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SUMMARY

Execution monitors are widely used during software development for tasks that require an
understanding of program behavior, such as debugging and profiling. The Icon programming
language has been enhanced with a framework that supports execution monitoring. Under the
enhanced translator and interpreter, neither source modification nor any special compiler com-
mand-line option is required in order to monitor an Icon program. Execution monitors are written
in the source language, instead of the implementation language. Performance, portability, and
detailed access to the monitored program’s state are achieved using a coroutine model and
dynamic loading rather than the separate-process model employed by many conventional monitor-
ing systems.
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BACKGROUND

Dynamic analysis, the study of program execution behavior, is a major component
of most software development efforts. Tools that perform dynamic analysis,program
execution monitors, are widely used in debugging, performance tuning, and related
program understanding tasks1.

While software development technology has advanced during the past decade, the
tools available for dynamic analysis have remained almost unchanged during this
period. The effort required to write an execution monitor is typically very large
when done in conventional ways; it requires expert knowledge of the language being
monitored, its implementation, and its implementation language. The framework
presented in this paper is a means of significantly reducing the effort required to
write a broad class of execution monitors.

Three aspects of existing execution monitoring systems balance the difficulty of
implementation against the usefulness of the resulting system: information sources
and access methods by which monitors observe program behavior, execution models
that describe the relationship between the monitor and the program being monitored,
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and interaction features that determine how information is presented to the user as
well as how the user controls and directs monitor activity.

The most common methods used to obtain information about program behav-
ior are manual instrumentation,2–5 run-time instrumentation,6–13 interpreter
instrumentation,14–18 and instrumenting compilers.19–21 Some systems provide addit-
ional access to program variables and other execution information.

The most common monitoring technique, despite its limitations, is to manually
insert instrumentation code into the program to be monitored. Run-time instrumen-
tation refers to the modification of the monitored program code immediately prior
to or during execution. Interpreter instrumentation is the insertion of monitoring code
in the language interpreter itself; such instrumentation can provide information about
the behavior of any program executed by the interpreter. Instrumenting compilers
include preprocessors and code generators that add instrumentation to the code they
generate. Such code usually is much larger than the non-instrumented code.

Of the possible relationships between the monitor and the program being monitored,
three are commonly used: theone-process model,2,3 the two-process model,6,18 and
the thread model.9 In the one-process model, a monitor is a library of procedures
linked to the program being monitored or integrated into the run-time system. The
one-process model has good performance and access characteristics, but it does not
prevent the target program and monitor code from affecting each other in critical
ways. In addition, the control flow logic within the monitor is somewhat inverted,
since the monitor is activated through callbacks. In the two-process model, the
monitor is a separate process from the program being monitored, reducing the
problem of intrusion at the expense of complicating monitor access and reducing
performance. In the thread model, the monitor is a separate thread in a shared
address space occupied by the program and possibly other monitors, providing a
reasonable compromise between the characteristics of the one-process and two-
process models for many monitoring applications.

Interaction facilities vary both in terms of the kind of execution controls provided
to the user, and the techniques used in presenting the user with execution information.
Execution controls range from controls that can only start and stop execution to
entire languages that can be used to query for execution information or modify
program variables. The study of data display techniques used in execution monitors
has developed into its own sub-field:program visualizationrefers to the use of
graphics to depict execution monitoring information. Examples of program visualiz-
ation tools include the MemMon system for dynamic storage visualization22 and the
Incense data structure visualization tool.23 The best-known use of program visualiz-
ation is in algorithm animation. Some well-known examples are Ronald Baecker’s
motion picture, ‘Sorting Out Sorting’,24 Marc Brown’s BALSA2 and ZEUS,25 and
John Stasko’s Tango.5

This paper describes an execution monitoring framework for the Icon programming
language.26 Icon is particularly interesting because it is a high-level language with
an extensive repertoire of operations on strings and structures, a novel expression-
evaluation mechanism and late binding. These language characteristics create a need
for exploratory approaches to execution monitoring, a need shared by other non-
traditional languages.

This framework simplifies development of monitors in several ways, while avoiding
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common pitfalls associated with monitoring. Monitors developed in this system tend
to be very short compared with those in other languages, because they are developed
in the source language rather than the implementation language, because they have
full access to target program’s variables, and because monitors can specialize on
particular program behaviors of interest. Shorter monitors are in turn easier to
understand, to write correctly, and to enhance.

