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Abstract 

We present two complementary approaches to writing XML 
document-processing applications in a functional language. 

In the first approach, the generic tree structure of XML 
documents is used as the basis for the design of a library 
of combinators for generic processing: selection, generation, 
and transformation of XML trees. 

The second approach is to use a type-translation frame- 
work for treating XML document type definitions (DTDs) as 
declarations of algebraic data types, and a derivation of the 
corresponding functions for reading and writing documents 
as typed values in Haskell. 

1 Introduction 

1.1 Document markup languages 

XML (Extensible Markup Language) [l] is a recent sim- 
plification of the older SGML (Standardised Generalised 
Markup Language) standard that is widely used in the pub- 
lishing industry. It is a markup language, meaning that 
it adds structural information around the text of a docu- 
ment. It is extensible, meaning that the vocabulary of the 
markup is not fixed - each document can contain or refer- 
ence a meta-document, called a DTD (Document Type Def- 
inition), which describes the particular markup capabilities 
used. 

The use of XML is not however restricted to the tradi- 
tional idea of a document. Many organisations are proposing 
to use XML as an interchange format for pure data produced 
by applications like graph-plotters, spreadsheets, and rela- 
tional databases. 

An XML document is essentially a tree structure. There 
are two basic ‘types’ of content in a document: tagged ele- 
ments, and plain text. A tagged element consists of a start 
tag and an end tag, which may enclose any sequence of other 
content (elements or text fragments). Tagged elements can 
be nested to any depth, and the document is well-formed if it 
consists of a single top-level element containing other prop- 
erly nested elements. Start tags have the syntax <tag>, am1 
end tags </tag>, where tag is an arbitrary name. There 
is special syntax for an empty element: <tag/> is exactly 
equivalent to <tag></tag>. The start and end tags for each 
element contain a tag name, which identifies semantic infor- 
mation about the structure, indicating how .the enclosed con- 
tent ‘should be interpreted. The start tag may also contain 
attributes, which are simple name/value bindings, providing 
further information about the element. Figure 1 shows an 
example XML document, illustrating all these components. 

1.3 Representing XML in Haskell 

HTML (Hyper-Text Markup Language) is one well- This paper is about processing XML using the functional 
known example of an instance of SGML - every HTML language Haskell. i Modern functional languages are well- 
document is an SGML document conforming to a particu- equipped to deal with tree-structured data, so one expects 
lar DTD. Where XML improves over SGML is in removing the language to be a good fit for the application. Even 
shorthand forms that require an application to have knowf so, a key issue is just how to represent documents, and in 
edge of a document’s DTD. For instance, in HTML some particular how to reconcile the DTD datatype definitions 
markup (such as a numbered list) requires an end marker; included in XML documents with the data types that can be 
other forms (such as paragraphs) have implicit end markers defined in Haskell. We have investigated two complementary 
understood when the next similar form starts; and yet other approaches: 
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markup (such as in-line ima.ges) is self-contained and needs 
no end marker. .4n HTML application needs to be aware of 
the specific kind of markup in order to do the right thing. 

1.2 XML document structure 

XML is more regular. All markup has an explicit end marker 
without exception: every document is well-formed; its nest- 
ing structure is syntactically clear. One important conse- 
quence is that an XML application does not need to know 
the meaning or interpretation of all markup expressions - 
parts of the document can be selected, rearranged, trans- 
formed, by structure alone rather than by meaning. 

(1) Define an internal data structure that represents con- 
tents of angl XML document, independent of all DTDs. 

, 

IThe XML toolkit from this paper is available on the WWW at 
http://uuu.cs.york.ac.uk/fp/HaXml/ 
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<?xml version='i.O'?> 
<!DOCTYPE album SYSTEM "album.dtdV 
<album> 

<title>Time Out</title> 
<artist>Dave Brubeck Cuartet</artist> 
(coverart style='abstract'> 

<location thumbnail='pix/small/timeout.jpg' 
fullsize='pix/covers/timeout.jpg'/> 

</coverart> 

<catalogno label='Columbia' number='CL 1397' 
format='LP'/> 

(catalogno label='Columbia' number='CS 8192' 
format='LP'/> 

<catalogno label='Columbia' number='CPK 1181' 
format='LP' country='Korea'/> 

<catalogno label='Sony/CBS' number='Legacy CK 40585’ 
format='CD'/> 

<personnel> 
<player nsme='Dave Brubeck' instrument='piano'/> 
<player name='Paul Desmond' instrument='alto sax'/> 
<player name='Eugene Wright' instrument='bass'/> 
<player name='Joe Morello' instrument='drums'/> 

</personnel> 

<tracks> 
<track title='Blue Rondo tagrave; la Turk' 

credit='Brubeck' timinn='6m42s'/> 
<track title='Strange Meadow Lark' 

credit='Brubeck' timing='7m20s' 
<track title='Take Five' 

credit='Desmond' timing='5m24s' 
<track title='Three To Get Ready' 

credit='Brubeck' timing='5m2is' 
<track title="Kathy's Waltz" 

credit='Brubeck' timing='4m48s' 
<track title="Everybody's Jumpin'" 

credit='Brubeck' timing='4m22sJ 
<track title='Pick Up Sticks' 

credit='Brubeck' timing='4mi6s' 
</tracks> 

<notes author="unknown"> 
Possibly the DBQ's most famous album, 
this contains 

/> 

/> 

/> 

/> 

/> 

/> 

ctrackref link='#3'>Take Five</trackref>, 
the most famous jazz track of that period, 
These experiments in different time 
signatures are what Dave Brubeck is most 
remembered for. Recorded Jun-Aug 1959 
in NYC. See also the sequel, 

<albumref link='cbs-timefurthout'> 
Time Further Out</albumref>. 

</notes> 
</album> 

Figure 1: An example XML document. 

(2) Given the DTD for some XML documents of interest, 
systematically derive definitions for internal Haskell 
data types to represent them. These definitions are 
closely based on the specific DTD. 

Advantages of (1) include genericity and function-level 

scripting. Generic applications handle a wide class of XML 
documents, not just those sharing a specific DTD. One ex- 
ample of a completely generic application is searching doc- 
uments to extract contents matching some pattern. Our 
Xtru& is a.n interpreter for a regular XML query language. 

The term ‘generic’ also applies to applications that make 
some assumptions about a document’s structure but need 
not know the full DTD,3 for example, a small script to add 
a “total” column to the end of every table (recognised by 
a particular markup tag) without altering any of the sur- 
rounding structure. 

By function-level scripting we mean that the programmer 
does not have to be concerned with details of programming 
over data structures. All details of data structure manip- 
ulation can be hidden in a library of high-level combina- 
tors. In effect, combinatory expressions serve as an extensi- 
ble domain-specific language. 

