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Abstract

Cilk (pronounced “silk”) is a C-based runtime system for multi-
threaded parallel programming. In this paper, we document the effi-
ciency of the Cilk work-stealing scheduler, both empirically and ana-
lytically. We show that on real and synthetic applications, the “work”
and “critical path” of a Cilk computation can be used to accurately
model performance. Consequently, a Cilk programmer can focus on
reducing thework and critical path of his computation, insulated from
load balancing and other runtime scheduling issues. We also prove
that for the class of “fully strict” (well-structured) programs, the Cilk
scheduler achieves space, time, and communication bounds all within
a constant factor of optimal.

The Cilk runtime system currently runs on the Connection Ma-
chine CM5 MPR, the Intel Paragon MPP, the Silicon Graphics Power
Challenge SMP, and the MIT Phish network of workstations. Ap-
plications written in Cilk include protein folding, graphic rendering,
backtrack search, and the xSocrates chess program, which won third
prizein the 1994 ACM International Computer Chess Championship.

1 Introduction

Multithreading has become an increasingly popular way to implement
dynamic, highly asynchronous, concurrent programs [1, 8, 9, 10, 11,
12,15, 19, 21, 22, 24, 25, 28, 33, 34, 36, 39, 40]. A multithreaded sys-
tem providesthe programmer with ameansto create, synchronize, and
schedule threads. Although the schedulers in many of these runtime
systems seem to perform well in practice, none provide users with a
guarantee of application performance. Cilk isaruntime system whose
work-stealing scheduler is efficient in theory as well as in practice.
Moreover, it gives the user an algorithmic model of application per-
formance based on the measures of “work” and “critical path” which
can be used to predict the runtime of a Cilk program accurately.

A Cilk multithreaded computation can be viewed as a directed
acyclic graph (dag) that unfolds dynamically, as is shown schemat-
icaly in Figure 1. A Cilk program consists of a collection of Cilk
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Figure 1. The Cilk model of multithreaded computation. Threads are
shown as circles, which are grouped into procedures. Each downward edge
corresponds to aspawn of achild, each horizontal edge correspondsto aspawn
of asuccessor, and each upward, curved edge correspondsto adatadependency.
The numbersin the figure indicate the levels of procedures in the spawn tree.

procedures, each of which isbroken into a sequence of threads, which
form the vertices of the dag. Each thread is a nonblocking C func-
tion, which means that it can run to completion without waiting or
suspending once it has been invoked. As one of the threads from a
Cilk procedure runs, it can spawn a child thread which begins a new
child procedure. In the figure, downward edges connect threads and
their procedures with the children they have spawned. A spawn is
like a subroutine call, except that the calling thread may execute con-
currently with its child, possibly spawning additional children. Since
threads cannot block in the Cilk model, a thread cannot spawn chil-
dren and then wait for values to be returned. Rather, the thread must
additionally spawn a successor thread to receive the children’s return
values when they are produced. A thread and its successors are con-
sidered to be parts of the same Cilk procedure. Inthefigure, sequences
of successor threads that form Cilk procedures are connected by hori-
zontal edges. Return values, and other values sent from one thread to
another, induce data dependencies among the threads, where a thread
receiving a value cannot begin until another thread sends the value.
Data dependencies are shown as upward, curved edges in the figure.
Thus, a Cilk computation unfolds as a spawn tree composed of proce-
dures and the spawn edges that connect them to their children, but the
execution is constrained to follow the precedence relation determined
by the dag of threads.

The execution time of any Cilk program on a parallel computer
with P processors is constrained by two parameters of the computa-
tion: the work and the critical path. The work, denoted 73, is the
time used by a one-processor execution of the program, which cor-
responds to the sum of the execution times of all the threads. The
critical path length, denoted 7', isthe total amount of time required
by an infinite-processor execution, which corresponds to the largest
sum of thread execution times along any path. With P processors, the



execution time cannot be less than 7% / P or lessthan T's,. The Cilk
scheduler uses“work stealing” [3, 7, 13, 14, 15, 19, 27, 28, 29, 34, 40]
to achieve execution time very near to the sum of these two measures.
Off-line techniques for computing such efficient schedules have been
known for along time [5, 16, 17], but this efficiency has been difficult
to achieve on-line in a distributed environment while simultaneously
using small amounts of space and communication.

We demonstrate the efficiency of the Cilk scheduler both empir-
ically and analytically. Empirically, we have been able to document
that Cilk works well for dynamic, asynchronous, tree-like, MIMD-
style computations. To date, the applications we have programmed
include protein folding, graphic rendering, backtrack search, and the
*Socrates chess program, which won third prize in the 1994 ACM
International Computer Chess Championship. Many of these applica-
tions pose problems for more traditional parallel environments, such
asmessage passing [38] and dataparallel [2, 20], because of theunpre-
dictability of the dynamic workloads on processors. Analytically, we
prove that for “fully strict” (well-structured) programs, Cilk’s work-
stealing schedul er achieves execution space, time, and communication
bounds all within a constant factor of optimal. To date, al of the ap-
plications that we have coded are fully strict.

The Cilk languageisan extension to C that provides an abstraction
of threads in explicit continuation-passing style. A Cilk program is
preprocessed to C and then linked with aruntime library to run on the
Connection Machine CM5 MPR, the Intel Paragon MPP, the Silicon
Graphics Power Challenge SMP, or the MIT Phish [4] network of
workstations. In this paper, we focus on the Connection Machine
CM5 implementation of Cilk. The Cilk scheduler on the CM5 is
written in about 30 pages of C, and it performs communi cation among
processors using the Strata[6] active-message library.

