
literate 
Moderated by 
Christopher 1. V,zn Wyk 

A File Difference Program 

Moderator’s Introduction 
Proponents of literate programming ascribe many char- 
acteristics to a literate program: it is meant to be read 
by people; it is presented in a lucid fashion and in an 
order dictated by intellectual logic rather than compiler 
restrict.ions; it includes a summary of the problem and 
the solution, an evaluation of alternative solutions, and 
suggestions for modification. 

Readers may well wonder whether it is necessary to 
have a specialized system (like WEB) to do literate pro- 
gramming. WEB lets one typeset the solution elegantly, 
provides a way to define macros with very long names, 
and does the bookkeeping to provide a table of cross 
references and an index; are these facilities essential to 
the enterprise? 

Donald Lindsay, this month’s solver, clearly believes 
that one can write a literate program using only stan- 
dard programming technology. Each function in his 
solution has an informally standardized header that ex- 
plains i-ts pre- and pcetconditions. Lindsay’s comments 
explain other properties that he finds desirable in a 
program. 

Joining the debate, Harold Thimbleby, this month’s 
reviewer, explains h JW using a specialized system 
changes the process IIf programming. He sees the ad- 
vantages that such a system provides as essential to 
writing a literate program. 

01989 AC41 OOOl-0782/89/t600.0740 51.50 

1. INTRODUCTION 
This column describes a program which reads two text 
files and prints out a description of the differences. The 
program presented here is a simplif.ied version of a 
preexisting program, which has been shortenled for 
publication by removing all code which supported 
options, or which improved the program’s speed or 
its memory needs. 

The program is written in the C language, a.nd is 
internally documented in the concise and precise man- 
ner which is appropriate to real programs. Although 
some writers find this form too terse and stylized for 
the purposes of presentation, I believe they do a dis- 
service. A textbook, and a useful program, simply have 
different purposes. For example, a program which is 
“explained” at considerable length, may in fact be 
poorly documented-from the viewpoint of a person 
wishing to know some quite reasonable postcondition 
of a certain procedure. This column should not be 
taken as a “literate program,” in Knuth’s restricted 
sense. This is a column about the program, but the 
program itself is suitable for posting (without explana- 
t.ion) on Usenet. If space allowed, the program would 
have been presented in its entirety (rather than as frag- 
ments), along with a machine-generated index. 

The lack of innovation in this column should not be 
taken as an argument against progress. Instead, it is 
hoped to be a demonstration of the manner in which a 
traditional program can be kept both precise and man- 
ageable. It should be noted that the reduced program is 
about TOO lines long, of which about 300 are comments 
and spaces. Although the program was adjusted for 
publication, it was not fluffed; this is indeed a real 
program, written for real use, in accordance with stan- 
dards based on maintenance experience. 

The specification was the first part of the program to 
be written. This was kept up to date as the program 
evolved, and is as illustrated in Figure 1. Figure 1 con- 
iains the program’s identification, a standard copyright 
notice, and a functional specification. In most cases, the 
front of a real program contains other material. For 
example, well-maintained programs contain a history 
log, showing the dates of revisions, the names of the 
parties involved, and short explanations of the revi- 
sions. This is usually done according to some standard 
format (e.g., labelled columns, or an indentation style) 
and the major asset of any such format is the imposed 
uniformity. A virtue of keeping the log prominent is 

740 Communications of the At3M June 1989 Volume 32 Number 6 



Literate Programming 

/********************************************************~******~****** 
* 

* diff Text file difference utility. 
* ---- Copyright 1987 by Donald C. Lindsay 
* Computer Science Department, Carnegie Mellon University 
* Copyright 1982 by Symbionics 
* 
* USEAGE: diff oldfile newfile 
* 
* This program assumes that "oldfile" and "newfile" are text files. 
* The program writes to stdout a description of the changes which would 
* transform "oldfile" into "newfile". 
* 
* The printout is in the form of commands, each followed by a block of 
* text. The text is delimited by the commands, which are: 
* 
* DELETE AT n 
* .-deleted lines 
* 
* INSERT BEFORE n 
* . . inserted lines 
* 
* n MOVED TO BEFORE n 
* ..moved lines 
* 
* n CHANGED FROM 
* . . old lines 
* CHANGED TO 
* . . newer lines 
* 
* The line numbers all refer to the lines of the oldfile, as they are 
* numbered before any commands are applied. 
* The text lines are printed as-is, without indentation or prefixing. The 
* commands are printed in upper case, with a prefix of ">>>>", so that 
* they will stand out. 
* Input lines which are longer than MAXLINBLEN characters will be chopped 
* into multiple lines. 
* Files which contain more than MAXLINECOUNT lines cannot be processed. 
*/ 

#define MAXLINECOUNT 20000 /* arbitrary */ 
#define MAXLINELEN 255 /* arbitrary */ 

FIGURE 1 

the increased likelihood that maintainers will add to it. 2. ALGORITHM AND DATA STRUCTURES 
(Beginning programmers often avoid making entries, 
giving excuses such as the triviality of their change.) 
This program’s log has been omitted to save space. 

The actual program contains an explanation of the algo- 

The format of the printout is different from that used 
by the filcom and diff programs which have been used 
for many years. The intention was to keep the com- 
mand lines straightforward and readable, at the ex- 
pense of other goals (such as acceptability to a specific 
editor). The text lines were printed as-is, since the dis- 
play of a prefixed line may change tab interpretations, 
causing items originally separated by whitespace to be- 
come merged together. There is also the possibility that 
prefixing may make some text lines too long for the 
user’s display medium. This format does have the dis- 
advantage that the commands can become buried in 
the output text. 

rithm which it uses. However, its explanation is mostly 
a reference to the article “A Technique for Isolating 
Differences Between Files,” by Paul Heckel, published 
in Communications of the ACM, 22, 4 (Apr. 1978), p. 264. 
This method is based on the idea that some lines will 
be found only once in the oldfile, and only once in the 
newfile. A file-to-file map of line matches is kept, and 
these unique lines are found and marked as matched. 
Next, lines which are adjacent to matched lines are 
checked. It may be that these lines would have 
matched, but were disqualified because they were non- 
unique, that is, were found more than once in either of 
the files. The algorithm takes the adjacency as a strong 
enough reason to match such lines. The map that re- 
sults will show each file to consist of blocks of matched 

June 1989 Volume 32 Number 6 Communications of the ACM 741 



Life ? Programming 

lines and blocks of unmatched lines. The printout algo- 
rithm (which was not included in Heckel’s article) uses 
the map to print the unmatched and moved lines. 