THE ICON PROGRAMMING LANGUAGE

Icon is a high-level, procedural programming language with extensive facilities for
processing strings and structures. This section provides an overview of the features
of Icon that are relevant to program monitoring.

Expression evaluation

Icon has a sophisticated, goal-directed expression-evaluation mechanism. The evalu-
ation of an expression can produce a result (succeed) or produce no result (fail).
Failure occurs when an expression cannot perform a computation. Success and failure
determine whether other computations are performed. For example,

line := read()

assigns the next line of input toline provided there is one, but fails on an end-of-
file. If it fails, the assignment is not performed and the value ofline is not changed.
Success and failure also control loops, as in

while text := read() do
write(text)

which copies the input file to output. The loop terminates whenread() fails.
Some expressions can produce more than one result. Such expressions are called

generators. The results of a generator are produced in sequence if the context in
which the generator is evaluated requires alternative results. For example, the function
find(s1,s2) generates the positions at whichs1 occurs as a substring ins2.

The iteration control structure causes a generator to produce all of its results in
sequence. For example,

every i := find(s1,s2) do
write(i)

writes all the positions at whichs1 occurs as a substring ins2.
Alternatives are also produced by a generator if they are needed to produce the

success of an enclosing expression. For example, in

if find(prefix,text).limit then
write(&errout,“***prefix out of bounds”)

else
process(text)
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the control clause causesfind(prefix,text) to produce successive results until one is
greater than limit, in which case the expression in thethen clause is evaluated, or
until find(prefix,text) has no more alternatives, in which case the expression in the
else clause is evaluated.&errout is a keyword that causes output to go to standard
error output. Keywords, indicated by an initial ampersand, are used to denote values
with special status.

Failure occurs when a computation is meaningful but cannot be carried out, such
as reading when there is no more data. Computations that are not meaningful, such as

i := “a” + 1

produce run-time errors. Run-time errors normally cause program termination with
an error message. However, if the keyword&error is non-zero, run-time errors are
converted to expression failure and program execution continues.

Procedures

Procedures can be written to supplement the built-in computational repertoire. Like
built-in expressions, procedures can produce a result and succeed, produce no result
and fail, or generate a sequence of results. For example, the following procedure
generates all the substrings ofs1 in s2 that begin in odd-numbered positions.

procedure oddfind(s1,s2)
every i := find(s1,s2)

if i % 2 = 1 then suspend i
fail

end

The expressionsuspend i produces the value ofi. If an alternative result is needed
in the context in whichoddfind(s1,s2) is called, execution of the procedure is
resumed to continue its computation. When there are no more alternatives for
find(s1,s2), fail is executed to terminate the procedure call without producing
another result.

Data

Icon supports many different types of data, including integers, real numbers,
strings, and several kinds of structures.

Strings and structures are created during program execution and can be arbitrarily
large. Storage management is automatic; space is allocated when data objects are
created and garbage collection frees space that is no longer in use.

Structures

Structures include records, lists, and associative tables. Structures can be hetero-
geneous; that is, they can contain values of different types.

Lists are one-dimensional arrays. A list can be created by specifying its size and
an initial value for all its elements, as in
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grades := list(45,0)

which creates a list of 45 elements, all of which are zero initially. A list also can
be created by specifying its elements explicitly, as in

dates := [1066, 1492, 1812, 1914]

Lists can be created in a number of other ways. For example, two lists can be
concatenated to produce a longer list.

Lists can be accessed by position, as in

grades[13] := 95

which sets the thirteenth element ofgrades to 95. Lists also can be accessed as
stacks and queues. For example,

put(dates, 1929)

appends the 1929 to the right end ofdates, increasing its size by one. Similarly,

first := get(dates)

removes 1066 from the left end ofdates and assigns it tofirst. If dates is empty
(that is, it has no elements),get(dates) fails and the value offirst is unchanged.

