
literate
programming Moderated by

Christopher 1. Van Wyk

LITERATE PROGRAMMING: AN ASSESSMENT

When Donald Knuth wrote the nXe program, one of
his goals was to publish it as a program “of which a
professor of computer science might be proud, in spite
of the fact that it meets real-world constraints and com-
promises” [2, p. v]. To this end, he and some of his
students wrote systems that were intended to foster
documentation as a natural part of programming, and
that allowed one to present programs in a fashion tai-
lored for human understanding.

WEB [3, 41 was the culmination of these efforts. WEB
input can be “woven” and printed using TI$C, so that a
person can read the program; thus, the WEB user has
access to the full power of the TPX typesetting system
in composing documentation. WEB input can also be
“tangled” and compiled by a Pascal compiler, so that a
computer can execute the program; thus, the WEB user
can declare variables, define parts of procedures, and
otherwise present pieces of the program in an order
natural for exposition, rather than one dictated by
Pascal.

After he had used WEB for several years, Knuth real-
ized that it had changed the way he wrote programs,
“that at last I’m able to write programs as they should
be written,” and he dubbed the new style “literate pro-
gramming” [l, p. 971. In the May and June, 1986 issues
of Communications of the ACM, the Programming Pearls
column presented two literate programs by Knuth.

Several common aspects are apparent in the various
literate programs Knuth has published. The most ob-
vious is cosmetic; the documentation is typeset like a
book, and the code is typeset in a “reference-Algal”
style. This is the easiest thing to notice, but it is hardly
essential to a program’s being literate. Harold Thimble-
by’s CWEB system, for example, typesets code in type-
writer font [5], and surely one can write literate docu-
mentation without access to a multifont typesetting
system.

A second aspect of Knuth’s literate programs is the
polish they exhibit; the code and the documentation
were written with meticulous care; indeed, the docu-
mentation not only explains what the code does, but it

@TEX is a trademark of the American Mathematical Society.

explains why the approach was chosen, and sometimes
why plausible alternatives were rejected. Such polish
makes it pleasant to read a literate program, but it can
hardly be considered distinctive of literate programs:
authors have polished their programs for careful expo-
sition for years.

A less obvious, but ultimately crucial, feature of
Knuth’s literate programs I would dub their uerisimili-
tude: the published programs were produced from ex-
actly the same input that was used to prepare the pro-
gram that the computer executed. Verisimilitude is
unique among these three aspects in that it distin-
guishes a literate program from a program that has
merely been highly polished and presented with
attention to cosmetic details.

Four programs have appeared since July, 1987, when
this column was commissioned to explore different ap-
proaches to literate programming. All of the programs’
authors worked hard to polish their presentations. And
all four share with Knuth’s literate programs the cos-
metic appearance of code interleaved with typeset com-
ments: each achieved this appearance in a different
way, but in all cases the production of the version for
presentation followed the writing of the working code,
and none of the published programs exhibits complete
verisimilitude with working code.

In June, 1989. Thimbleby served as reviewer, and
courteously reminded us of the essential role that veri-
similitude plays in a program’s being literate. He also
went on to suggest that the code and the documenta-
tion of a literate program must be produced (not merely
presented to the reader) simultaneously, and that a sys-
tem for literate programming should automatically pro-
vide such literary paraphernalia as tables of contents
and cross references.

Thimbleby’s restatement of fundamental marks of lit-
erate programs inspires me to resolve that future col-
umns will publish only programs that were produced
using a system for literate programming. And that pre-
sents a problem. I know of perhaps a half-dozen sys-
tems for writing literate programs, each modeled on
WEB, perhaps adding or subtracting a few features, or

0,990 ACM 0001.0782/90/0300-0361 $1.50 (continued on p. 365)

March 1990 Volume 33 Number 3 Communications of the ACM 361

Abstracts

ters that minimize the sum of the squared weighted orthogonal dis-
tances from a set of observations to a curve or surface determined by the
parameters. It can also be used to solve the ordinary nonlinear least
squares problem. The weighted orthogonal distance regression proce-
dure has an application to curve and surface fitting and to measurement
error models in statistics. The algorithm implemented is an efficient and
stable trust region (Levenberg-Marquardt) procedure that exploits the
structure of the problem so that the computational cost per iteration is
equal to that for the same type of algorithm applied to the ordinary
nonlinear least squares problem. The package allows a general weight-
ing scheme. provides for finite difference derivatives. and contains ex-
tensive error checking and report generating facilities.

For Correspondence: P. T. Bog@, Applied and Computational Mathemat-
ics Division, National Institute of Standards and Technology, Gaithers-
burg, MD 20899; J. R. Donaldson. Applied and Computational Mathemat-
ics Division, National Institute of Standards and Technology, Boulder,
CO 80303-3328; R. H. Byrd. Department of Computer Science. Univer-
sity of Colorado, Boulder, CO 80309: R. B. Schnabel. Department of
Computer Science, University of Colorado, Boulder, CO 80309 and Ap-
plied and Computational Mathematics Division, National Institute of
Standards and Technology, Boulder, CO 80303-3328.

