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EXPANDING GENERALIZED REGULAR EXPRESSIONS 

Moderator’s Introduction to Column 3 
The mail prompted by Column 2 (Communications, De- 
cember 1987, p. 1000) showed a broad array of opinions 
about what makes a good solution to a problem. Some 
readem found Jackson’s program too closely tied to the 
representation of the input data, while others thought 
that it did not take enough advantage of those same 
details. I was heartened to hear from readers who pre- 
ferred my pseudo-code solution, even though it was 
sketch,y and incomplete. 

Som’e correspondence suggests that I need to correct 
a few misimpressions. First, the solutions that appear in 
this column are in no way certified to be “the best” or 
“perfec:t”; they are merely the product of their authors’ 
best attempts to produce literate programs. Second, I 
am not wed to the idea that what makes a program 
literate is the interleaving of code and nicely typeset 
comments; I would be delighted to hear from readers 
with oi her suggestions about how programs can be 
written literately-see address information at the end 
of this column. 

This column’s problem was posed by Mark Kahrs of 
Rutgers University. 

Here is a sample string together with the sequence 
of strings that it abbreviates: sample string: 
a(8--10) [d-b];sequence: a08d, a08c, a08b, 
a09d, a09c, a09b, alOd, alOc, alOb.The 
sequence is derived from a string according to these 
rules: 

1) Constant components (like a) always appear. 
2) Numeric components (like ( l-3 )) generate a se- 

quence in the natural order (increasing or decreasing as 
approp:riate) from the first component to the second 
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component; the number is padded by zeroes on the left 
so that all elements of the expansion contain the same 
number of digits. 

3) Alphabetic components (like [d-b] ) generate a 
sequence in the natural order (increasing or decreasing 
as appropriate) from the first component to the second 
component. 

The sample string can contain any number of compo- 
nents. 

Write a function that takes a string and ret.urns a list 
of the expanded strings. When i ask for a function I 
mean that I’d like the solution to be self-contained so 
that it can be plugged into a program without much 
fuss. 

This problem arose in the implementation of a language 
for describing circuits. The sample string names a col- 
lection of circuit components in an order relevant to 
the processing of the circuit, and each component 
needs to have some storage reserved for it. 

Kahrs mentioned that people had solved this problem 
in different ways. Some viewed the sample string as a 
generalized regular expression and wrote a program 
based on finite automata that produces all strings that 
match the regular expression. Others wrote a recursive 
program to solve the problem. 

Eric Hamilton works in a group at Data General that 
has been developing software using tools that interleave 
code and design information. He volunteered to solve 
this problem using his group’s tools. 

Don Colner of Polaris reviewed Hamilton’s program. 
The first review he sent contained several pieces of 
rewritten code. As natural as it may be to comment on 
a program by comparing and contrasting code frag- 
ments. I thought that rewriting the program went a bit 
further than a review ought to go. Colner graciously 
provided the revised review that appears here. 
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THE PROBLEM 
The specification of how sequences are derived from a 
sample string is informal but clear. As with most infor- 
mal specifications, it is not complete. I assume decimal 
arithmetic and interpret “padded by zeroes” to mean 
“padded by the minimal number of zeroes” because to 
do otherwise would be perverse. I restrict alphabetic 
components to the lower-case letters and constant com- 
ponents to alphanumeric characters and blank; because 
these are arbitrary choices I should be prepared to 
change them arbitrarily. 

With these clarifications out of the way, we can con- 
sider the interface. Here, Van Wyk’s problem statement 
gives us more freedom (or less guidance). 

I have chosen to implement the solution as a function 
in C to run on Unix because these are plausible choices 
and because I have convenient access to a Unix system. 
Once this decision is made, the “without much fuss” 
requirement suggests that the input string and the re- 
turned strings be represented in the traditional C style, 
as a pointer to an array of characters terminated by the 
null character. Likewise, the returned list will be repre- 
sented as a pointer to an array of such pointers, termi- 
nated by the null pointer. If the input string cannot be 
expanded for any reason the null pointer will be re- 
turned. 

