
literate
programming Modera ted by

Christopher J. Van Wyk

WEAVING A LANGUAGE-INDEPENDENT WEB

Pofuglot Pr~gr~~~ing Literacy

.I

‘Moderatm’s Introdyction to Column 5
The mailbox fairly overflowed with responses to Eric
~~~~ton’s program to expand generalized regular 
secessions (Comnzunications, December 1988, p. 1376). 
‘l&%ry &tter said &at it would have been more appro- 
priate to solve Mark Kahrs’s problem in another pro- 
gramming language. The introduction should have 
pointed out that Kahrs% program, which needed a 
strig-qx;p&nsion function, was itself written in C; thus, 
the requirement that it be possible to plug any solution 
into the larger program without much fuss practically 
demanded that Hamilton write in C. 

@t2mugh correspondents were unanimous that an- 
other Ianguage would have been a better choice for the 
solution, they disagreed almost completely about the 
ohoiceofthat language: I received solutions written in 
APL, 4PL2, Icon, Miranda, MUMPS, and Smalltalk; two 
other readers suggested that it would be easy and natu- 
ral to solve the problem in LISP, but nefther had done 
so. These writers, and other readers who want to write 
titerate programs in a language other than Pascal and C, 
z&mid be interested in the following article by Norman 
Ran&y. 

‘This re$eesch has been sponsored in part by the USAF, Rome Air Develop. 
ment &n&k, under contract number F30802-86-C-0071. 

Q1989 ACM OOOl-0782/89/09004051 $1.50 

In the fall of 1987 I started planning the implementa- 
tion of a suite of tools for building verified Ada pro- 
grams [5]. The first tool to be built was a verification 
condition generator, which was to be formally defined 
using the typed lambda calculus. I was eager to include 
the definition with the code so that it would be easy to 
check the code’s correctness. Using WEB would have 
made this easy, but, unfortunately, the target program- 
ming language was SSL (a language for specifying struc- 
ture editors), and the only languages for which WEB 
implementations were available were Pascal and C. 

Writing a new WEB from scratch did not make sense, 
so I decided to modify Silvio Levy’s implementation of 
WEB in C [3], to get a WEB that would be written in C, 
but would read and write SSL code. From my previous 
experiences modifying WEB, I knew that the most time- 
consuming job would be fine-tuning the grammar that 
WEAVE uses to prettyprint code. I believed I could make 
debugging that grammar a lot less painful if, instead of 
trying to make dozens of small modifications by hand, I 
wrote a simple program, perhaps an AWK script, that 
would read a description of the grammar and generate 
C code for WEAVE. That AWK script became SPIDER, a 
program that turns language descriptions into C code 
for TANGLE and WEAVE. I have used SPIDER to gener- 
ate WEBS for C, AWK, SSL, Ada, and a couple of other 
languages. I will not go into the details of SPIDER; 
instead, I will try to describe what SPIDER does to 
accomplish its mission, or how to take the “essence of 
WEB” and make it language-independent. 

When using WEB, a programmer writes a single 
source file, foo . web, that holds both code and docu- 
mentation. TANGLE and WEAVE read that file. TANGLE 
extracts the code from the WEB file and rewrites it in a 
form suitable for compiling. WEAVE passes the docu- 
mentation parts to a document formatter (QX), and 
prettyprints the code parts. The whole process is shown 
in Figure 1, for C programs written in WEB. The § repre- 
sents files that have to be written by hand. Slant type is 
used for the names of executable programs. CTANGLE 
and CWEAVE are the C-language versions of TANGLE 
and WEAVE, cc is a C compiler, and Id is a loader. 

