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our latest Cilk-5 release [8] still uses a theoretically e�cientscheduler, but the language has been simpli�ed considerably.It employs call/return semantics for parallelism and featuresa linguistically simple \inlet" mechanism for nondeterminis-tic control. Cilk-5 is designed to run e�ciently on contem-porary symmetric multiprocessors (SMP's), which featurehardware support for shared memory. We have coded manyapplications in Cilk, including the ?Socrates and Cilkchesschess-playing programs which have won prizes in interna-tional competitions.The philosophy behind Cilk development has been tomake the Cilk language a true parallel extension of C, bothsemantically and with respect to performance. On a paral-lel computer, Cilk control constructs allow the program toexecute in parallel. If the Cilk keywords for parallel controlare elided from a Cilk program, however, a syntactically andsemantically correct C program results, which we call the Celision (or more generally, the serial elision) of the Cilkprogram. Cilk is a faithful extension of C, because the Celision of a Cilk program is a correct implementation of thesemantics of the program. Moreover, on one processor, aparallel Cilk program \scales down" to run nearly as fast asits C elision.Unlike in Cilk-1, where the Cilk scheduler was an identi�-able piece of code, in Cilk-5 both the compiler and runtimesystem bear the responsibility for scheduling. To obtain ef-�ciency, we have, of course, attempted to reduce schedulingoverheads. Some overheads have a larger impact on execu-tion time than others, however. A theoretical understandingof Cilk's scheduling algorithm [3, 5] has allowed us to iden-tify and optimize the common cases. According to this ab-stract theory, the performance of a Cilk computation can becharacterized by two quantities: its work , which is the to-tal time needed to execute the computation serially, and itscritical-path length , which is its execution time on an in-�nite number of processors. (Cilk provides instrumentationthat allows a user to measure these two quantities.) WithinCilk's scheduler, we can identify a given cost as contribut-ing to either work overhead or critical-path overhead. Muchof the e�ciency of Cilk derives from the following principle,which we shall justify in Section 3.1



The work-�rst principle: Minimize the schedul-ing overhead borne by the work of a computation.Speci�cally, move overheads out of the work andonto the critical path.The work-�rst principle played an important role during thedesign of earlier Cilk systems, but Cilk-5 exploits the prin-ciple more extensively.The work-�rst principle inspired a \two-clone" strategyfor compiling Cilk programs. Our cilk2c compiler [23] is atype-checking, source-to-source translator that transforms aCilk source into a C postsource which makes calls to Cilk'sruntime library. The C postsource is then run through thegcc compiler to produce object code. The cilk2c compilerproduces two clones of every Cilk procedure|a \fast" cloneand a \slow" clone. The fast clone, which is identical inmost respects to the C elision of the Cilk program, executesin the common case where serial semantics su�ce. The slowclone is executed in the infrequent case that parallel seman-tics and its concomitant bookkeeping are required. All com-munication due to scheduling occurs in the slow clone andcontributes to critical-path overhead, but not to work over-head.The work-�rst principle also inspired a Dijkstra-like [11],shared-memory, mutual-exclusion protocol as part of theruntime load-balancing scheduler. Cilk's scheduler uses a\work-stealing" algorithm in which idle processors, calledthieves, \steal" threads from busy processors, called vic-tims. Cilk's scheduler guarantees that the cost of steal-ing contributes only to critical-path overhead, and not towork overhead. Nevertheless, it is hard to avoid the mutual-exclusion costs incurred by a potential victim, which con-tribute to work. To minimize work overhead, instead of usinglocking, Cilk's runtime system uses a Dijkstra-like protocol,which we call the THE protocol, to manage the runtimedeque of ready threads in the work-stealing algorithm. Anadded advantage of the THE protocol is that it allows anexception to be signaled to a working processor with no ad-ditional work overhead, a feature used in Cilk's abort mech-anism.The remainder of this paper is organized as follows. Sec-tion 2 overviews the basic features of the Cilk language. Sec-tion 3 justi�es the work-�rst principle. Section 4 describeshow the two-clone strategy is implemented, and Section 5presents the THE protocol. Section 6 gives empirical evi-dence that the Cilk-5 scheduler is e�cient. Finally, Section 7presents related work and o�ers some conclusions.2 The Cilk languageThis section presents a brief overview of the Cilk extensionsto C as supported by Cilk-5. (For a complete description,consult the Cilk-5 manual [8].) The key features of the lan-guage are the speci�cation of parallelism and synchroniza-tion, through the spawn and sync keywords, and the speci-�cation of nondeterminism, using inlet and abort.