Tables provide associative lookup. They resemble lists, but they can be subscripted
by values of any type. A table is created by

scores := table()

which assigns an empty table (with no elements) toscores. Subsequently, elements
can be added to a table by assignment to a subscripted references, as in

scores[“Norma Brown”] := 88
scores[“Tom Brady”] := 67

Strings

Strings in Icon are first-class data values, not arrays of characters. Strings can be
constructed during program execution in several ways, including concatenation, as in

heading := prefix i text i suffix

Strings can be arbitrarily long. The operation*s produces the length ofs.
Strings can be subscripted by position and substrings can be produced by range

specifications. Fo example,

write(text[3:10])
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writes the substring oftext between positions 3 and 10. Non-positive specifications
are relative to the right end of the string. For example,

write(text[10:0])

writes the substring oftext between the tenth and last position.
String scanning provides a high-level pattern matching facility in which a subject

string provides the focus of attention for analysis operations. An example of string
scanning is

line ? {
while tab(upto(&letters)) do

write(tab(many(&letters)))
}

The stringline provides the subject of scanning. Scanning starts at the beginning of
the subject. The functionupto(&letters) produces the first location in the subject at
which a letter occurs.tab(upto(&letters)) moves the position to this location. In the
do clause,many(&letters) produces the position at the end of a sequence of letters.
tab() moves to this position and produces the substring of the subject between the
previous and new locations, thus matching a ‘word’, which is written.

String scanning expressions can be nested. The current subject and position are
saved when a scanning expression is initiated and restored when it is complete.

Co-expressions

In Icon, a co-expression is the expression-level equivalent of a coroutine. A co-
expression provides a data value that contains an expression and an environment for
its evaluation. The expression can be activated to produce a result at any time and
place in the program. If the expression is a generator, it produces a result every
time it is activated, failing when there are no more results.

A co-expression is produced bycreate, as in

locs := create find(prefix, line)

which assigns a co-expression forfind(prefix, line) to locs. The activation expression
Klocs then causesfind(prefix, line) to produce its next result.

An Icon program consists of a co-expession formain(args), the call of its main
procedure. This main co-expression,&main, is activated to initiate program execution.
During program execution, many co-expressions can be created and activate each
other in arbitrary ways.

Co-expressions play a central role in the monitoring framework, as described in
subsequent sections.

Graphics

Icon supports a wide range of graphic output operations, including drawing text
and geometrical objects in windows.27 The graphics facilities are geared toward
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general-purpose use and ease of programming. For example, window exposure events
are handled automatically, so that programs that use graphics can be written in a
straightforward manner without having to implement a window redraw operation
or to write the program’s control structure so that it revolves around window
system interactions.

Although graphics are not necessary for program execution monitoring, there are
many situations in which the visual presentation of monitoring information is very
advantageous. This is illustrated by examples shown later in this paper.

THE FRAMEWORK

The system requirements for Icon’s monitoring framework are determined by a set
of information sources and access methods, an execution model, and user interface
facilities that, taken together, allow a broad class of monitors to be implemented
easily and run with acceptable performance.

The first requirement is availability of a wide range of information about program
behavior without requiring manual instrumentation of the program to be monitored.
This requirement is met by instrumentation of the interpreter.

A second requirement is a tight binding between the execution monitor (EM) and
the target program (TP) being monitored. A tight binding ensures that the monitor
has access to target program data as well as the interactive control over the progress
of execution. Tight binding specifically precludes the two-process execution model.
Instead a synchronous thread model is used.

A third requirement is that the framework be useful and usable in practice. This
implies both ease of use and acceptable performance on real-world programs. Ease
of use is achieved by separating EM and TP code and using dynamic loading to
establish the binding and control relationship between them at run-time. Acceptable
performance is gained by using the thread-model’s light-weight context switch, and
by providing a dynamic filtering mechanism to reduce the number of context switches
required during monitoring.

Coroutine-based monitoring

The framework uses a multi-tasking model in which the TP and EM are coroutines
as shown inFigure 1. The EM and TP execute independently, but not concurrently.

Figure 1. EM and TP are separately loaded coroutines
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Consequently, the TP blocks while the EM is running. This is essential for EMs
that allow the user to query or control the TP when important events occur. Blocking
generally is not a problem in practice even for EMs that do not support user
interaction with the TP. The limiting factor is often the speed with which a human
user can comprehend EM output. Concurrency could be added to the framework,
but at a considerable cost in complexity and difficulty of writing EMs.

Execution takes place within a shared address space, providing the EM with direct
access to TP state. The EM accesses data values in the TP the same way it accesses
its own data: TP structures and strings are referenced using regular Icon operations.
For example, the EM can compare TP strings with its own.

The programming abstraction that supports multi-tasking in the monitoring frame-
work is the task; a task is the execution state of an Icon program, including its
locus of control as well as its global, stack, and heap data areas. A task in this
framework consists of not just a set of machine register values plus a stack
(sometimes referred to as athread; a co-expression in Icon is a non-concurrent
thread) but a replication of the entire data space employed by the language implemen-
tation, with the exception of constant values that may be shared by all tasks. Tasks
do not reside inside each other, and names used in one task have no connection
with variables in another—references within one task to another task’s variable
names are always by explicit means. A task called theroot is created when the
interpreter starts execution. Additional tasks can be created dynamically as needed.