From this sketch, we see a need for two basic data 
structures. First, there must be a structure which holds 
the lines of text, so that uniqueness can be determined, 
and so that the lines may later be retrieved for printing. 
Secondly, there mr st Ibe a map which relates the two 
files. 

This program imllements the first data structure by 
having a symbol ta’,le package, which hides the details 
of its data structures from its user. The package is 
largely conventioml, and returns “handles” so that the 
program gets a unique name for each unique line. 

The program imIllements the map with global data 
declarations as illustrated in Figure 2. 

3. THE MAIN PRDGrRAM 
Given the function specifications shown in Figure 3, 
and the function signatures shown in Figure 4, then the 
code of the main procedure (less argument checking) 
can be as shown in Figure 5. This code was not con- 
structed in any par-.icular order, and was edited into six 
different places in the program. However, the pieces 
were constructed to be proofread as a whole. Only as a 
whole can it be det 3rnmined if a piece of code meets its 
functional specifications, given that the things which it 
directly touches meet their functional specifications. 

It is important to note the word “directly.” There is 
nothin.g so frustrati:ag as discovering that the proofread- 
ing of one procedure requires reading the implementa- 
tion of others. This leads recursively to including a 
practically unbounded amount of information into 
the “proof” of any single property. Although tools can 
assist in searches, t:ley may not be useful in finding ill- 
worded or poorly p:.aced documentation, and they can- 
not fin.d documentation that was never written. 

Some readers may think that “proofs” about programs 
are quite theoretical and academic. Actually, proofs are 
a major tool of every efficient maintainer, who does not 
have time to understand everything about a Iprogram, 
but must be sure that he understands certain things 
very well. This leads to the attitude that documentation 
exists so that informal proofs are easy, and are likely to 
be correct. 

This style of thinking can be learned quite naturally. 
When maintaining a program, ask yourself what proofs 
you have constructed. If the documentation #assisted 
these, then it is worth studying. If the documentation 
was inadequate to the task, then study the inadequacy, 
and try to alleviate it. With this attitude, a maintainer 
may develop good style; without it, it is all too likely 
that he will learn the style that makes programs need 
maintenance. 

4. READING THE FILES 
Due to limited space, the bodies of openfile and input- 
scan will not be shown in this column. The inputscan 
routine is not as trivial as openfile, but is basically just 
a loop, storing characters into a line buffer. It must cope 
with end-of-file, and with overlarge lines, but it mostly 
exists to call the routine storeline-see Figure 6. This 
function body has unknown semantics until we specify 
addsymbol, so we must next deal with the symbol table. 

5. THE SYMBOL TABLE 
The symbol table package presents a procedural inter- 
face, defined solely by the entry points. They are as 
presented in Figure 7. Given this code, the b’ody of 
storeline now has well-defined semantics and. can be 
checked against its specification. 

We will not show the internals of the symbol table 
package. The program uses a binary tree, which is 
searched by iterative descent. (This point will be dis- 

struct inf'o( /* This is the info kept per-file. */ 
FILE *file; /* File handle that is open for read.. */ 
int maxline; /* After input done, X lines in file.. */ 
char *symbol[ MAXLINECOUNT+Z 1; /* The symtab handle of each line. */ 
int cth.er [ MAXLINECOUNTt2 1; /* Map of line# to line* in other file */ 

/* ( -1 means don't-know ). */ 
) oldinfo, newinfo; 

int blocklen[ MAXLINECOUNT+Z 1; 
/* The above is the info about found blocks. It will be set to 0, except 
* at the line#s where blocks start in the old file. At these places it 
* will be1 set to the # of lines in the block. During the printout phase, 
* this va.1u.e will be reset to -1 if the block is printed as a MOW block.. 
* (This i,s because the printout phase will encounter the block twice, but 
* must orly print it once. ) 
* The array declarations are to MAXLINE:COUNT+P so that we can have two 
* extra lines (pseudolines) at line# 0 and 1ineX MAXLINFCOUNTtl (or less). 
*/ 
#define UNREAL (MAXLINECOUNTtZ) /* block len > any possible real block len */ 

- 

FIGURE 2 

742 Communications of the ACM June 1989 Volume 32 Number 6 



Literate Programming 

* initsymtab 
* -a-------- 

Must be called, once, before any calls to addsymbol. 

* openfile Opens the filename for reading. 
* --_----- Returns the file handle. 

* inputscan Reads the file specified by pinfo->file. 
* -m------e Places the lines of that file in the symbol table. 
* Sets pinfo->maxline to the number of lines found. 
* Expects initsymtab has been called. 

* transform Expects both files in symtab. 
* -m------s Expects valid Waxline" and "symbol" in oldinfo and newinfo. 
* Analyzes the file differences and leaves its findings in 
* the global arrays oldinfo.other, newinfo.other, and blocklen. 

* printout Expects all data structures have been filled out. 
* mu------ Prints summary to stdout. 

* NOTE: no routines return error codes. Instead, any routine may complain 
* to stderr and then exit with error to the system. This property 
* is not mentioned in the various routine headers. 

FIGURE 3 

cussed further in Section 8, entitled “Features and Per- identifiers. Also, names which become visible to debug- 
formance.“) The only unconventional aspect is some gers, to linkers, and to other tools, often fall afoul of 
counting, which makes it possible for symbolisunique to character set or length restrictions. (These problems are 
compute its result. usually noticed when porting software.) 

One part of any design is the choosing of names. The 
reader will have noticed that the names above, such as 
symbolisunique, are each a series of simple words, con- 
catenated together. This is the simplest possible method 
of constructing long, meaningful names, and it is ade- 
quate for this small program. The drawback in large 
programs is that the reader will eventually encounter a 
name which seems to defy analysis, or which he parses 
into the wrong phrase. The common solutions would be 
to change symbolisunique to symbol-is-unique or else 
to SymbolIsUnique. 

The underscore method is sometimes disliked on 
aesthetic grounds, and was quite unreadable on many 
early display and hardcopy devices. It makes names 
longer, which caused problems in the days when com- 
pilers economized space by dealing with truncated 

The capitalization method is sometimes disliked as 
being error-prone to type, or as being difficult to com- 
municate verbally to coworkers. (These problems are 
most relevant when the language used is case sensitive, 
as the C language is.) There are also typographic issues, 
such as the lack of vertical space between upper case 
letters, and the ambiguity of some font families. (For 
example, if the upper case letter I (eye) resembles the 
lower case letter 1 (ell), then the name SymbolIsUnique 
becomes quite confusing.) Capitalization may also cause 
problems during porting, typically with debuggers, link- 
ers, and the like. 