#include <stdlib.h>#include <stdio.h>#include <cilk.h>cilk int fib (int n){ if (n<2) return n;else {int x, y;x = spawn fib (n-1);y = spawn fib (n-2);sync;return (x+y);}}cilk int main (int argc, char *argv[]){ int n, result;n = atoi(argv[1]);result = spawn fib(n);sync;printf ("Result: %d\n", result);return 0;}Figure 1: A simple Cilk program to compute the nth Fibonaccinumber in parallel (using a very bad algorithm).The basic Cilk language can be understood from an exam-ple. Figure 1 shows a Cilk program that computes the nthFibonacci number.1 Observe that the program would be anordinary C program if the three keywords cilk, spawn, andsync are elided.The keyword cilk identi�es fib as a Cilk procedure,which is the parallel analog to a C function. Parallelismis created when the keyword spawn precedes the invocationof a procedure. The semantics of a spawn di�ers from aC function call only in that the parent can continue to ex-ecute in parallel with the child, instead of waiting for thechild to complete as is done in C. Cilk's scheduler takes theresponsibility of scheduling the spawned procedures on theprocessors of the parallel computer.A Cilk procedure cannot safely use the values returned byits children until it executes a sync statement. The syncstatement is a local \barrier," not a global one as, for ex-ample, is used in message-passing programming. In the Fi-bonacci example, a sync statement is required before thestatement return (x+y) to avoid the anomaly that wouldoccur if x and y are summed before they are computed. Inaddition to explicit synchronization provided by the syncstatement, every Cilk procedure syncs implicitly before itreturns, thus ensuring that all of its children terminate be-fore it does.Ordinarily, when a spawned procedure returns, the re-turned value is simply stored into a variable in its parent'sframe:1This program uses an ine�cient algorithm which runs in exponen-tial time. Although logarithmic-time methods are known [9, p. 850],this program nevertheless provides a good didactic example.2



cilk int fib (int n){ int x = 0;inlet void summer (int result){ x += result;return;}if (n<2) return n;else {summer(spawn fib (n-1));summer(spawn fib (n-2));sync;return (x);}}Figure 2: Using an inlet to compute the nth Fibonnaci number.x = spawn foo(y);Occasionally, one would like to incorporate the returnedvalue into the parent's frame in a more complex way. Cilkprovides an inlet feature for this purpose, which was in-spired in part by the inlet feature of TAM [10].An inlet is essentially a C function internal to a Cilk pro-cedure. In the normal syntax of Cilk, the spawning of aprocedure must occur as a separate statement and not in anexpression. An exception is made to this rule if the spawnis performed as an argument to an inlet call. In this case,the procedure is spawned, and when it returns, the inlet isinvoked. In the meantime, control of the parent procedureproceeds to the statement following the inlet call. In princi-ple, inlets can take multiple spawned arguments, but Cilk-5has the restriction that exactly one argument to an inletmay be spawned and that this argument must be the �rstargument. If necessary, this restriction is easy to programaround.Figure 2 illustrates how the fib() function might be codedusing inlets. The inlet summer() is de�ned to take a returnedvalue result and add it to the variable x in the frame of theprocedure that does the spawning. All the variables of fib()are available within summer(), since it is an internal functionof fib().2No lock is required around the accesses to x by summer,because Cilk provides atomicity implicitly. The concern isthat the two updates might occur in parallel, and if atomic-ity is not imposed, an update might be lost. Cilk providesimplicit atomicity among the \threads" of a procedure in-stance, where a thread is a maximal sequence of instruc-tions ending with a spawn, sync, or return (either explicitor implicit) statement. An inlet is precluded from containingspawn and sync statements, and thus it operates atomicallyas a single thread. Implicit atomicity simpli�es reasoning2The C elision of a Cilk program with inlets is not ANSI C, becauseANSI C does not support internal C functions. Cilk is based on GnuC technology, however, which does provide this support.

about concurrency and nondeterminism without requiringlocking, declaration of critical regions, and the like.Cilk provides syntactic sugar to produce certain commonlyused inlets implicitly. For example, the statement x +=spawn fib(n-1) conceptually generates an inlet similar tothe one in Figure 2.Sometimes, a procedure spawns o� parallel work which itlater discovers is unnecessary. This \speculative" work canbe aborted in Cilk using the abort primitive inside an in-let. A common use of abort occurs during a parallel search,where many possibilities are searched in parallel. As soon asa solution is found by one of the searches, one wishes to abortany currently executing searches as soon as possible so as notto waste processor resources. The abort statement, whenexecuted inside an inlet, causes all of the already-spawnedchildren of the procedure to terminate.We considered using \futures" [19] with implicit synchro-nization, as well as synchronizing on speci�c variables, in-stead of using the simple spawn and sync statements. Werealized from the work-�rst principle, however, that di�er-ent synchronization mechanisms could have an impact onlyon the critical-path of a computation, and so this issue wasof secondary concern. Consequently, we opted for imple-mentation simplicity. Also, in systems that support re-laxed memory-consistency models, the explicit sync state-ment can be used to ensure that all side-e�ects from previ-ously spawned subprocedures have occurred.In addition to the control synchronization provided bysync, Cilk programmers can use explicit locking to syn-chronize accesses to data, providing mutual exclusion andatomicity. Data synchronization is an overhead borne onthe work, however, and although we have striven to min-imize these overheads, �ne-grain locking on contemporaryprocessors is expensive. We are currently investigating howto incorporate atomicity into the Cilk language so that pro-tocol issues involved in locking can be avoided at the userlevel. To aid in the debugging of Cilk programs that uselocks, we have been developing a tool called the \Nonde-terminator" [7, 13], which detects common synchronizationbugs called data races.3 The work-�rst principleThis section justi�es the work-�rst principle stated in Sec-tion 1 by showing that it follows from three assumptions.First, we assume that Cilk's scheduler operates in practiceaccording to the theoretical analysis presented in [3, 5]. Sec-ond, we assume that in the common case, ample \parallelslackness" [28] exists, that is, the average parallelism of aCilk program exceeds the number of processors on which werun it by a su�cient margin. Third, we assume (as is indeedthe case) that every Cilk program has a C elision againstwhich its one-processor performance can be measured.The theoretical analysis presented in [3, 5] cites two funda-3