The remainder of this paper is organized as follows. Section 2
describes Cilk’sruntime data structures and the C language extensions
that are used for programming. Section 3 describes the work-stealing
scheduler. Section 4 documents the performance of several Cilk ap-
plications. Section 5 shows how the work and critical path of a Cilk
computation can be used to model performance. Section 6 shows ana-
lytically that the scheduler workswell. Finally, Section 7 offers some
concluding remarks and describes our plans for the future.

2 The Cilk programming environment and implementa-
tion

In this section we describe a C language extension that we have de-
veloped to ease the task of coding Cilk programs. We also explain the
basic runtime data structures that Cilk uses.

In the Cilk language, athread T is defined in a manner similar to
a C function definition:

thread T (arg-decls ...) { stmts ...}

The Cilk preprocessor trandates T into a C function of one argument
and void return type. The one argument is a pointer to a closure data
structure, illustrated in Figure 2, which holds the arguments for T. A
closure consists of a pointer to the C function for T, a slot for each
of the specified arguments, and a join counter indicating the number
of missing arguments that need to be supplied before T is ready to
run. A closureis ready if it has obtained al of its arguments, and it
iswaiting if some arguments are missing. To run aready closure, the
Cilk scheduler invokesthethread asaprocedure using the closureitself
as its sole argument. Within the code for the thread, the arguments
are copied out of the closure data structure into local variables. The
closureisallocated from asimpleruntime heap whenit is created, and
it isreturned to the heap when the thread terminates.

The Cilk language supports a data type called a continuation,
whichis specified by thetype modifier keyword cont . A continuation
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Figure 2: The closure data structure.

isessentially aglobal referenceto an empty argument slot of aclosure,
implemented as a compound data structure containing a pointer to a
closure and an offset that designates one of the closure's argument
slots. Continuations can be created and passed among threads, which
enables threads to communicate and synchronize with each other.
Continuations are typed with the C data type of the dlot in the closure.
At runtime, athread can spawn achild thread by creating aclosure
for the child. Spawning is specified in the Cilk language as follows:

spawn T (args ...)

This statement creates a child closure, fillsin all available arguments,
and initializes the join counter to the number of missing arguments.
Available arguments are specified asin C. To specify amissing argu-
ment, the user specifies a continuation variable (type cont ) preceded
by a question mark. For example, if the second argument is ?k, then
Cilk setsthevariablek to acontinuation that refersto the second argu-
ment slot of the created closure. If theclosureisready, that is, it hasno
missing arguments, then spawn causes the closure to be immediately
posted to the scheduler for execution. In typical applications, child
closures are usually created with no missing arguments.

To create asuccessor thread, athread executesthe following state-
ment:

spawnnext T (args ...)

This statement is semantically identical to spawn, but it informs
the scheduler that the new closure should be treated as a successor,
as opposed to a child. Successor closures are usually created with
some missing arguments, which are filled in by values produced by
the children.

A Cilk procedure does not ever return values in the norma way
to aparent procedure. Instead, the programmer must code the parent
procedure astwo threads. Thefirst thread spawnsthe child procedure,
passing it a continuation pointing to the successor thread's closure.
The child sends its “return” value explicitly as an argument to the
waiting successor. This strategy of communicating between threads
iscalled explicit continuation passing. Cilk provides primitives of the
following form to send values from one closure to another:

send.ar gument (k, value)

This statement sends the value val ue to the argument slot of awaiting
closure specified by the continuation k. The types of the continuation
and the value must be compatible. The join counter of the waiting



thread fib (cont int k, int n)
{ if (n<2)
send.argunent (k, n)
el se
{ cont int X, y;
spawn_next sum (k, ?x, ?y);
spawn fib (x, n-1);
spawn fib (y, n-2);
}
}

thread sum(cont int k, int x, inty)
{ send.argunent (k, x+y);

Figure 3: A Cilk procedure, consisting of two threads, to compute the nth
Fibonacci number.

closure is decremented, and if it becomes zero, then the closure is
ready and is posted to the scheduler.

Figure 3 showsthe familiar recursive Fibonacci procedure written
in Cilk. It consists of two threads, fib and its successor sum Re-
flecting the explicit continuation passing style that Cilk supports, the
first argument to each thread is the continuation specifying where the
“return” value should be placed.

When the fib function is invoked, it first checks to see if the
boundary case hasbeenreached, inwhich caseit usessend_-ar gurment
to “return” the value of n to the slot specified by continuation k.
Otherwise, it spawns the successor thread sum aswell astwo children
to compute the two subcases. Each of these two children is given a
continuation specifying to which argument in the sumthread it should
send its result. The sumthread simply adds the two arguments when
they arrive and sends thisresult to the slot designated by k.

Although writing in explicit continuation passing style is some-
what onerous for the programmer, the decision to break procedures
into separate nonbl ocking threads simplifies the Cilk runtime system.
Each Cilk thread leavesthe C runtime stack empty when it completes.
Thus, Cilk can run on top of a vanilla C runtime system. A com-
mon alternative [19, 25, 32, 34] is to support a programming style
in which a thread suspends whenever it discovers that required val-
ues have not yet been computed, resuming when the values become
available. When a thread suspends, however, it may |eave temporary
values on the runtime stack which must be saved, or each thread must
have its own runtime stack. Consequently, this alternative strategy
requires changes to the runtime system that depend on the C calling
stack layout and register usage conventions. Another advantage of
Cilk’s strategy is that it allows multiple children to be spawned from
a single nonblocking thread, which saves on context switching. In
Cilk, r children can be spawned and executed with only » + 1 context
switches, whereas the alternative of suspending whenever athread is
spawned causes 2r context switches. Since our primary interest isin
understanding how to build efficient multithreaded runtime systems,
but without redesigning the basic C runtime system, we chose the
alternative of burdening the programmer with a requirement which
is perhaps less elegant linguistically, but which yields a smple and
portable runtime implementation.