Advantages of (2) include stronger typing and fuller con- 

trol. A well-formed XML document is further said to be 
valid if it conforms to a stated DTD. By establishing a corre- 
spondence between DTDs and Haskell types, the concept of 
validity can be extended to include applications that process 
documents. Not only is there a static guarantee that appli- 
cations cannot fail in respect of document structure if the 
input XML conforms to the stated DTD; any XML output 
produced via a DTD-derived type is guaranteed to be valid. 
With direct access to the DTD-specific data structure, the 
programmer has fuller control over how computation is done. 
They can use a full repertoire of programming techniques 
with the safeguard that type-checked Haskell will automat- 
ically produce XML that is valid in respect of a specified 
DTD. 

Both approaches rely on a toolkit of more basic com- 
ponents for processing XML documents in Haskell: for in- 
stance, a parser and pretty-printer. These supporting com- 
ponents are implemented using existing combinator libraries 
[7, 81. 

1.4 Sections following 

§2 develops the approach using a generic representation and 
a combinator library, including an illustrative application. 
$3 develops the alternative based on translation between 
DTDs and Haskell data typos. $4 discusses some pros and 
cons of the two approaches based on our experience imple- 
menting and using both. $5 discusses related work; $6 offers 
some conclusions and suggestions for further work. 

2 Generic combinators 

In this section, we begin with a generic representation for 
the contents of XML documents, excluding any DTD. We 
introduce content filters as a suitable basic type for functions 
processing this representation, and combinators for putting 

2Xtract: a ‘grep’-like tool for XML documents. 
http://vvv.ca.york.ac.Ilk/fp/Xtract/ 

‘In light of the “XML Namespaces” recommendation, in effect 
a mechanism for permitting multiple DTDs, such facilities could be 
particularly useful. See http://vuu.u3.org/TR/REC-xml-names 
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such filters together. A complete table of basic filters is 
given in Figure 2, and of combinators and their definitions 
in Figure 3. An example program is shown in F:igure 4. 
One expected property of a fitting set of combinators is that 
they satisfy algebraic laws; a table of laws satisfied by our 
combinators is given in Figure 6. 

2.1 Documents 

Data modelling 

data Element 
data Content 

and transformations 

= Elem Name [Attribute] [Content] 
= CElem Element 
I CText String 

Because functional languages are good at processing tree- 
structured data, there is a natural fit between the XML 
document domain and Haskell tree datatypes. In simplified 
form, the main datatypes which model an XML document 
are Element and Content, whose definitions are mutually 
recursive, together forming a multi-branch tree structure. 

The filter type 

type CFilter = Content -> [Content] 

Our basic type for all document processing functions is the 
content filter, which takes a fragment of the content of an 
XML document (whether that be some text, or a complete 
tagged element,), and returns some sequence of content. The 
result list might be empty, it might contain a single item, or 
it could contain a large collection of items. 

Some filters are used to select parts of the input docu- 
ment, and others are used to construct parts of the output 
document. They all share the same basic type, because when 
building a new document, the intention is to re-use or ex- 
tract information from parts of the old document. Where 
the result of a filter is either empty or a singleton, the filter 
can sometimes be thought of as a predicate, deciding whether 
or not to keep its input. 

Program wrapper 

processXMLwith :: CFilter -> IO 0 

We assume a top-level wrapper function, which gets 
command-line arguments, parses an XML file into the 
Content type, applies a filter, and pretty-prints the out- 
put document. The given filter is applied to the top-level 
enclosing element of the document. 

Basic filters A complete list of predefined filters is shown 
in Figure 2. The simplest possible filters: none takes any 
content and returns nothing; keep takes any content and 
returns just that item. Algebraically, these are the zero and 
unit filters. 

l Predicate and selection filters. The filter elm is a pred- 
icate, returning just this item if it is an element, or 
nothing otherwise.4 Conversely, txt returns this item 
only if is plain text,5 and nothing otherwise. The filter 
children returns the immediate children of an element 

4The shortened name elm was chosen to avoid a clash with the 
Standard Prelude function elm. 

5For those familiar with the detail of XML, entity references within 
the document are treated as plain text. 

Predicates 
none, .zero/fa&re 
keep, identity/success 
elm, tagifed element? 
txt p1az.n text? 

:: CFilter 
tag, named element? 
attr element has attribute? 

: : String -> CFilter 
attrval element has attribute/value? 

:: (String,String) -> CFilter 

Selection 
children 

:: CFilter 
shovAttr, 
(3 

: : String -> 

Construction 
literal, 
(!I 

: : String -> 
mkElem 

:: String -> 
mkElemAttrs 

: : String -> 

children of element 

value of attribute 
synonym for show.Attr 
CFi.lter 

build plain text 
synonym for literal 
CFilter 
build element 
[CFilter] -> CFilter 

build element with attribuks 
[(String,CFilter)l 

-> [CFilter] -> CFilter 
replaceTag replace element’s tag 

:: String -> CFilter 
replaceAttrs replace element’s attributes 

:: [(String,CFilter)] -> CFiYter 

Figure 2: Basic content filters 

if it has any, or nothing if this content-item is not an 
element. The filter tag t returns this item only if it is 
an element whose tag name is the string t. The filter 
attr a returns this item only if it is an element con- 
taining the attribute name a. The filter attrval (a, v) 
returns this item only if is an element containing the 
attribute a with the value v. 

l Construction filters. The function literal s makes a 
text content containing just the string s. The function 
mkElem t fs builds a content element with the tag t; 
the argument fs is a Ilist of filters, each of which is 
applied to the current item, and all their results are 
collected to become the children of the new element. 
The function mkElemAttrs t avs f s is just like mkElem 
except that its extra parameter avs is a list of attribute 
values6 to be attached to the tag. 

A useful filter which involves both selection and construc- 
tion is showAttr a, which extracts the value of the attribute 
a from the current element and returns just, that string as a 
piece of content. 

‘Actually, a list of attribute/filter pairs. Each filter is applied to 
the current element and the resultant content is flattened to a string 
value which is assigned to the named attribute. 
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When constructing a new document (e.g. the script 
in Figure 4 which generates HTML), the mkElam func- 
tion occurs repeatedly. We define and use a small library 
of functions such as htable, brow, and hcol which are 
just synonyms for particular applications of mkElem and 
mkElemAt.trs to different tagnames, reducing verbosity and 
making the syntax rather more readable. 

Also for convenience, we define the new operators ? and 
! as synonyms for showAttr and literal respectively: they 
are used in a bracketed postfix notation,? a style some pro- 
grammers prefer. 