mental lower bounds as to how fast a Cilk program can run.Let us denote by TP the execution time of a given computa-tion on P processors. Then, the work of the computation isT1 and its critical-path length is T1. For a computation withT1 work, the lower bound TP � T1=P must hold, because atmost P units of work can be executed in a single step. Inaddition, the lower bound TP � T1 must hold, since a �nitenumber of processors cannot execute faster than an in�nitenumber.3Cilk's randomized work-stealing scheduler [3, 5] executesa Cilk computation on P processors in expected timeTP = T1=P +O(T1) ; (1)assuming an ideal parallel computer. This equation resem-bles \Brent's theorem" [6, 15] and is optimal to within aconstant factor, since T1=P and T1 are both lower bounds.We call the �rst term on the right-hand side of Equation (1)the work term and the second term the critical-path term.Importantly, all communication costs due to Cilk's schedulerare borne by the critical-path term, as are most of the otherscheduling costs. To make these overheads explicit, we de-�ne the critical-path overhead to be the smallest constantc1 such that TP � T1=P + c1T1 : (2)The second assumption needed to justify the work-�rstprinciple focuses on the \common-case" regime in which aparallel program operates. De�ne the average parallelismas P = T1=T1, which corresponds to the maximum pos-sible speedup that the application can obtain. De�ne alsothe parallel slackness [28] to be the ratio P=P . The as-sumption of parallel slackness is that P=P � c1, whichmeans that the number P of processors is much smaller thanthe average parallelism P . Under this assumption, it followsthat T1=P � c1T1, and hence from Inequality (2) thatTP � T1=P , and we obtain linear speedup. The critical-path overhead c1 has little e�ect on performance when su�-cient slackness exists, although it does determines how muchslackness must exist to ensure linear speedup.Whether substantial slackness exists in common applica-tions is a matter of opinion and empiricism, but we suggestthat slackness is the common case. The expressiveness ofCilk makes it easy to code applications with large amountsof parallelism. For modest-sized problems, many applica-tions exhibit an average parallelism of over 200, yielding sub-stantial slackness on contemporary SMP's. Even on SandiaNational Laboratory's Intel Paragon, which contains 1824nodes, the ?Socrates chess program (coded in Cilk-1) ranin its linear-speedup regime during the 1995 ICCA WorldComputer Chess Championship (where it placed second ina �eld of 24). Section 6 describes a dozen other diverseapplications which were run on an 8-processor SMP with3This abstract model of execution time ignores real-life details,such as memory-hierarchy e�ects, but is nonetheless quite accurate [4].

considerable parallel slackness. The parallelisim of these ap-plications increases with problem size, thereby ensuring theywill run well on large machines.The third assumption behind the work-�rst principle isthat every Cilk program has a C elision against which itsone-processor performance can be measured. Let us denoteby TS the running time of the C elision. Then, we de�ne thework overhead by c1 = T1=TS. Incorporating critical-pathand work overheads into Inequality (2) yieldsTP � c1TS=P + c1T1 (3)� c1TS=P ;since we assume parallel slackness.We can now restate the work-�rst principle precisely. Min-imize c1, even at the expense of a larger c1, because c1 has amore direct impact on performance. Adopting the work-�rstprinciple may adversely a�ect the ability of an applicationto scale up, however, if the critical-path overhead c1 is toolarge. But, as we shall see in Section 6, critical-path over-head is reasonably small in Cilk-5, and many applicationscan be coded with large amounts of parallelism.The work-�rst principle pervades the Cilk-5 implementa-tion. The work-stealing scheduler guarantees that with highprobability, only O(PT1) steal (migration) attempts occur(that is, O(T1) on average per processor), all costs for whichare borne on the critical path. Consequently, the schedulerfor Cilk-5 postpones as much of the scheduling cost as pos-sible to when work is being stolen, thereby removing it asa contributor to work overhead. This strategy of amortiz-ing costs against steal attempts permeates virtually everydecision made in the design of the scheduler.4 Cilk's compilation strategyThis section describes how our cilk2c compiler generates Cpostsource from a Cilk program. As dictated by the work-�rst principle, our compiler and scheduler are designed toreduce the work overhead as much as possible. Our strategyis to generate two clones of each procedure|a fast clone anda slow clone. The fast clone operates much as does the Celision and has little support for parallelism. The slow clonehas full support for parallelism, along with its concomitantoverhead. We �rst describe the Cilk scheduling algorithm.Then, we describe how the compiler translates the Cilk lan-guage constructs into code for the fast and slow clones ofeach procedure. Lastly, we describe how the runtime sys-tem links together the actions of the fast and slow clones toproduce a complete Cilk implementation.As in lazy task creation [24], in Cilk-5 each proces-sor, called a worker , maintains a ready deque (doubly-ended queue) of ready procedures (technically, procedureinstances). Each deque has two ends, a head and a tail ,from which procedures can be added or removed. A workeroperates locally on the tail of its own deque, treating it much4