Since our function returns a pointer (a p/ointer to 
pointers, no less), we must consider the persistence of 
the denoted storage. We choose to guarantee that the 
pointer returned from one call to the expansion func- 
tion will remain valid until the next call. We make this 
choice because it is easily implemented by reusing the 
same global storage on every invocation, relieves the 
caller of the burden of storage deallocation, prevents 
memory leaks, and simplifies the interface. This deci- 
sion has been strongly influenced by the choice of C as 
the implementation language. 

The solution presented here assumes that the input 
string is syntactically correct. This is because I am lazy 
and because the code to detect and recover from in- 
valid input adds more clutter than interest. The argu- 
ment string may already have been validated, or it may 
have been produced in a way which ensures its valid- 
ity, so this assumption is not unreasonable. Because the 
caller has no way to ensure that the expansions will fit 
in the storage allocated for them, it is unreasonable not 
to check for overflow; the null pointer will be returned 
in this case. 

Plan of Attack 
We are going to attack the problem by generating ex- 
pansions of the input string and saving them away; 
when all expansions have been generated, we will 
return the list of saved expansions. At this point, our 
subroutine looks like: 

char ** expand-string(input-string) 
char * input-string; 

/* Initialize list of expansions to 
empty */ 

/* Generate expansions, adding them to 
list as they are found */ 

/* Return list of expansions */ 

I 
This code is little more than a restatement of the 

problem, yet it suggests a decomposition of the prob- 
lem. We actually have two sub-problems. One is the 
generation of expansions from the input string, and the 
other is the management of a list (more precisely, a set) 
of strings. The second problem has been solved before, 
many times, and is pretty well under control, so we 
will start with the first. In solving it, we will find it 
necessary to decompose it into yet smaller sub-sub- 
problems, and so forth, until we arrive at problems 
which can be solved with C language primitives. 

Generating Expansions 
An unexpanded input string can be viewed as a com- 

.pact description of a tree. Each expansion corresponds 
to the path from the root node to a particular leaf node. 
For example, ( 8-l 0 ) [d-c ] represents the tree shown 
in the accompanying diagram. 

FIGURE 1 

We can generate an expansion by walking the tree 
from the root to a leaf node and concatenating the la- 
bels of each node encountered in the walk. We can 
generate all expansions by performing such a walk to 
every leaf node in the tree. 

Recursion is the natural way to exhaustively walk a 
tree, so the following program structure comes to mind: 

recursively-expand 
STRING input-string; 
STRING generated-prefix; 

STRING s, unprocessed-components, 
current-component; 

if (input-string == NULL) 

generated-prefix is an expansion; 
return OK; 

I 
else 
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current-component = first component 
of input-string; 

unprocessed-components = the rest of 
input-string; 

for s over all expansions of 
current-component repeat 

status = recursively-expand( 
concatenate( 

generated-prefix, s), 
unprocessed-components); 

if(status != OK) 

I 
return status; 

return OK; 

generated-prefix is the concatenation of the 
names of all nodes between the root and the current 
node. 1s is the name of the current node, and unpro - 
cessed-components is the unexpanded string de- 
scribing the as yet unprocessed subtree rooted at the 
current node. The computation is started by calling 
recursively-expand with input-string equal 
to the string to expand and generated-prefix 
equal to the null string. Either the value OK or an 
appropriate error indicator will be returned. 

The algorithm above is presented in psuedo-code be- 
cause it depends on operations such as concatenation, 
“the rest of,” and string assignment, which are not part 
of C. The next step must surely be to develop these 
abstract operations in terms of actual C primitives. 

Managing the Strings 
A careful examination of recursively-expand 
shows that it does only two things to strings. Characters 
are removed from the beginning of input-string 
and other characters are added at the end of gener - 
a ted-.pref ix. This behavior is unsurprising: we are 
just wallking a path, generated-prefix is a list of 
steps already taken, and input-string specifies the 
steps y’et to be taken. This behavior can also be coded 
in C quite easily. Incrementing a pointer to a string 
represented as a character array removes characters 
from the head of the string. Likewise, incrementing a 
pointer to the tail of such a string adds character: at the 
end. Thus, the string manipulations of recursively- 
expand can be expressed in terms of simple pointer 
manipulations. 

combination of counting up, counting down, padding 
with zeroes, not padding with zeroes, and so forth, 
threatens to be big, buggy, ugly, and uninteresting. This 
problem is inherent in the representation of leach com- 
ponent as a character string; we would much. rather 
speak in terms of things like: 

current-component.initial-value 
current-component.finaLvalue 
current-component.format_.specification 