2.2 Combinators 

The combinators used as intermediate code in compilers can 
render programs ‘totally unfit for human consumption’ [ll]! 
However, the idea of a combinator library for a specific class 
of applications is to achieve a form of expression that is nat- 
ural for the problem. A combinator library should be like a 
language extension tailored to the problem domain [4]. In 
this sense, functional languages are extensible, just as XML 
itself is extensible. The combinators are higher-order op- 
erators serving as ‘glue’[6] to assemble functions into more 
powerful combinations. We aim to keep the types of compo- 
nent functions as uniform as possible so that any function 
can be composed with any other. Within the lexical limits 
of the host language, choice of notation should follow appli- 
cation conventions: in Haskell we can, where appropriate, 
define new infix operator symbols for combinators. 

So, having defined some basic filters already, in what 
ways can these usefully be combined into more interesting 
and complex filters? (See Figure 3.) 

The most important and useful filter combinator is ’ o I. 
We call this operator Irish composition, for reasons which 
should be obvious. It plugs two filters together: the left filter 
is applied to the results of the right filter. So, for instance, 
the expression 

text ‘0’ children ‘0' tag "title" 

means “only the plain-text children of the current element, 
provided the current element has the title tag name”. 

Some other combinators are as follows. f 1 I I g is an 
append operator: it joins the results off and g sequentially. 
cat fs is the list generalisation of I I I; it concatenates the 
results of each of the filters from the fs list. f ‘with‘ g 
acts as a guard on the results of f, pruning to include only 
those which are productive under g. The dual, f ‘without ‘ 
g, excludes those results of f which axe productive under g. 
The expression p ?> f : > g is a functional choice operator; 
if the (predicate) filter p is productive, then the filter f is 
applied, otherwise g is applied. From this is derived a di- 
rected choice operator: f I > I g gives either the results of 
f, or those of g only if f is unproductive. 

Generalised Path Selectors Selection of subtrees by 
path patterns is familiar to users of the Unix file-system, 
where such patterns are used to access directory structure, 
using a / notation to indicate the ‘containing’ relation. Sim- 
ilar patterns are used in XSLT, an XML transformation 
language [3]. In this connection, we define two path se- 
lection combinators /> and </. Both combinators choose 

'Actually a left-section of the infix operator. Because filters are 
higher-order, their use is eta-reduced and the rightmost argument 
disappears from view. 

0, Irish composition 
(I I I), append results 
with, guard 
without, negative guard 
(/>I, interior search 
(</I, exterior search 
(l>l> directed choice 

:: CFilter -> CFilter -> CFilter 

f ‘0’ g = concat . map f . g 
f III g = \c-> f c ++ g c 
f 'uith' g = filter (not.nul1.g) . f 
f ‘without’ g = filter tnul1.g) . f 
f /> g = g ‘0‘ children ‘0’ f 
f </ g = f ‘with’ (g ‘o ’ children) 
f I>1 g = f ?> f :> g 

cat concatenate results 
:: [CFilter] -> CFilter 

cat fs = \c-> concat. map (\f->f c) fs 

et disjoint union 
:: (String-XFilter) -> CFilter -> CFilter 

f ‘et’ g = (f ‘00’ tagged elm) 
I>1 (g ‘0’ txt) 

(?>) ij-then-else choice 
:: CFilter -> ThenElse CFilter -> CFilter 

data ThenElse a = a :> a 
p ?> f :> g = \c-> if (not.nul1.p) c 

then f c else g c 

chip, “in-place” application to children 
deep, recursive search (topmost) 
deepest, recursive search (deepest) 
multi, recursive search (all) 
foldXm1 recursive application 

:: CFilter -> CFilter 

deep f = f I>1 (deep f ‘0’ children) 
deepest f = (deepest f '0' children) I>1 f 
multi f = f I 1 I (multi f ‘0’ children) 
foldXml f = f '0' (chip (foldXml f)) 

Figure 3: Filter combinators and their definitions. 

subtrees to return based on whether the results of the left 
filter contain the results of the right filter as children: /> is 
a,n 'interior' selector, returning the inner structure; </ is an 
‘exterior’ selector, returning the outer structure. 

An editing combinator Aside from predicates, selectors, 
choice, and constructive filters, there is one very useful com- 
binator which stands in its own category - an editing combi- 
nator. chip f processes the children of an element in-place: 
the filter f is applied to its children; the results are rebuilt 
as the new children of that same element. 
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Recursion It is often useful to express recursive transfor- 
mations on XML documents: transformations whiclh can be 
applied at many different levels of the document trlee. 

One family of such expressions is useful primarily in se- 
lecting a subtree from an arbitrarily deep location, although 
they can of course be used for editing and filtering as well 
as selection. The recursive combinator deep f potentially 
pushes the action of filter f deep inside the document sub- 
tree. It first tries the given filter on the current item: if 
it is productive then it stops here, but if no results are re- 
turned, then it moves to the children and tries again recur- 
sively. When used with a predicate, this strategy searches 
for the topmost matching elements in the tree. T:here are 
variations: deepest searches for the bottommost matching 
elements; multi returns all matches, even those which are 
sub-trees of other matches. However, as already noted, the 
action of these combinators is not restricted to predicates or 
selectors. 

Another powerful recursion combinator is foldXm1: the 
expression f oldXm1 f applies the filter f to every level of the 
tree, from the leaves upwards to the root (at least concep- 
tually - of course lazy evaluation makes this more efficient). 

2.3 Example 

The use of these filters and combinators is illustrated in an 
example script in Figure 4. This program transforms an 
<album> element into an HTML document that provides a 
formatted summary. The HTML output, rendered by the 
Netscape browser, is illustrated in Figure 5. Such a task 
might be fairly common in e-commerce applications. 

We now describe some of the salient features of the ex- 
ample. 

(albumf ‘0’ deep (tag “album”)) 

The script first searches recursively for the topmost ele- 
ment tagged <album>, before applying the filter albumf to 
it. Thus, it works equally well with any XML source docu- 
ment that contains an <album> element anywhere within it, 
and (correctly) produces no output for documents which do 
not contain album data. 

The output document’s <HEAD> section contains the 
artist name and album title separated by a colon. We note 
that the expression, 

txt (0‘ children ‘0’ tag “artist” 
‘0‘ children ‘o ‘ tag “album” 

which grabs the textual content of the <artist> element 
within the <album> element, is somewhat unwieldy. More- 
over its trailing test for the <album> tag is redundant, since 
the calling filter has already performed that match. The 
expression can be simplified by using path selectors to: 

keep /> tag “album” /> txt 

and this style is used elsewhere in the example. (The al- 
gebraic laws in Section 2.5 guarantee that this rewriting is 
safe.) 