SPIDER is used to construct instances of TANGLE and 
WEAVE, and these instances are used to process pro- 
grams as shown in Figure 1. Code for the language- 
dependent parts of these instances is generated by SPI 
DER when it reads a language description file written 

September 1989 Volume 32 Number 9 Communications of the ACM 1051 



Literate Programming 

L 

- 

Executable foo 

Typeset documentation for f oo 

- 

FIGURE 1. Processing a C WEB File 

by a WEB designer. Figure 2 shows how instances of other sizes, suppose X is the Ada programming lan- 
TANGLE and WEAVE are generated. SPIDER converts a guage. The ada. spider file is about 260 lines long, 
hand-written description of a programming language 
into C WEB code for the language-dependent parts of 
TANGLE and WEAVE. In Figure 2 the target program- 
ming language is a hypothetical “X,” and the descrip- 
tion file is called “x. spider.” CTANGLE combines 
the code SPIDER writes with the “master copies” of 
tangle. web and weave. web, which contain the 
language-independent parts of TANGLE and WEAVE. 
The result is C source code for XTANGLE and XWEAVE. 
After that code is compiled and loaded with WEB's I/O 
code, the resulting executable versions of XTANGLE 
and XWEAVE can be used to process X-language pro- 
grams written in WEB format, as shown around the pe- 
riphery of Figure 2. 

The master copies of tangle. web and weave. web 
are about 1800 and 3200 lines long, respectively. About 
one.third of these lines are comments. To illustrate the 

and from it SPIDER generates about 1400 lines of ADA- 
TANGLE and ADAWEAVE. About one-tenth of these lines 
are comments. It is typical for SPIDER to generate be- 
tween 5n and 6n lines of C WEB code from an n-line 
language description. 

A WEB program is a collection of “section.s,” each of 
which has a documentation part, a definition part, and 
a code part. The documentation part describes what 
the section is supposed to do, and is intended to be nro- 
cessed by a formatter-my WEBS use T@, which is es- 
pecially convenient for mathematical symbols like 
those used in writing a formal semantics. The defini- 
tion part contains macro definitions. Each macro may 
have parameters or not, as the programmer chooses. 
The code in the code part is a fragment of i.he whole 
program. It is called a “module” and can be named or 
unnamed. When the module is named, the module 

Executable foo 

XTANGLE - 

. Typeset documentation for foo 

FIGURE 2. Building and Using an Instance of WEB 
(for Language X) 

1052 Communications of the ACM September 1989 Volume 32 Number 9 



Literate Programming 

name “stands for” that code, just as a macro name 
stands for the code in its definition. The unnamed mod- 
ule is special; the code in the unnamed module is con- 
sidered to be “the program.” 

Figure 3 shows a fragment of a WEB program; the 
fragment inverts an EBCDIC-to-ASCII table to obtain an 
ASCII-to-EBCDIC table. The target programming lan- 
guage is C. One module, (Invert to-ascii, producing 
to-ebcdic), uses the code defined in the other, (Set 
to-ebcdic[i] t UNDEFINED-CODE for all i). The pro- 
gram, f oo, of which this fragment is a part, can be 
input to CTANGLE and CWEAVE, to produce f oo . c 
and f oo . tex respectively, as shown in Figure 1. 

TANGLE'S job is to take a collection of sections and to 
produce a compilable program. TANGLE reads all the 
sections, skipping the documentation parts completely, 
but storing the macro definitions from the definition 
parts and the module definitions from the code parts. 
After it has read all the sections, TANGLE then writes 
out the code in the unnamed module. But whenever it 
encounters a module name in that code, instead of 
writing out the name, it writes out the code for which 
this name stands. That code may itself contain module 
names, which are replaced with the code for which 
they stand, and so on until TANGLE reaches code 
which contains no occurrences of module names. TAN - 
GLE processes macros similarly, except that macros 
may have parameters (modules may not). 

As I have described it, the “essence of tangling” is 
language-independent. In the full implementation of 
TANGLE there are only a few language-dependent de- 
tails, and almost all of them come up only in lexical 
analysis. During its input phase, TANGLE converts ma- 
cro definitions and module definitions into token lists. 
The major kinds of tokens are module name tokens, 
identifier tokens, and ordinary tokens. Identifier tokens 
may be expandable (when they are macro names) or 
unexpandable (when they are programming-language 
identifiers). Module name tokens are always expand- 
able, and ordinary tokens are never expandable. 