And if we want to speak of such things, why not do so? 
We introduce a new data structure: 

typedef struct 

I 
unsigned initial-value ; 
unsigned final-value ; 
int increment; 
char * format-specification; 
unsigned formatted-width; 
unsigned component-width; 
component-descriptor-type ; 

to describe a component. The initial-.va:lue, 
final-value, and increment fields speci.fy the 
range of values taken on by the component in question. 
The format-specification tells how to convert 
these values into a string suitable for use in an expan- 
sion. The formatted-width and component- 
width fields are the size of the component in its ex- 
panded and unexpanded forms. 

This particular representation of a component works 
only if we assume that successive expansions of a com- 
ponent can be represented as consecutive integers; it 
will not work, for example, if characters were to be 
stored in EBCDIC instead of ASCII. We can relax this 
assumption by adding a field that specifies this way in 
which the initial-value and final-value 
fields are to be interpreted and iterated over. 

Now we can write a function which inspects a 
component and returns the equivalent component 
descriptor: 

component-descriptor-type 
scan-first-component (input-string) 
char input-string[ ] ; 

if (is-a-constant-component ( 
input-string [ 01 ) ) 

return scan-constant-component( 
input-string) ; 

Expanding a Single Component else if (input-string[O] == 1 [I ) 
The pseudo-code for recursively-expand blithely I 
iterates s across all expansions of current-compo- return scan-character-component ( 
nent. lJnfortunately, this notion is harder to code than input-string) ; 
to pseu’do-code. The components [a-c ] , [ c-a ] , I 
(8-9), (g-8), (8-l 0), and ( 1 O-8) all expand in else if (input-string [0] == *<I ) 
slightly different ways. The code for handling each I 
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return scan-numeric-component ( 
input-string) ; 

As a matter of convenience, a separate function is 
used to interpret each type of component, and scan- 
first-component simply determines the type of 
the first component and then invokes the function ap- 
propriate for that type. Thus, most of the useful work 
is accomplished in the functions scan-( type)- 
component: 

component-descriptor-type 
scan-constant-.component(input-string) 
char input-string [ ] ; 

component-descriptor-type 
return-value ; 

return-value.initiaLvalue = 
input-string [O] ; 

return-value. final-value = 
input-string [ 01 ; 

return-value.increment = 0; 
return-value.format-specification = 

” % c ” i 
return.-.value.component_width = 1; 
return-value.formatted_width = 1; 

return return-value ; 
I 

A constant component is one character wide, as is its 
expansion, so both the component-width and the 
formatted-width fields are set to one. The rather 
cryptic %.c is a format specification directing that a 
value be formatted as a single ASCII character. This 
and the following format specifications are processed by 
various library functions and are familiar to every C 
programmer. 

component-descriptor-type 
scan-character-component(input-string) 
char input-string [ ] ; 
I 

component-descriptor_type 
return-value; 

return-value. initial-value = 
input-string [ 11 ; 

return-value. final-value = 
input-string [ 31 ; 

if (input-string [ 1 ] <= input-string [ 31 ) 

return-value.increment = 1; 

return-value.component_width = 5; 
return-value.formatted_width = 1; 

return return-value; 

All character components are five characters wide, 
but their expansion still occupies only one character, 
so the component-width and formatted-width 
fields are set accordingly. The handling of the case in 
which the initial-value and final-value fields 
are equal is arbitrary. 

This implementation of scan-character-com- 
ponent assumes that the character collating sequence 
is arithmetical; this assumption is valid for the ASCII 
character set. It is easy enough to change this assump- 
tion, but the representation of the component- 
descriptor-type would have to be changed as 
well. 

component-descriptor-type 
scan-numeric-component(input-string) 
char input-string [ ] ; 

int initial-width = 0; 
int final-width = 0; 
component-descriptor-type 

return-value ; 

input-string++; 
/* Skip opening angle bracket */ 

return-value. initial-value = 
atoi(input-string); 

while(*input-string != ‘>I) 

input-stringtt; 
initial-width*; 

input-stringtt; 
/* Skip the dash */ 

return-value. final-value = 
atoi (input-string) ; 

while(*input-string != ‘>I) 

input-stringi+; 
final-width-H; 

if(return-value.initial-value <= 
return-value.final-value) 

