
literate
Modera ted by
Christopher 1. Van Wyk programming

EXPANDING GENERALIZED REGULAR EXPRESSIONS

Moderator’s Introduction to Column 3
The mail prompted by Column 2 (Communications, De-
cember 1987, p. 1000) showed a broad array of opinions
about what makes a good solution to a problem. Some
readem found Jackson’s program too closely tied to the
representation of the input data, while others thought
that it did not take enough advantage of those same
details. I was heartened to hear from readers who pre-
ferred my pseudo-code solution, even though it was
sketch,y and incomplete.

Som’e correspondence suggests that I need to correct
a few misimpressions. First, the solutions that appear in
this column are in no way certified to be “the best” or
“perfec:t”; they are merely the product of their authors’
best attempts to produce literate programs. Second, I
am not wed to the idea that what makes a program
literate is the interleaving of code and nicely typeset
comments; I would be delighted to hear from readers
with oi her suggestions about how programs can be
written literately-see address information at the end
of this column.

This column’s problem was posed by Mark Kahrs of
Rutgers University.

Here is a sample string together with the sequence
of strings that it abbreviates: sample string:
a(8--10) [d-b];sequence: a08d, a08c, a08b,
a09d, a09c, a09b, alOd, alOc, alOb.The
sequence is derived from a string according to these
rules:

1) Constant components (like a) always appear.
2) Numeric components (like (l-3)) generate a se-

quence in the natural order (increasing or decreasing as
approp:riate) from the first component to the second

01988 ACMOOOl-0782/88/1200-1376 $1.50

component; the number is padded by zeroes on the left
so that all elements of the expansion contain the same
number of digits.

3) Alphabetic components (like [d-b]) generate a
sequence in the natural order (increasing or decreasing
as appropriate) from the first component to the second
component.

The sample string can contain any number of compo-
nents.

Write a function that takes a string and ret.urns a list
of the expanded strings. When i ask for a function I
mean that I’d like the solution to be self-contained so
that it can be plugged into a program without much
fuss.

This problem arose in the implementation of a language
for describing circuits. The sample string names a col-
lection of circuit components in an order relevant to
the processing of the circuit, and each component
needs to have some storage reserved for it.

Kahrs mentioned that people had solved this problem
in different ways. Some viewed the sample string as a
generalized regular expression and wrote a program
based on finite automata that produces all strings that
match the regular expression. Others wrote a recursive
program to solve the problem.

Eric Hamilton works in a group at Data General that
has been developing software using tools that interleave
code and design information. He volunteered to solve
this problem using his group’s tools.

Don Colner of Polaris reviewed Hamilton’s program.
The first review he sent contained several pieces of
rewritten code. As natural as it may be to comment on
a program by comparing and contrasting code frag-
ments. I thought that rewriting the program went a bit
further than a review ought to go. Colner graciously
provided the revised review that appears here.

1376 Commurlications of the ACM December 1988 Volume 31 Number 12

Literate Progl

THE PROBLEM
The specification of how sequences are derived from a
sample string is informal but clear. As with most infor-
mal specifications, it is not complete. I assume decimal
arithmetic and interpret “padded by zeroes” to mean
“padded by the minimal number of zeroes” because to
do otherwise would be perverse. I restrict alphabetic
components to the lower-case letters and constant com-
ponents to alphanumeric characters and blank; because
these are arbitrary choices I should be prepared to
change them arbitrarily.

With these clarifications out of the way, we can con-
sider the interface. Here, Van Wyk’s problem statement
gives us more freedom (or less guidance).

I have chosen to implement the solution as a function
in C to run on Unix because these are plausible choices
and because I have convenient access to a Unix system.
Once this decision is made, the “without much fuss”
requirement suggests that the input string and the re-
turned strings be represented in the traditional C style,
as a pointer to an array of characters terminated by the
null character. Likewise, the returned list will be repre-
sented as a pointer to an array of such pointers, termi-
nated by the null pointer. If the input string cannot be
expanded for any reason the null pointer will be re-
turned.

Since our function returns a pointer (a p/ointer to
pointers, no less), we must consider the persistence of
the denoted storage. We choose to guarantee that the
pointer returned from one call to the expansion func-
tion will remain valid until the next call. We make this
choice because it is easily implemented by reusing the
same global storage on every invocation, relieves the
caller of the burden of storage deallocation, prevents
memory leaks, and simplifies the interface. This deci-
sion has been strongly influenced by the choice of C as
the implementation language.