Because of the shared address space, the task-switching operation needed
to transfer execution between an EM and a TP is fast. This is important
because monitoring requires an extremely large number of task switches compared
to typical multi-tasking applications. Consider the number of events (potential
task switches) in the TP for even the smallest of computations, such as the
expression

x := a + b[i]

The above expression produces of the order of 26 events (possibly more, depending
on the types of the values) describing the details of the subscripting, addi-
tion, and assignment operations and the underlying language mechanisms used
during execution. While a typical EM uses only a small fraction of these events,
most of the useful EMs that have been developed thus far perform task switches
with a frequency ranging from several times per line of TP source code down
to once for every few lines of TP source code. Reference28 provides task switch
counts for several EMs and the relative frequencies of different kinds of
events.

In programming terms, a task consists of a main co-expression and zero or more
child co-expressions that share a program state. At the source-language level, tasks
are loaded, referenced, and activated solely in terms of one of their member co-
expressions; the task itself is implicit. The EM and TP are separate tasks, and
transfer of control from the TP to the EM is driven by instrumentation in the
language run-time system. For this reason, the TP need not be modified in order to
be monitored by an EM; neither does an EM need to be modified or recompiled in
order to be used on different TPs.
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Figure 2. Layers in the Icon implementation

Event instrumentation

The purpose of an EM is to collect and present data from a TP’s execution. The
nature of the data collection facilities available in a monitoring system also defines
and limits the kinds of monitors that can be implemented.Figure 2 depicts the
system layers present in running an Icon program under the Icon interpreter. The
TP code is executed by an interpreter writtin in C, which in turn calls C language
run-time support routines to perform various language operations.29

Extensive information about TP execution is available to the EM from locations
in the interpreter’s run-time system that report significantevents. At these locations,
control can be transferred and information reported to the EM. When execution
proceeds through one of these points in the run-time system, an event occurs. Each
time an EM resumes execution of the TP, it explicitly specifies what kinds of events
are to be reported; other kinds of events are not reported (seeFigure 3). Event masks
provide the mechanism for determining which kinds of events are reported.

Several major classes of events have been instrumented in the Icon interpreter.
Most of these events correspond to explicit operations within the source code; but
some designate actions, such as garbage collection, performed implicitly by the run-
time system of which the programmer may be unaware.

Figure 3. Event-driven control of TP
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An event provides the EM with two pieces of TP execution information: anevent
code and anevent value. The code describes what type of event has taken place.
For example, there are different codes associated with the call of a procedure and
the creation of a list.

The event value is an Icon value associated with the event. The nature of an
event value depends on the corresponding event code. For example, the event value
for a procedure call event is an Icon value designating the procedure being called,
while the event value for a list creation event is the list that was created. If the
event value is an Icon list, table or other structure, the EM accesses it just like any
other source-language value. In addition to the information associated with the event
itself, when the EM gains control it can interrogate the TP’s variables by means of
explicit inter-task access functions, discussed below.

There are over 100 different event codes, covering virtually all kinds of events
of possible interest in monitoring. Some event codes in turn encompass a wide
variety of related events.

Explicit source-related execution events include:

1. Program location changes in terms of line and column numbers.
2. Procedure, function, and operator activity—calls, returns, failures, suspensions,

and resumptions.
3. String-scanning activity—scanning environment creation, entry, change in pos-

ition, and exit.
4. Structure creation and access.

Implicit run-time system events include:

1. Memory allocations including size and type information.
2. Garbage collections including the state of memory after a collection completes.
3. Clock ticks for the passage of CPU time.