TANGLE uses a stack to write out the token list corre- 
sponding to the unnamed module, expanding expand- 
able tokens as it goes. No token is ever expanded until 
the time comes to write that token on the output. 

To build the language-dependent part of TANGLE, it 
is enough to tell TANGLE how to tokenize the input and 
how to write out a token list. TANGLE uses a “lowest- 
common-denominator” lexical analyzer to tokenize its 
input. The set of tokens recognized by this lexical ana- 
lyzer is the union of the sets of legal tokens of many 
different languages. For example, different ways of de- 
limiting string literals are recognized. Identifiers may 
have underscores, even though some languages (e.g., 
Pascal] may not permit underscores in identifiers, and 
others (e.g., Ada) may not permit consecutive under- 
scores in an identifier. In general, TANGLE and WEAVE 
do the right thing with legal programs, but they do not 
detect illegalities in a program. 

TANGLE'S lexical analyzer recognizes a fixed set of 
tokens representing identifiers, string literals, and nu- 

merit literals. Any printable ASCII character which is 
not part of some other token forms a token all by itself. 
A WEB builder can specify that certain strings should be 
treated as single tokens, and SPIDER will convert the 
specifications into appropriate code for TANGLE. For 
example, when building WEB for C, we tell SPIDER 
that the strings ++, ==, and a& (and many others) 
should be treated as single tokens, by putting the state- 
ments 

token ++ . . . 
token == . . . 
token a& . . . 

into the language description file, c . spider. 
TANGLE discards comments, rather than attempting 

to tokenize them. Comments are assumed to begin with 
a special string, and to end either with another string or 
with a newline. We specify C comment conventions by 
telling SPIDER 

comment begin (“/*“) end (‘I*/“) 

On output, TANGLE converts tokens to text by in- 
verting the recess of lexical analysis, so, for example, 
the token ++ is written out as “+I-." TANGLE'S output fl 
phase inserts white space between adjacent identifiers 
and numeric literals, but otherwise does not write 
white space. This can cause problems in some cases; for 
example, in older C compilers the string “=-I’ is ambig- 
uous. We can solve this problem by telling SPIDER to 
build a TANGLE that uses the text “= ” when writing 
the q : 
token = tangleto (‘I= I’) 

In sum, we can make TANGLE language-independent 
with almost no effort. We do this by using a lowest- 
common-denominator lexical analyzer whose only pa- 
rameter is a description of comments, and by providing 
a way to fine-tune the way TANGLE writes tokens. 

Unlike TANGLE, WEAVE does no rearranging of the 
sections; its job is to translate its input into a pretty- 
printed program listing. The documentation part of 
each section is simply copied to the output, but the 
definition and code parts are prettyprinted. WEAVE'S 
output is handed to a document formatter, which is 
assumed to implement a prettyprinting algorithm like 

September 1989 Volume 32 Number 9 Communications of the ACM 1053 



Literate Programming 

that described by Oppen [a]. Since my WEBS use 'QX as 
the document formatter, the back-end prettyprinting is 
implemented by TFJ macros. 

WE,AVE copies the documentation parts as texts, but it 
converts definition and code parts to token lists using 
the same lexical analyzer used by TANGLE. WEAVE'S 
part of the prettyprinting task (as distinct from m’s 
part) is converting these token lists to streams of TFJ 
text, possibly with prettyprinting instructions interca- 
lated. between tokens. If you like, WEAVE's job is to 
produce the input to Oppen’s algorithm. For simplicity, 
only three prettyprinting instructions will be discussed: 
indent (increase the level of indentation); outdent (de- 
crease the level of indentation); and force (force a line 
break). 

We tell WEAVE how to convert tokens tom text by 
specifying a translation for each token. Suppose we want 
the C token m to be printed as “Z”, which is pro- 
duced by the m text “\ne”. Then we write 

token != translation (“\\ne”) 

(Two backslashes appear in the translation because 
SPIDER uses C conventions for string literal% The an- 
gle brackets ( . . . ) delimit translations.) The default 
for translation is just as in TANGLE, so if we want ‘I+” 
on input to produce “+” on output we need not specify 
a translation for the token H. 