1 int fib (int n)2 {3 fib_frame *f; frame pointer4 f = alloc(sizeof(*f)); allocate frame5 f->sig = fib_sig; initialize frame6 if (n<2) {7 free(f, sizeof(*f)); free frame8 return n;9 }10 else {11 int x, y;12 f->entry = 1; save PC13 f->n = n; save live vars14 *T = f; store frame pointer15 push(); push frame16 x = fib (n-1); do C call17 if (pop(x) == FAILURE) pop frame18 return 0; frame stolen19 � � � second spawn20 ; sync is free!21 free(f, sizeof(*f)); free frame22 return (x+y);23 }24 }Figure 3: The fast clone generated by cilk2c for the fib proce-dure from Figure 1. The code for the second spawn is omitted.The functions alloc and free are inlined calls to the runtimesystem's fast memory allocator. The signature fib sig containsa description of the fib procedure, including a pointer to the slowclone. The push and pop calls are operations on the schedulingdeque and are described in detail in Section 5.as C treats its call stack, pushing and popping spawned acti-vation frames. When a worker runs out of work, it becomesa thief and attempts to steal a procedure another worker,called its victim . The thief steals the procedure from thehead of the victim's deque, the opposite end from which thevictim is working.When a procedure is spawned, the fast clone runs. When-ever a thief steals a procedure, however, the procedure isconverted to a slow clone. The Cilk scheduler guaranteesthat the number of steals is small when su�cient slacknessexists, and so we expect the fast clones to be executed mostof the time. Thus, the work-�rst principle reduces to mini-mizing costs in the fast clone, which contribute more heavilyto work overhead. Minimizing costs in the slow clone, al-though a desirable goal, is less important, since these costscontribute less heavily to work overhead and more to critical-path overhead.We minimize the costs of the fast clone by exploiting thestructure of the Cilk scheduler. Because we convert a pro-cedure to its slow clone when it is stolen, we maintain theinvariant that a fast clone has never been stolen. Further-more, none of the descendants of a fast clone have beenstolen either, since the strategy of stealing from the headsof ready deques guarantees that parents are stolen beforetheir children. As we shall see, this simple fact allows manyoptimizations to be performed in the fast clone.We now describe how our cilk2c compiler generates post-source C code for the fib procedure from Figure 1. An ex-

ample of the postsource for the fast clone of fib is givenin Figure 3. The generated C code has the same generalstructure as the C elision, with a few additional statements.In lines 4{5, an activation frame is allocated for fib andinitialized. The Cilk runtime system uses activation framesto represent procedure instances. Using techniques similarto [16, 17], our inlined allocator typically takes only a fewcycles. The frame is initialized in line 5 by storing a pointerto a static structure, called a signature, describing fib.The �rst spawn in fib is translated into lines 12{18. Inlines 12{13, the state of the fib procedure is saved intothe activation frame. The saved state includes the programcounter, encoded as an entry number, and all live, dirty vari-ables. Then, the frame is pushed on the runtime deque inlines 14{15.4 Next, we call the fib routine as we wouldin C. Because the spawn statement itself compiles directlyto its C elision, the postsource can exploit the optimizationcapabilities of the C compiler, including its ability to passarguments and receive return values in registers rather thanin memory.After fib returns, lines 17{18 check to see whether theparent procedure has been stolen. If it has, we return im-mediately with a dummy value. Since all of the ancestorshave been stolen as well, the C stack quickly unwinds andcontrol is returned to the runtime system.5 The protocolto check whether the parent procedure has been stolen isquite subtle|we postpone discussion of its implementationto Section 5. If the parent procedure has not been stolen,it continues to execute at line 19, performing the secondspawn, which is not shown.In the fast clone, all sync statements compile to no-ops.Because a fast clone never has any children when it is exe-cuting, we know at compile time that all previously spawnedprocedures have completed. Thus, no operations are re-quired for a sync statement, as it always succeeds. For exam-ple, line 20 in Figure 3, the translation of the sync statementis just the empty statement. Finally, in lines 21{22, fib deal-locates the activation frame and returns the computed resultto its parent procedure.The slow clone is similar to the fast clone except thatit provides support for parallel execution. When a proce-dure is stolen, control has been suspended between two ofthe procedure's threads, that is, at a spawn or sync point.When the slow clone is resumed, it uses a goto statementto restore the program counter, and then it restores localvariable state from the activation frame. A spawn statementis translated in the slow clone just as in the fast clone. For async statement, cilk2c inserts a call to the runtime system,which checks to see whether the procedure has any spawnedchildren that have not returned. Although the parallel book-4If the shared memory is not sequentially consistent, a memoryfence must be inserted between lines 14 and 15 to ensure that thesurrounding writes are executed in the proper order.5The setjmp/longjmp facility of C could have been used as well, butour unwinding strategy is simpler.5



