
Higher-Order and Symbolic Computation, 13, 7–9, 2000
c© 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Foreword to ‘Fundamental Concepts
in Programming Languages’

PETER D. MOSSES pdm@brics.dk
BRICS∗& Department of Computer Science, University of Aarhus, Ny Munkegade, B.540,
DK-8000 Aarhus C, Denmark

Christopher Strachey’s paper onFundamental Concepts in Programming Languagesis
being published here for the first time. Written in the autumn of 1967, it is based on the
lectures given by Strachey at an International School in Computer Programming, held in
Copenhagen in August 1967. Strachey intended the paper to be published in the proceedings
of the School—but the proceedings never materialized, and Strachey’s paper has remained
an unpublished preprint for more than three decades. It is, however, one of Strachey’s most
significant and lengthy papers; widely circulated in the original typescript version, it has
also been highly influential.

Strachey’s paper starts with some philosophical remarks about the need to focus on
semantic issues in the design of programming languages, and to “recognise and isolate
the central concepts—things analogous to the concepts of continuity and convergence in
analysis”. Strachey then proceeds to give a clear and incisive exposition of many of his
insights into programming language design and formal semantics, covering the following
main topics:r assignment commands,L- andR-values;r expression evaluation and environments;r commands and sequencing;r modes of parameter-passing and variable binding;r functions and routines as data items;r types and (parametric) polymorphism; andr compound data structures and pointers.

He also indicates how to model some of these concepts usingλ-expressions.
The style of semantics proposed by Strachey in this paper was further developed (and put

on a firm mathematical foundation) in his collaboration with Dana Scott, which started in
1969; initially referred to as ‘mathematical semantics’, or simply as ‘Scott-Strachey seman-
tics’, the framework has since become known as denotational semantics. After Strachey’s
untimely death in 1975, his insights regarding fundamental concepts in programming lan-
guages have been exploited in various textbooks and papers by numerous authors (e.g.,

∗Basic Research in Computer Science (http://www.brics.dk ), Centre of the Danish National Research
Foundation.



8 MOSSES

[1–4, 7, 9], and they have become established as the basis for our understanding of the
issues involved.

Thus Strachey’s paper has undoubtedly a high degree of historical interest and relevance.
His practical experiences with programming throughout the early days of computing (he
had an excellent reputation as a master programmer) together with his deep involvement in
programming-language design, had made him exceptionally well-qualified to address the
fundamental concepts of programming languages.

The paper may also be warmly recommended simply for its clearly formulated expla-
nations of major concepts. I recall studying the paper in 1970 as part of the MSc course
at Strachey’s Programming Research Group in Oxford; then, it seemed quite challenging
reading—but that may be ascribed at least partly to the unfamiliarity of the presented con-
ceptual analysis, which should not be a problem for readers nowadays. However, a few
minor caveats may be appropriate here:

One potential difficulty with reading Strachey’s paper is that most of the illustrations
of programs are given in a lesser-known language called CPL, which had been developed
by Strachey and his colleagues during the mid-1960’s. CPL was intended as a potential
successor to Algol60, but it was never fully implemented—despite the hopes expressed
by Strachey in his note at the beginning of the paper. Fortunately, the syntax of CPL is
generally quite suggestive of the intended meaning, and in any case the latter is explained
in detail in the text where necessary.

Another possible source of confusion is that the semantic functionsL andR for expres-
sions, introduced in Sect. 3.3.2, do not explicitly take any environment arguments. However,
Strachey clearly explains that “we speak of evaluating an expression in an environment (or
sometimes relative to an environment) which provides the values of component [identi-
fiers]” (Sect. 3.2.2), and moreover, the representation of functions in Sect. 3.5.2 makes
explicit reference to such an environment.

It may also be helpful to bear in mind that in his later work on denotational seman-
tics [8], Strachey was careful to distinguish between the domains of ‘denotable’ and
‘storable’ values, rather than lumping them together as ‘R-values’; in this respect, Fig. 1,
depicting the conceptual model, may be a bit misleading, in that a constant identifier
would normally be mapped directly to a value by the environment, without any involve-
ment of the abstract store, and moreover, a numeral would directly denote an abstract
number.

Finally, the reader should not be disconcerted by Strachey’soperationalinterpretation of
λ-expressions: the paper was written a full two years before Scott provided a model for the
λ-calculus and established the domain theory that forms the mathematical foundations of
denotational semantics [5, 6]. In fact Strachey was not committed to a particular interpreter
(or well-defined order of reduction) forλ-expressions, cf. the discussion of evaluation in
Sect. 3.2.4 and the following comment at the end of Sect. 3.3.3:

[. . . ] all concept of sequencing appears to have vanished. It is, in fact, replaced
by the partially ordered sequence of function applications which is specified by
λ-expressions.



A FOREWORD TO ‘FUNDAMENTAL CONCEPTS IN PROGRAMMING LANGUAGES’ 9

Strachey writes also (at the very end of the paper, when comparing his proposal for a
semantic method to previous proposals):

[. . . ] the ultimative machine required (and all methods of describing semantics come
to a machine ultimately) is in no way specialised. Its only requirement is that it should
be able to evaluate pureλ-expressions.

There is however no indication that the intended machine should be deterministic.
In conclusion, Strachey’s paper is still well worth reading carefully, some 30 years after

he wrote it. Enjoy it!

References

1. Gordon, M.J.C.The Denotational Description of Programming Languages. Springer-Verlag, 1979.
2. Milne, R.E. and Strachey, C.A Theory of Programming Language Semantics. Chapman & Hall, 1976.
3. Mosses, P.D. Denotational semantics. InHandbook of Theoretical Computer Science, Vol. B. Elsevier Science

Publishers, Amsterdam; and MIT Press, 1990, Ch. 11.
4. Schmidt, D.A.Denotational Semantics: A Methodology for Language Development. Allyn & Bacon, 1986.
5. Scott, D.S. Outline of a mathematical theory of computation. InProc. Fourth Annual Princeton Conference

on Information Sciences and Systems, 1970. A revised and slightly expanded version is Tech. Mono. PRG–2,
Programming Research Group, University of Oxford, 1970.

6. Scott, D.S. and Strachey, C. Toward a mathematical semantics for computer languages.Microwave Research
Institute Symposia Series, Vol. 21: Proc. Symp. on Computers and Automata. Polytechnic Institute of Brooklyn,
1971.

7. Stoy, J.E.Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory. The MIT
Press, 1977.

8. Strachey, C. The varieties of programming language. InProc. International Computing Symposium, pp. 222–
233. Cini Foundation, Venice, 1972. A revised and slightly expanded version is Tech. Mono. PRG–10, Pro-
gramming Research Group, University of Oxford, 1973.

9. Tennent, R.D. The denotational semantics of programming languages.Commun. ACM19 (1976) 437–453.