I 
return-value.increment = 1; 

else 
i 

return-value.increment = -1; 
else 

return-value.increment = --I; 

return-value.format-specification = 
11 % c It ; 

return-value. component-width = 
initial-width + final-width + 3 ; 

return-value. formatted-width = 
maximum(initial-width, 

final-width) ; 

December 1988 Volume 31 Number 12 Communications of the ACM 1379 



Literate Programming 

if(return-value.formatted-width == 1) 

return-value.format-specification = 
11 %d II ; 

else if(return-value.formatted-width 
== 2) 

I 
return-value. format-specification = 

“%02d” ; 

I 
return return-value ; 

if(s == 
current-component. 
final-value) 

I 
last-time = TRUE; 

sprintf(generated-prefix-end, 
current-component. 
format-specification, s); 

status = recursively-expand( 
unprocessed-components, 
generated-prefix-end -t. 
current-component. 
formatted-width); 

I 

The C library function atoi converts a string of ASCII 
digits tserminated by any non-numeric character to the 
corresponding integer value. The two cases of the for- 

if(status != OK) 

i 
return status; 

mat specification provide the required zero padding; 
this code restricts numeric components to a width of 
two digits. 

I 
s += current-component.increment; 

I 
return OK; 

Generading Expansions, Again I 
At this point, the hierarchical decomposition of the 1 
string expansion problem is complete, and we can cast 
recursively-expand in C. As before, an initial call We have followed the pseudo-code closely, yet the se- 
is required to begin the computation. mantic gap between it and this implementation is strik- 

recursively-expand(input-string, 
generated-prefix-end) 

char * input-string; 
char * generated-prefix-end ; 

char * unprocessed-components; 
component-descriptor-type 

current-component; 
int s; 
int status; 
BOO:LEAN last-time ; 

if(*input-string == ‘\O’) 

I 
*generated-prefix-end = ’ \O ’ ; 

/* End-of-string indicator */ 
status = string-is-an-expansion( 

generated-prefix) ; 
return status ; 

I 
else 

current-component = 
scan-first-component ( 

input-string) ; 
unprocessed-components = 

input-string + 
current-component. 
component-width; 

s = current-component. 
initial-value ; 

last-time = FALSE; 
while(!last-time) 

ing. Pointer arithmetic has replaced the string manipu- 
lations of the pseudo-code. Furthermore, the variable 
generated-prefix has degenerated into a fixed 
character array and a pointer into the array. Thk termi- 
nation condition in the loop is expressed as “the pre- 
vious iteration was the last”; this is because E; may 
approach its final value from above or below, so that 
equality is the only useful test. 

Storage Management 
At this point, we have completely solved one of our two 
original subproblems. The other one, managing the list 
of generated expansions, is much easier. The .routine 
string-is-an-expansion is called from recur - 
sively-expand; it accepts a string that is known to 
be an expansion and adds it to the list of expansions 
already generated. The pseudo-code for expand- 
string initializes the list to empty; the principle of 
information hiding demands that this be done with a 
subroutine as well. 

char * string-list [ 
NUMBER-OF-EXPANSIONS-LIMIT+1 j 

/* The +I allows for the endmarker */ 
unsigned number-of-expansions ; 

#define TOTAL-CHARACTER-LIMIT 
NUMBER-OF-EXPANSIONS-LIMIT * 
(EXPANSION-LENGTH-LIMIT+l) 

char 
character-pool [TOTAL-CHARACTER-LI:MIT] ; 
char * character-pool-first-free; 

initialize-list-to-empty( ) 
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i 
number-of-expansions = 0 ; 
character-pool-first-free = 

character-pool ; 
string-list[number-of-expansions] = 

NULL ; 
return; 

string-is-an-expansion( string) 
char * string; 

if (number-of-expansions >= 
NUMBER-OF-EXPANSIONS-LIMIT) 

return STATUS-TOO-MANY-EXPANSIONS ; 

string-list [number--of-expansions] = 
character-pool-first-free ; 

number-of-expansions += 1 ; 
string-list [number-of-expansions] = 

NULL ; 

while ( * character-pool-first-f reett = 
*string++) 

return OK; 

I 
Expansions are saved by consecutively copying them 
into the character-pool array. Pointers to each 
expansion are collected in the string-list array, 
and a pointer to this array will become the final return 
value. 