keeping in a slow clone is substantial, it contributes little towork overhead, since slow clones are rarely executed.The separation between fast clones and slow clones alsoallows us to compile inlets and abort statements e�cientlyin the fast clone. An inlet call compiles as e�ciently as anordinary spawn. For example, the code for the inlet call fromFigure 2 compiles similarly to the following Cilk code:tmp = spawn fib(n-1);summer(tmp);Implicit inlet calls, such as x += spawn fib(n-1), compiledirectly to their C elisions. An abort statement compiles toa no-op just as a sync statement does, because while it isexecuting, a fast clone has no children to abort.The runtime system provides the glue between the fast andslow clones that makes the whole system work. It includesprotocols for stealing procedures, returning values betweenprocessors, executing inlets, aborting computation subtrees,and the like. All of the costs of these protocols can be amor-tized against the critical path, so their overhead does notsigni�cantly a�ect the running time when su�cient parallelslackness exists. The portion of the stealing protocol exe-cuted by the worker contributes to work overhead, however,thereby warranting a careful implementation. We discussthis protocol in detail in Section 5.The work overhead of a spawn in Cilk-5 is only a few readsand writes in the fast clone|3 reads and 5 writes for the fibexample. We will experimentally quantify the work overheadin Section 6. Some work overheads still remain in our im-plementation, however, including the allocation and freeingof activation frames, saving state before a spawn, pushingand popping of the frame on the deque, and checking if aprocedure has been stolen. A portion of this work overheadis due to the fact that Cilk-5 is duplicating the work the Ccompiler performs, but as Section 6 shows, this overhead issmall. Although a production Cilk compiler might be ableeliminate this unnecessary work, it would likely compromiseportability.In Cilk-4, the precursor to Cilk-5, we took the work-�rstprinciple to the extreme. Cilk-4 performed stack-based al-location of activation frames, since the work overhead ofstack allocation is smaller than the overhead of heap alloca-tion. Because of the \cactus stack" [25] semantics of the Cilkstack,6 however, Cilk-4 had to manage the virtual-memorymap on each processor explicitly, as was done in [27]. Thework overhead in Cilk-4 for frame allocation was little morethan that of incrementing the stack pointer, but wheneverthe stack pointer over
owed a page, an expensive user-levelinterrupt ensued, during which Cilk-4 would modify thememory map. Unfortunately, the operating-system mech-anisms supporting these operations were too slow and un-predictable, and the possibility of a page fault in critical sec-6Suppose a procedure A spawns two children B and C. The twochildren can reference objects in A's activation frame, but B and Cdo not see each other's frame.

tions led to complicated protocols. Even though these over-heads could be charged to the critical-path term, in practice,they became so large that the critical-path term contributedsigni�cantly to the running time, thereby violating the as-sumption of parallel slackness. A one-processor execution ofa program was indeed fast, but insu�cient slackness some-times resulted in poor parallel performance.In Cilk-5, we simpli�ed the allocation of activation framesby simply using a heap. In the common case, a frame isallocated by removing it from a free list. Deallocation isperformed by inserting the frame into the free list. No user-level management of virtual memory is required, except forthe initial setup of shared memory. Heap allocation con-tributes only slightly more than stack allocation to the workoverhead, but it saves substantially on the critical path term.On the downside, heap allocation can potentially waste morememory than stack allocation due to fragmentation. For acareful analysis of the relative merits of stack and heap basedallocation that supports heap allocation, see the paper byAppel and Shao [1]. For an equally careful analysis thatsupports stack allocation, see [22].Thus, although the work-�rst principle gives a general un-derstanding of where overheads should be borne, our expe-rience with Cilk-4 showed that large enough critical-pathoverheads can tip the scales to the point where the assump-tions underlying the principle no longer hold. We believethat Cilk-5 work overhead is nearly as low as possible, givenour goal of generating portable C output from our compiler.7Other researchers have been able to reduce overheads evenmore, however, at the expense of portability. For example,lazy threads [14] obtains e�ciency at the expense of im-plementing its own calling conventions, stack layouts, etc.Although we could in principle incorporate such machine-dependent techniques into our compiler, we feel that Cilk-5strikes a good balance between performance and portability.We also feel that the current overheads are su�ciently lowthat other problems, notably minimizing overheads for datasynchronization, deserve more attention.5 Implemention of work-stealingIn this section, we describe Cilk-5's work-stealing mecha-nism, which is based on a Dijkstra-like [11], shared-memory,mutual-exclusion protocol called the \THE" protocol. Inaccordance with the work-�rst principle, this protocol hasbeen designed to minimize work overhead. For example, ona 167-megahertz UltraSPARC I, the fib program with theTHE protocol runs about 25% faster than with hardwarelocking primitives. We �rst present a simpli�ed version ofthe protocol. Then, we discuss the actual implementation,which allows exceptions to be signaled with no additionaloverhead.7Although the runtime system requires some e�ort to port betweenarchitectures, the compiler requires no changes whatsoever for di�er-ent platforms.6