Such expressions make some assumptions about the 
structure of the data within the <album> element. In this in- 
stance, the assumption is that an <artist> element is an im- 
mediate child, and that its immediate children include text. 
If such assumptions prove incorrect for a particular docu- 
ment, the filter is simply unproductive; no error is flagged. 

With a suitable definition, hbody = mkElemAttr “BODY” 
the expression 

hbody [(“‘bgcolor”, (“white”!))] [. . .] 

can be understood to set the background colour attribute of 
the <BODY> tag to the literal value white. Notice how the 
attribute value is itself described by a. filter. In this case, the 
filter is not very exciting, but the later definition of .mkLink: 
illustrates the generation of an HTM.L refe.rence by looking 
up the value of a supplied link attribute (using the ? filter). 

When the script is useId on the parti.cular document 
from Figure 1, the output is a re-ordering of the internal 
components of the input: in the <BODY> part of the out- 
put, the <notes> section is selected and transformed by 
notesf before the <catalogno> elements are processed by 
the summaryf filter. Although in the absence of a DTD it is 
impossible to be sure of any input ordering, the script here 
ensures that the output ordering is consistent. 

The definition of the notesf filter is interesting be- 
cause it makes fewer assumptions about the content of a 
<notes> structure, and in addition it preiserves the input 
ordering. The chained if-then-else choice within the recur- 
sive foldXml combinator causes all internal structure of the 
<notes> element to be retained except for the replacement 
of <trackref>s by emphasised text, and <alburnref>s by 
HTML links. 

One of the most striking features of the example as a 
whole is how selection and testing of old content and con- 
struction of new content are uniform, and can be combined 
almost interchangeably. 

We will return to the treatment of <catalogno> elements 
in Section 2.4 after introducing some extra labelling combi- 
nators. 

2.4 Labellings 

One feature that is occasiona.lly useful is the ability to attach 
labels to items in a sequence, for instance, to number a list. 
of items, or to treat the f&t/last item of a list differently 
from the other items. For this purpose, the library provides 
special labelling combinators. We choose to introduce a new 
type: 

type LabelFilter a = Content -> I: (a,Content) ] 

A LabelFilter is like a CFilter except it attaches a label 
to each of its results. We might have chosen to fold label 
values inside the Content type, to yield a uniform CFilter 
type, but keeping the labels separate allows them to be of 
completely polymorphic type: a label could even be another 
filter for example. 

There are several common labelling functions: 

numbered :: CFilter -> LabelFilter Int 
interspersed :: a -> CFilter -> a 

-> LabelFilter a 
tagged :: CFilter -> LabelFilter String 
attributed : : CFilter -> 

LabelFilter [(String,String)] 

These labelling functions lift, a CFiIter to the LabelFilter 
type: numbered f transforms the ordinary filter f into a 
new filter that attaches integers (from 1 upwards) to the 
results of f; interspersed a f z attaches the label a to 
all of the results of f except the last, which gets the label 
z; tagged f labels every tagged element with its tag name 
(and non-elements with the empty string); attributed f 
labels every tagged element with its attribute/value pairs 
(and non-elements with the empty list). 
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module Main where 
import Xml 
main = 

processXMLwith (albnmf '0' deep (tag "album")) 
albumf = 

html 
I: hhead 

[ htitle 
1 txt '0' children '0' tag "artist" 

‘0’ children '0' tag "album" 
, literal ": " 

i 
keep /> tag "title" /> txt 

1 
hbody [("bgcolor" ,(“white”!))] 

’ Ch center 
C hl C keep /> tag "title" /> txt I 1 

I h2 [ ("Notes"!) 1 
, hpara [ notesf '0' (keep /> tag "notes") ] 

i 
summaryf 

J 
notesf = 

foldXml (txt ?> keep :> 
tag “trackref” ?> replaceTag “EM” :> 

-3 "albumref" ?> r&Link :> 
children) 

summaryf = 
htable C(“BORBER”, (“1” ! ) )I 

[ hrow [ hcol [ (“Album title”! ) 1 

i 
hcol [ keep /> tag “title” /> txt 1 

, hrow [ hcol C (“Artist”!) 1 

i 
hcol [ keep /> tag “artist” /> txt ] 

> hrow [ hcol [ (“Recording date”!) ] 
, hcol [ keep /> 

tag “recordingdate” /> txt 1 
1 

, hrow C hcola C (vALICN~~, (*stop"!)) 1 
C ("Catalog numbers"!) 1 

, hcol 
[ hlist 

[ catno ‘00’ 
numbered (deep (tag “catalogno”) ) 

-I 
J 

1 
1 

1 
catno n = 

mkElem “LI” 
C ((show n++“. ‘I) !) , (“label”?) , (“number”?) 
, (” (“!I, (“format”~) , (“I”!> 1 

mkLink = 
mkElemAttr “A” C (Y-lREFt’, (“link”?) ) ] 

C children 1 

Figure 4: An example document-processing script using the 
generic filter combinators. 

Time Out 

Notes 

Possibly the DBQ’s most famous album, this contains Take 
Five, the most famous jazz sack of that period. These 
experiments in different time signatures are what Dave Brubeck 
ismostramemberedfor.RecordedJun-Aug1959inNYC.See 
alsothesequel,TimeFmthe.rOut 
~. . ,.._ . . . . . . . . . . . . . 
Wbumtide /Time&t 

i 
; . . . . . . . . . . . . . . . . . . . 
girtist 

. . . . . . . . . . . . . . . . . . . . . . . . . . __....__._____._..__...................................................................................,.,,..... 
!Dave Brnbeck Quartet 

t 
i . . . . . . . . . . . . . . . . . . . . . . . . . I.. ,.,,..,..,,.,,....,,.,....................................................................................,,,..,.. / 
iRecording date i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

IJune-August 1959 . ..___.__.._..._..,,.,,.,....,,,,,,.,.....................................,,,,.,.,,,,........,.................... 
;Catalognumbe.rs i 

; 
0 1. Columbia CL 1397 (LF) 

i l 2. ColumbiaCS8192 (Lp) 
1 

t 0 3. ColurnbiaCPK1181 (Lp) 
/ 
; 

i l 4. Sony/CBS LegacyCK40585 (CD) / 

Figure 5: The HTML results of the example script, rendered 
by a browser. 

‘00’ :: (a-XFilter) -> LabelFilter a -> CFilter 

The combinator ‘00’ is a new form of composition which 
drops a LabelFilter back to the CFilter type by applica- 
tion of another filter that consumes the label. 

