
A Probabilistic Powerdomain of Evaluations 

C. Jones G. D. Plotkin 

Department of Computer Science 
University of Edinburgh 

Abstract 

We give a probabilistic powerdomain construc- 
tion on the category of inductively complete 
partial orders; it is the partial order of con- 
tinuous [0, 11-valued evaluations on the Scott 
topology. By means of a theory of integration 
with respect to such evaluations, the power- 
domain is shown to be a monad, and indeed 
one gets a model for Moggi’s computational 
lambda-calculus. One can also solve recur- 
sive domain equations involving the powerdo- 
main, and all this gives a meta-language for 
programming languages with probabilistic fea- 
tures. This is used to give the semantics of 
a language with a probabilistic parallel con- 
struct. We show the construction generalises 
previous work on partial orders of measures, 
and indeed restricts to the category of contin- 
uous partial orders, where it can be charac- 
terised as a free continuous finitary algebra. 

1 Introduction 

In order to study the semantics of probabilistic 
programming languages one is naturally led to 
investigate probabilistic powerdomains (per- 
haps by analogy with the introduction of pow- 
erdomains for non-determinism [15]). For this 
one minimally needs a category of “datatypes” 
closed under the powerdomain and any other 
needed functors and also allowing recursive 
definitions of elements and datatypes. Proba- 

bilistic program logics are also very important 
and have a wide literature, but fall outside the 
scope of this paper. 

The seminal work here is by Saheb- 
Djahromi [14] who gave a probabilistic pow- 
erdomain Po of w-algebraic cpos, consisting 
of all probability distributions on the Borel 
sets of the Scott topology. However that was 
not algebraic in general. Then Plotkin [13] 
and Graham [3] showed the category of finitely 
continuous posets (retracts of SFP objects) 
was closed under the powerdomain and it can 
indeed be used for semantical purposes as 
above. There is closely related work by Kozen 
[6] and Yamada [17]. These authors typically 
consider all measurable functions; any topo- 
logical or partial order structure is derived. It 
has not been shown how to fulfill the above 
minimal requirements with this approach. 

This paper presents a natural and straight- 
forward theory of a probabilistic powerdomain 
€(P) of any directed complete poset based on 
open sets (following [15]) rather than general 
Borel sets, and hence evaluations rather than 
measures. Section 2 gives basic definitions, 
section 3 presents a theory of integration of 
upper continuous functions relative to evalu- 
ations and section 4 organises the structure 
associated with € showing it to be a monad 
(see [2],[9],[8] for the importance of monads 
for probability theory). Section 5 shows how 
to solve recursive domain equations involving 
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E .  Section 6, following recent ideas of Moggi 
[lo] shows the monad is strong and so one can 
probabilistically interpret his computational 
A-calculus, providing (the basis of) a very suit- 
able metalanguage for the denotational seman- 
tics of probabilistic programming languages; 
section 7 gives a semantics for such a language 
with probabilistic concurrency. Section 8 con- 
nects up with the other approaches showing 
evaluations extend to measures whenever P is 
continuous [4], and, finally, section 9 extends 
Graham’s finitary algebraic characterisation of 
the powerdomain [3] to the continuous case. 

2 Evaluations 

We work with the category IPO with objects 
the inductively complete partial orders (ipos) 
those having lubs of directed subsets (there 
need be no least element); the morphisms are 
the continuous functions, those preserving di- 
rected lubs. The category is Cartesian closed, 
complete and co-complete. The Scott topology 
on an ipo consists of those upper sets inacces- 
sible by directed joins [4]. 

To specify a probabilistic computation over 
an ipo P it is natural to consider [O,l]-valued 
functions on sets of “events”. For computer 
science purposes we consider as such events, 
tests on data and identify these with open sets 
rather than the more general Bore1 sets. There 
are natural and well-known axioms for such 
functions. 

Definition Let X be a topological space and 
S2(X) be its (complete) lattice of open subsets. 
A function p : O ( X )  --$ [0, 13 is an evaluation 
iff 

Monotonicity If U & V then p ( U )  5 p ( V )  

Strictness 4 0 )  = 0 

Modularity p ( U ) + p ( V )  = p ( U U V ) + p ( U n V )  

Also, such a function p is continuous iff for 
any directed set U, (A  E A) of open sets, 
p ( U x  U,) = U x p ( V x ) .  This natural condition 
was introduced by Lawson [7]. 