The solution presented here assumes that the input
string is syntactically correct. This is because I am lazy
and because the code to detect and recover from in-
valid input adds more clutter than interest. The argu-
ment string may already have been validated, or it may
have been produced in a way which ensures its valid-
ity, so this assumption is not unreasonable. Because the
caller has no way to ensure that the expansions will fit
in the storage allocated for them, it is unreasonable not
to check for overflow; the null pointer will be returned
in this case.

Plan of Attack
We are going to attack the problem by generating ex-
pansions of the input string and saving them away;
when all expansions have been generated, we will
return the list of saved expansions. At this point, our
subroutine looks like:

char ** expand-string(input-string)
char * input-string;

/* Initialize list of expansions to
empty */

/* Generate expansions, adding them to
list as they are found */

/* Return list of expansions */

I
This code is little more than a restatement of the

problem, yet it suggests a decomposition of the prob-
lem. We actually have two sub-problems. One is the
generation of expansions from the input string, and the
other is the management of a list (more precisely, a set)
of strings. The second problem has been solved before,
many times, and is pretty well under control, so we
will start with the first. In solving it, we will find it
necessary to decompose it into yet smaller sub-sub-
problems, and so forth, until we arrive at problems
which can be solved with C language primitives.

Generating Expansions
An unexpanded input string can be viewed as a com-

.pact description of a tree. Each expansion corresponds
to the path from the root node to a particular leaf node.
For example, (8-l 0) [d-c] represents the tree shown
in the accompanying diagram.

FIGURE 1

We can generate an expansion by walking the tree
from the root to a leaf node and concatenating the la-
bels of each node encountered in the walk. We can
generate all expansions by performing such a walk to
every leaf node in the tree.

Recursion is the natural way to exhaustively walk a
tree, so the following program structure comes to mind:

recursively-expand
STRING input-string;
STRING generated-prefix;

STRING s, unprocessed-components,
current-component;

if (input-string == NULL)

generated-prefix is an expansion;
return OK;

I
else

December 1988 Volume 31 Number 12 Communicntions of the ACM 1377

Liternte Programming

current-component = first component
of input-string;

unprocessed-components = the rest of
input-string;

for s over all expansions of
current-component repeat

status = recursively-expand(
concatenate(

generated-prefix, s),
unprocessed-components);

if(status != OK)

I
return status;

return OK;

generated-prefix is the concatenation of the
names of all nodes between the root and the current
node. 1s is the name of the current node, and unpro -
cessed-components is the unexpanded string de-
scribing the as yet unprocessed subtree rooted at the
current node. The computation is started by calling
recursively-expand with input-string equal
to the string to expand and generated-prefix
equal to the null string. Either the value OK or an
appropriate error indicator will be returned.

The algorithm above is presented in psuedo-code be-
cause it depends on operations such as concatenation,
“the rest of,” and string assignment, which are not part
of C. The next step must surely be to develop these
abstract operations in terms of actual C primitives.

Managing the Strings
A careful examination of recursively-expand
shows that it does only two things to strings. Characters
are removed from the beginning of input-string
and other characters are added at the end of gener -
a ted-.pref ix. This behavior is unsurprising: we are
just wallking a path, generated-prefix is a list of
steps already taken, and input-string specifies the
steps y’et to be taken. This behavior can also be coded
in C quite easily. Incrementing a pointer to a string
represented as a character array removes characters
from the head of the string. Likewise, incrementing a
pointer to the tail of such a string adds character: at the
end. Thus, the string manipulations of recursively-
expand can be expressed in terms of simple pointer
manipulations.

combination of counting up, counting down, padding
with zeroes, not padding with zeroes, and so forth,
threatens to be big, buggy, ugly, and uninteresting. This
problem is inherent in the representation of leach com-
ponent as a character string; we would much. rather
speak in terms of things like:

current-component.initial-value
current-component.finaLvalue
current-component.format_.specification

And if we want to speak of such things, why not do so?
We introduce a new data structure:

typedef struct

I
unsigned initial-value ;
unsigned final-value ;
int increment;
char * format-specification;
unsigned formatted-width;
unsigned component-width;
component-descriptor-type ;

to describe a component. The initial-.va:lue,
final-value, and increment fields speci.fy the
range of values taken on by the component in question.
The format-specification tells how to convert
these values into a string suitable for use in an expan-
sion. The formatted-width and component-
width fields are the size of the component in its ex-
panded and unexpanded forms.