Cilk supportsavariety of featuresthat give the programmer greater
control over runtime performance. For example, when the last action
of athread is to spawn a ready thread, the programmer can use the
keyword cal | instead of spawn that produces a “tail call” to run the
new thread immediately without invoking the scheduler. Cilk also
allows arrays and subarrays to be passed as arguments to closures.
Other features include various abilities to override the scheduler’'s

decisions, including on which processor athread should be placed and
how to pack and unpack data when a closure is migrated from one
processor to another.

3 The Cilk work-stealing scheduler

Cilk’s scheduler uses the technique of work-stealing [3, 7, 13, 14, 15,
19, 27, 28, 29, 34, 40] in which a processor (the thief) who runs out of
work selects another processor (the victim) from whom to steal work,
and then steal s the shallowest ready thread in the victim'’s spawn tree.
Cilk's strategy is for thieves to choose victims at random [3, 27, 37].

At runtime, each processor maintains a local ready queue to hold
ready closures. Each closure has an associated level, which corre-
sponds to the number of spawn’s (but not spawn_next ’s) on the path
from the root of the spawn tree. The ready queueis an array in which
the Lth element contains a linked list of al ready closures having
level L.

Cilk begins executing the user program by initializing all ready
queues to be empty, placing the root thread into the level-0 list of
Processor 0's queue, and then starting a scheduling loop on each
processor. Within a scheduling loop, a processor first checks to see
whether its ready queue is empty. If it is, the processor commences
“work stealing,” which will be described shortly. Otherwise, the
processor performs the following steps:

1. Removethethread at the head of thelist of the deepest nonempty

level inthe ready queue.

2. Extract the thread from the closure, and invoke it.

Asathread executes, it may spawn or send argumentsto other threads.
When the thread terminates, control returns to the scheduling loop.

When athread at level I spawns a child thread T, the scheduler

executes the following operations:

1. Allocate and initialize aclosurefor T.

2. Copy the available arguments into the closure, initialize any
continuations to point to missing arguments, and initialize the
join counter to the number of missing arguments.

3. Label the closurewith level L + 1.

4. If there are no missing arguments, post the closure to the ready
queue by inserting it at the head of the level-(L + 1) list.
Execution of spawn_next issimilar, except that the closureis labeled

with level L and, if it isready, posted to the level- L list.

A processor that executessend_ar gunent (k, value) performsthe

following steps:

1. Find the closure and argument slot referenced by the continua-
tion k.

2. Placevaluein theargument slot, and decrement thejoin counter
of the closure.

3. If the join counter goes to zero, post the closure to the ready
queue at the appropriate level.

When the continuation % refers to a closure on a remote processor,
network communication ensues. The processor that initiated the
send_ar gunent function sends a message to the remote processor
to perform the operations. The only subtlety occursin step 3. If the
closure must be posted, it is posted to the ready queue of theinitiating
processor, rather than to that of the remote processor. This policy is
necessary for the scheduler to be provably good, but as a practical
matter, we have also had success with posting the closure to the re-
mote processor’s queue, which can sometimes save a few percent in
overhead.

If the scheduler attempts to remove a thread from an empty ready

queue, the processor becomes a thief and commences work stealing
asfollows:

1. Select avictim processor uniformly at random.



2. If thevictim’sready queue is empty, go to step 1.

3. If the victim's ready queue is nonempty, extract a thread from
thetail of thelist in the shallowest nonempty level of the ready
gueue, and invoke it.

Work stealing is implemented with a simple request-reply communi-
cation protocol between the thief and victim.

Why steal work from the shallowest level of theready queue? The
reasonistwo-fold. First, wewould liketo steal large amounts of work,
and shallow closures are likely to execute for longer than deep ones.
Stealing large amounts of work tends to lower the communication
cost of the program, because fewer steals are necessary. Second, the
closuresat the shallowest level of theready queue are also the onesthat
areshallowest inthedag, akey fact provenin Section 6. Consequently,
if processorsareidle, thework they steal tendsto make progressalong
the critical path.

4 Performance of Cilk applications

This section presents several applications that we have used to bench-
mark the Cilk scheduler. We also present empirical evidence from
experiments run on a CM5 supercomputer to document the efficiency
of our work-stealing scheduler. The CM5 is a massively parallel
computer based on 32MHz SPARC processors with a fat-tree inter-
connection network [30].