Putting the Pieces Together 
With the storage manager and recursively- 
expand written, the final implementation of the 
expand-string function which solves Van Wyk’s 
problem is anticlimactic. 

char 
generated-prefix [ 

EXPANSION-LENGTH-LIMIT+1 ] ; 
/* The +l is for the end 

of string indicator */ 

char ** expand-string(input-string) 
char * input-string; 

int status ; 
initialize-list-to-empty( ) ; 
status = recursively-expand( 

input-string, generated-prefix) ; 
if(status == OK) 

return string-list; 

I 
else 

return(char **) NULL; 

Performance 
There are many reasons to expect this implementation 
to be a real dog. It does an amount of work that grows 
exponentially with the number of components in the 
input string, and it calls sprintf an exponential num- 
ber of times. Not only that, but it processes the same 
piece of the input string over and over; the number of 
calls to scan-first-component is exponential 
in the number of components that are there to be 
scanned. Expanding a constant component is little more 
than copying a byte, yet recursively-expand uses 
two procedure calls and an entire level of recursion to 
accomplish this task. Thus, it was with some trepida- 
tion that I approached performance measurement. 

The size of the output generated by expand- 
string grows very rapidly with the number of compo- 
nents in the input string. A measurement of the 
time required to build the expansion of 1 a-j I [a-j I 
[a-j] [a-j] [a-j] [a-j] will tell us much more 

about the underlying virtual memory system than it 
will about the performance of expand-string. Thus, 
1 replaced the call to string-is-an-expansion 
recursively-expand with a call to the C library 
function print f, which simply prints its argument. 
I then ran expand-string on the input strings 
[a-j] [a-j] [a-j] [a-j] and 
[a-j] [a-j] [a-j] [a-j] [a-j]; these generated 
10,000 and 100,000 bytes of output, respectively. 1 
timed both while directing the output to the null de- 

in 

vice, and discovered that expand-string generated 
expansions at a rate of 2,500 characters per second. 
To put that figure in perspective, I also wrote a program 
that simply printed characters to standard output: 

main(argc, argv) 
int argc; 
char *argv[ ] ; 

int i; 
i = atoi(argv[l]); 
while ( i-) 

printf(“%c”, la’); 

I 
This program proved capable of generating 7,500 char- 
acters per second. From this, I conclude that even the 
naive implementation of expand-string presented 
here is not unreasonably expensive. 

Of course, there are things that can be done to im- 
prove its performance. Constant components are a spe- 
cial case; they can be copied from input-string to 
generated-prefix-end by adding the following 
code at the beginning of recursively-expand: 

while ( 
is-a-constant-component ( 
*input-string) ) 

*generated-pref ix-end+t = 
*input-stringtt; 
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Another, better, idea is to reduce the number of calls 
to scan-first-component. This routine can be in- 
voked repeatedly on the initial input string to convert it 
into a string of component descriptors; the string of 
component descriptors can then be processed by the 
same recursive expansion already used. This is really 
just an application of the well-known technique of 
moving invariant computations out of a loop, or in this 
case, out of a recursion. 

However, we must remember that the amount of out- 
put generated by this program is exponential in the size 
of the input. No amount of performance tuning can 
change the fact that this problem cannot be solved ex- 
cept in exponential time and space. It does not matter 
how small input strings are handled, and large input 
strings are hopeless; every ( O-9) will burn another 
order of magnitude. Thus, it may be a mistake to put 
much effort into tuning expand-string. Instead we 
should concentrate on the application within which it 
is embedded. 

Interface Improvements 
Dean Herington and Andy Huber, also at Data General, 
independently suggested that the problem never should 
have called for returning a list in the first place. Her- 
ington suggested the interface to expand-string 
should include a user-supplied function which will be 
invoked whenever an expansion is generated. This 
function will process the expansion in accordance with 
the user’s requirements; the processing might consist of 
storing it in a convenient, user-allocated, location. 
Hubelr suggested that the most useful interface is a gen- 
erator function which, presented with a string and one 
of its (expansions, returns the next expansion. Both ap- 
proacbes completely separate the problem of storage 
management from the problem of generating expan- 
sions. Huber’s strategy is particularly good if the user 
intends to touch each expansion only once: the expo- 
nential storage requirement is eliminated. 