Monitors

An EM first sets up a source of events—a co-expression for the TP, subsequently
available to the EM in&eventsource. The act of monitoring then consists of a loop
that requests events from the TP and processes the information returned. Execution
monitoring is initialized by the procedureEvlnit(x), where x is a list that consists of
the TP file name followed by arguments passed to it.

link evinit # monitor support library
procedure main(arguments)

Evlnit(arguments) u stop(“can’t initialize monitor”)
# ... initialization code
# ... event processing loop

end

Events are requested by the EM using the functionEvGet(eventmask), where
eventmask specifies the kinds of events that are of interest to the EM.EvGet()
activates the TP to obtain an event. The TP executes until an event report takes
place; the resulting event code and event value are assigned to&eventcode and &
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eventvalue in the EM, after which control is transferred to the EM until it requests
its next event.EvGet() fails when execution terminates in TP. The typical processing
loop in an EM is

while EvGet(eventmask) do
case &eventcode of {

# a case for each code in the event mask
}

Inter-program data access

Much of an EM’s access to TP data is performed by direct reference to the
keyword &eventvalue, which is set by each call toEvGet(). In addition to the primary
source of TP information provided by the event stream, EMs may interrogate the
target program for values held in local and global variables and keywords. MT Icon
provides built-in functions that produce the names of variables in other programs as
well as built-in functions that take a co-expression and a variable name and allow
assignment or dereferencing of the variable in the scope of the co-expression
(typically the TP, when used during monitoring).

The functionvariable(s, C, i) looks up a variable named by strings in co-expression
C. The optional parameteri specifies that the variable should be looked fori levels
up in the procedure call chain. At present, there is no direct means to reference
local variables in suspended procedures. This limitation is mitigated by the language
semantics, which guarantee that such values are not modified across a suspension.
A program that is interested in the local values in suspended procedures can maintain
a model of the execution state; a library procedure is provided for EMs that need
to maintain such information about suspended procedures.

The functionkeyword(s,C) is similar tovariable(), but allows Icon’s built-in keyword
values to be consulted in other programs.

EXAMPLES

This section contains examples of simple execution monitors that illustrate the kinds
of things that can be done within the framework. A larger list-visualization example
is presented in an appendix.

Counting procedure calls

The following example is a complete procedure-call counter. The tablecalls,
indexed by procedure, records the number of times each procedure is called. The
mask E Pcall specifies procedure call events.

link evinit
procedure main(Args)

Evlnit(Args)
calls := table(0)
while EvGet(E Pcall) do # collect procedure call events

calls[&eventvalue] +:= 1
write(″Procedure calls″) # write results
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every k := key(calls) do
write(image(k)[11:0],″:″,calls[k]) # get procedure name from its image

# and write it, followed by its count
end

The keys in the table are procedure values. The image of a procedure consists of
the string“procedure” followed by the procedure name, soimage(p)[11:0] fetches the
name of the procedure for writing. Typical output from monitoring a text processing
tool is:

Procedure calls
syms: 42
gener: 1600
generate: 4
alts: 4
defnon: 12
main: 1
define: 8
options: 1

Interactive error conversion

As mentioned earlier, an error condition that would potentially terminate program
execution can be converted to failure to allow program execution to continue. Thus,
an EM can trap run-time errors in a TP and allow the user to decide whether to
allow the TP to terminate, or to convert the error into expression failure and continue
execution of the TP. AnE Error event occurs upon a run-time error. An EM that
requestsE Error events gets control before the error is resolved in the TP. Interactive
error conversion can be done by includingE Error in the event mask and then
processingE Error events as follows:

case E Error: {
write(“Run-time error”, &eventvalue)
write(“File ”, keyword(“file”, &eventsource), “;line ”, keyword(“line”, Monitored))
write(keyword(“errortext”, &eventsource))
write(“offending value: ”,image(keyword(“errorvalue”, &eventsource)))
writes(“Convert to failure? ”)
if read()==“y” then

keyword(“error”, &eventsource) := 1
}

Inter-program data access functions described earlier provide access to data in the
TP via its co-expression value,&eventsource. If an error occurs, the user of the EM
is presented with information such as:

Run-time error 102
File deadman.icn; line 2
numeric expected
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offending value:“hello”
Convert to failure?

If the user responds to the question“Convert to faiure?” with a y, the error in the
TP is converted to failure and execution of the TP continues. Otherwise the TP
terminates with the run-time error when control is returned to it.

Checking index bounds

List subscripts that are out of range result in failure. Although this feature
simplifies loop control, if failure occurs unexpectedly, the result can be cryptic. A
user might wish to be informed when and where such failures take place. This can
be done with an EM that gets list-subscripting events and then checks the subscript
value, which is given in a subsequent event:

while EvGet(E Lref) do { # monitor references to lists
size :=*&eventvalue # remember its size
EvGet(E Lsub) # get the subscript
if &eventvalue . size then # check range

write(&errout,“index out of range:”, &eventvalue,“.”,size)
}

This monitor could be extended to allow the user to decide on continued execution,
as in interactive error conversion. Since the event value forE Lref is the list in the
TP, such a monitor also could display the list for the user.