The applications are described below:

o fib is the same as was presented in Section 2, except that the
second recursive spawn is replaced by a “tail call” that avoids
thescheduler. Thisprogramisagood measureof Cilk overhead,
because the thread length is so small.

e queens isabacktrack search program that solves the problem
of placing N queensona N x N chessboard so that no two
gueens attack each other. The Cilk program is based on seria
codeby R. Sargent of theMIT MediaL aboratory. Thread length
was enhanced by serializing the bottom 7 levels of the search
tree.

e pfold is a protein-folding program [35] written in conjunc-
tion with V. Pande of MIT’s Center for Material Sciences and
Engineering. This program finds hamiltonian pathsin a three-
dimensional grid using backtrack search. It was the first pro-
gram to enumerate all hamiltonian pathsina3 x 4 x 4 grid.
We timed the enumeration of al paths starting with a certain
sequence.

e ray isaparale program for graphics rendering based on the
serial POV- Ray program, which uses a ray-tracing algorithm.
The entire POV- Ray system contains over 20,000 lines of C
code, but the core of POV- Ray is a simple doubly nested loop
that iterates over each pixel in a two-dimensional image. For
ray we converted the nested loops into a 4-ary divide-and-
conquer contral structure using spawns."  Our measurements
do not include the approximately 2.4 seconds of startup time
required to read and process the scene description file.

e knary(Kk, n, r) isasynthetic benchmark whose parameterscan
be set to produce a variety of values for work and critical path.
It generates a tree of branching factor £ and depth n in which
the first » children at every level are executed serially and the
remainder are executed in parallel. At each node of thetree, the
program runs an empty “for” loop for 400 iterations.

L Initially, the serial POV- Ray programwas about 5 percent slower than the Cilk version
running on one processor. The reason was that the divide-and-conquer decomposition
performed by the Cilk code provides better locality than the doubly nested loop of the
serial code. Modifying the serial code to imitate the Cilk decomposition improved its
performance. Timings for theimproved version are given in the table.

e xSocrates is a paralel chess program that uses the Jamboree
search algorithm [23, 29] to parallelize a minmax tree search.
Thework of the algorithm varieswith the number of processors,
because it does speculative work that may be aborted during
runtime. xSocrates is a production-quality program that won
third prize in the 1994 ACM International Computer Chess
Championship running on the 512-node CM5 in the National
Center for Supercomputing Applications at the University of
Ilinois, Urbana-Champaign.

Table 4 shows typical performance measures for these Cilk appli-
cations. Each column presents data from a single run of a benchmark
application. We adopt the following notations, which are used in
the table. For each application, we have an efficient serial C im-
plementation, compiled using gcc - 2, whose measured runtime is
denoted T'wrig. The work T is the measured execution time for the
Cilk program running on a single node of the CM5.2 The critical
path length T, of the Cilk computation is measured by timestamping
each thread and does not include scheduling or communication costs.
The measured P-processor execution time of the Cilk program run-
ning on the CM5 is given by T'p, which includes all scheduling and
communication costs. Therow labeled “threads” indicates the number
of threads executed, and “thread length” is the average thread length
(work divided by the number of threads).

Certain derived parameters are also displayed in the table. The
ratio Teeria/T1 is the efficiency of the Cilk program relative to the
C program. Theratio 71 /T is the average parallelism. The value
T1/ P+ T isasimplemodel of theruntime, whichwill be discussed
in the next section. The speedupis T /Tp, and the paralldl efficiency
isT1/(P-Tp). Therow labeled “ space/proc.” indicatesthe maximum
number of closures alocated at any time on any processor. The row
labeled “requests/proc.” indicates the average number of steal requests
made by a processor during the execution, and “ steal S/proc.” givesthe
average number of closures actually stolen.

The data in Table 4 shows two important relationships: one be-
tween efficiency and thread length, and another between speedup and
average parallelism.

Considering the relationship between efficiency T'seia /71 and
thread length, we see that for programs with moderately long threads,
the Cilk scheduler induces very little overhead. The queens, pf ol d,
ray, and knary programs have threads with average length greater
than 50 microseconds and have efficiency greater than 90 percent.
On the other hand, the fib program has low efficiency, because the
threads are so short: fib does amost nothing besides spawn and
send.ar gurrent .

Despiteit’slong threads, the xSocrates program has|ow efficiency,
becauseits parallel Jamboree search algorithm [29] is based on specu-
latively searching subtrees that are not searched by a seria algorithm.
Consequently, as we increase the number of processors, the program
executes more threads and, hence, does more work. For example,
the 256-processor execution did 7023 seconds of work whereas the
32-processor execution did only 3644 seconds of work. Both of these
executionsdid considerably more work than the serial program’s 1665
seconds of work. Thus, although we observe low efficiency, it is due
to the parallel algorithm and not to Cilk overhead.

Looking at the speedup 7% /T’» measured on 32 and 256 proces-
sors, we see that when the average parallelism T /T is large com-
pared with the number P of processors, Cilk programs achieve nearly
perfect linear speedup, but when the average parallelism is small, the
speedup is much less. The fib, queens, pf ol d, and r ay programs,

2For the xSocrates program, 77 is not the measured execution time, but rather it is
an estimate of the work obtained by summing the execution times of al threads, which
yieldsaslight underestimate. *Socratesis an unusually complicated application, because
its speculative execution yields unpredictable work and critical path. Consequently, the
measured runtime on one processor does not accurately reflect the work on P > 1
processors.