This particular representation of a component works
only if we assume that successive expansions of a com-
ponent can be represented as consecutive integers; it
will not work, for example, if characters were to be
stored in EBCDIC instead of ASCII. We can relax this
assumption by adding a field that specifies this way in
which the initial-value and final-value
fields are to be interpreted and iterated over.

Now we can write a function which inspects a
component and returns the equivalent component
descriptor:

component-descriptor-type
scan-first-component (input-string)
char input-string[] ;

if (is-a-constant-component (
input-string [01))

return scan-constant-component(
input-string) ;

Expanding a Single Component else if (input-string[O] == 1 [I)
The pseudo-code for recursively-expand blithely I
iterates s across all expansions of current-compo- return scan-character-component (
nent. lJnfortunately, this notion is harder to code than input-string) ;
to pseu’do-code. The components [a-c] , [c-a] , I
(8-9), (g-8), (8-l 0), and (1 O-8) all expand in else if (input-string [0] == *<I)
slightly different ways. The code for handling each I

1370 Communications of the ACM December 1988 Volume 31 Number I2

Literate Programming

return scan-numeric-component (
input-string) ;

As a matter of convenience, a separate function is
used to interpret each type of component, and scan-
first-component simply determines the type of
the first component and then invokes the function ap-
propriate for that type. Thus, most of the useful work
is accomplished in the functions scan-(type)-
component:

component-descriptor-type
scan-constant-.component(input-string)
char input-string [] ;

component-descriptor-type
return-value ;

return-value.initiaLvalue =
input-string [O] ;

return-value. final-value =
input-string [01 ;

return-value.increment = 0;
return-value.format-specification =

” % c ” i
return.-.value.component_width = 1;
return-value.formatted_width = 1;

return return-value ;
I

A constant component is one character wide, as is its
expansion, so both the component-width and the
formatted-width fields are set to one. The rather
cryptic %.c is a format specification directing that a
value be formatted as a single ASCII character. This
and the following format specifications are processed by
various library functions and are familiar to every C
programmer.

component-descriptor-type
scan-character-component(input-string)
char input-string [] ;
I

component-descriptor_type
return-value;

return-value. initial-value =
input-string [11 ;

return-value. final-value =
input-string [31 ;

if (input-string [1] <= input-string [31)

return-value.increment = 1;

return-value.component_width = 5;
return-value.formatted_width = 1;

return return-value;

All character components are five characters wide,
but their expansion still occupies only one character,
so the component-width and formatted-width
fields are set accordingly. The handling of the case in
which the initial-value and final-value fields
are equal is arbitrary.

This implementation of scan-character-com-
ponent assumes that the character collating sequence
is arithmetical; this assumption is valid for the ASCII
character set. It is easy enough to change this assump-
tion, but the representation of the component-
descriptor-type would have to be changed as
well.

component-descriptor-type
scan-numeric-component(input-string)
char input-string [] ;

int initial-width = 0;
int final-width = 0;
component-descriptor-type

return-value ;

input-string++;
/* Skip opening angle bracket */

return-value. initial-value =
atoi(input-string);

while(*input-string != ‘>I)

input-stringtt;
initial-width*;

input-stringtt;
/* Skip the dash */

return-value. final-value =
atoi (input-string) ;

while(*input-string != ‘>I)

input-stringi+;
final-width-H;

if(return-value.initial-value <=
return-value.final-value)

I
return-value.increment = 1;

else
i

return-value.increment = -1;
else

return-value.increment = --I;

return-value.format-specification =
11 % c It ;

return-value. component-width =
initial-width + final-width + 3 ;

return-value. formatted-width =
maximum(initial-width,

final-width) ;

December 1988 Volume 31 Number 12 Communications of the ACM 1379

Literate Programming

if(return-value.formatted-width == 1)

return-value.format-specification =
11 %d II ;

else if(return-value.formatted-width
== 2)

I
return-value. format-specification =

“%02d” ;

I
return return-value ;

if(s ==
current-component.
final-value)

I
last-time = TRUE;

sprintf(generated-prefix-end,
current-component.
format-specification, s);

status = recursively-expand(
unprocessed-components,
generated-prefix-end -t.
current-component.
formatted-width);

I

The C library function atoi converts a string of ASCII
digits tserminated by any non-numeric character to the
corresponding integer value. The two cases of the for-

if(status != OK)

i
return status;

mat specification provide the required zero padding;
this code restricts numeric components to a width of
two digits.

