. Bobrow, D., and Winograd, T. An overview of KRL: A language for knowl-
edge representation. Cognitive Science 1, (1977).

8. Burstall, R.M., and Darlington, J.L. A transformation system for developing
recursive programs. I. ACM 24, 1 (Jan. 1977), 24-77.

9. deKleer, J., Doyle, J., Rich, C., Steele, G., and Sussman, G. AMORD--A
deductive procedure system. Memo 435, MIT Artificial Intelligence Lab.,
Cambridge, Mass., Jan. 1978.

I0. Dautsch, LP., and Bobrow, D.G. An efficient, incremental, automatic gar-
bage collector. Commun. ACM 19, 9 (Sept. 1976), 522-526.

11. Dijkstra, E., Lamport, Let el. On-the-fly garbage collection: An exercise in
cooperation. Commun. ACM 21, 11 (Nov. 1978}, 966-975.

1.2. Friedman, D., and Wise, D. Garbage collecting a heap which includes a
scatter table. Inf. Process. Lett. 5, 6 {Dec. 1976).

13. Greenblatt, R., Knight, T., Holloway, J., and Moon, D. A Lisp Machine.
Presented at the Workshop on Computer Architecture for Non-Numeric
Processing. Pacific Grove, Calif., March 1980.

14. Guibas, L., and Wyatt, D. Compilation and delayed evaluation in APL.
Presented at the 5th ACM Conf. Principles of Programming Languages,
1978.

15. Hewitt, C. Viewing control structures as patterns of passing messages. In P.
Winston and R. Brown (F, ds.), Artificial Intelligence: An MIT Perspective,
MIT Press, Cambridge, Mass., 1979.

16. Hewitt, C. The Apiary network architecture for knowledgeable systems. In
Prec. 1980 Lisp Conf., Stanford Univ., Stanford, Calif., 1980.

17. Ingalls, D. The smalhalk-76 programming system: Design and implementa-
tion. Presented at the 5th ACM Conf. Principles of Programming Lan-
gnages, 1978.

18. Kornfeld, W. Ether--A parallel problem solving system. Presented at the
6th Joint Conf. Artificial Intelligence, Tokyo, Japan, Aug. 1979.

19. Knnth, D. Garbage collection in real time. Class handout for course CS144C,
Stanford Univ., Stanford, Calif., Spring 1981.

~ . Liebemmn, H. A preview of act 1. Al Memo 625, M1T Artificial Intelligence
Lab., Cambridge, Mass., 1980.

21. Lucassen, J.M. Improvements to the Liebarman-Hewitt garbage collector.
Term Paper for MIT course 6.845, May 1981.

22. Moon, D. MacLisp Reference Manual. MIT Lab. for Computer Science,
Cambridge, Mass., 1980.

23. Moses, J. The function of Function In Lisp. Memo, ACM SIGSAM Bull., July,
1970.

24. Snyder, A. An object-oriented machine architecture. Tech. Rept. TR-209,
MIT Lab for Computer Science, Cambridge, Mass., 1979.

25. Weinreh, D., and Moon, D. Lisp Machine Manual. MIT Artificial Intelli-
gence Lab., Cambridge, Mass., 1978.

26. White, J. Memory management in a gigantic Lisp environment, or GC
considered harmful. In Proc. 1980 Lisp Conf., Stanford, Calif.

CR Categories and Subject Descriptors: C.1.2 [Processor Architectures]:
Multiple Data Stream Architectures (Multiprecessers); D.1 [~ g Tech-
niques]; D.4.2 [Operating Systems]: Storage Management; E.1 [Data Structures];
1.2.4 lArfitlcial Intelligencel: Knowledge Representation Formalisms and Meth-
ods; 1.2.5: [~ c i a l Intelligence]: Programming Languages

General Terms: Algorithms, Languages, Performance.
Addilional Keywords and Phrases: real-time garbage collection, Lisp, object-

oriented programming, reference counting, virtual memory, parallel processing

Received 4/80, revised 10/81: accepted 5/82

June 1983 Volume 26 Number 6 Communications of the ACM 429