fib queens pfold ray knary knary *Socrates *Socrates
(33) (15) (3,3,4) (500,500) (10,5,2) (10,4,1) (depth 10) (depth 10)
(32 proc.) (256 proc)
(application parameters)
Tssia 8.487 252.1 615.15 729.2 288.6 40.993 1665 1665
T: 73.16 254.6 647.8 7325 314.6 45.43 3644 7023
Tewia /Th 0.116  0.9902 0.9496 0.9955 0.9174 0.9023 0.4569 0.2371
Teo 0.000326  0.0345 0.04354 0.0415 4.458 0.255 3134 324
T1/Tso 224417 7380 14879 17650 70.56 178.2 1163 2168
threads 17,108,660 210,740 9,515,098 424475 5,859,374 873,812 26,151,774 51,685,823
thread length 4276ps  1208us  68.08us 1726pus  53.69us  51.99us 139.3us 135.9us
(32-processor experiments)
Tp 2.298 8.012 20.26 21.68 15.13 1.633 126.1 -
T/P+ T 2.287 7.991 20.29 2293 14.28 1.675 117.0 -
T /Tp 3184 31.78 31.97 33.79 20.78 27.81 28.90 -
T /(P-Tp) 09951  0.9930 0.9992 1.0558 0.6495 0.8692 0.9030 -
space/proc. 70 95 a7 39 41 42 386 -
requests/proc. 185.8 48.0 88.6 218.1 92639 3127 23484 -
steals/proc. 56.63 18.47 26.06 79.25 18031 1034 2395 -
(256-processor experiments)

Tp 0.2892 1.045 2.590 2.765 8.590 0.4636 - 34.32
Ti/P+ T 0.2861 1.029 2574 2.903 5.687 0.4325 - 30.67
T /Tp 253.0 243.7 250.1 265.0 36.62 98.00 - 204.6
Ti/(P-Tp) 0.9882  0.9519 0.9771 1.035 0.1431 0.3828 - 0.7993
space/proc. 66 76 47 32 48 40 - 405
reguests/proc. 73.66 80.40 97.79 82.75 151803 7527 - 30646
stealS/proc. 24.10 21.20 23.05 18.34 6378 550 - 1540

Table 4: Performance of Cilk on various applications. All times are in seconds, except where noted.

for example, havein excess of 7000-fold parallelism and achieve more
than 99 percent of perfect linear speedup on 32 processors and more
than 95 percent of perfect linear speedup on 256 processors.®> The
*Socrates program exhibits somewhat less parallelism and also some-
what |ess speedup. On 32 processorsthe xSocrates program has 1163-
fold parallelism, yielding 90 percent of perfect linear speedup, while
on 256 processors it has 2168-fold parallelism yielding 80 percent
of perfect linear speedup. With even less paralelism, as exhibited
in the knary benchmarks, less speedup is obtained. For example,
the knary( 10, 5, 2) benchmark exhibits only 70-fold parallelism,
and it realizes barely more than 20-fold speedup on 32 processors
(less than 65 percent of perfect linear speedup). With 178-fold paral-
lelism, knar y( 10, 4, 1) achieves 27-fold speedup on 32 processors
(87 percent of perfect linear speedup), but only 98-fold speedup on
256 processors (38 percent of perfect linear speedup).

Although these speedup measures reflect the Cilk scheduler’ s abil-
ity to exploit parallelism, to obtain application speedup, we must fac-
tor in the efficiency of the Cilk program compared with the seria
C program. Specifically, the application speedup Tseria /TP is the
product of efficiency Tseria /71 and speedup 71 /Tp. For example,
applications such as fib and xSocrates with low efficiency generate
correspondingly low application speedup. The xSocrates program,
with efficiency 0.2371 and speedup 204.6 on 256 processors, exhibits
application speedup of 0.2371 - 204.6 = 48.51. For the purpose of
performance prediction, we prefer to decouple the efficiency of the
application from the efficiency of the scheduler.

Looking more carefully at the cost of aspawn in Cilk, wefind that
it takes a fixed overhead of about 50 cycles to alocate and initialize a
closure, plus about 8 cycles for each word argument. In comparison,
aC function call on aCM5 processor takes 2 cycles of fixed overhead

3Infact, ther ay program achieves superlinear speedup even when comparing to the
efficient seria implementation. We suspect that cache effects cause this phenomenon.

(assuming no register window overflow) plus 1 cycle for each word
argument (assuming all arguments are transferred in registers). Thus,
aspawn in Cilk isroughly an order of magnitude more expensive than
a C function call. This Cilk overhead is quite apparent in the fib pro-
gram, which doesalmost nothing besidesspawn and send ar gunent .
Based on fib’s measured efficiency of 0.116, we can conclude that the
aggregate average cost of aspawn/send_ar gunent in Cilk isbetween
8 and 9 times the cost of afunction call/returnin C.

Efficient execution of programs with short threads requires alow-
overhead spawn operation. As can be observed from Table 4, the
vast majority of threads execute on the same processor on which they
are spawned. For example, the fib program executed over 17 million
threads but migrated only 6170 (24.10 per processor) when run with
256 processors. Taking advantage of this property, other researchers
[25, 32] have devel oped techniques for implementing spawns such that
when the child thread executes on the same processor as its parent,
the cost of the spawn operation is roughly equa the cost of a C
function call. We hope to incorporate such techniques into future
implementations of Cilk.

Finally, we make two observations about the space and communi-
cation measuresin Table 4.

Looking at the “space/proc.” rows, we observe that the space per
processor is generally quite small and does not grow with the number
of processors. For example, xSocrates on 32 processors executes over
26 million threads, yet no processor ever has more than 386 allocated
closures. On 256 processors, the number of executed threads nearly
doublesto over 51 million, but the space per processorsbarely changes.
In Section 6 we show formally that for Cilk programs, the space per
processor does not grow as we add processors.