I
s += current-component.increment;

I
return OK;

Generading Expansions, Again I
At this point, the hierarchical decomposition of the 1
string expansion problem is complete, and we can cast
recursively-expand in C. As before, an initial call We have followed the pseudo-code closely, yet the se-
is required to begin the computation. mantic gap between it and this implementation is strik-

recursively-expand(input-string,
generated-prefix-end)

char * input-string;
char * generated-prefix-end ;

char * unprocessed-components;
component-descriptor-type

current-component;
int s;
int status;
BOO:LEAN last-time ;

if(*input-string == ‘\O’)

I
*generated-prefix-end = ’ \O ’ ;

/* End-of-string indicator */
status = string-is-an-expansion(

generated-prefix) ;
return status ;

I
else

current-component =
scan-first-component (

input-string) ;
unprocessed-components =

input-string +
current-component.
component-width;

s = current-component.
initial-value ;

last-time = FALSE;
while(!last-time)

ing. Pointer arithmetic has replaced the string manipu-
lations of the pseudo-code. Furthermore, the variable
generated-prefix has degenerated into a fixed
character array and a pointer into the array. Thk termi-
nation condition in the loop is expressed as “the pre-
vious iteration was the last”; this is because E; may
approach its final value from above or below, so that
equality is the only useful test.

Storage Management
At this point, we have completely solved one of our two
original subproblems. The other one, managing the list
of generated expansions, is much easier. The .routine
string-is-an-expansion is called from recur -
sively-expand; it accepts a string that is known to
be an expansion and adds it to the list of expansions
already generated. The pseudo-code for expand-
string initializes the list to empty; the principle of
information hiding demands that this be done with a
subroutine as well.

char * string-list [
NUMBER-OF-EXPANSIONS-LIMIT+1 j

/* The +I allows for the endmarker */
unsigned number-of-expansions ;

#define TOTAL-CHARACTER-LIMIT
NUMBER-OF-EXPANSIONS-LIMIT *
(EXPANSION-LENGTH-LIMIT+l)

char
character-pool [TOTAL-CHARACTER-LI:MIT] ;
char * character-pool-first-free;

initialize-list-to-empty()

1380 Communications of the ACM December 1988 Volume 31 Number 12

Literate Programming

i
number-of-expansions = 0 ;
character-pool-first-free =

character-pool ;
string-list[number-of-expansions] =

NULL ;
return;

string-is-an-expansion(string)
char * string;

if (number-of-expansions >=
NUMBER-OF-EXPANSIONS-LIMIT)

return STATUS-TOO-MANY-EXPANSIONS ;

string-list [number--of-expansions] =
character-pool-first-free ;

number-of-expansions += 1 ;
string-list [number-of-expansions] =

NULL ;

while (* character-pool-first-f reett =
*string++)

return OK;

I
Expansions are saved by consecutively copying them
into the character-pool array. Pointers to each
expansion are collected in the string-list array,
and a pointer to this array will become the final return
value.

Putting the Pieces Together
With the storage manager and recursively-
expand written, the final implementation of the
expand-string function which solves Van Wyk’s
problem is anticlimactic.

char
generated-prefix [

EXPANSION-LENGTH-LIMIT+1] ;
/* The +l is for the end

of string indicator */

char ** expand-string(input-string)
char * input-string;

int status ;
initialize-list-to-empty() ;
status = recursively-expand(

input-string, generated-prefix) ;
if(status == OK)

return string-list;

I
else

return(char **) NULL;

Performance
There are many reasons to expect this implementation
to be a real dog. It does an amount of work that grows
exponentially with the number of components in the
input string, and it calls sprintf an exponential num-
ber of times. Not only that, but it processes the same
piece of the input string over and over; the number of
calls to scan-first-component is exponential
in the number of components that are there to be
scanned. Expanding a constant component is little more
than copying a byte, yet recursively-expand uses
two procedure calls and an entire level of recursion to
accomplish this task. Thus, it was with some trepida-
tion that I approached performance measurement.