Examples 
evaluation qp(x) is defined by: 

1. For any x in P the point-mass 

1 if x is in U 
0 otherwise 

2. If cy.’=,ri  5 1 where ri 2 0 then C r i p i  
is an evaluation if the pi are; its value at U is 
c ripi(U)* 

Definition Let P be an ipo. Then its prob- 
abilistic powerdomain is E(P) the set of con- 
tinuous evaluations on P partially ordered by: 
,U 5 v iff VU in st(P),  p ( U )  5 .(U). 

Theorem 2.1 & ( P )  is an ipo with directed 
lubs defined pointwise, and with a least ele- 
ment, the constantly zero evaluation. 

Remark We could instead have worked with 
the w-continuous evaluations, those preserving 
lubs of countably directed sets. This would 
make no difference to the course of the gen- 
eral theory in sections 3, 4, 5 ,  6 and 8 except 
that the Monotone Convergence theorem be- 
low would be restricted to countable directed 
sets of continuous functions. In the definition 
of D ( P )  we would take all [O,l]-valued mea- 
sures. However the results given for continu- 
ous ipos (Fubini’s theorem and theorems 8.2 
and 9.1) would be replaced by the correspond- 
ing results for the smaller class of w-continuous 
ipos (defined as in [16], but without the bot- 
tom element). These results would be a spe- 
cial case of the results given below as when P 
is w-continuous, all w-continuous evaluations 
are actually continuous. 
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3 Integration & Evaluation 

Previous work on probabilistic powerdomains 
has involved the use of measures and integra- 
tion. We consider integration (with respect to 
an evaluation) of continuous functions to [O,1] 
regarded as an ipo under its usual ordering. 

We start with simple functions, those taking 
finitely many values. By [12] or [5, ~231, any 
evaluation p extends to a finitely additive set 
function ji on the ring generated by the open 
sets. So if s is a simple function, taking values 
cy1 , .  . . , a,, one can define: 

n 

J s d p  = aiP(s-l{ ai}) 
i= 1 

Any simple function can be written as riXui 
(ri 2 0 )  and it can be seen that Jsdp = 
Crip (Ui ) .  Now the integral of a general con- 
tinuous function f : P -+ [0,1] has the stan- 
dard form of definition: 

J f  d p  = sup{ J s  d p  I s is simple and s I f }  

Theorem 3.1 (Monotone Convergence) 
For a bounded, directed set of continuous func- 
tions fx : P + [0,1] (A E A) 

Remark In proving this one makes use of 
the fact that every continuous f : P + [0,1] 
is the sup and uniform limit of an increasing 
sequence of simple functions. 

Theorem 3.2 (Linearity) For continuous 
fi : P + [0,1] and non-negative real numbers 
ri with E r i  5 1 

As an application of these results one sees 
that Jf d q p ( z )  = f(z). For this is trivial 
when f = X u  and then it follows for general f 
by Monotone Convergence, Linearity and the 
above remark. As another example of this one 
can show 

Theorem 3.3 If D is a directed set of evalu- 
ations, then 

4 € i s  amonad 

There are a number of natural functions which 
arise in using & to give the semantics of prob- 
abilistic programming languages. They can 
be described categorically by showing & is a 
monad. The monadic structure can be nicely 
presented from the “Kleisli point of view”. 

Definition Let K be a category. A KZeisZi 
triple is a structure (F,q,  ( e ) * )  where F : 
O b j ( K )  -+ O b j ( K ) ,  and q, : x + Fx (for any 
object x) is the unit map and f* :Fa: + F y  
(for any f : z + F y )  is the extension of f, such 
that 

1. q; = id,, (for x in O b j ( K ) )  

2. f* o q = f (for f : x  + F y )  

3. g* o f *  = (g* o f ) *  (for f : x -, F y  and 

As is well-known [9] to every such triple 
( F ,  q ,  ( e ) ’ )  corresponds the monad ( F ,  q ,  p )  
where F ( f )  = (qy o f)* (for f : x + y) 
and p, = (idFs)*. (And, conversely, given 
such a monad we can define a triple with 
f *  = pv o Ff, and moreover these correspon- 
dences are mutual inverses.) 

In our case qp(x) is as above and the exten- 
sion of f : P + &(&) is defined by: 

g:y -+ F z )  
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(meaning J k dp where k(x) = f(z)(V) for x 
in P). One shows that f* is well-defined by 
using the results of section 3. We just verify 
the third property of a Kleisli triple. 