Monitoring string scanning

String scanning is one of the most interesting features of Icon, and it can be
monitored in many ways. Even the simplest EM can give useful information. For
example, the event value associated with the execution of a new scanning expression
is the subject for that expression. Showing just the lengths of successive subjects
can provide valuable information about what a program is doing. For example,
monitoring a macro expander revealed that typical input contains a large percentage
of lines that are too short to contain macro calls. Adding a test for this to the macro
expander improved its performance considerably.

The following monitoring loop displays the lengths of subjects in a scrolling
window as shown inFigure 4.

Figure 4. Monitoring string scanning
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while EvGet(E Snew) do { # new subject
XDrawLine(Width − 1, Height, Width − 1, Height − *&eventvalue)
XCopyArea(1,0) # shift all lines right one pixel
XEraseArea(Width − 1, 0, 1, Height) # erase the new line
}

Tabulating storage allocation

Tabulation is not limited to the kinds of information that can be gathered by
placing counters at locations within the source code. It is just as easy to monitor
behavior that is implicit, such as memory allocation. The following EM, almost
identical in structure to the one presented earlier for tabulating procedure calls,
counts the number of bytes allocated for each data type during program execution:

allocs := table(0)
while EvGet(AllocMask) do # get event reports for allocations

allocs[&eventcode] +:= &eventvalue
write(“Allocations”) # write results
every k := key(allocs) do

write(evname(k)[1:−11],“:”,allocs[k])

The support procedureevname(e) produces a string that identifies the nature of the
evente. For allocation events, the strings produced byevname() all end in “allocation”.
These last 11 characters are removed for the purposes of displaying the results.
Typical output is:

Allocations
list: 78120
string: 188
record: 38760
table-element trapped variable: 448
cset: 40
list element: 155152
hash header: 120
substring trapped variable: 160
table: 192

Visualizing storage allocation

The output from the preceding monitor has two drawbacks: it requires execution
of the TP to run to completion before it provides useful output, and it drops all
details of individual allocations and their temporal relationships.

On the other hand, such detailed information, if presented textually, is too
voluminous and difficult to interpret to be useful. A simple visualization technique
can overcome these problems. Each allocation is drawn as a ray whose length
corresponds to the amount of allocation and whose color encodes the kind of
allocation. Successive rays are drawn at successive angles around the center point,
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producing a ‘radar sweep’ that shows the recent history of allocation and makes it
easy to see patterns of allocation. SeeFigure 5 for an example visualization.

degrees := 0
color := table() # table of colors by allocation type
color[E List] := “cyan”
color[E Set] := “red”

:
·

while GetEvent(AllocMask) do {
XFg(“white”) # set to erase previous ray
XDrawLine(xorg, yorg, radius * cos(radians) + xorg,

radius * sin(radians) + yorg)
XFg(color[&eventcode]) # set color for type
XDrawLine(xorg, yorg, &eventvalue * cos(radians)+

xorg, &eventvalue * sin(radians) + yorg) # draw ray
degrees +:= 1 # advance to next ray
radians := −dtor(degrees)
}

EXPERIENCE

The framework described here was designed to make it easy to develop a broad
class of EMs. Ones that perform counting, tabulation, and visualiztion tasks have
proven very useful for identifying sources of inefficiency. The usefulness of visualiz-
ing individual allocations, for example, is illustrated by the visualization shown on
the left-hand side ofFigure 6 . Notice the large number of very large allocations.
A glance at the program that produced this visualization showed that it concatenated
lists frequently, resulting in many very large allocations. After a simple two-line
change to replace the list concatenation by more economical incremental list construc-
tion, the visual appearance changed radically as shown at the right inFigure 6, and
program execution speed doubled.

Figure 5. Visualizing individual allocations



1040 c. l. jeffery and r. e. griswold

Figure 6. Allocation patterns before and after a two-line change

EMs have also proved useful simply for understanding what a program does. The
‘oh, my’ kind of experience is common when viewing storage allocation, generator
activity, and string scanning.

The ease with which EMs can be written has been confirmed in a graduate
workshop on program visualization in which students used the framework described
here. Although several students had no prior experience with Icon, they were able
to produce quite sophisticated projects including different ways of viewing string
scanning, structure creation and access, and procedure activity. The difficult problems
they encountered were not in writing EMs, but rather with application design and
the presentation of visual information.