In a large program, abbreviations eventually become 
necessary, although only a few abbreviations (such as 
len) will be universally understood. In general, they are 
not as well understood as the inventor supposes, and 
when carried to extremes, as in SDlocDCl, they are 
clearly inferior. It is common to abbreviate pointer to 
ptr, and to distinguish variables containing addresses by 
names such as symbolptr. In this small program, I have 
used the simpler convention of prefixing with the letter 
p, as in psymbol. 

void initsymtabo 

FILE *openfile( filename ) 
char *filename; 

void inputscan( pinfo ) 
struct info *pinfo; 

void transform0 

void printout0 

FIGURE 4 

Some readers will have noticed that function show- 
symbol is poorly designed. It is less general than it might 
be, because it locates a string, but also prints it (and 
also knows where to print it). There are two reasons for 
choosing this merged functionality. The first is that sep- 
arating out the printing would require another func- 
tion, having only a trivial (single-line) body. In a small 
program such as this one, one extra function represents 

Iune 1989 Volume 32 Number 6 Communications of fhe ACM 743 



Literate Programming 

- 

printf( '">>>> Difference of file 
argstrings[l], argstrings[S!] ); 

initsyntabo; 
oldinf>.:Eile = openfile( argstringsrl] ); 
newinf>.file = openfile( argstrings[:;!] ); 
/* not'a, we don't process until we know both files really do exist. */ 
inputstzan( holdinfo ); 
inputsf:an( &newinfo ); 
transform(); 
printout () ; 

- 

FIGURE 5 

-/ 

- 
********i:*t***************************i~********~*k***************.k**k***i~* 

* 
* storeline Places line into symbol table. 
* -------_.- Expects pinfo-> maxline initted: increments. 
* Places symbol table handle in pinfo->symbol. 
* Expects pinfo is either Loldinfo or &newinfo. 
* Expects linebuffer contains linelen nonnull chars. 
* Expects linebuffer has room to write a trailing nul into. 
* Expects initsymtab has been called. 
* 
*********i,***************************************************************i~*/ 
void storcrline( linebuffer, linelen, pinfo ) 
char linebuffer[]; 
int linelaIn; 
struct info *pinfo; 
i 

int linenurn - ++( pinfo-> maxline ); /* note, no line zero */ 
if( linenurn > MAXLINECOUNT ) { 

fprintf( stderr, "MAXLINECOUNT exceeded, must stop.07" ); 
exit(l); 

1 
linebuffer[ linelen ] - ' '; /* nul terminate */ 
pinfcl->, symbol[ linenum ] - 

addsymbol( linebuffer, linelen, pinfo -- &oldinfo, linenum ); 
1 

- 

FIGURE 6 

a cost (in size) that partly balances against the poorer 
modularity. The second and larger reason is that the 
symbol table packagl: may wish to keep the lines in a 
compressed format, or may store long lines as several 
fragments. In this ca:;e, the interface chosen would 
have some extra convenience, since the function need 
not recreate the orig nal string. 

6. CONSTRUCTING, THE FILE MAPPING 
In Section 3, we defi:lecl the f~unsform routine. Basi- 
cally, it takes the marline variables and the symbol ar- 
rays, and fills out the! map defined in Section 2. The 
function body is sholvn in Figure 8. The scan routines 
were created to keep the transform routine readable. 
They do this partly Ey simple smallness. The differ- 
ences and similarities of the scan loops become more 
apparent, and the independence of the scratch vari- 
ables is made explicit. Also, the specifications of the 
routines document the evolving state of the mapping 

data, whereas comments within a single large routine 
tend to be constructed with less care. It may not always 
be clear just what body of code a comment applies to, a 
difficulty which routine specifications cannot have. 

It should be noted that this program was coded with 
tab settings at every fifth column. It is well known that 
an indentation of two columns isn’t enough, and that 
eight is too much. This rule follows from practical 
experience with large routines. As routines become 
larger, they need deeper indentation in order 1.0 keep 
groupings visually distinct. On the other hand, deep 
indentation becomes more likely to run things up 
against the right margin. This difficulty with s:ize gives 
us one more reason for keeping routines small, regard- 
less of language. 

Another aspect of smallness is economy in the use of 
lines. There is a practical advantage to fitting an entire 
routine onto a screen, or onto a page. This program has 
followed the convention that an opening brace (“curly 

744 Communications of the ACM ]une 1989 Volume 32 Number 6 



Literate Programming 

* initsymtab 
* ---------- 

Must be called, once, before any calls to addsymbol. 

* addsymbol Expects pline-> a string with linelen non-nul chars. 
* --------- Saves that line into the symbol table. 
* Returns a handle to the symtab entry for that unique line. 
* If inoldfile nonzero, then linenum is remembered. 
* Expects initsymbtab has been called, once. 

* symbolisunique Arg is a ptr previously returned by addsymbol. 
* -------------- Returns true if the line was added to the 
* symbol table exactly once with inoldfile true, 
* and exactly once with inoldfile false. 

* lineofsymbol Arg is a ptr previously returned by addsymbol. 
* ~-~---_----- Returns the line number stored with the line. 

* showsymbol Arg is a ptr previously returned by addsymbol. 
* ---------- Prints the line to stdout. 

void initsymtabo 

char *addsymbol( pline, linelen, inoldfile, linenum ) 
char *pline; 
int linelen, inoldfile, linenum; 

int symbolisunique( psymbol ) 
char *psymbol; 

int lineofsymbol( psymbol ) 
char *psymbol; 

void showsymbol( psymbol ) 
char *psymbol; 

FIGURE 7 

int oldline, newline; 
int oldmax - oldinfo.maxline + 2; /* Count pseudolines at */ 
int newmax = newinfo.maxline + 2; /* ..front and rear of file */ 

for(oldline=O; oldline < oldmax; oldline++ ) oldinfo.other[oldline]= -1; 
for(newline=O; newline < newmax; newline++ ) newinfo.other[newline]- -1; 

scanuniqueo; /* scan for lines used once in both files */ 
scanaftero; /* scan past sure-matches for non-unique blocks */ 
scanbeforeo; /* scan backwards from sure-matches */ 
scanblocks(); /* find the fronts and lengths of blocks */ 

FIGURE 0 

bracket”) is only on a line by itself when starting a 
function body.However, blank lines have been used to 
set off groupings, and multi-statement lines have been 
avoided. 

The routines themselves are shown in Figure 9. 

7. PRINTOUT 
The printing phase essentially scans through the map, 
printing (or not) the lines that it finds through the 
map’s symbol table handles. This was done with a 

single loop, which may advance a newline variable, or 
may advance an oldline variable, or may advance both. 
(The advances are always by one, or else by the size of 
a block.) There are two major problems. The first is 
simply that there are a large number of cases-for ex- 
ample, if a block has been moved, then a scan may 
encounter it twice, once where it came from, and once 
where it went to. The second problem is that the code 
would have an unreadable control structure if it were 
written as a single function. 