The size of the output generated by expand-
string grows very rapidly with the number of compo-
nents in the input string. A measurement of the
time required to build the expansion of 1 a-j I [a-j I
[a-j] [a-j] [a-j] [a-j] will tell us much more

about the underlying virtual memory system than it
will about the performance of expand-string. Thus,
1 replaced the call to string-is-an-expansion
recursively-expand with a call to the C library
function print f, which simply prints its argument.
I then ran expand-string on the input strings
[a-j] [a-j] [a-j] [a-j] and
[a-j] [a-j] [a-j] [a-j] [a-j]; these generated
10,000 and 100,000 bytes of output, respectively. 1
timed both while directing the output to the null de-

in

vice, and discovered that expand-string generated
expansions at a rate of 2,500 characters per second.
To put that figure in perspective, I also wrote a program
that simply printed characters to standard output:

main(argc, argv)
int argc;
char *argv[] ;

int i;
i = atoi(argv[l]);
while (i-)

printf(“%c”, la’);

I
This program proved capable of generating 7,500 char-
acters per second. From this, I conclude that even the
naive implementation of expand-string presented
here is not unreasonably expensive.

Of course, there are things that can be done to im-
prove its performance. Constant components are a spe-
cial case; they can be copied from input-string to
generated-prefix-end by adding the following
code at the beginning of recursively-expand:

while (
is-a-constant-component (
*input-string))

*generated-pref ix-end+t =
*input-stringtt;

December 1988 Volume 31 Number 12 Communications of the ACM 1381

Literate Programming

Another, better, idea is to reduce the number of calls
to scan-first-component. This routine can be in-
voked repeatedly on the initial input string to convert it
into a string of component descriptors; the string of
component descriptors can then be processed by the
same recursive expansion already used. This is really
just an application of the well-known technique of
moving invariant computations out of a loop, or in this
case, out of a recursion.

However, we must remember that the amount of out-
put generated by this program is exponential in the size
of the input. No amount of performance tuning can
change the fact that this problem cannot be solved ex-
cept in exponential time and space. It does not matter
how small input strings are handled, and large input
strings are hopeless; every (O-9) will burn another
order of magnitude. Thus, it may be a mistake to put
much effort into tuning expand-string. Instead we
should concentrate on the application within which it
is embedded.

Interface Improvements
Dean Herington and Andy Huber, also at Data General,
independently suggested that the problem never should
have called for returning a list in the first place. Her-
ington suggested the interface to expand-string
should include a user-supplied function which will be
invoked whenever an expansion is generated. This
function will process the expansion in accordance with
the user’s requirements; the processing might consist of
storing it in a convenient, user-allocated, location.
Hubelr suggested that the most useful interface is a gen-
erator function which, presented with a string and one
of its (expansions, returns the next expansion. Both ap-
proacbes completely separate the problem of storage
management from the problem of generating expan-
sions. Huber’s strategy is particularly good if the user
intends to touch each expansion only once: the expo-
nential storage requirement is eliminated.

I chose not to incorporate either because they do
excessive violence to Van Wyk’s problem statement;

REVIEW
Eric Hamilton presents an elegant algorithm for creat-
ing thle strings required by Van Wyk’s problem. He
structures the solution in terms of program modules
that perform clearly separate, well-defined functions.

While this code provides an adequate solution to the
algorithmic requirements of the problem, it fails to
meet the problem statement’s requirement that “. . . an
argument string can be of any length.” In addition, it
fails to meet the environmental requirement, “that it
can be plugged into a program without much fuss.” In
particular, this code presents the following problems:

1. Buffer overflow can cause unpredictable behavior.
2. Unanticipated side effects can result from the choice

of extern rather than static external variables and
functions.

3. The code is not reentrant.

neither strikes me as returning a list “without much
fuss.” However, they are cleaner and more useful in a
variety of situations. It is quite possible that either solu-
tion would have met the actual, as opposed .to the
stated, requirements of the problem. The moral of this
is that some problems are best solved by negotiation
with the user community.

Conclusion
This is a messy problem. The solution requires well
over 100 lines of C code, yet can be stated in 20 lines of
pseudo-code. The strategy behind the solution is ob-
vious from the first glance at the tree structure derived
from an input string; the same strategy all but disap-
pears when the pseudo-code is fleshed out into real C.
A truly discouraging amount of work is required to
realize the intuitively obvious notion of iterating across
all expansions of a given component. A gap between
idea and implementation is, I think, typical ;.n program-
ming work. In this case, the gap is larger than usual.