I chose not to incorporate either because they do 
excessive violence to Van Wyk’s problem statement; 

REVIEW 
Eric Hamilton presents an elegant algorithm for creat- 
ing thle strings required by Van Wyk’s problem. He 
structures the solution in terms of program modules 
that perform clearly separate, well-defined functions. 

While this code provides an adequate solution to the 
algorithmic requirements of the problem, it fails to 
meet the problem statement’s requirement that “. . . an 
argument string can be of any length.” In addition, it 
fails to meet the environmental requirement, “that it 
can be plugged into a program without much fuss.” In 
particular, this code presents the following problems: 

1. Buffer overflow can cause unpredictable behavior. 
2. Unanticipated side effects can result from the choice 

of extern rather than static external variables and 
functions. 

3. The code is not reentrant. 

neither strikes me as returning a list “without much 
fuss.” However, they are cleaner and more useful in a 
variety of situations. It is quite possible that either solu- 
tion would have met the actual, as opposed .to the 
stated, requirements of the problem. The moral of this 
is that some problems are best solved by negotiation 
with the user community. 

Conclusion 
This is a messy problem. The solution requires well 
over 100 lines of C code, yet can be stated in 20 lines of 
pseudo-code. The strategy behind the solution is ob- 
vious from the first glance at the tree structure derived 
from an input string; the same strategy all but disap- 
pears when the pseudo-code is fleshed out into real C. 
A truly discouraging amount of work is required to 
realize the intuitively obvious notion of iterating across 
all expansions of a given component. A gap between 
idea and implementation is, I think, typical ;.n program- 
ming work. In this case, the gap is larger than usual. 

It is interesting to consider how this problem might 
be solved in other programming languages. Fortran? I 
wouldn’t consider it. Assembler? A horrible idea, but 
at least recursion would be available. C? Ten hours. 
I know, because I just did it. Ada? The semantic gap is 
much narrower. Lisp? An hour or so at the most. Sno- 
bol? Less than that. Those two languages have the right 
string and list manipulation primitives for th.e job. Un- 
fortunately, we seldom have the luxury of fitting an 
implementation language to a problem. Van Wyk men- 
tions that the solution to his problem is to be embedded 
within “the implementation of a language for describing 
circuits”; I doubt that this project will be coded in Sno- 
bol. C is a plausible choice, and closing the gap be- 
tween the problem statement and a working C imple- 
mentation is an interesting problem. 

Eric Hamilton 
Data General Corporation 
62 T. W. Alexander Drive 
Research Triangle Park, NC 27709 

Examples of Craftsmanship 
The decision to return a null-terminated list of string 
pointers is conventional and sound. The choice of a 
recursive algorithm is natural, and the code is well- 
crafted. 

Modularity 
Eric Hamilton’s functions are well designed modules. 
That is, each function performs a relatively simple ac- 
tion that can be understood without understanding the 
other functions. And, with a few exceptions, no module 
operates in another module’s space. For example, each 
of the scan-TYPE-component ( ) functions builds 
a component-descriptor-type structure in its 
own local data area and the parent function copies the 
structure into its local data area on return. The excep- 
tions to this policy are weak points in the design. 

One of the best examples of craftsmanship in this 
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code is the isolation of the “big, buggy, ugly and unin- 
teresting” details of dealing with three different types of 
input tokens. Each type of token is analyzed by a differ- 
ent function: 

scan-constant-component ( ) 
scan-character-component ( ) 
scan-numeric-component ( ) 

Each of these functions returns a structure that con- 
tains a generalized description of the substrings that 
must be concatenated onto the output string. The prin- 
cipal function, recursively-expand( ), is able to 
treat each token in the same way using these general- 
ized descriptions. 

Modularity Violated 
Eric Hamilton tries to ignore some of the “ugly” details 
by limiting numeric components to a width of two dig- 
its. His code is: 

if(return-value.formatted-width == 1) 

Restoring Modularity 
As an alternative, I propose changing format- 
specification to an array of characters in 
component-descriptor-type and replacing Ham- 
ilton’s code which builds format-specification 
to: 

sprintf ( 
return-value.format-specification, 
“%%O%ud” , return-value. 
formatted-width) ; 

The alternative code removes the restriction on the 
width of numeric components: it is shorter, it is less 
ugly, and it is safer than the original. 