We have to prove for f : P -+ E(Q) and 
g : Q  -, &(R) that 

J J g(y )Vdf (x )+  
zEP vEQ 

which would follow from the more general 

where h : Q -+ [0, 11 is continuous. It suffices 
to prove it for h = Xw for open W which is 
immediate since both sides reduce to the ex- 
pression 

r 

Finally we note that the action o f f  on mor- 
phisms is given by: E(f)(p)(V) = p(f-'(V)). 

5 Recursive Domain Equations 

We apply the theory of [16] to the category 
pIPO of ipos and continuous partial func- 
tions, those f : P - Q such that f-l(V) is 
open whenever V is. This is a partial ccc in the 
sense of Moggi [ll]. (More accurately we can 
define the domain structure Mopen of open 
subobjects of IPO SO that [e ]  is in Mopen(&) 
for e : P  + Q iff (i) ex 5 ey iff x C y for x , y  
in P and (ii) e ( P )  is open, and then pIPO 
E P(IP0,  Mopen).) 

The product and sum functors extend from 
IPO to PIP0 by: f x g((x7y)) = (fx79v) 
(which exists iff fx and g s  do) and f + 
g ( ( i , z ) )  N (0,fz) (if i = 0) and N (1,gz) 
(if i = 1). There is a partial function-space 

functor defined by f-g(h) = g o h o f. How- 
ever a certain " E  function space" functor -+& 

is more important to us. First note the nat- 
ural inclusion functor a : pIPO -+ IPOE 
(the latter being the Kleisli category) where 
cr(f)(x)(V) = 1 (if fx 1 and fx E V) = 0 
(otherwise). Then is defined on pIPO by 
P Q =def P + E(Q) and for f : P - l" 
and g :Q  - Q', f + E  g(h )  = a ( g )  o h o a ( f ) .  

Now pIPO is an 0-category in the sense 
of [16] if we partially order the hom-sets by: 

where f , g  : P - Q. For if f, : P - Q is 
an increasing sequence it has a lub given by 
(Unfn)(x) N U,f,(x) (where this is taken to 
exist iff fk(x) 1 for some IC and then it is taken 
to be Unlkf,(z)). Composition is continu- 
ous in that these w-lubs are preserved. Note 
that the totally undefined function, 0, is al- 
ways least and composition is strict (preserves 
0) in each argument; also the empty ipo is 
a null object, both initial and final. Next 
pIP0 has w-limits. Suppose A = (f'n,fn) 

is an woP-chain. Then the limit is the set 
{x:w - UnPn I ( V n , x , J >  x, E P , A x ,  II 

f , ( ~ , + ~ ) )  and 3 n , x ,  J} partially ordered by 
x C y iff V n , x ,  J.3 yn 1 Ax, C y,. The 
universal cone p : P  --+ A is p,(z) 21 2,. 

With all this established the theory of [16] 
directly applies to pIP0 and we can solve sys- 
tems of recursive domain equations involving 
locally continuous functors: sums, products 
and + E  are all easily be seen to be locally 
continuous. 

f c !I iff vx E P.f(x) 1 3 9 ( 4  1 A f ( 4  c 9(4, 

6 Computational A-calculus 

We want to give the semantics of proba- 
bilistic programming languages using a X- 
calculus for probabilistically nondeterministic 
functions. An extraordinarily suitable gen- 
eral tool for this purpose has been provided 
by Moggi's A,-calculus ([lo]). To interpret 
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the calculus we have to provide a tensorial 
strength, which is a natural transformation: 

P x EQ ‘3 E(P x Q )  

satisfying certain diagrams. It turns out that 
as IPO has enough points t , ,  is determined 
uniquely by 

and that this indeed defines a tensorial 
strength. This gives a &-model in Moggi’s 
sense as v p  is easily shown a mono. 

The tensorial strength gives rise to a natural 
transformation $p,Q: (E (P)  x E(&) )  + E ( P  x 
Q) which can be used to interpret the pairing 
of two computations. An explicit formula for 
$p,Q is given by 

(Integrating in the other order gives the dual 
notion of pairing (6 in [lo]). The two are equal 
iff Fubini’s theorem holds in this setting - 
which we conjecture to be false in general, but 
which does hold when P and Q are both con- 
tinuous.) 