June 1989 Volume 32 Number 6 Communications of the ACM 745 



Literate Programming 

/***************************************~****~******~******~**************** 
* 
* scanunique Expects both files in symtab, and oldinfo and newinfo valid. 
* -w-----v-- Scans for lines which are used exactly once in each file. 
* The appropriate "other" array entries are set to the 1ineX in 
* the other file. 
* Claims pseudo-lines at 0 iand XXXinfo.maxlinetl are unique. 
* 
****************************************.~***********************~******~***/ 
void scanunique 
I 

int oldline, newline; 
char *psymbol; 

for( newline = 1; newline <= newinfo.maxline; newline+t ) { 
ps:ymbol = newinfo.symbol[ newline 1; 
if( symbolisunigue( psymbol )) ( /* 1 use in each file */ 

oldline = lineofsymbol( psymbol ); 
newinfo.other[ newline ] = oldline; /* record a l-l map */ 
oldinfo.other[ oldline ] := newline; 

1 
1 
newinfo.other[ 0 ] = 0; 
oldinfo.other[ 0 ] = 0; 
newinfo.other[ newinfo.maxline t 1 ] = oldinfo.maxline t 1; 
oldinfo.other[ oldinfo.maxline t 1 ] = newinfo.maxline t 1; 

1 

/**************************************************************************~*~ 
* 
* scanafter Expects both files in symtab, and oldinfo and newinfo valid. 
* -------em Expects the "other" arrays contain positive #s to indicate 
* lines that are unique in both files. 
* For each such pair of places, scans past in each file. 
l Contiguous groups of lines that match non-uniquely are 
* taken to be good-enough matches, and so marked in "other". 
* Assumes each other[O] is 0. 
* 
*********~******************************~*************************~*******~~*/ 
,void scanafter 
I 

int cldline, newline; 

for( newline = 0; newline <= newinfo.maxline; newlinett ) { 
oldline = newinfo.other[ newline 1; 
if( oldline >= 0 ) ( /* is unique in old & new */ 

for(;;) 1 /* scan after there in both files */ 
if( ttoldline > oldinfo.maxline ) break; 
if( oldinfo.other[ oldline ] >= 0 ) break; 
if( ttnewline > newinfo.maxline ) break; 
if( newinfo.other[ newline ] >= 0 ) break; 

/* oldline h newline exist, and aren't already matched */ 

if( newinfo.symbol[ newline ] != 
oldinfo.symbol[ oldline ] ) break; /* not same *I' 

newinfo.other[ newline ] = oldline: /* record a matoh */ 
oldinfo.other[ oldline ] = newline; 

746 Communications of the .4CM 

FIGURE 9 

lune 1989 Volume 32 Number 6 



Literate Programming 

/*****************************************************~********************* 
* 
* scanbefore As scanafter, except scans towards file fronts. 
* ----_----- Assumes the off-end lines have been marked as a match. 
* 
************************************************************~***************/ 
void scanbefore 
1 

int oldline, newline; 

for( newline - newinfo.maxline + 1; newline > 0; newline-- ) { 
oldline - newinfo.other[ newline 1: 
if( oldline >- 0 ) { /* unique in each */ 

for(;;) ( 
if( --oldline <- 0 ) break; 
if( oldinfo.other[ oldline ] >- 0 ) break; 
if( --newline <- 0 ) break: 
if( newinfo.other[ newline ] >- 0 ) break: 

/* oldline and newline exist, and aren't marked yet */ 

if( newinfo.symbol[ newline ] !- 
oldinfo.symbol[ oldline ] ) break; /* not same */ 

newinfo.other[ newline ] = oldline; /* record a match */ 
oldinfo.other[ oldline ] - newline; 

1 
I 

1 

/****************************************~*******************~***************~ 
* 
* scanblocks Expects oldinfo valid. 
* ---w---v-- Finds the beginnings and lengths of blocks of matches. 
* Sets the blocklen array (see definition). 
* 
*************************************************~**~****~*****************/ 
void scanblocks() 
(: 

int oldline, newline; 
int oldfront - 0; /* line* of front of a block in old file, or 0 */ 
int newlast - -1; /* newline's value during the previous iteration*/ 

for( oldline - 1; oldline <= oldinfo.maxline: oldline++ ) 
blocklen[ oldline ] = 0; 

blocklen[ oldinfo.maxline + 1 ] - UNREAL; /* starts a mythical blk */ 

for( oldline - 1; oldline <= oldinfo.maxline; oldline+t ) { 
newline - oldinfo.other[ oldline 1; 
if( newline < 0 ) oldfront = 0; /* no match: not in block */ 
else( /* match. */ 

if( oldfront =- 0 ) oldfront = oldline; 
if( newline != (newlasttl)) oldfront = oldline; 
ttblocklen[ oldfront 1; 

1 
newlast = newline; 

1 

FIGURE 9. Continued 

fune 1989 Volume 32 Number 6 Communications of the ACM 747 



Literate Programming 

- 

I have chosen to write printout as a main function 
and n.ine subsidiar;r functions. They are held together 
by fou.r global varii.bles, rather than by parameter lists 
and by result values. This is usually an inferior 
method, since the use of global variables means that 
the functions have side effects that in general are hard 
to document (or art: poorly documented). In this spe- 
cific case, however the subsidiary functions are in fact 
just fragments of tbe whole, and the C language makes 
it burdensome to pass the global variables both in and 
out of the functions. I apologize for seeming to support 
a practice which I counsel against. 

The variables global to the ten printout functions are 
shown in Figure 10, and the functions are shown in 
Figure 11. The reader may have noticed that the show- 
same function contains an error check. It is considered 
good practice to leave such checks in the final program, 
unless there are reasons to remove them. 

8. FEATURES AND PERFORMANCE 
Since the program contains loops that span the inputs, 
but does not contain any nested loops, we would expect 
that execution time would be linear in the size of in- 
put. In big-oh notation, we would say that we expect 

enum( idle, delete, insert, movenew, moveold, same, change ) printstatus; 
enum{ false, true ) anyprinted; 
int printoldline, printnewline; /* line numbers in old h new file */ 

FIGURE t0 

- 

void printcut () 
1 

printatatus = idle: 
anyprinted - false: 
for( P,rintoldline - printnewline - 1; ; ) ( 

if( printoldline > oldinfo.maxline ) ( newconsume 
if( printnewline > newinfo.maxline ) ( oldconsume 
if( newinfo.other[ printnewline ] < 0 ) ( 

if( oldinfo.other[ printoldline ] < 0 ) 
else 

1 

0; break;) 
0; break:) 

showchangeo; 
showinsert.0; 

else if( oldinfo.other[ printoldline ] < 0 ) showdelete(); 
else if( blocklent printoldline ] < 0 ) skipold(); 
else if( oldinfo.other[ printoldline ] =- printnewline ) showsame(); 
else showmovel(); 

1 
if( anyprinted =- true ) printf( ">>,>> End of differences.0 ): 
else printf( *'>>>> Files are identical.0 ); 

1 

/*************************************************************************** 
* 
* newconsune 
* ---e--- -- - 
* 

Part of printout. Have run out of old file. 
Print the rest of the new file, as inserts and/or moves. 