Looking at the “requests/proc.” and “ stealg/proc.” rowsin Table 4,
we observe that the amount of communication grows with the critical
path but does not grow with the work. For example, fib, queens,



pfol d, and ray al have critica paths under a tenth of a second
long and perform fewer than 220 requests and 80 steal s per processor,
whereasknary( 10, 5, 2) and xSocrates have critical pathsmorethan
3 secondslong and perform more than 20,000 requests and 1500 steals
per processor. The table does not show any clear correlation between
work and either requests or steals. For example, r ay does more than
twiceasmuchwork asknar y( 10, 5, 2) , yet it performstwo orders of
magnitude fewer requests. In Section 6, we show that for “fully strict”
Cilk programs, the communication per processor grows linearly with
the critical path length and does not grow as function of the work.

5 Modeling performance

In this section, we further document the effectiveness of the Cilk
scheduler by showing empirically that it schedules applications in
a near-optimal fashion. Specifically, we use the knary synthetic
benchmark to show that the runtime of an application on P processors
can be accurately modeled as Tp & T1/P + cooToo, Where coo =
1.5. This result shows that we obtain nearly perfect linear speedup
when the critical path is short compared with the average amount
of work per processor. We aso show that a model of this kind is
accurate even for xSocrates, which is our most complex application
programmed to date and which does not obey al the assumptions
assumed by the theoretical analysesin Section 6.

A good scheduler should to run an application with 77 work in
T1 /P time on P processors. Such perfect linear speedup cannot be
obtained whenever T, > T4/ P, since we aways have Tp > T,
or more generally, Tp > max{T1/P,T}. Thecritica path T
is the stronger lower bound on T’ whenever P exceeds the average
parallelism T /T, and T1 /P is the stronger bound otherwise. A
good schedul er should meet each of theseboundsasclosely aspossible.

In order to investigate how well the Cilk schedul er meetsthese two
lower bounds, we used our knar y benchmark (described in Section 4),
which can exhibit arange of values for work and critical path.

Figure 5 shows the outcome of many experiments of running
knary with various values for k, n, r, and P. The figure plots
the speedup T4 /Tp for each run against the machine size P for that
run. In order to compare the outcomes for runs with different pa-
rameters, we have normalized the data by dividing the plotted values
by the average parallelism T /T. Thus, the horizontal position of
each datum is P/(7T1 /T~ ), and the vertica position of each datum
is(T1/Tp)/(Th/Ts) = Too/Tr. Consequently, on the horizontal
axis, the normalized machine-size is 1.0 when the average available
parallelism is equa to the machine size. On the vertical axis, the
normalized speedup is 1.0 when the runtime equals the critical path,
and it is 0.1 when the runtime is 10 times the critical path. We can
draw the two lower bounds on time as upper bounds on speedup. The
horizontal line at 1.0 is the upper bound on speedup obtained from
the critical path, and the 45-degreelineisthe upper bound on speedup
obtained from the work per processor. As can be seen from thefigure,
ontheknary runsfor which the average parallelism exceeds the num-
ber of processors (normalized machine size < 1), the Cilk scheduler
obtains nearly perfect linear speedup. In the region where the number
of processors is large compared to the average parallelism (normal-
ized machine size > 1), the datais more scattered, but the speedup is
always within afactor of 4 of the critical-path upper bound.

The theoretical results from Section 6 show that the expected
running time of an application on P processorsisTp = O(T1/P +
T~ ). Thus, it makes sense to try to fit the data to a curve of the
form Tp = ¢1(T1/P) + coo(To). A least-squares fit to the data
to minimize the relative error yields ¢; = 0.9543 £+ 0.1775 and
oo = 1.5440.3888 with 95 percent confidence. The R? correlation
coefficient of thefitis0.989101, and the mean relative error is13.07
percent. The curve fit is shown in Figure 5, which also plots the

simpler curves Tp = T1 /P + Too and Tp = T1 /P + 2 - T for
comparison. As can be seen from the figure, littleislost in the linear
speedup range of the curve by assuming that ¢i = 1. Indeed, a fit
to Tp = T1/P + ceo(Tso) Yi€lds coe = 1.509 £ 0.3727 with
R? = 0.983592 and a mean relative error of 4.04 percent, which
isin some ways better than the fit that includes a c; term. (The R>
measure is alittle worse, but the mean relative error is much better.)

It makes sense that the data points become more scattered when
P isclose to or exceeds the average parallelism. In this range, the
amount of time spent in work stealing becomes a significant fraction
of the overall execution time. The real measure of the quality of a
scheduler is how much larger 71 /T must be than P before Tp
shows substantial influence from the critical path. One can see from
Figure 5 that if the average parallelism exceeds P by afactor of 10,
the critical path has almost no impact on the running time.

To confirm our simple model of the Cilk scheduler’s performance
on areal application, we ran xSocrates on avariety of chess positions.
Figure 6 shows the results of our study, which confirm the results
from the knar y synthetic benchmarks. The curve shown is the best
fitto Tp = c1(Ti/P) + coo(Two), Where ¢ = 1.067 + 0.0141
and coo = 1.042 =+ 0.0467 with 95 percent confidence. The R?
correlation coefficient of thefitis 0.9994, and the mean relative error
is4.05 percent.

Indeed, as some of us were developing and tuning heuristics to
increase the performance of xSocrates, we used work and critical
path as our measures of progress. This methodology let us avoid
being trapped by the following interesting anomaly. We made an
“improvement” that sped up the program on 32 processors. From
our measurements, however, we discovered that it was faster only
because it saved on work at the expense of amuch longer critical path.
Using the simple model Tp = T1/P + T, we concluded that on
a 512-processor machine, which was our platform for tournaments,
the “improvement” would yield a loss of performance, a fact that
we later verified. Measuring work and critical path enabled us to
use experiments on a 32-processor machine to improve our program
for the 512-processor machine, but without using the 512-processor
machine, on which computer time was scarce.