The use of this form of labelling is illustrated by the 
treatment of “catalogno”s in the example of Figure 4: 

catno ‘00’ numbered (deep (tag “catalogno”)) 

First, the desired elements are extracted from their topmost 
positions in the tree, then they are given numeric labels, 
and finally the catno filter incorporates the label into some 
generated text. Another example can be seen in the de% 
nition of the ‘et’ combinator in Figure 3. (‘et’ combines 
a filter f on elements with a filter g on text. f pattern- 
matches against tagnames - the tagnames are extracted by 
the labelling function tagged.) 

Furthermore, it is possible to combine labellings. The 
’ x ‘ combinator glues two labelling functions together, pair- 
ing the labels they produce. 

‘X’ :: (CFilter->LabelFilter a) 
-> (CFilter->LabelFilter b) 
-> (CFilter-BLabelFilter (a,b)) 

2.5 Algebraic laws of combinators 

We briefly show how combinators are defined in such a way 
that various algebraic laws hold. The complete set of laws 
is given in Figure 6. 
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Irish composition 
f ‘0’ (g ‘0’ h) = (f ‘0’ g) ‘0’ h 
none ‘0’ f = f ’ 0‘ none = none 
keep ‘0’ f = f ‘0’ keep = f 

Guards 
f 'with‘ keep = f 
f 'with' none = none 'with' f = none 
(f ‘with’ g) ‘with’ g = f ‘with‘ g 
(f ‘with’ g) ‘with’ h 

= (f ‘with’ h) ‘with‘ g 
(f ‘0’ g) ‘with’ h 

= (f ‘with’ h) ‘0’ g 

f ‘without’ keep = none ‘without’ f 
= none 

f ‘without’ none = keep 
(f ‘without‘ g) ‘without’ g 

= f ‘without ’ g 
(f ‘withrt if,) ‘without’ h 

‘without ’ h) ‘without’ g 
(f Co‘ g) ‘without’ h 

= (f ‘without’ h) ‘0’ g 

Path selectors 
f /> (g /> h) = (f /> g) /> h 
none /> f = f /> none = none 
keep /> f = f ‘0’ children 
f /> keep = children ‘0’ f 
keep /> keep = children 
none </ f = f </ none = none 
f </ keep = f ‘with’ children 
(f </ g> </ g = f </ g 
(f </ g) /> g = f /> g 

(f /> g) </ h = f /> (g </ h) 
(f </ g) </ h = (f </ h) </ g 
f ‘0‘ (g /> h) = g /> (f ‘0’ h) 
(f /> g) ‘0‘ h = (f ‘0’ h) /> g 
(f I’> g) ‘with’ h = f /> (g ‘with’ h) 
(f </ g) ‘with’ h = (f ‘with’ h) </ g 

Directed choice 
(f i>l g) l>t h = f I>1 (g I>1 h) 

keep I>1 f = keep 
none I>1 f = f I>1 none = f 
f I>1 f = f 

Recursion 
deep keep = keep 
deep none = none 
deep children = children 
deep (deep f) = deep f 

Mist 
elm I>1 txt = txt [>I elm = keep 
elm ‘0’ txt = txt ‘0’ elm = none 
children ‘0’ elm = children 
children ‘0’ txt = none 

associatiuity 
zero 
identity 

Giving all content filters the same typse maximises the 
usefulness of combinators for plugging together funcf;ions of 
this type. However, it is still helpful to identify subclasses 
of content filters that offer extra guarantees. Two examples 
of such classes are: 

A predicate p has the property that p c always gives as 
result either Cc3 or Cl. 

identity 
zero 
idempotence 

promotion 

promotion 

1. 

2. A *selector s has the property that s c: always gives as 
result a sequence of co:ntents taken from c. Resulting 
items do not overlap, and the result sequence respects 
the order in which the contents were found in c. 

So,a predicate is a selector, but a selector is not necessarily 
a predicate. 

zero 
identity 

idempotence 

promotion 

promotion 

The ‘o ‘ form of filter composition could be defined using 
a Haskell list comprehension 

(f ‘0’ g) c = Cc” I c’ <- g c, c” <- f c’] 

However, we prefer the equivalent, higher-order definition 
f ‘0’ g = concat . map f 

9 
because it is more con- 

venient in algebraic calculation. Composition is associa- 
tive, with none as zero, and keep as identity. 

associativity 
zero 

The ‘with’ form of guarded composition is not asso- 
ciative, but we do have some laws, parti.cularly idempo- 
tence. We also have a promotion law about combined uses of 
‘with’ and ‘0’. The dual operator, ‘without ‘ has parallel 
laws. 

zero 

The /> path selector is associative but </ is not, and 
there are some idempotence laws for both. Most important 
however, are the various promotion laws for changing the 
order of application of />, </, and with. 

idempotence 
idempotence 

promotion 
promotion 
promotion 
promotion 
promotion 
promotion 

The directed choice operator I > I viewed by itself ap- 
pears to be algebraically se.nsible, but it does not seem to 
have useful algebraic properties in connection with other 
combinators because of its bias towards the left operand. 
The simpler result-appending combinator I I I could be an 
alternative to the directed choice operator, and would prob- 
ably lead to more laws, but it has less ‘application bite’. A 
potentially serious problem is that the I I II-combination of 
two selectors is not necessarily a selector. 

associativity 

The recursion operator deep has some minor laws, one 
of which, the depth law, is more profound. We have not 
yet fully investigated the properties of deepest, multi, and 
f oldXm1. 

identity 
idempotence 

3 Translation of DTDs to Types 

3.1 DTDs 

simplification So fax we have considered document-processing by generic 
simplification tree transformations, where markup is matched textually at 
simplification runtime, and no account is taken of any deeper meaning of 
depth law tags. 

completeness 
excl. middle 

However, when the DTD for a document is available, the 
meaning it defines for markup tags can be used to powerful 
effect. The most basic use is to confirm semantic validity: 
a stronger notion than mere syntactic well-formedness. A 
DTD defines a grammar for document content: it specifies 
a vocabulary of markup tags, and the allowed content and 
attributes for each tag. Document validation is therefore 

Figure 6: Algebraic laws of combinators. ‘Irish composition is in fact just the flipped-argument version of 
the KIeisi composition operator in the list monad.. 
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<?xml version='l.O'?> 
<!DOCTYPE album SYSTEM "album.dtd" [ 
<!ELEMENT album (title, artist, recordingdate?, 

coverart, (catalogno)+, 
personnel, tracks, notes) > 

<!ELEMENT title #PCDATA> 
<!ELEMENT artist #PCDATA> 
<!ELEMENT recordingdate EMPTY> 