Another obvious use for EMs is in program debugging. Although this subject has
not yet been explored systematically using the framework, it is clearly possible to
write a sophisticated, full-scale debugger as an EM.

Experience with EMs has turned up a number of interesting, unanticipated results.
For example, a bug in the implementation of Icon was identified quite by accident
when an EM showed an ‘impossible’ situation in string scanning in which a position
appeared beyond the end of the subject. Similarly, testing an EM that monitored list
activity suggested an optimization that reduced the memory used in list concatenation.

IMPLEMENTATION

The framework described in this paper has been implemented for Icon’s interpreter.
The implementation of the framework has four major parts:

1. Providing the capacity to load multiple programs to run under a single invocation
of the interpreter.

2. Providing a mechanism for transferring control between programs.
3. Instrumenting events to provide event reports.
4. Extending the source language to allow one program to access information

in another.

The nature and difficulty of the implementation depends, of course, on the



1041execution monitoring in icon

language. The major aspects of the implementation for Icon are described in the
following sections.

Program state

Loading and running multiple programs requires identifying what constitutes the
state of a program and isolating it in the implementation. In the case of Icon, some
components of the program state are obvious. Examples are global variables, key-
words, and the stack used for expression evaluation. Other components of the state,
such as specific C variables in the run-time system, were more difficult to identify.

One important decision concerned the two regions used for dynamic storage
allocation in Icon programs. One alternative was to allow all programs to allocate
space from the same pair of regions. Although this alternative was simple and easy
to implement, it had the disadvantage that allocation by one program (such as an
EM) could affect, albeit subtly, the behavior of another program (such as a TP).
For example, an EM could cause a garbage collection that otherwise would not
occur in a TP. Since the ability to monitor all aspects of storage allocation is
important in Icon, the implementation was modified so that each program has its
own pair of storage allocation regions.

In order to make changing the program state easy, it was isolated in a vector
from which individual state components are accessed indirectly. The cost in terms
of execution speed for this generalization is insignificant.

Transfer of control

As described earlier, the framework relies on the use of coroutines to transfer
control between programs. Since Icon already had this facility at the source-language
level in the form of co-expressions, it was easy to extend this mechanism to transfer
control between programs within the run-time system, given the isolation of program
state in a single vector.

It is worth noting that it is as easy to transfer control between two programs
from within the run-time system as it is to transfer control between two co-
expressions in a single program at the source-language level.

Instrumentation

Implementing the instrumentation that reports events first requires the identification
of the events to be reported and then locating where in the run-time system these
events occur. Most of the events of interest relate to source-language operations, but
their manifestation in the run-time system is not always obvious. Consequently,
providing the instrumentation for the run-time system required not only a good
understanding of the source-language semantics but also of the implementation itself.

Fortunately, many types of events, such as those related to storage allocation, are
easy to locate and straightforward to instrument. Others, such as those associated
with procedure suspension and resumption, present more problems, both in location
and in assuring that the instrumentation is correct.
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Macros are used to simplify the implementation process and to avoid coding
errors. For example, event reporting for a garbage collection is provided by a single
line at the beginning of the function that performs garbage collections:

EVVal((word)region, E Collect)

The value of region is a integer that identifies the region in which allocation
triggered a garbage collection, andE Collect is the event code for a garbage
collection. EVVal() first checks if the event code is in the event mask for the program
that is requesting events; this is a look-up within a bit vector. If the code is not in
the mask, nothing is done, the running program continues with garbage collection,
and the total cost is the event-mask check. IfE Collect is in the event mask, the
values of&eventcode and &eventvalue are set in the requesting program, and control
is transferred to it.

Interprogram state access

In Icon, access to information in one program from within another is provided
by keywords and functions. How this is done is somewhat a matter of language
design but more importantly depends on the information an EM may need about a TP.

Basically, the problem is providing one program access to the state of another.
The functions variable() and keyword(), described earlier, are examples of how
components of the state can be accessed in terms that are consonant with Icon
language semantics. In the case ofvariable(), an existing function was generalized
by adding an optional argument to specify the co-expression for the program of
interest. The functionkeyword(), on the other hand, was an addition to Icon’s
function repertoire.