We present (an extension of) the A,-calculus 
and its semantics in IPO somewhat infor- 
mally. There will be expressions and type ex- 
pressions. The latter comprise constants for 
all the ipos (and we identify the two) and prod- 
uct and function space type expressions (and 
we shall add sum type expressions too) They 
denote what one would expect except perhaps 
for function spaces where if U,T denote P,Q 
then u + T denotes P -+& Q. The former 
include variables, local declarations abst rac- 
t ions, applications, tuples, project ions injec- 
tions and case statements, we also add recur- 
sion and constants as required. Expressions 
are typed given types for their free variables, 

and if e has type P it is to denote an ele- 
ment of € ( P )  and e will denote a continuous 
function of its free variables. A local decluru- 
tion let z E u be e in e’ denotes f*(p) where 
e denotes p E E(P) (and a denotes P )  and 
e‘ denotes f : P Q as a function of P .  
A A-abstraction Xz E u.e where e has type 
r denotes qp+EQ( f )  where u, r denote P, Q 
and f (z)  = e. An application e’(e) (where 
e’ : a + r denotes f E E(P +E Q) and e : U 
denotes z E E(P) )  denotes a ( f ,  z) where a is 
the composition 

E(P --f E(Q))  x E(P)  a 

A pair (e,e’) denotes $ ( p , v ) ,  where e,e’ de- 
note p,u and projections f s t ( e ) ,  snd (e )  have 
evident denotations. For sums if e denotes 
p E E(P + Q) and e1,e2 denote f : P --+& 

R, g : Q -+& R respectively, as functions 
of z then the case analysis cases e fst 2 E 
a.el snd y E r .e2 denotes [ f , g ] * (p ) .  The 
injections inl(e), inr(e) have evident denota- 
tions. Finally, functions can be defined recur- 
sively by the construct pf : U --+ T.AZ : a.e 
where e must have type T .  Suppose a, 7 denote 
P, Q and e denotes F : ( P  +e Q )  x P --+f Q 
as a function of f and x. Then the construct 
denotes ? ) p d E Q ( g )  where g is the least fixed 
point of Curry(F). We will define functions 
recursively by writing f Xz : a.e meaning 
f = p f :a  --f r.Ax:a.e, for appropriate a, r. 

7 A Language with Probabilistic 
Concurrency 

Consider the language Com of commands c 
given by: 

c ::= a I c;c‘ I skip I if b then c else c’ 
[ w h i l e  b do c I c + c ’ I c I I c ’  



where a,b range over sets ACom,BExp of 
atomic commands and Boolean expressions. 
The first five clauses present a simple itera- 
tive language, the sixth a probabilistic choice 
between c and c’, the last a probabilistic sched- 
uled concurrency. For the semantics we as- 
sume an ipo, S ,  of states and given denota- 
tional functions A : ACom + ( S  +& S )  and 
B : BExp + ( S  +& T) where T is 1 + 1 (and 
1 is the one-point ipo). 

We define the denotational semantics C : 
Com + R where the ipo R of resumptions is 
the solution as considered above to the recur- 
sive domain equation: 

R Z S - f E  ( S  + ( S  x R)) 

In what follows we treat the isomorphism as 
an actual equality. 

Atomic Commands 
C[a]  = Xa E S.inl(d[a](a)) 

Sequence 
C[C; d ]  = C[cl]*C[c’] where *: R -+e (R --+& R) 
is defined recursively by 

-k + X r  E RXr‘ E R X u  E S cases r(a) 
fst a’ E S.inr ((a’, r‘)) 
snd x E S x R.inr ((fst(z), snd(z) * r‘)) 

Conditionals 
C [ i f  b then c else c‘] = X u  E S.if B[b](a) 

then C[[cl(a) else C[[c‘](a) 
(where if e then e’ else e” abbreviates cases 
e fst z E 1.e’ snd z E 1.e” with x not free in 
e‘ or e“) 

Loops 

Ciwhile b do c] = p8:RXa E s if f?[b](a) 
then (O-kC[c] ) (a)  
else inl(a) 

Probabilistic Concurrency We parame- 
terise on a probabilistic scheduler, K ,  which 
decides, given a state, which process runs next; 
the scheduler also has its own internal state. 
We take the ipo Sch of schedulers to be the 
solution to the recursive domain equation: 

Sch S S -’& (T x Sch) 

(and treat the isomorphism as an equality) and 
define recursively PAR: R +e ( R  +E (Sch +e 
R)) by: 

PAR + X r  E RXr’ E RXK E SchXa E S 
let z E T x Sch be ~ ( a )  in 
if fst(x) 
then cases r (a )  

fst a’ E S.inr ((a’, T I ) )  

snd y E S x R.inr((fst(y), 
PAR(snd(d 1 (r‘) ( s n W  1)) 

else cases r’(a) 
fst a‘ E S.inr ((a‘, r ) )  
snd y E S x R.inr((fst(y), 

P A W  (snd(y 1) (snd(4))) 

and then, 

It would be interesting to investigate this 
semantics in detail especially comparing it 
with a random walk operational semantics. It 
would also be interesting to give a probabilis- 
tic semantics to a language like Milner’s CCS. 