ALGORITHM 677
C’ Surface Interpolation
Laura Bacchelli Montefusco and Giulio Casciola

A method of bivariate interpolation and smooth surface fitting is devel-
oped for rapidly varying z values given at points irregularly distributed
in the x-y plane. The surface is constructed by means of C’ triangular
interpolants defined on a triangulation of the convex hull of the points
set. The needed partial derivative values are estimated by a new
method based on a minimization criterion making use of a tension
parameter. This method. which is shown to be efficient and accurate,
gives the user an interactive tool to control the behavior of the interpo-
lant surface and to dampen unwanted oscillations near steep gradients.
The algorithm of this proposed method is described.

For Correspondence: L. B. Montefusco and G. Casciola. Universita Degli
Studi di Bologna, Dipartimento di Matematica, Piazza di Porta S. Don&o
5, 40127 Bologna, Italy.

Indefinite Integration with Validation
George Co&s and Gay Krenz

We present an overview of two approaches to validated one-dimensional
indefinite integration. The first approach is to find an inclusion of the
integrand. then integrate this inclusion to obtain an inclusion of the
indefinite integral. Inclusions for the integrand may be obtained from
Taylor polynomials. Tschebyscheff polynomials, or other approximating
forms which have a known error term. The second approach finds an
inclusion of the indefinite integral directly as a linear combination of
function evaluations plus an interval-valued error term. This requires a
self-validating form of a quadrature formula such as Gaussian quadra-
ture. In either approach. composite formulae improve the accuracy of
the inclusion.

The result of the validated indefinite integration is an algorithm
which may be represented as a character string. a subroutine in a high-
level programming language such as Pascal-SC or Fortran. or as a collec-
tion of data. An example is given showing the application of validated
indefinite integration in constructing a validated inclusion of the error
function, erf(x).

For Correspondence: Department of Mathematics, Statistics. and Com-
puter Science, Marquette University, Milwaukee, WI 53233.

ALGORITHM 678
BTPEC: Sampling from the Binomial Distribution
Voratas Knchitvichyanukul and Bruce W. Schmeiser

The FORTRAN implementation of an exact, uniformly fast algorithm for
generating the binomial random variables is presented. The algorithm is
numerically stable and is faster than other published algorithms. The
code uses only standard FORTRAN statements and is portable to most
computers: it has been tested on the IBM 370, 3033, 4381. DEC VAX
11/780. SUN 3/50. CDC 6500-6600, ENCORE Multimax, and Apple
Macintosh Plus. A driver program is also included.

For Correspondence: LJ. Kachitvichyanukul, Department ofIndustrial
and Management Engineering, The University of Iowa, Iowa City, IA
52242; B. W. Schmeiser, School of Industrial Engineering, Purdue Uni-
versity, West Lafayette, IN 47907.

Literate Programming (continued from p. 361)

working with different programming languages and
typesetting systems. Unfortunately, no one has yet vol-
unteered to write a program using another’s system for
literate programming. A fair conclusion from my mail
would be that one must write one’s own system before
one can write a literate program, and that makes me
wonder how widespread literate programming is or will
ever become. This column will continue only if I hear
from people who use literate-programming systems that
they have not designed themselves.

The alternative to this purist approach seems to be to
broaden the meaning of “literate programming” to in-
clude any effort to program with style, and to make the
column an exploration of programming style in general.
From my mail I gather that some readers would be
sympathetic to this course. Besides dishonoring Knuth’s
intentions in coining the term “literate programming,”
however, such a broadening of the column’s charter
would give me more power as an arbiter of style than I
or any other moderator ought to have.

In closing, I would like to thank the many people
who have written to or spoken with me about the col-

umn. Those whose programs and reviews have ap-
peared have been diligent in meeting deadlines; others
whose work has not appeared have been gracious in
their acceptance of negative verdicts; and 1 am always
happy to meet readers and learn of their interest in
literate programming.

Christopher J. Van Wyk
AT&T Bell Laboratories
600 Mountain Avenue
Room Z-457
Murray Hill, NJ 07974

REFERENCES
1. Knuth, D.E. Literate programming. Conrput. 1. 27, 2 (May 1984).

97-111.
2. Knuth. D.E. T#: The Program, Volume B of Computers and Typeset-

ting. Addison-Wesley, Reading, Mass.. 1986.
3. Knuth. D.E. The WEB system of structured documentation. Tech.

Rpt. 980. Stanford University Computer Science Department, Stan-
ford. Calif.. 1983.

4. &well, W. Weaving a Program. Van Nostrand Reinhold, N.Y., 1989.
5. Thimbleby. H. Experiences of “literate programming” using CWEB

(a variant of Knuth’s WEB). Comput. J. 29, 3 (June 19&S), 201-211.

March 1990 Volume 33 Number 3 Communicatiorw of the ACM 365