6 A theoretical analysis of the Cilk scheduler

In this section we use algorithmic analysis techniquesto prove that for
theclassof “fully strict” Cilk programs, Cilk’s work-stealing schedul -
ing algorithm is efficient with respect to space, time, and commu-
nication. A fully strict program is one for which each thread sends
arguments only to its parent’s successor threads. For this class of
programs, we prove the following three bounds on space, time, and
communication:

Space The space used by a P-processor execution is bounded by
Sp < S1P, where S; denotes the space used by the serial
execution of the Cilk program. This bound is existentialy
optimal to within a constant factor [3].

Time With P processors, the expected execution time, including
scheduling overhead, is bounded by Tp = O(T1 /P + Tw).
Sinceboth Ty / P and T's, arelower boundsfor any P-processor
execution, our expected time bound is within a constant factor
of optimal.

Communication The expected number of bytes communicated dur-
ing a P-processor execution is O(T'sc P Smax ), Where Smax de-
notes the largest size of any closure. Thisboundis existentially
optimal to within a constant factor [41].

The expected time bound and the expected communication bound can
be converted into high-probability bounds at the cost of only a small
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Figure 7: The closures at some time during a 1-processor execution. Data-
dependency edges are not shown. The black nodes represent ready closures,
the gray nodes represent waiting closures, and white nodes represent closures
that have already been executed. The black and gray closures are allocated and
consume space, but the white closures have been deallocated. Gray, curved
edges represent the additional edgesin D' that do not also belong to D.

additivetermin both cases. Proofsof these bounds use generalizations
of the techniques developedin [3]. We defer complete proofsand give
outlines here.

The space bound follows from the “busy-leaves’ property which
characterizes the allocated closures at al times during the execution.
At any given time during the execution, we say that aclosureisaleaf
if it has no allocated child closures, and we say that a leaf closureis
aprimary leaf if, in addition, it has no left-sibling closures allocated.
In Figure 7, which shows the allocated closures at some time during
an execution, closure a is the only primary leaf. Closure b is a lef,
but it is not primary, since it has left siblings and closure ¢ is not
a leaf, because a and its two siblings are counted as children of c.
The busy-leaves property states that every primary leaf closure has
a processor working on it. To prove the space bound, we show that
Cilk’s scheduler maintai nsthe busy-leaves property, and then we show
that the busy-leaves property implies the space bound.

Theorem 1 For anyfully strict Cilk program, if S isthe space used
to execute the program on 1 processor, then with any number P of
processors, Cilk's work-stealing scheduler uses at most .S1 P space.

Proof: We first show by induction on execution time that Cilk's
work-stealing scheduler maintains the busy-leaves property. We then
show that the busy-leaves property implies the space bound.

To see that Cilk’s scheduler maintains the busy-leaves property,
we consider the three possible ways that a primary-leaf closure can be
created. First, when a thread spawns children, the leftmost of these
children is a primary leaf. Second, when a thread completes and its
closure is freed, if that closure has a right sibling and that sibling
has no children, then the right-sibling closure becomes a primary
leaf. And third, when a thread completes and its closure is freed, if
that closure has no alocated siblings, then the leftmost closure of its
parent’s successor threadsis a primary leaf. Theinduction follows by
observing that in al three of these cases, Cilk’s scheduler guarantees
that a processor works on the new primary leaf. In the third case we
use the fact that a newly activated closure is posted on the processor
that activated it and not on the processor on which it was residing.

The space bound Sp < S P is obtained by showing that every
allocated closure can be associated with a primary leaf and that the
total spaceof al closuresassignedto agiven primary leaf isat most S .
SinceCilk’sscheduler keepsall primary leavesbusy, with P processors
we are guaranteed that at every time during the execution, at most P
primary-leaf closures can be allocated, and hence the total amount of
spaceisat most Sq P.

We associate each all ocated closure with aprimary leaf asfollows.
If the closure is a primary ledf, it is assigned to itself. Otherwise, if
the closure has any allocated children, then it is assigned to the same
primary leaf asitsleftmost child. If the closureis aleaf but has some
left siblings, then the closureis assigned to the same primary |eaf asits
leftmost sibling. In this recursive fashion, we assign every alocated
closuretoaprimary leaf. Now, we consider the set of closuresassigned
toagiven primary leaf. Thetotal space of these closuresisat most S,
becausethis set of closuresisasubset of the closuresthat are allocated
during a 1-processor execution when the processor is executing this
primary leaf, which completes the proof. u

We now give the theorems bounding execution time and communi-
cation cost. Proofsfor thesetheoremsgeneralizetheresultsof [3] for a
more restricted model of multithreaded computation. Asin [3], these
proofs assume acommunication model in which messages aredelayed
only by contention at destination processors, but no assumptions are
made about the order in which contending messagesare delivered [31].
The bounds given by these theorems assume that no thread has more
than one successor thread.

The proofs of these theorems are analogous to the proofs of The-
orems 12 and 13 in [3]. We show that certain “critical” threads are
likely to be executed after only amodest number of steal requests, and
that executing a critical thread guarantees progress on the critical path
of the dag.