*******************************************************~**********~********~*/ 
void newconsume() 
t 

fort;;) I 
if( printnewline > newinfo.maxline ) break: /* end of file */ 
if( newinfo.other[ printnewline ] < 0 ) showinsert(); 
else showmove(); 

1 
I 

FIGURE 11 

740 Communications of the A13M ]une 1989 Volume 32 Number 6 



Literate Programming 

/*********************************************************************~***** 
* 
* oldconsume Part of printout. Have run out of new file. 
* ------e--e Process the rest of the old file, printing any 
* parts which were deletes or moves. 
* 
********************************************~********************~********~*~**/ 
void oldconsume() 
I 

fort;;) I 
if( printoldline > oldinfo.maxline ) break: /* end of file */ 
printnewline - oldinfo.other[ printoldline 1; 
if( printnewline < 0 ) showdelete(); 
else if( blocklen[ printoldline ] < 0 ) skipold(); 
else showmove(); 

1 
1 

/***************************************~**~***~***~*******~~**~~****~*~**** 
* 
* showdelete Part of printout. 
* ---------- Expects printoldline is at a deletion. 
* 
****************************************************~*******************~******/ 
void showdelete 
I 

if( printstatus !- delete ) printf( *'>>>> DELETE AT %dO, printoldline); 
printstatus - delete; 
showsymbol( oldinfo.symbol[ printoldline I); 
anyprinted = true; 
printoldline+t; 

1 

/************************************************************************~** 
* 
* showinsert Part of printout. 
* ----_----- Expects printnewline is at an insertion. 
* 
***************************************************************************/ 
void showinsert 
1 

if( printstatus ** change ) printf( ">>>> CHANGED TOO 
else if( printstatus != insert ) 

printf( *'>>>> INSERT BEFORE %dO, printoldline ); 
printstatus = insert; 
showsymbol( newinfo.symbol[ printnewline I); 
anyprinted - true; 
printnewlinett; 

1 

1; 

/*********************************************************~***************** 
* 
* showchange Part of printout. 
* ---------- Expects printnewline is an insertion. 
* Expects printoldline is a deletion. 
* 
***************************************************************************/ 
void showchange 
{ 

if( printstatus != change ) 
printf( 'I>>>> %d CHANGED FROMO, printoldline ); 

printstatus = change; 
showsymbol( oldinfo.symbol[ printoldline I); 
anyprinted - true; 
printoldline++; 

1 

FIGURE 11. Continued 

June 1989 Volume 32 Number 6 Communications of the ACM 749 



Literate Progranming 

/********i*****************************************************~******~***** 
* 
* skipold 
* -m-v--- 
* 
* 
* 

Part of printout. 
Expects printoldline at start of an old block that haal 
already been announced as a move. 
Skips over the old block. 

*********i*****************************~****~~*****************~*********~*/ 
void skipold 
1 

print.status - idle: 
fort;;) 1 

if( ++printoldline > oldinfo.maxline ) break; /* end of file */ 
if( oldinfo.other[ printoldline I < 0 ) break; /* end of block */ 
if( blocklen[ printoldline 1) break; /* start of another */ 

1 

/********lr*~r***************************n************************************ 
* 
* skipnew Part of printout. 
* -w--e-- Expects printnewline is at start of a new block that has 
* already been announc::ed as a move. 
* Skips over the new block. 
* 
*********,~*h*****************************~*,h********~************************~*/ 

void skipnew() 
( 

int Ialdline; 
prinl:status - idle: 
for(:;) ( 

if( ++printnewline > newinfo.maxline ) break: /* end of file */ 
oldline - newinfo.other[ printnewline 1; 
if( oldline < 0 ) break; /* end of block */ 
if( blocklen[ oldline 1) break; /* start of another */ 

I 

/********k*****************************k****************~******************* 

* 

* showsamga Part of printout. 
* -------.- Expects printnewline and printoldline at start of 
* two blocks that aren't to be displayed. 
* 
*********k*******************************~***********************~~*******~/ 

void show,same() 
( 

int zount; 
prinzstatus - idle: 
if( .newinfo.other[ printnewline ] !- printoldline ) { 

fprintf( stderr, "BUG IN LINE BEFEBENCING07" ): /* (bel) */ 
exit(l); 

1 
count = blocklen[ printoldline 1; 
printoldline +- count; 
printnewline += count: 

1 

FIGURE 11. Continued 

750 Communications of the ACM June 1989 Volume $32 Number 6 



Literate Programming 

/******************************************************************~******** 
* 

* showmove Part of printout. 
* ---a---- Expects printoldline, printnewline at start of 
* two different blocks ( a move was done). 
* 
***************************************************************************/ 
void showmove 
(: 

int oldblock - blocklen[ printoldline 1; 
int newother = newinfo.other[ printnewline 1; 
int newblock = blocklen[ newother 1; 

if( newblock < 0 ) skipnewo; /* already printed */ 
else if( oldblock >= newblock ) ( /* assume new’s blk moved */ 

blocklen[ newother ] = -1; /* stamp block as “printed” */ 
printf( I*>>>> %d MOVED TO BEFORE %dO, newother, printoldline ); 
for( ; newblock > 0: newblock--, printnewline++ ) 

showsymbol( newinfo.symbol[ printnewline I); 
anyprinted - true: 
printstatus = idle: 

)else /* assume old’s block moved */ 
skipoldo; /* target line* not known, display later */ 

1 

FIGURE 11. Continued 

execution to be O(N), where N is the number of input 
lines. This analysis assumes that relatively little is 
printed out, since that is the usual case. This analysis 
also ignores the presence ofthe binary tree used by the 
symbol table package. Since the size of this tree is 
O(U), where U is the number of unique lines, we can 
expect the tree construction phase to have an execu- 
tion time of 0 (N logZ(U)). 