The process of deciding where to put line breaks and 
indentation is the most complicated part of WEAVE. We 
have to do this based on the sequence of tokens we 
have, but the exact details of which token is where 
usually are not needed to do prettyprinting. Hence we 
introduce the scrap, which abstracts away from the 
detail not needed to do prettyprinting. A scrap has two 
parts: the translation, which we have already seen, and 
the category, which corresponds to a “part of speech” or 
a symbol in a grammar. WEAVE uses categories to de- 
cide where to put indentation and line breaks. Since 
there are usually many different tokens having the 
same category, prettyprinting is simplified enormously. 

WEAVE begins processing a program fragment by to- 
kenizing the fragment, then converting each token in 
the resulting token list into a scrap. It then attempts to 
reduce the length of the resulting scrap list by combin- 
ing adjacent scraps into a single scrap, possibly interca- 
lating additional translations, which may include in- 
dent, outdent, and force instructions. The scraps are 
combined according to one of many reduction rules. 
WEAVE decides which adjacent scraps are eligible to be 
reduced based only on the categories of the scraps and 
a knowledge of the reduction rules. The reduction rules 
are the productions of the prettyprinting grammar. 
WEAVE'S reductions of scraps are like the reductions 
done in bottom-up parsing. 

For example, suppose that we want statements to be 
separated by line breaks. If we can guarantee that any 
scrap representing a statement has category stmt, it 
will. be enough to specify the reduction rule 

stmt (force) stmt- stmt 

which says “two adjacent s tmt scraps may be reduced 
to a single stmt scrap by intercalating a forced line 
break between them.” 

So we tell WEAVE how to prettyprint a language by 
telling how to assign a category to each token and how 
to combine scraps. Here is another example: the lan- 
guage of C expressions. Let math be the cal:egory of 
expressions, binop be the category of binary infix op- 
erators, and unop be the category of both unary prefix 
and unary postfix operators. Here are some sample 
tokens: 

token identifier category math 
token + category binop 
token - category binop 
token = category binop translation 

(“\\leftarrow”) 
token == translation (“\\equiv”) 

category binop 
token ( category open 
token ) category close 

Notice we print the E-token (assignment) as 
+, whereas we print the m token (comparison) as =. 
This makes it a-bit easierforus to see when a program- 
mer has mistakenlv used m instead of R. 

The prettyprinting gram%ar for C expressions is: 

math binop math -+ math 
math unop -+ math 
unop math -+ math 
open math close --, math 

Using this grammar, WEAVE can take a long expression 
consisting of many scraps, and reduce it all to a single 
scrap of category math. 

What about an operator like I’ * ‘I, which is both 
binary infix and unary prefix? This does the job: 

token * category unorbinop 
unorbinop math + math 
math unorbinop math -+ math 

There is a mechanism for assigning categories and 
translations to reserved words as well as to tokens, 
using slightly different syntax. 

To give an idea of the complexity of the grammars, 
the grammar describing AWK uses 24 categories in 39 
productions. The Ada grammar uses 40 categories in 65 
productions, and the C grammar uses 54 categories in 
129 productions. 

SPIDER-generated versions of TANGLE and WEAVE 
differ subtly from the originals written by Donald 
Knuth. The most important difference is that SPIDER- 
generated WEB is not self-contained: where Knuth’s 
Pascal WEB required only a Pascal compiler to bring up, 
SPIDER would need a C compiler and an AWK inter- 
preter to generate a Pascal WEB, and a Pascal compiler 
for the resulting WEB to be of any use. Other differences 
are minor; for example, Knuth’s TANGLE does arith- 
metic on constants at~~~~~~time, but SPIDER- 
generated TANGLES do not. Knuth’s TANGLE provides 

1054 Communications of the ACM September 1989 Volume 32 Number 9 



Literate Programming 

three different kinds of macros, but none with more 
than one parameter; SPIDER-generated TANGLES pro- 
vide only one kind of macro, but macros of that kind 
may have from zero to thirty-two parameters. 