Buffer Overflow 
The program checks for too many strings in the 
string-list array at the beginning of string- 
is-an-expansion ( ), but it does not check for 
overflow of the character-pool or generated- 
prefix buffers. 

return-value.format-specification = character-pool 
(1 $d 11 . I The character-pool buffer is declared as an exter- 

I nal variable, and each new string added to the 
if(return-value.formatted.width == 2) string-list is concatenated onto character- 
I pool in string-is-an-expansion( ). This 

return-value.format-specification = function should include a one-line test for buffer 
“%02d” ; overflow. 

The data structure used here violates a principle of 
modularity. Successive invocations to this function can 
return pointers to the SAME STRING. Suppose the par- 
ent function decides to alter the format specification of 
decreasing numeric sequences: 

for(k = 0; k < 3; input-string += 
component [k-H] _ component-width) 

component [k] = scan-first-component ( 
input-string) ; 

if (component [k] . 
format-specification [2] == 2 a& 

component [k] . increment < 0 
) component [k] . 

format-specification [ 21 = ’ 3 ’ ; 

If the input specification is “(9-10) ( 1 O-9) 
(9-l 0)“, on return from the first invocation of 
scan-first-component ( ), component [ 0 ] 
. format-specif ication points to “%2d”, but after 
the second invocation it points to “%3d”. It appears that 
the programmer’s intention is to produce an initial out- 
put string that looks like, “090 1009” but the program 
will in fact produce “0 0 9 0 10 0 0 9”. By returning a 
pointer to a string, this design permits the parent func- 
tion to alter the behavior of the child. While this viola- 
tion of the principle of modularity does not produce 
any problems in this program, it is a trap for some 
future maintenance programmer. 

generated-prefix 
The generated-prefix buffer is declared as an ex- 
ternal variable, and its starting address is passed to re - 
cursively-expand( ) by expand-string( ) to 
use as a working buffer to build the output strings. 
Each recursive instance of recursively-ex- 
pand ( ) concatenates another substring onto gener - 
ated-pref ix until the end of the input specification 
is encountered, at which point recursively-ex- 
pand ( ) invokes string-is-an-expansion ( ) 
to concatenate generated-prefix onto charac - 
ter-pool; recursively-expand( ) should in- 
clude a one-line test for buffer overflow. 

One Test or Two 
The generated-prefix buffer overflow test de- 
scribed in the previous section makes the charac - 
ter-pool buffer overflow test in string-is-an- 
expansion ( ) redundant. Why not eliminate the 
character-pool buffer overflow test and save a few 
processing cycles? 

Eliminating the redundant buffer overflow test cre- 
ates a new dependency between string-is-an- 
expansion( )andrecursively-expand( ). 
Suppose a maintenance programmer later decides to 
build up the output string in a file rather than in a 
memory array. The length of generated-pref ix 
will then be limited by the available disk file space 
ratherthanby EXPANSION-LENGTH-LIMIT. The 
maintenance programmer argues (incorrectly) that it 
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has been possible to eliminate a constraint and thereby 
simphfy the user interface. The programmer will inad- 
vertently introduce a bug into string-is-an-ex- 
pans ion ( ) as the EXPANSION-LENGTH-LIMIT 
constraint is eliminated. 

This discussion of a maintenance programmer elimi- 
nating constraints is not academic. Subsequent sections 
of this review discuss the issue and eliminate the EX - 
PANSION-LENGTH-LIMIT constraint. 

I would argue for keeping the redundant buffer over- 
flow check in string-is-an-expansion( ) on 
the grounds that it increases the independence of the 
modules and therefore reduces the maintenance cost of 
the program. As rules of thumb, I figure that mainte- 
nance costs are ten times programming costs and that 
processing costs are zero. Adding an extra line of code 
and a few processing cycles at run time to reduce main- 
tenance costs usually produces a very high benefit-cost 
ratio. 

Static Extern 
All of the external variables and functions in the pro- 
posed solution are of type extern and all except ex 
pand-string ( ) should be static. In C, any variable 
declared outside of any function is called an external 
variable. External variables are either of type extern or 
type static. Failure to explicitly declare the type results 
in an external variable of type extern. 