This program uses a fixed amount of space for the 
map. The original, more complicated version used O(N) 
space, with some loss in both simplicity and speed. 
(The symbol arrays were implemented as arrays of 
pointers to arrays, with dynamic allocation of the 
subarrays as needed during the input phase. The other 
arrays and the blocklen array need not be allocated until 
after the input phase, at which time the desired size is 
known exactly.) (The original program is also capable of 
keepingreferencesintotheinput files, rather than 
keeping the actual lines themselves. This greatly 
shrinks the symbol table, but will give incorrect results 
should a hash collision occur.) 

To measure this specific program’s performance, I 
constructed several large (>lO,OOO-line) input files, and 
for each, I constructed a version of it which differed 
slightly. I compiled the program, with optimization re- 
quested, and timed it on these input files, using the time 
command of a Sun-3/160 workstation. The program 
took approximately 25 percent to 50 percent longer 
than the standard diff utility of this machine. The gprof 
profiling tool revealed that the transform step was taking 
2.6 percent ofthe executiontime,andthe printout step 
was taking less than 0.1 percent of the time. This indi- 

catesthatthe code for these stepsisin no need of 
performance tuning, and no effort should be wasted on 
attempts to improve their speed. Of course, this conclu- 
sion depends on several “reasonable” assumptions. (For 
example, the speed ofthe input phase is affected by 
average line length, whereas the speed of the transform 
step is not.) 

The symbol table package (not presented in this col- 
umn) is clearly inefficient, with addsymbol consuming 
60 percent ofthe execution time. This is due to its 
simplistic algorithm, which does a full string compari- 
son at every step of a tree descent. There are several 
ways to reduce this cost. As noted in a previous section, 
the strings can be shortened by a compression method. 
Comparison can be avoided when strings are of un- 
equal length. The tree depth can be minimized by a 
balancing method. A hashing technique may be used 
instead of a tree. Or, the hash of each line may be 
carried around with the line, so that the bulk of the 
comparisons can be done on the hash values. This last 
technique was coded into a version of the program, and 
the execution time became comparable to that of the 
diff utility. 

The quality of the algorithm’s decisions was dis- 
cussed in the article by Heckel. To summarize, the out- 
put is usually of a quality comparable to that of other 
algorithms. Sometimes the output is “more right,” par- 
ticularly because it is capable of noticing a block move 
as such, rather than noticing it as a block deletion and 
as a (separate) block insertion. There are inputs which 
will cause the algorithm to make poor decisions: this 
can also be said of the other major algorithms. The 

lune 1989 Volume 32 Number 6 Communications of the ACM 751 



Literate Programming 

- 

failures are often a consequence of the fact that files 
may contain many identical lines, particularly if they 
are program source. Each algorithm must resolve this 
ambiguity, and there may in fact be no resolution 
which is “right.” In general, however, this algorithm 
does produce the “:*ight” result. 

“uninteresting changes,” such as the timestamps found 
in regression-test logs. The prograrn presented here has 
been designed and coded in a manner which should 
make it suitable for maintenance, and therefore a rea- 
sonable platform for enhancements. 

Historically, file difference programs have been sub- 
ject to’ enhancement. 0ne main category of changes has 
been in the area of input filtering. This is usually op- 
tional low-level proce.ssing, such as case reduction, var- 
ious forms of whitespace reduction, comment stripping, 
and the like. Anotler category is optional changes in 
printout format, to show the context of a change, or to 
be more suitable for some other tool, such as an editor 
or a revision control system. A more open-ended cate- 
gory i:; changes male to fit the program into some sys- 
tern context. This may involve adding knowledge of 
some structured environment (such as hierarchical 
directories), or ma). involve adaptation to ideas such as 

- 

Acknowledgment. This program would never have 
been written if the original exposition by Paul Heckel 
had not been so persuasive. I would like to thank my 
colleagues at Symbionics, for whom the original imple- 
mentation was written. I would also like to ihank my 
colleagues on the Archons project at Carnegie-Mellon 
University, whose support and facilities were essential 
to writing this column. 

Donald C. Lindsay 
Department of Computer Science 

Carnegie Mellon University 
Pittsburgh, Pennsylvania 15213-3890 

A Review of Donald C. Lindsay’s Text File Difference Utility, diff 

Harold Thimbleby is Professor of Information Technology 
at Stirling University. He was awarded the British Com- 
puter !$ociety Wilkes Medal for his paper on literate pro- 
gramming [2]. 

Overview 
So far, all reviews of literate programs in Communica- 
tions have criticize11 the content rather than the use of 
literate programming itself. This suggests that literate 
programming succ~:ssfully brings out details of content, 
and makes programs clearer. 

In my review of Donald Lindsay’s diff program I 
shall comment on Iris use of literate programming as 
a met’hod, rather than the content of his particular 
program. 

I shall first make some rather general and abstract 
comments about lierate programming, then make some 
particular comments about Lindsay’s use of literate pro- 
gramming. 

Lindsay appears to have simulated literate program- 
ming: that is, he hes generated the sort of outcome one 
would expect, but obtained by a manual method. What 
would Lindsay’s program have been like if he had been 
able to get the same, or better, results without effort? I 
had a literate progl,amming system available, so I was 
able to rekey his p::ogram to compare manual and auto- 
matic methods. This is an unconventional way to re- 
view, but in fact, I did what any programmer would do 
faced with the task of converting a conventional, 
though heavily documented, program into a literate 
program. My conclusions are quite general. I claim that 
literate programming not only facilitates program im- 

provement, but actually encourages it, for, as we shall 
see, the beneficial facilities are free. 

Of Literate Programming and Programming, Paradigms 
The term programming paradigm is now widely but im- 
precisely used. I shall define the term as follows so that 
I can talk about “a literate programming paradigm” as a 
useful concept. 

Definition: A programming paradigm is the set of 
features that a programming system provides for 
free, and with warranty that such features are cor- 
rect (and generally efficient). 

For example, backtracking is provided for free in 
Prolog, but a Pascal programmer has to try very hard to 
get backtracking. Thus being able to assume the pres- 
ence of backtracking is part of the paradigm of Prolog, 
but not of Pascal. Motivated Pascal program:mers can, of 
course, still do backtracking, but the effort and unrelia- 
bility of doing it usually discourages them. 

Now, consider literate programming. If literate pro- 
gramming is to be “paradigmatic” then it must provide 
features for free, and it must provide a warranty. That 
way, programmers will be able to-and want to-take 
advantage of the features. The effect of the freedom and 
assurance should be to liberate programmers to concen- 
trate on their pressing programming problems, yet al- 
most unconsciously take advantage of the paradigm. In 
a good literate programming environment, the trappings 
of literateness should flow as if the programmer was an 
accomplished expositor-just as a Prolog programmer 

752 Communications of the ACM ]une 1989 Volume .32 Number 6 



Literate Programming 

can very easily do things that, in Pascal, take accom- 
plished programming. 