<!ATTLIST recordingdate date CDATA #IMPLIED 
place CDATA #IMPLIED> 

<!ELEMENT coverart (location)? > 
<!ATTLIST coverart style CDATA #REQUIRED> 

<!ELEMENT location EMPTY > 
<!ATTLIST location thumbnail CDATA #IMPLIED 

fullsize CDATA #IMPLIED> 
C!ELEMENT catalogno EMPTY > 

<!ATTLIST 
catalogno 

label CDATA #REQUIRED 
number CDATA #REQUIRED 
format (CD 1 LP 1 MiniDisc) #IMPLIED 
releasedate CDATA #IMPLIED 
country CDATA #IMPLIED> 

<!ELEMJZNT personnel (player)+ > 
<!ELEMENT player EMPTY > 

<!ATTLIST player name CDATA #REQUIRED 
instrument CDATA #REQUIRED> 

<!ELEMENT tracks (track)* > 
<!ELEMENT track EMPTY> 

<!ATTLIST track title CDATA #REQUIRED 
credit CDATA #IMPLIED 
timing CDATA #IMPLIED> 

<!ELEMENT notes (ItPCDATA I albumref I trackref)* > 
<!ATTLIST notes author CDATA #IMPLIED> 

<!ELEMENT albumref #PCDATA> 
<!ATTLIST albumref link CDATA #REQUIRED> 

<!ELEMENT trackref #PCDATA> 
<!ATTLIST trackref link CDATA #IMPLIED> 

I> 

Figure 7: An example DTD. 

a straightforward check that the document’s structure con- 
forms to the vocabulary and grammar given in the DTD. 

XML document validators are readily available. How- 
ever, we go further and define the idea of valid document 
processing. A valid processing script is one which produces 
a valid document as output, given a valid document as input. 
We achieve this by demonstrating a correspondence between 
the DTD of a document and the definition of a set of alge- 
braic types in Haskell, and the consequent correspondence 
between the document’s content and a structured Haskell 
value. Hence, by writing document processing scripts to 
manipulate the typed Haskell value, the script validation 
problem is just an instance of normal Haskell type infer- 
ence.g 

‘Well, nearly! Validity also encompasses some other minor checks, 
for instance that IDREF attributes must be globally unique. 

module AlbumDTD where 

data Album = 
Album Title Artist (Maybe Recordingdate) 

Coverart [Catalogno] Personnel 
Tracks Notes 

newtype Title = Title String 
newtype Artist = Artist String 
newtype Recordingdate = 

Recordingdate Recordingdate-Attrs 
data Recordingdate-Attrs = Recordingdate-Attrs C 

date :: Maybe String, 
place :: Maybe String 3 

newtype Coverart = Coverart (String, Maybe Location) 
newtype Location = Location Location-Attrs 
data Location-Attrs = Location-Attrs i 

thumbnail :: Maybe String, 
fullsize :: Maybe String 1 

newtype Catalogno = Catalogno Catalogno-Attrs 
data Catalogno-Attrs = Catalogno-Attrs { 

label :: String, 
number :: String, 
format :: Maybe Format, 
releasedate :: Maybe String, 
country :: Maybe String 3 

data Format = CD I LP I MiniDisc 
newtype Personnel = Personnel [Player] 
newtype Player = Player Player-Attrs 
data Player-Attrs = Player-Attrs { 

name :: String, 
instrument :: String 3 

newtype Tracks = Tracks [Track] 
newtype Track = Track Track-Attrs 
data Track-Attrs = Track-Attrs { 

title :: String, 
credit :: Maybe String, 
timing :: Maybe String 3 

newtype Notes = Notes (Maybe String, [Notes-l) 
data Notes- = 

Notes-Str String 
1 Notes,Albumref Albumref 
I Notes-Trackref Trackref 

newtype Albumref = Albumref 
newtype Trackref = Trackref 

Gtring,String) 
(Maybe String,String) 

Figure 8: The example DTD translated to Haskell types. 

3.2 DTD translations. 

Anexample DTD forthedocumentshown earlier is givenin 
Figure 7. The immediate features to note are: (1) For every 
element, there is a specification of allowed inner elements 
(ELEMENT declaration), and possibly also a specification of 
allowed attribute values (ATTLIST declaration). (2) For in- 
ner content,the grammar allows sequence (commas),choice 
(vertical bar), optionality (question mark), and repetition 
(star or plus). (3) Where the inner content declaration al- 
lows free text (#PCDATA), choice between text and other ele- 
ments is permitted, but sequencing of those elements is not 
permitted. (4) In attribute lists, some values are mandatory 
(#REQUIRED) and some are optional (#IMPLIED); attribute 
valuescaneitherbeunconstrainedstrings(CDATA)oramem- 
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ber of some pre-defined set of string values. 
There seem to be some obvious correspondences between 

this very restricted form of type language and the richer type 
language of Haskell. Each element declaration is roughly 
speaking a new datatype declaration. Sequence is like prod- 
uct types (i.e. single-constructor values). Choice is like sum 
types (i.e. multi-constructor values). Optionality is, just a 
Maybe type. Repetition is lists. 

Attribute lists also have a translation: because they 
are unordered and accessed by name, Haskell named-fields 
look like a good representation. Optionality can again be 
expressed as Maybe types. Attribute values that are con- 
strained to a particular value-set can be modelled by defin- 
ing a new enumeration type encompassing the permitted 
strings. 

3.3 Implementation 

These rules are formalised in the appendix (Figure 9). An 
implementation of these rules (with some additional rules to 
eliminate redundancy) translated the DTD in Figure 7 into 
the Haskell type declarations shown in Figure 8. 

Also needed, along with the type declarations, are func- 
tions which read and write values of these types to and from 
actual XML documents. These are generated automatically 
from the type declarations alone. Using an appropriate set 
of pre-defined type classes, we derive a new instance for each 
generated type using a tool like DrIFT [16]. 

3.4 Discussion 

Although this type-based translation looks straightforward, 
it turns out that there are several tricky issues. 

First, the type translation may only use datatypes and 
newtypes, never type synonyms. This is a result of needing 
to write values out as XML - a type synonym in Haskell 
is indistinguishable from the type it abbreviates, but the 
generated types must be distinct in order to be able to 
re-introduce enclosing start and end tags with the correct 
markup. 

A separate type is introduced for each collection of at- 
tributes. Hence, an eIement is represented by a pairing of 
the attributes and the content. Where a tagged element di- 
rectly contains an optional type or a sequence of types which 
are themselves sum-types, it is necessary to interpose a sep- 
arate Haskell type, e.g. Notes contains a [Notes-l where 
the auxiliary type Notes- has three alternatives. 