In some cases, a decision on interprogram access was influenced by what an EM
could do using events as opposed to burdening the source language with additional
features. For example, Icon’s procedure mechanism that allows procedure suspension
may result in a tree of invocations rather than the linear chain that results just from
recursive calls. Although it is possible to access, for example, local variables in a
chain of calls with the functionvariable(), this mechanism does not allow a general
tree walk of suspended calls. Such a source-language mechanism would be compli-
cated and difficult to use. On the other hand, an EM can build a tree of procedure
calls and suspensions from procedure events—indeed, a library procedure that does
this is available for use in EMs that need it. With such a structure, an EM can
walk the tree with ordinary Icon code, accessing local identifiers or any other
information of interest.

CONCLUSIONS

Execution monitors are difficult to implement using traditional approaches. The
construction of an execution monitor often involvesad hoc modifications to the
implementation of the language in which the monitoring is to be done; such
modifications are typically specific to the monitor and of little use for other monitors.
Many higher-level forms of execution monitoring also require changes to programs
that are to be monitored, requiring acces to their source code and creating problems
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when the programs are changed. Such monitoring techniques are poorly suited for
large programs and situations where the precise behavior of interest is not known
in advance.

Because execution monitors under this framework are written in the same language
as the programs they monitor, it is easy for a monitor to interpret data in a program
it monitors. Tight coupling allows a user to follow and even direct the execution of
a monitored program. Execution monitors are sufficiently easy to write in this
framework that it is possible to take exploratory approaches to sophisticated monitor-
ing and presentation techniques, including program visualization.

Adding the framework described here to an existing implementation of a program-
ming language is likely to be more difficult than including the framework in the
design of a new implementation. Language features, such as those that allow an
execution monitor to access the data of the program it monitors, are an important
consideration. Ideally, execution monitoring should be part of language design, not
just its implementation.

In any event, the implementation of the framework described in this paper requires
a sustantial amount of effort. The work required depends, of course, on the language,
the nature of its implementation, and the extent of instrumentation that is provided.
Many thorny design issues were solved in the Icon implementation and need not be
addressed again for other implementations, although, of course, any other language
is bound to raise some new issues.

While the overall framework design applies to a wide range of programming
languages, the implementation techniques developed for Icon apply most directly to
comparable high level languages, such as LISP and SmallTalk. We are investigating
implementation techniques necessary to adapt the framework for lower-level languages
such as C. Such languages pose additional challenges in the areas of protecting
monitors from misfunctioning TP behavior such as stray memory references, and
identifying the appropriate granularity at which to report on program execution
behavior.

The approach used by the framework described in this paper is applicable, in
principle, to compilers as well as interpreters. Adapting the framework to a compiler
poses additional problems, such as the necessity that instrumentation code that need
occur in only one place in an interpreter must appear everywhere the corresponding
event can occur in the code generated by the compiler. The run-time execution slow-
down imposed by monitoring is similarly more substantial for compilers than
interpreters. The resulting space and time ‘blow up’ factors are problematic issues
for a compiler-based implementation of the framework, and are a subject of cur-
rent research.

Although the implementation of the framework for any language is a substantial
undertaking, once it is done, programmers can use it to easily develop a wide variety
of monitoring tools. It is not so easy for such programmers to add new instrumen-
tation. This involves at least a basic understanding of the implementation of the
language. The instrumentation of some kinds of events can be done easily by
imitating the existing implementation of similar events. Instrumenting other kinds of
events may require a deeper understanding of the implementation and the framework.
For this reason, the instrumentation provided by the framework should be extensive
and include all the kinds of events that persons writing monitoring tools may need.
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APPENDIX: A TINY LIST VISUALIZER

This appendix presents the Icon source code for Tinylist, an example execution
monitor. Tinylist presents all the lists in a program as vertical segments with size
proportional to the length of the list. Each element of each list is color-coded with
the element’s type. As lists are created, and then subsequently grow and shrink,
their appearance changes. In addition, accesses to individual list elements are por-
trayed with a brief flash.

Tinylist conveys numerous pieces of information on a single display and is useful
in pointing out unexpected or anomalous behavior. For example, if all the elements
of a list are of a single type and a new element of a different type is inserted, it
is immediately evident. Sequential access to all the elements of a list results in a
smooth motion of a highlight along a line, and has a distinct contrast in appearance
with random accesses on multiple lists.

An example of a display produced by this monitor is shown inFigure 7. A
program that uses over 200 lists of varying sizes and types is depicted; accesses on
individual list elements are still distinguishable.

Figure 7. Tinylist shows all the lists in the program
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