Several straightforward mechanisms might be consideredto implement a work-stealing protocol. For example, a thiefmight interrupt a worker and demand attention from thisvictim. This strategy presents problems for two reasons.First, the mechanisms for signaling interrupts are slow, andalthough an interrupt would be borne on the critical path,its large cost could threaten the assumption of parallel slack-ness. Second, the worker would necessarily incur some over-head on the work term to ensure that it could be safelyinterrupted in a critical section. As an alternative to send-ing interrupts, thieves could post steal requests, and workerscould periodically poll for them. Once again, however, a costaccrues to the work overhead, this time for polling. Tech-niques are known that can limit the overhead of polling [12],but they require the support of a sophisticated compiler.The work-�rst principle suggests that it is reasonable toput substantial e�ort into minimizing work overhead in thework-stealing protocol. Since Cilk-5 is designed for shared-memory machines, we chose to implement work-stealingthrough shared-memory, rather than with message-passing,as might otherwise be appropriate for a distributed-memoryimplementation. In our implementation, both victim andthief operate directly through shared memory on the victim'sready deque. The crucial issue is how to resolve the race con-dition that arises when a thief tries to steal the same framethat its victim is attempting to pop. One simple solutionis to add a lock to the deque using relatively heavyweighthardware primitives like Compare-And-Swap or Test-And-Set. Whenever a thief or worker wishes to remove a framefrom the deque, it �rst grabs the lock. This solution hasthe same fundamental problem as the interrupt and pollingmechanisms just described, however. Whenever a workerpops a frame, it pays the heavy price to grab a lock, whichcontributes to work overhead.Consequently, we adopted a solution that employs Di-jkstra's protocol for mutual exclusion [11], which assumesonly that reads and writes are atomic. Because our proto-col uses three atomic shared variables T, H, and E, we callit the THE protocol. The key idea is that actions by theworker on the tail of the queue contribute to work overhead,while actions by thieves on the head of the queue contributeonly to critical-path overhead. Therefore, in accordance withthe work-�rst principle, we attempt to move costs from theworker to the thief. To arbitrate among di�erent thievesattempting to steal from the same victim, we use a hard-ware lock, since this overhead can be amortized against thecritical path. To resolve con
icts between a worker and thesole thief holding the lock, however, we use a lightweightDijkstra-like protocol which contributes minimally to workoverhead. A worker resorts to a heavyweight hardware lockonly when it encounters an actual con
ict with a thief, inwhich case we can charge the overhead that the victim incursto the critical path.In the rest of this section, we describe the THE protocol

Worker/Victim1 push() {2 T++;3 }4 pop() {5 T--;6 if (H > T) {7 T++;8 lock(L);9 T--;10 if (H > T) {11 T++;12 unlock(L);13 return FAILURE;14 }15 unlock(L);16 }17 return SUCCESS;18 }

Thief1 steal() {2 lock(L);3 H++;4 if (H > T) {5 H--;6 unlock(L);7 return FAILURE;8 }9 unlock(L);10 return SUCCESS;11 }
Figure 4: Pseudocode of a simpli�ed version of the THE protocol.The left part of the �gure shows the actions performed by thevictim, and the right part shows the actions of the thief. Noneof the actions besides reads and writes are assumed to be atomic.For example, T--; can be implemented as tmp = T; tmp = tmp -1; T = tmp;.in detail. We �rst present a simpli�ed protocol that usesonly two shared variables T and H designating the tail andthe head of the deque, respectively. Later, we extend theprotocol with a third variable E that allows exceptions to besignaled to a worker. The exception mechanism is used toimplement Cilk's abort statement. Interestingly, this exten-sion does not introduce any additional work overhead.The pseudocode of the simpli�ed THE protocol is shownin Figure 4. Assume that shared memory is sequentiallyconsistent [20].8 The code assumes that the ready deque isimplemented as an array of frames. The head and tail ofthe deque are determined by two indices T and H, which arestored in shared memory and are visible to all processors.The index T points to the �rst unused element in the array,and H points to the �rst frame on the deque. Indices growfrom the head towards the tail so that under normal con-ditions, we have T � H. Moreover, each deque has a lock Limplemented with atomic hardware primitives or with OScalls.The worker uses the deque as a stack. (See Section 4.)Before a spawn, it pushes a frame onto the tail of the deque.After a spawn, it pops the frame, unless the frame has beenstolen. A thief attempts to steal the frame at the head ofthe deque. Only one thief at the time may steal from thedeque, since a thief grabs L as its �rst action. As can beseen from the code, the worker alters T but not H, whereasthe thief only increments H and does not alter T.The only possible interaction between a thief and its vic-8If the shared memory is not sequentially consistent, a memoryfence must be inserted between lines 5 and 6 of the worker/victimcode and between lines 3 and 4 of the thief code to ensure that theseinstructions are executed in the proper order.7
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(a)

H = T

(c)