Naming is a big issue. Case matters in XML, so a <tag> 
differs from a <TAG> and attribute attr differs from Attr. 
In Haskell however, types must begin with upper-case, and 
field-names must begin with lower-case. Where auxiliary 
types are necessary, we have chosen to append an under- 
score character to the name. All of these factors impose 
restrictions on the use of this translation, due to the poten- 
tial name conflicts. 

Furthermore, there is a mismatch between Haskell’s 
named fields and the attribute naming/scoping rules in 
XML. In XML, different elements may have attributes of 
the same name and type, whereas Haskell’s named fields are 
restricted to use within a single type. A system of typed 
extensible records [5] would be a much better fit. 

Despite these problems in expressing DTDs wit,hin the 
Haskell typesystem, the latter is very much more power- 
ful than DTDs - for instance, DTDs have no notion of 
polymorphism. Indeed, there are frequent occasions when 

DTD writers resort to textual macrosn’ to indicate more 
detailed structuring than DTDs permit (including polymor- 
phism and qualified typing), even though such implicit struc- 
turing cannot be validated b’y XML tools. It is significant 
to note the XML community’s recognition of these limita- 
tions of DTDs - recent proposals for schend address the 
question of richer typing in a more disciplined manner. 

One area in which the type system of H,a.skell in partic- 
ular (as opposed 1;o other furrctional languages) is exploited 
is type classes. This systematic overloading mechanism is 
very useful for codifying the I/O conversion:3. 

4 Pros and cons of the two schemes 

4.1 Combinators 

Compared with the mainstream solution for XML process- 
ing, namely new domain-specific languages for expressing 
and scripting transformations, the combinat,or approach has 
several advantages: 

Ease of extension and variation Scripting languages 
sometimes lack useful facilities, or provide them in convo- 
luted ways. Extending the language is difficult. A combina- 
tor library, however, can be enlarged comparatively straight- 
forwardly -the definitions are accessible, and most are short 
and simple. 

Computational power Scripting languages tend to offer 
either a very limited expression language, or a hook into a 
programming system at a completely different level of ab- 
straction. But if XML scripts are programs in a language 
such as Haskell, the full power of the native language is im- 
mediately available. 

Abstraction, generality and reuse Almost any pattern 
occurring in a combinator program can be isolated and de- 
fined as a separate re-usable idea [6]. This allso applies at the 
application level, where common ideas from similar applica- 
tions might easily be defined in a higher-level library. This 
form of re-use makes program development much quicker 
and less error-prone. 

Laws for reasoning about scripts The semantics of a 
scripting language are often defined by illustration. So it 
is hard to reason with confidence about the meanings of 
scripts. Is A just a stylistic variation of B or are there in- 
puts for which the two could give different results? But when 
the semantics of scripts can be defined in terms of the equa- 
tions for the combinators, properties such as associativity 
and distribution can often be demonstrated. simply. 

Implementation for free Does a scripting language have 
an interactive interpreter? A compiler? A type-checker? A 
profiler? All these things are immediately available to XML 
scripts directly expressed as Haskell progra:ms. 

“That is, parameter entity references. 
“http://uvv.v3.org/TR/rmlschama-lfor structures, 

and http: //ww.u3 .org/TR/xmlschema-2 for datatypes. 

156 



Of course, there are disadvantages too. 

Distance from target language XSLT [3] has the prop- 
erty that a script is an expression in the target language: 
it uses exactly the XML syntax for building new content. 
Combinator-based scripts must use a different syntax due 
to the underlying language. The linguistic gap might cause 
confusion and increase learning costs. 

Living in an unfamiliar world Combinator programs 
look like scripts in a small domain-specific language. Writers 
may be beguiled by this apparent simplicity, make a small er- 
ror, and drop into an unknown corner of Haskell. Error mes- 
sages may be incomprehensible, or worse, the script might 
work but do something utterly strange. 

4.2 Type-based translation 

Some of the advantages of the fully-typed representation of 
XML documents have already been mentioned. 

Validity The ability for the system to spot errors auto- 
matically, not just in the data, but in the program, and also 
to prevent the generation of incorrect document markup. 

Direct programming styIe Functional languages en- 
courage the use of pattern-matching (binding values to vari- 
ables) on the left-hand-side of equations. However, using 
higher-order combinators, data structures tend not to be 
mentioned in equations at all. The DTD translation ap- 
proach is much more in keeping with the pattern-binding 
style, which sometimes leads to shorter programs! Whereas 
with combinators, it is sometimes necessary to re-traverse 
the same selection path with slight variations, the pattern- 
binding gives direct access for free. 

Disadvantages are: 

High startup cost Before scripting document transfor- 
mations, it is necessary to acquire, check, and process the 
DTD. Although the generation of Haskell types is auto- 
mated, few people are familiar enough with DTDs to be 
able to start using them immediately. They require care- 
ful study and understanding before correct scripts can be 
written and the initial investment of effort pays off. 

Incomplete type model The grammar of DTDs is small 
and restrictive compared to the sophisticated type systems 
available in functional languages. Better means of type- 
specification in XML are still under development. In the 
meantime, there is little scope for using the full power of 
features like polymorphism. 

5 Related Work 

XML Processing There are infant processing languages 
surrounding XML. Of most interest here are: 

l XSLT [3] (extensible Style Language for Transforma- 
tion) is a W3C-proposed declarative language for ex- 
pressing a limited form of transformations on XML doc- 
uments, originally intended for rendering to a layout- 
based format, e.g. HTML, PostScript, etc., but now 
widely used for XML+XML transformations. 

l DSSSL [12] (Document Style Semantics and Specifi- 
cation Language) is a mature IS0 standard with no 
complete implementations. It is similar in essence to 
XSLT, but deals with full SGML input, and is based 
on Scheme. 

Not many functional language researchers are visibly en- 
gaged in XML-related work, but two other toolkits for XML- 
processing are Christian Lindig’s XML parser in O’Camlr2 
and Andreas Neumann’s validating XML parser in SML13. 
To our knowledge, neither of these provides transformation 
capabilities in either a combinator style or a type-translation 
style. Philip Wadler has written a short formal semantics of 
XSL selection patterns [15]. 

Application-based combinators Parsing is the most 
extensively studied application for combinator libraries. 
Since the original treatment by Burge [2], there have been 
many variations on the theme. Swierstra and Duponcheel’s 
method incorporating on-the-fly grammar analysis and 
error-correction is a notable recent example [lo]. We hope 
it may be possible to incorporate DTD-analysis in our com- 
binators in a similar style. 