REVIEW 
Before I embark on my criticism, I want to say that I 
admire the author for his courage in presenting his 
program to the public. And it is good that literate pro- 
gramming is such an attractive medium that we can 
assume many people will be interested in reading and 
scrutinizing programs that would otherwise be con- 
signed to obscurity. 

Lindsay has presented a text file difference utility, 
diff. It is based on a real program, written for real use, 
though now simplified for presentation. Lindsay inti- 
mates that we may find his style too cryptic for the 
purposes of presentation, but perhaps only in compari- 
son with a textbook style exposition with its pedagogic 
tendencies. It must be said, however, that it is difficult 
to reconcile the style of commentary encouraged by 
literate programming with the needs of different sorts 
of readers: the commentary for a published program is 
different in nature than the commentary needed by a 
program maintainer, or, indeed, the program writer. 

So far as I can see, Lindsay’s literate program started 
out as a conventional program, then was somewhat 
edited, and then interleaved with new commentary. It 
appears that the new commentary is mostly about the 
process of programming and general design issues, 
rather than about the program itself. Almost all of the 
program documentation remains in a purely conven- 
tional style, in standard comments. 

Lindsay has had to work, and probably work very 
hard, to get the final effect. Evidently, this transforma- 
tion was achieved by hand. 

Although there is some explicit cross-referencing, 
much of it would have been made redundant by auto- 
matic cross-referencing; the rest would have been sys- 
tematized. Other literate programming effects I con- 
sider desirable are omitted altogether: indeed, it would 
have been hard, and unreliable, work to do them by 
hand. For example, there is no index. All in all, this is 
in contrast with what we would expect had literate 
programming been available as an effective paradigm. 
The order of the program is apparently unchanged from 
the original code, even though literate programming 
freely permits an arbitrary code order to simplify expo- 
sition. Of course, it would be much easier to change the 
code order, and keep the result intelligible, if there was 
automatic cross-referencing. 

But it must be emphasized that only exceedingly good 
literature can be recognized as such from small frag- 
ments (unless the author has a reputation). This is a 
problem for the review of such small programs as can 
be presented in Communications. Yet, if the parapherna- 
lia of literature came free and correct, one would tend 
to be influenced by them. We would expect a literate 
program to be quite liberal with such paradigmatic fea- 
tures as: flexible order of elaboration, cross-referencing, 
indices, typographical niceties, mnemonic names. 

So we have a program edited by hand for presenta- 
tion, with various elisions (the code that is presented is 
not compilable as it stands). What assurance do we 
have that this is the actual program? None. There may 
have been clerical errors made in the transformation 
from compilable program to literate program. This is a 
most serious criticism-and, conversely, an advert for 
literate programming done automatically. 

Of course, this is (or was originally) a real program 
and presumably implemented in a regime that did not 
provide a literate programming environment. Has Lind- 
say emulated literate programming given such restric- 
tion? I fear not. One of the most persuasive paradig- 
matic features of literate programming is that exactly 
the document you are reading can be mechanically 
processed to obtain the program. This is a warrant of 
the paradigm. 

Literate programming encourages a programmer to 
elaborate his program with documentation, and pre- 
sents the program nicely, in a form conducive to read- 
ing. These should be a single source document (or file) 
containing both documentation and program. Program 
and documentation can be developed concurrently in 
the same place, without overhead (this is part of the 
paradigm: a feature that comes “for free”). But in the 
program under review we find a text which (appar- 
ently] was developed first as a conventional program, 
then edited, then documented (or rather used as a vehi- 
cle to carry certain textbook-style comments). There is 
no way we can expect any programmer to develop both 
program and documentation concurrently with such a 
struggle. What would happen, if in the process of docu- 
menting a fragment of program, the author realized 
there was an opportunity to improve the program. 
Would he go over the whole process again? Surely not. 
The effort put into transforming a program by hand 
represents a commitment that will not be readily un- 
done. Modifying a program squanders earlier effort put 
into preparing it for presentation. But in a literate pro- 
gramming environment, the process would be paradig- 
matic: it would cost the programmer nothing to change 
the program as soon as he noticed any opportunity for 
improvement. That way we would get better programs, 
faster. 

An Experiment . , . 
There is no need to continue criticizing the program, 
once the point has been made. I understand the con- 
straints and the desire to present a real program. 

As an experiment, and in hypothetical support of my 
claims, I rekeyed Lindsay’s program together with his 
documentation. I used cweb, a literate programming 
system I developed in 1983 [2]. 

At first, apart from ignoring meta-documentation 
(that one would not normally expect to find in a pro- 
gram outside of a textbook), I did not edit his text in 
any way, except to take advantage of the literate pro- 
gramming paradigm. The changes I did make (mainly 
entering section delimiters at the right moment) were 

fune 1989 Volume 32 Number 6 Communications of the ACM 753 



Literate Programming 

an insignificant part of copy-typing the text. I typed 
1.25 percent extra in order to satisfy the conventions of 
my system, plus 1.89 percent (beyond what I could ac- 
tually see) for typogmphical niceties, such as arranging 
for in-line comments to be vertically aligned.’ In com- 
parison, I estimate that Lindsay’s source contains 
maybe a 5 percent overhead in the way of formatting 
commands (but I ciln only guess what formatter he 
used). 

I made a few chs nges subsequently (e.g., improving 
the order of presentation; promoting in-line comments 
to separate documentation), but these could charitably 
be counted a normal part of proofreading, a task which 
was in any case required to check my copy-typing 
against the original. Cweb itself imposes no restrictions 
on one’s programming, and there was no need for me to 
make any changes whatsoever. Tempted by the para- 
digm, however, I slcc.umbed to unfaithful copy-typing. 

As an experiment to compare the program in original 
and as-it-were paradigmatized forms, it was bad experi- 
mental method to irnFjlo”e the program, but it empha- 
sizes the point. In I:ontrast, Lindsay apparently simpli- 
fied the program; t!ris may be due to the effort of 
simulating a 1itera:e style. If so, then this would be an 
indictment of simulating literate programming, The 
original program may have been simplified for other 
reasons, nothing to do with literate programming: few 
real programs are .;uitable for direct publication, since 
they are typically too long and too machine- and 
environment-speci fit. 

For reasons of space (and since I basically copy-typed 
the program) it is not necessary to present the literate 
version of Lindsay’s program. The general effect of 
literate programming, and the widespread use of the 

’ cweb requires explicit commands for structuring a program. Had I had an 
interactive literate progrsmming system or one using grammar-directed struc- 
turing, such as Welsh et ;.l.‘s 131, there need have been no overhead. 

features I have mentioned, can be discerned in, for 
instance, Knuth’s books [l]. 