Thief

VictimFigure 5: The three cases of the ready deque in the simpli�ed THEprotocol. A shaded entry indicates the presence of a frame at acertain position in the deque. The head and the tail are markedby T and H.tim occurs when the thief is incrementing H while the vic-tim is decrementing T. Consequently, it is always safe fora worker to append a new frame at the end of the deque(push) without worrying about the actions of the thief. Fora pop operations, there are three cases, which are shown inFigure 5. In case (a), the thief and the victim can both geta frame from the deque. In case (b), the deque contains onlyone frame. If the victim decrements T without interferencefrom thieves, it gets the frame. Similarly, a thief can stealthe frame as long as its victim is not trying to obtain it. Ifboth the thief and the victim try to grab the frame, however,the protocol guarantees that at least one of them discoversthat H > T. If the thief discovers that H > T, it restoresH to its original value and retreats. If the victim discoversthat H > T, it restores T to its original value and restarts theprotocol after having acquired L. With L acquired, no thiefcan steal from this deque so the victim can pop the framewithout interference (if the frame is still there). Finally, incase (c) the deque is empty. If a thief tries to steal, it willalways fail. If the victim tries to pop, the attempt fails andcontrol returns to the Cilk runtime system. The protocolcannot deadlock, because each process holds only one lockat a time.We now argue that the THE protocol contributes little tothe work overhead. Pushing a frame involves no overheadbeyond updating T. In the common case where a workercan succesfully pop a frame, the pop protocol performs only6 operations|2 memory loads, 1 memory store, 1 decre-ment, 1 comparison, and 1 (predictable) conditional branch.Moreover, in the common case where no thief operates on

the deque, both H and T can be cached exclusively by theworker. The expensive operation of a worker grabbing thelock L occurs only when a thief is simultaneously trying tosteal the frame being popped. Since the number of stealattempts depends on T1, not on T1, the relatively heavycost of a victim grabbing L can be considered as part of thecritical-path overhead c1 and does not in
uence the workoverhead c1.We ran some experiments to determine the relative per-formance of the THE protocol versus the straightforwardprotocol in which pop just locks the deque before accessingit. On a 167-megahertz UltraSPARC I, the THE protocolis about 25% faster than the simple locking protocol. Thismachine's memory model requires that a memory fence in-struction (membar) be inserted between lines 5 and 6 of thepop pseudocode. We tried to quantify the performance im-pact of the membar instruction, but in all our experimentsthe execution times of the code with and without membarare about the same. On a 200-megahertz Pentium Pro run-ning Linux and gcc 2.7.1, the THE protocol is only about5% faster than the locking protocol. On this processor, theTHE protocol spends about half of its time in the memoryfence.Because it replaces locks with memory synchronization,the THE protocol is more \nonblocking" than a straightfor-ward locking protocol. Consequently, the THE protocol isless prone to problems that arise when spin locks are usedextensively. For example, even if a worker is suspendedby the operating system during the execution of pop, theinfrequency of locking in the THE protocol means that athief can usually complete a steal operation on the worker'sdeque. Recent work by Arora et al. [2] has shown that acompletely nonblocking work-stealing scheduler can be im-plemented. Using these ideas, Lisiecki and Medina [21] havemodi�ed the Cilk-5 scheduler to make it completely non-blocking. Their experience is that the THE protocol greatlysimpli�es a nonblocking implementation.The simpli�ed THE protocol can be extended to supportthe signaling of exceptions to a worker. In Figure 4, theindex H plays two roles: it marks the head of the deque, andit marks the point that the worker cannot cross when it pops.These places in the deque need not be the same. In the fullTHE protocol, we separate the two functions of H into twovariables: H, which now only marks the head of the deque,and E, which marks the point that the victim cannot cross.Whenever E > T, some exceptional condition has occurred,which includes the frame being stolen, but it can also be usedfor other exceptions. For example, setting E =1 causes theworker to discover the exception at its next pop. In thenew protocol, E replaces H in line 6 of the worker/victim.Moreover, lines 7{15 of the worker/victim are replaced bya call to an exception handler to determine the type ofexception (stolen frame or otherwise) and the proper actionto perform. The thief code is also modi�ed. Before trying to8



Program Size T1 T1 P c1 T8 T1=T8 TS=T8fib 35 12.77 0.0005 25540 3.63 1.60 8.0 2.2blockedmul 1024 29.9 0.0044 6730 1.05 4.3 7.0 6.6notempmul 1024 29.7 0.015 1970 1.05 3.9 7.6 7.2strassen 1024 20.2 0.58 35 1.01 3.54 5.7 5.6*cilksort 4; 100; 000 5.4 0.0049 1108 1.21 0.90 6.0 5.0yqueens 22 150. 0.0015 96898 0.99 18.8 8.0 8.0yknapsack 30 75.8 0.0014 54143 1.03 9.5 8.0 7.7lu 2048 155.8 0.42 370 1.02 20.3 7.7 7.5*cholesky BCSSTK32 1427. 3.4 420 1.25 208. 6.9 5.5heat 4096� 512 62.3 0.16 384 1.08 9.4 6.6 6.1fft 220 4.3 0.0020 2145 0.93 0.77 5.6 6.0Barnes-Hut 216 124. 0.15 853 1.02 16.5 7.5 7.4Figure 6: The performance of example Cilk programs. Times are in seconds and are accurate to within about 10%. The serial programsare C elisions of the Cilk programs, except for those programs that are starred (*), where the parallel program implements a di�erentalgorithm than the serial program. Programs labeled by a dagger (y) are nondeterministic, and thus, the running time on one processoris not the same as the work performed by the computation. For these programs, the value for T1 indicates the actual work of thecomputation on 8 processors, and not the running time on one processor.steal, the thief increments E. If there is nothing to steal, thethief restores E to the original value. Otherwise, the thiefsteals frame H and increments H. From the point of view ofa worker, the common case is the same as in the simpli�edprotocol: it compares two pointers (E and T rather than Hand T).The exception mechanism is used to implement abort.When a Cilk procedure executes an abort instruction, theruntime system serially walks the tree of outstanding descen-dants of that procedure. It marks the descendants as abortedand signals an abort exception on any processor working ona descendant. At its next pop, an aborted procedure willdiscover the exception, notice that it has been aborted, andreturn immediately. It is conceivable that a procedure couldrun for a long time without executing a pop and discoveringthat it has been aborted. We made the design decision toaccept the possibility of this unlikely scenario, �guring thatmore cycles were likely to be lost in work overhead if weabandoned the THE protocol for a mechanism that solvesthis minor problem.6 BenchmarksIn this section, we evaluate the performance of Cilk-5. Weshow that on 12 applications, the work overhead c1 is closeto 1, which indicates that the Cilk-5 implementation exploitsthe work-�rst principle e�ectively. We then present a break-down of Cilk's work overhead c1 on four machines. Finally,we present experiments showing that the critical-path over-head c1 is reasonably small as well.Figure 6 shows a table of performance measurements takenfor 12 Cilk programs on a Sun Enterprise 5000 SMP with 8167-megahertz UltraSPARC processors, each with 512 kilo-bytes of L2 cache, 16 kilobytes each of L1 data and instruc-tion caches, running Solaris 2.5. We compiled our programswith gcc 2.7.2 at optimization level -O3. For a full descrip-tion of these programs, see the Cilk 5.1 manual [8]. Thetable shows the work of each Cilk program T1, the criticalpath T1, and the two derived quantities P and c1. The ta-