Wefirst construct an augmented dag D' that will be used to define
the critical threads. The dag D' is constructed by adding edges to
the original dag D of the computation. For each child procedure v
of athread ¢, we add an edge to D' from the first thread of v to
the first thread of the next child procedure spawned by ¢ after v is
spawned. We make the technical assumption that the first thread of
each procedure executes in zero time since we can add a zero-time
thread to the beginning of each procedure without affecting work or
depth. An example of the dag D’ is given in Figure 7, where the
additional edges are shown gray and curved. We draw the children
spawned by a node in right-to-left order in the figure, because the
execution order by the local processor is left to right, corresponding
to LIFO execution. The dag D' is constructed for analytic purposes
only and has no effect on the scheduling of the threads. An important
property of D' isthat its critical path is the same as the critical path
of theoriginal dag D.

We next define the notion of a critical thread formally. We have
already defined a ready thread as a thread all of whose predecessors
in D have been executed. Similarly, acritical thread is athread all of
whose predecessorsin D' have been executed. A critical thread must
be ready, but a ready thread may or may not be critical. We now state
a lemma which shows that a critical thread must be the shallowest
thread in aready queue.

Lemma 2 During the execution of any fully strict Cilk program for
which no thread has more than one successor thread, any critical
thread must be the shallowest thread in a ready queue. Moreover, the
critical thread isalso first in the steal order.

Proof: For athread ¢ to be critical, the following conditions must
hold for the ready queue on the processor in which ¢ is enqueued:

1. Noright siblings of ¢ are in the ready queue. If aright sibling
procedure v of ¢ were in the ready queue, then the first thread
of v would not have been executed, and because the first thread
of v isapredecessor of ¢ in D', ¢ would not be critical.

2. Noright siblings of any of ¢'s ancestors are in the ready queue.
This fact follows from the same reasoning as above.

3. No left siblings of any of t's ancestors are in the ready queue.
This condition must hold because al of these siblings occur



before ¢'s parent in the local execution order, and t's parent
must have been executed for ¢ to be critical.

4. No successor threads of ¢'s ancestors are enabled. This condi-
tion must be true, because any successor thread must wait for
all children to complete before it is enabled. Since ¢ has not
completed, no successor threads of ¢'s ancestors are enabled.
This condition makes use of the fact that the computation is
fully strict, which implies that the only thread to which ¢ can
send itsresult ist’s parent’s unique successor.

A consequence of these conditionsisthat no thread could possibly
be above ¢ in the ready queue, because all threads above ¢ are either
already executed, stolen, or not enabled. Int’slevel, ¢ isfirst in the
work-stealing order, because it is the rightmost thread at that level. B

Theorem 3 For any number P of processors and any fully strict
Cilk program in which each thread has at most one successor, if the
program has work 77 and critical path length T, then Cilk's work-
stealing scheduler executes the program in expected time E [Tp] =
O(T1/P + Ts). Furthermore, for any e > 0, the execution time is
Tp = O(Th/P + To + 1g P + 1g(1/¢€)) with probability at least
1—e

Proof: This proof is just a straightforward application of the tech-
niquesin [3], using our Lemma 2 as a substitute for Lemma 9 in [3].
Because the critical threads are first in the work-stealing order, they
are likely to be stolen (or executed locally) after a modest number of
steal requests. Thisfact can be shown formally using adelay sequence
argument. [ |

Theorem 4 For any number P of processors and any fully strict
Cilk program in which each thread has at most one successor, if the
programhascritical path length 7'~ and maximum closure size Smax,
then Cilk's work-stealing scheduler incurs expected communication
O(Tss PSmax). Furthermore, for any € > 0, the communication cost
iSO((Teo +1g(1/€)) PSmax) with probability at least 1 — .

Proof: This proof is exactly analogous to the proof of Theorem 13
in [3]. We observe that at most O(T'x P) steal attempts occur in an
execution, and all communication costs can be associated with one
of these steal requests such that at most O(Smax) communication is
associated with each steal request. The high-probability bound is
analogous. u

7 Conclusion

To produce high-performance parallel applications, programmers of -
ten focus on communication costs and execution time, quantities that
are dependent on specific machine configurations. We argue that a
programmer should think instead about work and critical path, ab-
stractions that can be used to characterize the performance of an al-
gorithm independent of the machine configuration. Cilk provides a
programming model in which work and critical path are observable
quantities, and it delivers guaranteed performance as a function of
these quantities. Work and critical path have been used in the theory
community for years to analyze parallel agorithms [26]. Blelloch
[2] has devel oped aperformance model for data-parallel computations
based on these same two abstract measures. He cites many advantages
to such amodel over machine-based models. Cilk provides asimilar
performance model for the domain of asynchronous, multithreaded
computation.

Although Cilk offers performance guarantees, its current capa-
bilities are limited, and programmers find its explicit continuation-
passing style to be onerous. Cilk is good at expressing and executing
dynamic, asynchronous, tree-like, MIMD computations, but it is not

yet ideal for more traditional paralel applications that can be pro-
grammed effectively in, for example, amessage-passing, data-parallel,
or single-threaded, shared-memory style. We are currently working
on extending Cilk’s capabilities to broaden its applicability. A major
constraint is that we do not want new features to destroy Cilk’s guar-
antees of performance. Our current research focuses on implementing
“dag-consistent” shared memory, which allows programsto operateon
shared memory without costly communication or hardware support;
on providing alinguistic interface that produces continuation-passing
codefor our runtime system from amoretraditional call-return specifi-
cation of spawns; and on incorporating persistent threadsand lessstrict
semantics in ways that do not destroy the guaranteed performance of
our scheduler. Recent information about Cilk is maintained on the
World Wide Web inpagehttp://theory.lcs.mt.edu/"cilKk.
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