8 Measure Theory 

From the point of view of probability theory 
it is more natural to use measures than eval- 
uations. In fact we can obtain a similar con- 
struction with measures to the one with eval- 
uations. We use the Bore1 sets of the Scott 
topology on an ipo, which form the least cr- 
field generated by the open sets, well-known 
in measure theory. 
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Every [0, 11-valued measure restricts to an 
evaluation ~ ~ ( p )  and this is a 1 - 1 map as 
measures are determined by their values on 
open sets. 

Definition For an ipo P,D(P)  is the set of 
[O,l]-valued measures on the Borel sets of P 
that restrict to a continuous evaluation. It is 
partially ordered by: p C q iff ~ p ( p )  C ~ p ( q ) .  

Theorem 8.1 D(P) is an ipo with least ele- 
ment. 

The theorem is proved by showing that for a 
directed set of measures { p i }  that the evalu- 
ation U i ~ p ( p i )  extends to a measure (and so 
restriction is continuous). 

We can show 2, is a monadic functor, the 
definitions are as before, substituting Borel 
sets for open ones: 

1 
0 otherwise 

if z is in T 

Note if f is continuous, Xz. f ( z ) ( T )  is measur- 
able and this equation defines a measure by 
linearity and continuity of integration. 

Restriction is a morphism 7 : D ---f E of mon- 
ads, and we consider when the two monads 
coincide in that 7 is an isomorphism. This is 
equivalent to asking when an evaluation can be 
extended to a measure. By a result of Lawson 
[7] this holds whenever R(P)  is w-continuous 
and so when P is. The next theorem gener- 
alises to the continuous case and yields further 
information on evaluations. 

Theorem 8.2 If P is continuous, every con- 
tinuous evaluation extends to a measure and 
D(P) is continuous (with basis the finite ra- 
tional linear combinations of point measures 
of any given basis of P). 

Proof Every linear combination of point 
evaluations clearly extends to a measure so ev- 
ery directed lub of such measures extends to 
the lub of the corresponding extensions (as 7 is 
continuous). One then shows that every eval- 
uation is such a lub (this was shown for the 
w-algebraic case [16] by Saheb-Djahromi [14]). 
As every continuous ipo is a retract of an alge- 
braic one [4], we can restrict our attention to 
the case where P is algebraic. The key lemma 
is the following: 

Lemma 8.3 Let v be a continuous evalua- 
tion, le t  O1,. . . ,On be open sets and choose 
r with 0 < r < 1. Then there is a linear com- 
bination p of point measures of finite elements 
of P such that: 

I .  p(Oi) 2 rv(Oi)  ('or i = 1,. . . ,n).  

2. p ( V )  << v(V)  (for every open set V). 

Proof First we show how to approximate v 
on a crescent C = U \ V (U and V are open). 
As v is continuous and P is algebraic, 

D(C) = SUP f i (CnUair )  
a1 ,..., a,ECo i 

where Co is the set of finite elements of C and 
a i r  is { z  E P I z 7 a i } .  Now pick a17...7un 
in CO so that Y(C n Ui ai 1 ) 2 f i D ( C ) .  Put 

we get pc(C) 2 rij(C) and pc(V) << c(VnC) 
for every open set V .  

Now let P be the partition of P into the 
crescents (UiEs Oi) \ (Uigs 0;) (where S c 
{ 1,. . . ,n}) .  Then the required p is the sum 
of the pc over the C in P.1 

We need only show now that the measures 
given by the lemma form a directed set. To 
this end we use a lemma to the effect that if 
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p is a linear combination of point measures 
of finite elements of P then there are open 
sets Ul, ..., Um (m  2 0) such that p(Ui) # 
0 ( i  = 1,. . . , m)  and for any measure p’, 
p c p‘ iff p(Ui) 5 p’(Ui) for i = 1,. . . ,m. 
Now let p l , p 2  be two measures as in the 
lemma and let U:, . . . , U k l ,  U:, . . . , U i 2  be the 
corresponding sequences of open sets. Set 
r j  = m a x ~ = l , ~ ~ ( p j ( U ~ ) / ~ ( U ~ ) )  (which is well- 
defined), take r = max(r1,r2) and apply the 
lemma to obtain the desired p .  