Looking at the result of my rekeying, I was, surprised 
how the original commentary (which looked all right 
embedded in code) looked insubstantial when set apart 
in the literate style. Of course, I used the original com- 
mentary in a way that may not have been intended, 
and which must give an unfair impression. L.indsay 
would no doubt want to improve it. In general, this 
effect of literate programming (making commentary 
more prominent) would encourage even better docu- 
mentation. 

Summary 
Returning to the programming paradigm idea: it is not 
so much what you do (for you can do the same things 
in any programming language if you try hard enough), 
but how you do it, and how easily. A literate program- 
ming style is not, to my mind, what literate program- 
ming is all about. How literate programming, is done, 
and how easily it can be done and redone, changes the 
way one programs. It provides new incentives. There is 
an incentive to make code and documentation consis- 
tent (by developing code and documentation concur- 
rently). There is an incentive to explain, and hence 
understand what you are doing. And by making a pro- 
gram look so nice, it gives an incentive to publicize the 
program and suffer its public review! In the future, I 
look forward to the time when programmers are so 
encouraged that they feel able to distribute real pro- 
grams in source form, including their literate documen- 
tation. 

Harold Thimbleby 
Department of Computing Science 

University of Stirling 
Stirling FK9 4LA, Scotland 

The reviewer, H:arold Thimbleby, adds: 

I am glad to see that Lindsay’s program has been 
improved since I reviewed it, but I am embarrassed 
that some of my comments now seem inappropriate. 
However, useful lessons may be drawn out of this 
experience. 

1. There are a number of minor changes. Just one 
example: my review says that Lindsay intimates 
that we may find his style too cryptic. That was 
his original vrord. 

2. There are more substantial changes. For example, 
Lindsay has (idded. “This column should not 
be taken as a ‘literate program,’ in Knuth’s re- 
stricted sense . .” With or without this explicit 
claim, the material is now quite clearly a stan- 
dard comme atary plus fragments of program. As 
such I would have had difficulty reviewing it as 
a literate prcgram. 

3. The original manuscript contained interleaved 
commentary and program, in the style of literate 
programming. In the process of publication, all 
the program text has been separated out by the 
printers as numbered figures. I must emphasize 
my review’s comments about warranties: we 
have no assurance that this numbering is correct, 
and it would surely go wrong with more than 
Lindsay’s 11 figures taken from his cut-down pro- 
gram. The original program cannot be recon- 
structed from such sparse representation. 

4. The proofs I was sent to check did not include 
any program code. It is ironic that literate pro- 
gramming aims to combine documentation and 
code so that they may be created, checked and 
published together. In the present case, the pro- 
cess of publication has completely separated 
them and any correspondence cannot be checked. 

754 Communications of the ACM ]une 1989 Volume 32 Number 6 



Literate Programming 

Indeed, the code I originally reviewed was poor 
and I deferred to supply only positive comments 
drawn out of Lindsay’s attempt at emulating liter- 
ate programming, however he actually chose to 
program. Now, I have no idea if the code has 
improved and whether my judgment would still 
be appropriate. 

5. My section “An experiment . . .‘I, particularly de- 
tailed comparisons, must be taken to refer pre- 
cisely to the manuscript I reviewed. The general 
comments of this section stand. 

In summary: on the one hand, although it is 
perfectly natural for Lindsay to respond to criti- 
cism (e.g., adding his comment about a machine- 
generated index), it is regrettable that in some 
details the review now appears inaccurate; on the 
other hand, the changes that have been made to the 
original program-the effort, omissions and concom- 
itant risk of error brought about by conceding to the 
pressures of publication-emphasise the great ad- 
vantages of doing literate programming automati- 
cally, paradigmatically, properly. 

REFERENCES 
1. Knuth, D.E. Computers and Typesetting, e.g.. Volumes B & D, 

Addison-Wesley, Reading, Mass., 1986. 
2. Thimbleby, H.W. Experiences of ‘Literate Programming’ using cweb 

(a variant of Knuth’s WEB), Camp. 1. 29, 3 (June 19661, 201-211. 
3. Welsh. J., Rose, GA., & Lloyd, M. An Adaptive Program Editor. 

Australian Camp. J 18, 2 (May 19661, 67-74. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct commer- 
cial advantage, the ACM copyright notice and the title of the publication 
and its date appear, and notice is given that copying is by permission of 
the Association for Computing Machinery. To copy otherwise, or to 
republish, requires a fee and/or specific permission. 

For Correspondence: Christopher J. Van Wyk. AT&T Bell Laboratories, 
Room Z-457, 600 Mountain Avenue, Murray Hill, NJ 07974. 

The Eeading outlet for major research papers covering 
programs, and program analysis and evaluation... 

acm Transactions on 
Mathematical Software 

I 

f you,use mathematical software, you need ACM 
Trmsncfiorrs on Mnflretuo~icd So~hnre (TOMS). It 
presents significant results in fundamental 
mathematical algorithms and associated software 

plus thoroughly tested programs in machine-readable 
form. 

This journal is the leading outlet for major research 
papers on programs and program analysis and 
evaluation. This authoritative quarterly also offers 
reports of news in significant application and software 
developments. 

Programs and algorithms from TOMS in machine- 
readable form are available through the ACM 
Algorithm Distribution Service. 

CollcctcVti Alpritlrrrls /ror~ ACM systematically 
classifies and indexes the programs and offers complete 
code listings. 

A single use of a TOMS algorithm can save -or 
earn - many times the cost of a subscription. 
Published quarterly. ISSN: 0098-3500 

Included in AppliecI Scicrrce b Techrmlog~ Imfex, 
Mafhcrrmticnl Reuims, Scicwe Absfracts, Scicrm Cifofior7 
hdex, Cotq~~rtir~g Rcvie7m, A~rtmrntic S~rbjccf Citntiorr 
Alert, Cor~rprrr~ntl~ Cihtiorr Zrufrx (CMCU, Irrfcrrmtiorwl 
Acrosprcr Ahstrmts, lrrdcx fo Scimtific Reviezus and 
Iuterrmfioml Abstracts ir7 Oyerntims Resmrdr. 

Order No. 107000 
Subscriptions: $75.00/year - Mbrs. $20.00 
Single Issues: $27.00-Mbrs. $14.00 
Back Volumes: $108.00-Mbrs. $56.00 
Student Mbrs. $15/year 

Plcnsc Send All Orders and Inquiries to: 
P.O. Box 12115 
Church Street Station 
New York, NY 10249 

June 1989 Volume 32 Number 6 Communications of the ACM 755 