It is interesting to consider how this problem might
be solved in other programming languages. Fortran? I
wouldn’t consider it. Assembler? A horrible idea, but
at least recursion would be available. C? Ten hours.
I know, because I just did it. Ada? The semantic gap is
much narrower. Lisp? An hour or so at the most. Sno-
bol? Less than that. Those two languages have the right
string and list manipulation primitives for th.e job. Un-
fortunately, we seldom have the luxury of fitting an
implementation language to a problem. Van Wyk men-
tions that the solution to his problem is to be embedded
within “the implementation of a language for describing
circuits”; I doubt that this project will be coded in Sno-
bol. C is a plausible choice, and closing the gap be-
tween the problem statement and a working C imple-
mentation is an interesting problem.

Eric Hamilton
Data General Corporation
62 T. W. Alexander Drive
Research Triangle Park, NC 27709

Examples of Craftsmanship
The decision to return a null-terminated list of string
pointers is conventional and sound. The choice of a
recursive algorithm is natural, and the code is well-
crafted.

Modularity
Eric Hamilton’s functions are well designed modules.
That is, each function performs a relatively simple ac-
tion that can be understood without understanding the
other functions. And, with a few exceptions, no module
operates in another module’s space. For example, each
of the scan-TYPE-component () functions builds
a component-descriptor-type structure in its
own local data area and the parent function copies the
structure into its local data area on return. The excep-
tions to this policy are weak points in the design.

One of the best examples of craftsmanship in this

1302 Communications of the ACM December 1988 Volume 31 Number 12

Literate Progrnmming

code is the isolation of the “big, buggy, ugly and unin-
teresting” details of dealing with three different types of
input tokens. Each type of token is analyzed by a differ-
ent function:

scan-constant-component ()
scan-character-component ()
scan-numeric-component ()

Each of these functions returns a structure that con-
tains a generalized description of the substrings that
must be concatenated onto the output string. The prin-
cipal function, recursively-expand(), is able to
treat each token in the same way using these general-
ized descriptions.

Modularity Violated
Eric Hamilton tries to ignore some of the “ugly” details
by limiting numeric components to a width of two dig-
its. His code is:

if(return-value.formatted-width == 1)

Restoring Modularity
As an alternative, I propose changing format-
specification to an array of characters in
component-descriptor-type and replacing Ham-
ilton’s code which builds format-specification
to:

sprintf (
return-value.format-specification,
“%%O%ud” , return-value.
formatted-width) ;

The alternative code removes the restriction on the
width of numeric components: it is shorter, it is less
ugly, and it is safer than the original.

Buffer Overflow
The program checks for too many strings in the
string-list array at the beginning of string-
is-an-expansion (), but it does not check for
overflow of the character-pool or generated-
prefix buffers.

return-value.format-specification = character-pool
(1 $d 11 . I The character-pool buffer is declared as an exter-

I nal variable, and each new string added to the
if(return-value.formatted.width == 2) string-list is concatenated onto character-
I pool in string-is-an-expansion(). This

return-value.format-specification = function should include a one-line test for buffer
“%02d” ; overflow.

The data structure used here violates a principle of
modularity. Successive invocations to this function can
return pointers to the SAME STRING. Suppose the par-
ent function decides to alter the format specification of
decreasing numeric sequences:

for(k = 0; k < 3; input-string +=
component [k-H] _ component-width)

component [k] = scan-first-component (
input-string) ;

if (component [k] .
format-specification [2] == 2 a&

component [k] . increment < 0
) component [k] .

format-specification [21 = ’ 3 ’ ;

If the input specification is “(9-10) (1 O-9)
(9-l 0)“, on return from the first invocation of
scan-first-component (), component [0]
. format-specif ication points to “%2d”, but after
the second invocation it points to “%3d”. It appears that
the programmer’s intention is to produce an initial out-
put string that looks like, “090 1009” but the program
will in fact produce “0 0 9 0 10 0 0 9”. By returning a
pointer to a string, this design permits the parent func-
tion to alter the behavior of the child. While this viola-
tion of the principle of modularity does not produce
any problems in this program, it is a trap for some
future maintenance programmer.

generated-prefix
The generated-prefix buffer is declared as an ex-
ternal variable, and its starting address is passed to re -
cursively-expand() by expand-string() to
use as a working buffer to build the output strings.
Each recursive instance of recursively-ex-
pand () concatenates another substring onto gener -
ated-pref ix until the end of the input specification
is encountered, at which point recursively-ex-
pand () invokes string-is-an-expansion ()
to concatenate generated-prefix onto charac -
ter-pool; recursively-expand() should in-
clude a one-line test for buffer overflow.