SPIDER is a WEB generator, akin to parser generators. 
Both read formal descriptions of some part of a pro- 
gramming language, and both produce code that pro- 
cesses programs written in that language. Since both 
produce code that is part of the “compiler,” using them 
does not introduce any extra steps into the processing 
of user programs. SPIDER itself is a large AWK script, 
written as a WEB program. spider. web is about 2600 
lines long; about a third of these are comments. 

The major cost of using SPIDER is the cost of learn- 
ing yet another language. Learning this language is sup- 
posed to substitute for learning how to modify WEB, 
so it is probably not an exorbitant cost. Some other 
limitations are the need for a C compiler and an AWK 
interpreter, and the need to use a lowest-common- 
denominator lexical analyzer. 

The major benefit of using SPIDER is the ease with 
which new WEBS can be built. The SPIDER description 
of a language is much smaller than the WEB implemen- 
tation generated from that description, and SPIDER 
descriptions of similar languages are similar. Using 
SPIDER one can build a WEB without understanding 
the details of WEB’S implementation, and one can easily 
adjust that WEB to change as a language definition 
changes. 

SPIDER should make one literate programming tool, 
WEB, available to a much larger audience. I hope that, 
by separating the language-independent parts of WEAVE 
and TANGLE, SPIDER will encourage us not just to 
think about what the essence of tangling and weaving 

is, but also about what the essence of literate program- 
ming is. 

Acknowledgments. I enjoyed many useful discussions 
of WEB with Charlie Mills. I am grateful to Silvio Levy 
for providing his CWEB as the basis for the “master 
copies” of TANGLE and WEAVE, and to Dave Hanson for 
comments on an earlier version of this paper. Odyssey 
Research Associates supported the development of 
SPIDER. 

Norman Ramsey 
Department of Computer Science 
Princeton University 
Princeton, New Jersey 08544 

REFERENCES 
1. Bentley, J.L. Programming pearls. Commun. ACM 29, 5 (May 19&X), 

364-368; 29,6 (June 1986), 471-483. 
2. Knuth, DE. Literate programming. The Computer Journnl 27, 2 

(May 1964). 97-111. 
3. Levy, S. WEB adapted to ‘2. another approach. TUGBoat 8.1 

(Apr. 1987), 12-13. 
4. Oppen, D. Prettyprinting. ACM Trans. Program. Lang. Syst. 2, 4 

(6 1980), 465-483. 
5. Ramsey, N. Developing formally verified Ada programs. In Proceed- 

ings of the Fifth International Workshop on Software Specification and 
Design. (May 1969), pp. 257-265. 

6. Van Wyk, C.J. Literate programming. Commun. ACM 30, 7 
(July 1967), 593-599; 30,lZ (Dec. 1967). 1000-1010. 

For Correspondence: Christopher J, Van Wyk. AT&T Bell Laboratories, Room 
ZC-457. 600 Mountain Avenue, Murray Hill, NJ 07974. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct commer- 
cial advantage, the ACM copyright notice and the title of the publication 
and its date appear, and notice is given that copying is by permission of 
the Association for Computing Machinery. To copy otherwise, or to 
republish, requires a fee and/or specific permission. 

How About Starting 

an ACM SIG? 

If ACM doesn’t have a Special Interest Group (SIG) in your area of interest, the SIG Board 
would like you to start one. A SIG can be formed by ACM members who have the desire to 
pursue significant activities in a computing specialty. ACM is eager to respond to the interests 
of the membership and evolution of the computer field. There are many experienced SIG 
volunteers and headquarters staff people willing to help you start a new SIG. 

For further information and a copy of the “SIG Start-up Kit” contact: 

Fred Aronson, Manager, SIG Activities 
ACM, Inc., 11 West 42nd St. 

New York, NY 10036 
(212) 869-7440 

FredAQACMVM.BITNET 

September 1989 Volume 32 Number 9 Communications of the ACM 1055 