ble also lists the running time T8 on 8 processors, and thespeedup T1=T8 relative to the one-processor execution time,and speedup TS=T8 relative to the serial execution time.For the 12 programs, the average parallelism P is in mostcases quite large relative to the number of processors on atypical SMP. These measurements validate our assumptionof parallel slackness, which implies that the work term dom-inates in Inequality (4). For instance, on 1024� 1024 matri-ces, notempmul runs with an average parallelism of 1970|yielding adequate parallel slackness for up to several hun-dred processors. For even larger machines, one normallywould not run such a small problem. For notempmul, as wellas the other 11 applications, the average parallelism growswith problem size, and thus su�cient parallel slackness islikely to exist even for much larger machines, as long as theproblem sizes are scaled appropriately.The work overhead c1 is only a few percent larger than1 for most programs, which shows that our design of Cilk-5faithfully implements the work-�rst principle. The two caseswhere the work overhead is larger (cilksort and cholesky)are due to the fact that we had to change the serial algo-rithm to obtain a parallel algorithm, and thus the compar-ison is not against the C elision. For example, the serial Calgorithm for sorting is an in-place quicksort, but the par-allel algorithm cilksort requires an additional temporaryarray which adds overhead beyond the overhead of Cilk it-self. Similarly, our parallel Cholesky factorization uses aquadtree representation of the sparse matrix, which inducesmore work than the linked-list representation used in theserial C algorithm. Finally, the work overhead for fib islarge, because fib does essentially no work besides spawn-ing procedures. Thus, the overhead c1 = 3:63 for fib gives agood estimate of the cost of a Cilk spawn versus a traditionalC function call. With such a small overhead for spawning,one can understand why for most of the other applications,which perform signi�cant work for each spawn, the overheadof Cilk-5's scheduling is barely noticeable compared to the10% \noise" in our measurements.9
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Figure 7: Breakdown of overheads for fib running on one pro-cessor on various architectures. The overheads are normalized tothe running time of the serial C elision. The three overheads arefor saving the state of a procedure before a spawn, the allocationof activation frames for procedures, and the THE protocol. Ab-solute times are given for the per-spawn running time of the Celision.We now present a breakdown of Cilk's serial overhead c1into its components. Because scheduling overheads are smallfor most programs, we perform our analysis with the fibprogram from Figure 1. This program is unusually sensi-tive to scheduling overheads, because it contains little actualcomputation. We give a breakdown of the serial overheadinto three components: the overhead of saving state beforespawning, the overhead of allocating activation frames, andthe overhead of the THE protocol.Figure 7 shows the breakdown of Cilk's serial overheadfor fib on four machines. Our methodology for obtainingthese numbers is as follows. First, we take the serial C fibprogram and time its execution. Then, we individually addin the code that generates each of the overheads and timethe execution of the resulting program. We attribute theadditional time required by the modi�ed program to thescheduling code we added. In order to verify our numbers,we timed the fib code with all of the Cilk overheads added(the code shown in Figure 3), and compared the resultingtime to the sum of the individual overheads. In all cases,the two times di�ered by less than 10%.Overheads vary across architectures, but the overhead ofCilk is typically only a few times the C running time on thisspawn-intensive program. Overheads on the Alpha machineare particularly large, because its native C function calls arefast compared to the other architectures. The state-savingcosts are small for fib, because all four architectures havewrite bu�ers that can hide the latency of the writes required.We also attempted to measure the critical-path over-head c1. We used the synthetic knary benchmark [4] tosynthesize computations arti�cially with a wide range ofwork and critical-path lengths. Figure 8 shows the outcomefrom many such experiments. The �gure plots the measured
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