One Test or Two
The generated-prefix buffer overflow test de-
scribed in the previous section makes the charac -
ter-pool buffer overflow test in string-is-an-
expansion () redundant. Why not eliminate the
character-pool buffer overflow test and save a few
processing cycles?

Eliminating the redundant buffer overflow test cre-
ates a new dependency between string-is-an-
expansion()andrecursively-expand().
Suppose a maintenance programmer later decides to
build up the output string in a file rather than in a
memory array. The length of generated-pref ix
will then be limited by the available disk file space
ratherthanby EXPANSION-LENGTH-LIMIT. The
maintenance programmer argues (incorrectly) that it

December 1988 Volume 31 Number 12 Communications of the ACM 1383

.iterate Programming

has been possible to eliminate a constraint and thereby
simphfy the user interface. The programmer will inad-
vertently introduce a bug into string-is-an-ex-
pans ion () as the EXPANSION-LENGTH-LIMIT
constraint is eliminated.

This discussion of a maintenance programmer elimi-
nating constraints is not academic. Subsequent sections
of this review discuss the issue and eliminate the EX -
PANSION-LENGTH-LIMIT constraint.

I would argue for keeping the redundant buffer over-
flow check in string-is-an-expansion() on
the grounds that it increases the independence of the
modules and therefore reduces the maintenance cost of
the program. As rules of thumb, I figure that mainte-
nance costs are ten times programming costs and that
processing costs are zero. Adding an extra line of code
and a few processing cycles at run time to reduce main-
tenance costs usually produces a very high benefit-cost
ratio.

Static Extern
All of the external variables and functions in the pro-
posed solution are of type extern and all except ex
pand-string () should be static. In C, any variable
declared outside of any function is called an external
variable. External variables are either of type extern or
type static. Failure to explicitly declare the type results
in an external variable of type extern.

The difference between static and extern external
variables is that extern externals are available to func-
tions compiled from other files, while static externals
are available only in the file in which they are de-
clared. Functions are also either extern or static with
the same implications.

Failure to hide external variables and functions by
declaring them to be static can lead to unanticipated
side effects. All five of the external variables in this
program and seven of the eight functions should be
declared to be static. The expand-string () func-
tion is the only function which should be of type
extern.

Dynamic Memory Allocation
The statement of the problem requires that, “. an
argument string can be of any length.” Since the output
from an argument string of constant tokens is the same
length as the argument string, it follows that the output
string :must be permitted to be arbitrarily long. How-
ever, the proposed solution limits the output string to
EXPANSION-LENGTH-LIMIT characters.

The C programming language is particularly well
suited to dealing with arbitrarily long strings because of
its library of dynamic allocation functions.

The program could use the scan-TYPE-compo-
nent () functions to determine the length of the out-
put strings and then allocate the buffer space to hold
the required length strings. Storage for the output
strings could be allocated as it is needed in recur -
sively-expand ().

These program revisions can be made while retaining
the original algorithm, and eliminating the constraints
on the maximum string length and the maximum num-
ber of strings. These revisions can also reduce the
number of variables and eliminate all of the external
variables. The total number of lines of code does not
change substantially.

Reentrant Design
The choice of external data in the proposed solution
reduces the possibility of using expand-St ring ()
from within a recursive algorithm. The program’s au-
thor provides convincing arguments in favor of recur-
sive algorithms, and identifies C’s support of recursive
functions as one of the primary reasons for selecting C
as the most appropriate programming language. In addi-
tion, the author mentions that the resulting function
will be used in an implementation language for describ-
ing circuits. And, language implementations frequently
use recursive algorithms for parsing input. The inability
to invoke expand-string() from within a recur-
sive algorithm can be regarded as a serious limitation in
this context.

The restrictions on the use of expand-string ()
from within a recursive algorithm can be removed by
converting the external variables to automat.ic type, so
that every invocation of expand-string() creates
its own copy of these variables.

The cost of making expand-string () reentrant
is one additional pointer in the parameter list for re -
cursively-expand (). This is a small price to pay
for the reduction in “fuss.”

Conclusions
Eric Hamilton has presented us with a well-crafted pro-
gram that meets the algorithmic requirements of the
problem but imposes serious constraints in application.
The constraints include a limit on the number of
strings that can be created, a limit on the length of the
strings that can be created, and limitations on the use
of the function from within a recursive parent function.