Finally, as every measure is a directed lub 
of linear combinations of point evaluations, it 
is enough to show that, in turn, these are di- 
rected lubs of elements of the proposed basis 
way below them.1 

9 A Finitary Characterisation 

By general nonsense, E ( P )  is the free €- 
algebra over P .  Generalising [3] we charac- 
terise € ( P )  in finitary terms for continuous P 
by proving in theorem 9.1 that the categories 
of E-algebras and finitary ones coincide. 

Definition An abstract probabilistic domain 
is an ipo P with least element I and a contin- 
uous function +: [ O , 1 ]  x P2 t P satisfying 

1. (Commutativity) a ++ b = b a 

2. (Associativity) ( a  ++ b) c = a ++# 

( b + m  c )  ( s r  < 1) 

3. (Absorption) a +, a = a 

4. (One) a 

1--sr 

b = a 

Here [0,1] has the usual Hausdorff topology 
and P ,  P2 the Scott topologies. 

We form the category APD with ab- 
stract probabilistic domains as the objects and 
continuous functions which are linear, (i.e. 
f(l) = and f(a  ++ b) = f ( a )  +r f ( b ) )  as 

morphisms. Then there is a forgetful functor 
U:IPOv + APD, where U(P,  a )  = (P,  I, +) 
where I = a(W H 0) and a+,b = a(rqp(u )+  
(1 - r )qp(b) )  and U is the identity on mor- 
phisms. 

Theorem 9.1 U cuts down to an isomor- 
phism on the full subcategory of objects whose 
domains are continuous. 

Proof One difficulty in proving this is to 
define the object part of the inverse functor 
(it will be the identity on morphisms). To 
that end, given ( P , I , + )  with P continuous 
we want to define a : € ( P )  + P by 

& ( p )  = u{c rbb I rbqP(b> 
bEB b E B  

where the finite weighted sums are defined us- 
ing + and 1. The following key lemma ensures 
the set on the right is directed. 

Lemma 9.2 Let P be an ipo. Then forfinite 
sets B and C b E B  Sb7]P(b)  CCEC t~qP(C)  
each sum can be divided into an equal num- 
ber of parts in correspondence so that the cor- 
responding parts are of the form r q p ( x )  and 
sqp(y)  with r 5 s and IC 5 y. 

Proof One half is by the monotonicity of the 
operation of taking finite linear combinations. 
For the other we require a set of values rb,c with 
the three properties: rb,c = 0 unless b c, 

We prove the theorem by applying the Max- 
cut, Min-flow theorem for directed graphs [l]. 
We have a node for each c E C and b E B ,  
a source and a sink. We link the source to 
each b with an edge of capacity sb and each c 
to the sink with an edge of capacity t,, then 
we link b and c by an edge with capacity 1 if 
b C c.  A flow of value & B S b  gives a value 
for rb,c as the flow from b to c. By the theo- 
rem, such a flow exists iff every cut has value 

C c E C  rb,c = s b  and C b E B  rb,c 5 tc*  
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at least r b , = B  sb. (A cut is just a set of nodes, 
containing the source but not the sink, and 
its value is the sum of the capacities of all 
edges from a node in the cut to one not in 
it.) We now call upon a further lemma, that if 

11' c B upward closed in B,  
C b , = B  S b q ( b )  5 &C t cv (c ) ,  then for any subset 

which is proved by considering the values of 
the measures on an open set containing only 
those b's and c's greater than (or equal to) 
something in I( .  

Then one can show that any cut has value 
a t  least &BSb by first disregarding any cut 
whose value contains a edge of capacity 1 
since its total value will then be greater than 
x b , = B  s b .  So, given a cut L which, if it contains 
some b and b E c must also contain c,  we take 
as A', the upper closure in B of the b's in the 
cut and the value of the cut is &L sb+&L t ,  
but the second term is at least C b E K  sb by the 
lemma above, hence the value of the cut is at 
least &B sb as required.1 

The main difficulty in the rest of the proof 
is to show that (Y is linear in the sense that 
a(Ci ripi) = xi ricr(pi). To this end one uses 
a variant of of lemma 9.2 that holds for con- 
tinuous P with << replacing both & and 5.1 
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