The difference between static and extern external 
variables is that extern externals are available to func- 
tions compiled from other files, while static externals 
are available only in the file in which they are de- 
clared. Functions are also either extern or static with 
the same implications. 

Failure to hide external variables and functions by 
declaring them to be static can lead to unanticipated 
side effects. All five of the external variables in this 
program and seven of the eight functions should be 
declared to be static. The expand-string ( ) func- 
tion is the only function which should be of type 
extern. 

Dynamic Memory Allocation 
The statement of the problem requires that, “. an 
argument string can be of any length.” Since the output 
from an argument string of constant tokens is the same 
length as the argument string, it follows that the output 
string :must be permitted to be arbitrarily long. How- 
ever, the proposed solution limits the output string to 
EXPANSION-LENGTH-LIMIT characters. 

The C programming language is particularly well 
suited to dealing with arbitrarily long strings because of 
its library of dynamic allocation functions. 

The program could use the scan-TYPE-compo- 
nent ( ) functions to determine the length of the out- 
put strings and then allocate the buffer space to hold 
the required length strings. Storage for the output 
strings could be allocated as it is needed in recur - 
sively-expand ( ). 

These program revisions can be made while retaining 
the original algorithm, and eliminating the constraints 
on the maximum string length and the maximum num- 
ber of strings. These revisions can also reduce the 
number of variables and eliminate all of the external 
variables. The total number of lines of code does not 
change substantially. 

Reentrant Design 
The choice of external data in the proposed solution 
reduces the possibility of using expand-St ring ( ) 
from within a recursive algorithm. The program’s au- 
thor provides convincing arguments in favor of recur- 
sive algorithms, and identifies C’s support of recursive 
functions as one of the primary reasons for selecting C 
as the most appropriate programming language. In addi- 
tion, the author mentions that the resulting function 
will be used in an implementation language for describ- 
ing circuits. And, language implementations frequently 
use recursive algorithms for parsing input. The inability 
to invoke expand-string( ) from within a recur- 
sive algorithm can be regarded as a serious limitation in 
this context. 

The restrictions on the use of expand-string ( ) 
from within a recursive algorithm can be removed by 
converting the external variables to automat.ic type, so 
that every invocation of expand-string( ) creates 
its own copy of these variables. 

The cost of making expand-string ( ) reentrant 
is one additional pointer in the parameter list for re - 
cursively-expand ( ). This is a small price to pay 
for the reduction in “fuss.” 

Conclusions 
Eric Hamilton has presented us with a well-crafted pro- 
gram that meets the algorithmic requirements of the 
problem but imposes serious constraints in application. 
The constraints include a limit on the number of 
strings that can be created, a limit on the length of the 
strings that can be created, and limitations on the use 
of the function from within a recursive parent function. 

Writing code that can be plugged into someone else’s 
program “without much fuss” means designing func- 
tions that impose the fewest restrictions on the input, 
and it means writing bulletproof code. Unanticipated 
side effects resulting from external variables unneces- 
sarily declared as extern can create problems. Func- 
tions that are not needed outside of the file containing 
the primary function should be declared static to pre- 
vent other unanticipated side effects. Unnecessary and 
unchecked constraints on the size of objects can lead to 
unpredictable behavior. 

The suggested improvements to this program empha- 
size the use of dynamic memory allocation and the 
replacement of external variables with automatic vari- 
ables. 

I coded these changes and found that they affected a 
relatively small percentage of the code and made no 
significant change to the total number of 1ine.s of code. 
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The analysis of the program and rewrite took about six 
hours, about as long as it took the author to write the 
code in first place! However, these changes eliminate 
the need to document the constraints and limitations in 
the original program. 

Whenever I review someone else’s program, I always 
look at the external data first, and, as is the case in this 
program, I usually find problems related to their use. 
External data reduces the independence of all of the 
functions that can access it, and external data fre- 
quently prevents the use as recursive program design. 
In addition, I have reviewed programs that use external 
data areas as data buffers by different functions at dif- 
ferent times for different purposes. This design tech- 
nique has frequently led to buggy code. Finally, using 

external data usually leads to programs with larger to- 
tal memory requirement than would be the case if the 
data storage were dynamically allocated. 
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