Writing code that can be plugged into someone else’s
program “without much fuss” means designing func-
tions that impose the fewest restrictions on the input,
and it means writing bulletproof code. Unanticipated
side effects resulting from external variables unneces-
sarily declared as extern can create problems. Func-
tions that are not needed outside of the file containing
the primary function should be declared static to pre-
vent other unanticipated side effects. Unnecessary and
unchecked constraints on the size of objects can lead to
unpredictable behavior.

The suggested improvements to this program empha-
size the use of dynamic memory allocation and the
replacement of external variables with automatic vari-
ables.

I coded these changes and found that they affected a
relatively small percentage of the code and made no
significant change to the total number of 1ine.s of code.

1384 Communications of the ACM December 1988 Volume 31 Number 72

Literate Programming

The analysis of the program and rewrite took about six
hours, about as long as it took the author to write the
code in first place! However, these changes eliminate
the need to document the constraints and limitations in
the original program.

Whenever I review someone else’s program, I always
look at the external data first, and, as is the case in this
program, I usually find problems related to their use.
External data reduces the independence of all of the
functions that can access it, and external data fre-
quently prevents the use as recursive program design.
In addition, I have reviewed programs that use external
data areas as data buffers by different functions at dif-
ferent times for different purposes. This design tech-
nique has frequently led to buggy code. Finally, using

external data usually leads to programs with larger to-
tal memory requirement than would be the case if the
data storage were dynamically allocated.

Don Coiner
Polaris, Inc.
2202 Sherbrooke Way
Rockville, MD 20850

For Correspondence: Christopher I. Van Wyk. AT&T Bell Laboratories.
Room Z-457. 600 Mountain Avenue. Murray Hill. NJ 07974.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear. and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise. or IO
republish. requires a fee and/or specific permission.

ACM SPECIAL INTEREST GROUPS
ARE YOLF! TECHNICAL

INTERESTS HERE?

The ACM Speaal Interest Groups further the a&
vancement of computer sdence and practice in
many speciaked areas. Members of each SIG
r&veasoneoftMfbenefitsapenodicalex-
dusiveiy devoted to the sped interest. The fob
lowmg are the publicatiis that are available-
through membership or sped subsmptbn.

SIGACT NEWS (Automata and
Computability Theory)

SICAda Letters (Ada)

SIGAPL Quote Quad (APL)

SIGARCH Computer Architecture News
(Architecture of Computer Systems)

SIGART Newsletter (Artificial
Intelligence)

SIGBDP DATABASE (Business Data
Processing)

SIGBIO Newsletter (Biomedical
Computing)

SIGCAPH Newsletter (Computers and the
Physically Handicapped) Print Editlon

SIGCAPH Newsletter. Cassette EdItton

SIGCAPH Newsletter. Print and Cassette
EdItIons

SIGCAS Newsletter (Computers and
Society]

SIGCHI Bulletin (Computer and Human
Interaction)

SIGCOMM Computer Communication
Review (Data Commumcatlon)

SIGCPR Newsletter (Computer Personnel
Research)

SIGCSE Bulletin (Computer Science
Education)

SIGCUE Bulletin (Computer Uses in
Educallon)

SIGDA Newsletter (Design Aulomatlon)

SIGDOC Asterisk (Systems
Documentation)

SIGGRAPH Computer Graphics
(Computer Graphics)

SIGIR Forum (Information Retrieval)

SIGMETRICS Performance Evaluation
Review (Measurement and
Evaluation]

SIGMICRO Newsletter
(Mlcroprogrammlng]

SIGMOD Record (Management of Data)

SIGNUM Newsletter (NumerIcal
Malhematlcs)

SIGOIS Newsletter (Office Information
Systems)

SIGOPS Operating Systems Review
(OperarIng Systems)

SIGPLAN Notices (ProgrammIng
I.angudges]

SIGPLAN FORTRAS FOR1’41 IFOR’I‘K.\\I

SIGSAC Newsletter (Security. Audit.
and (Yonlrol]

SIGSAM Bulletin (Symbolic and Algebraic
hlanlprllatlon]

SIGSIM Simuletter (Simulation and
Modeling)

SIGSMALL/PC Newsletter (Small and
Personal Computing Systems and
Applrcatlons)

SIGSOFT Software Engineering Notes
(Software Englneerlng)

SIGUCCS Newsletter (Unlverslty and
College Computing Serwces]

December 1988 Volume 31 Number 12 Communications of the ACM 1385