Although many other libraries of application combina- 
tors have been devised, the general design principles for such 
libraries are scarcely referred to in the literature. Hughes’ 
exposition of a design for pretty-printing combinators [7] is 
a unique resource in this respect, and we have yet to exploit 
it fully. 

Tree-processing operators An earlier version of this pa- 
per prompted more than one pointer to the work of Eelco 
Visser and colleagues 1131. Their motivating application is 
specification of strategies for program optimisation, treated 
as rewriting over expression trees. The result of applying a 
strategy is either a single term or failure: non-determinism is 
achieved by backtracking but only the first success is com- 
puted, whereas we deal in ‘lists of successes’ [14]. Their 
operators for combining strategies include composition, di- 
rected choice, and an explicit 1-1 operator for recursion. They 
have several operators for specifying transformation of child 
subterms: some are not so relevant to XML where sub- 
tree position and arity are less often fixed than in program 
syntax; however, one of the most frequently applied oper- 
ators is close to our foldXrn1. Most significantly, Visser 
et. al. achieve great expressive power by decomposing the 
match/re-build stages of rewriting, and introducing explicit 
environments by which these stages communicate. This 
makes it possible to deal with subtleties such as variable 
bindings in the program terms under transformation. Al- 
though the structure of XML is simpler than the structure 
of a programming language, our library could benefit from 
the addition of support for binding variables when matching 
subtrees. 

Programming functions explicitly over the XML data- 
structure, without the abstraction of combinators, Haskell 
pattern matching provides bindings for subtrees. But only 
at a fixed (small) depth from the root, beneath an explic- 
itly stated pattern of constructors. Mohnen [9] defines an 
extension of the pattern language for deep matching: vari- 
ables in a pattern can be bound to subterms at arbitrary 
depth in the term, subject to matching. The result of the 

12http://vvv.cs.tu-bs.da/softech/people/lindig/tony.ht~l 
13http://wxw.informatik.uni-trier.de/ naumann/Fxp/ 

157 ’ 



match includes a context function representing the (original 
subject term with ‘holes’ at the sites of matching; subterms 
for these holes are supplied by arguments to the function. 
So contexts are the complements of environments. Mohnen 
shows how his matching extension simplifies various tree- 
processing tasks, and also how it can be translated into 
standard Haskell. This work could provide one component 
of a hybrid solution, with DTD-specific representation and 
generic forms of traversal and matching. 

Visser et. al. [13] also discuss several other approaches to 
the tree transformation problem. 

6 Conclusions and Future Work 

In our experience, Haskell is a very suitable language for 
XML processing. For generic applications, a small set of 
combinators designed with algebraic properties in mind can 
be powerful enough and flexible enough to describe a full 
range of selection, testing, and construction operations in 
a uniform framework. For applications where the DTD 
is fixed, a tool deriving corresponding types and associ- 
ated I/O routines turns XML processing into Haskell pro- 
gramming over typed data structures, and the Haskell type- 
checker validates scripts. 

However, there is plenty of scope for further work, in 
several directions: 

Generality of combinators Though we have had gen- 
erality as a design aim for our present combinator library 
there is scope for generalising it further. 

l Wider functionality. Most content filters in our cur- 
rent library are either pure selectors (with results that 
are sequences of sub-trees from the full document tree) 
or pure constructors (creating document content from 
values of other types). The design could usefully be 
extended to include a more general class of deletion op- 
erations in which sub-trees can be thinned and pruned 
in various ways. More general still are combinators for 
editing and transforming, where some of the ideas in 
Visser’s work could be usefully be transferred. 

l Multiple inputs and outputs. An interesting extension 
of single-document scripting is the handling of multi- 
ple documents. Producing more than one output doc- 
ument is no great problem. But it is far more challeng- 
ing to design appropriate combinators for dealing with 
several inputs. 

l More general types. The labelling scheme has proved 
useful for some applications, but the need for a sepa- 
rate LabelFilter type is a blemish. We hope to gener- 
alise the CFilter type to incorporate LabelFilter as 
a special case. By making the CFilter type paramet- 
ric it might even be possible to incorporate the type- 
translation of DTDs within the combinator framework. 

Efficiency of combinators The current combinator li- 
brary is quite usable, but here are some possible routes to 
greater efficiency. 

l Algebraic normalisation So far we have merely estab- 
lished that laws hold, and occasionally appealed to 
them when writing scripts. The implementation simply 

implements the combinators by their specifying equa- 
tions. Instead, laws could be exploited at the imple- 
mentation level. Following Hughes [7], .we have in mind 
an implementation that automatically reduces all com- 
binations to a normal form, that is the least expensive 
equivalent computationally. 

Space-eficie,nt formulation Some lazy functional pro- 
grams that process trees in pre-order left-to-right fash- 
ion can be formulated to run in log(N) space. The 
part of the tree that is held in memory corresponds to 
a path from the root to some node that is currently 
the focus of computation: to the left are ‘garbage’ sub- 
trees already processed,, to the right are subtrees not 
yet evaluated. However, our current combinators have 
not been formulated to guarantee this sort of space be- 
haviour, even in favourable cases. This problem might 
be tackled by the normalisation approach. 

DTD-aware combinators The current combinator li- 
brary just ignores DTDs. Combinators that main- 
tain DTD information might, for example, achieve far 
more efficient search in some cases by pruning branches 
bound to fail. They could also be used ‘to produce first- 
class XML documents as the results of queries, not just 
raw extracts of unknown type. As we have already 
noted, DTDs could perhaps be attached as labels in 
the sense of 52.4: either as explicit values or implicitly 
in type information. 

Relations between DTDs As we have seen, in the DTD- 
directed approach with known fixed DTDs for input and out- 
put, validation translates to static type-checking; whereas 
generic combinators could in principle acquire and compute 
DTDs dynamically. These represent extremes with disad- 
vantages of inflexibility on the one hand and some insecu- 
rity on the other. There are: many other ways of handling 
relations between DTDs. For example: 

Polymorphic and higher-order scripts. The generic 
approach would gain security if one could infer a 
DTD+DTD function. By analogy with functional pro- 
grams it is then natural to assign scripts polymorphic 
and higher-order DTDs, making explicit their degree of 
genericity. 

Inclusion between DTDs. This has been implicitly as- 
sumed already, but has practical importance in its own 
right. As stock DTDs are refined, XML documents 
will inhabit a hierarchy of specialisation. Given several 
similar DTDs, one would like to derive a DTD for a vir- 
tual common root (intersection) or common descendent 
(union). This goes well beyond the abilities of current 
type-inference systems, but would make a useful addi- 
tion to our functional toolkit for XML processing. 
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Appendix: DTD translation rules 

Type declarations 
~[<ELEMENT n spec>] = newtype m = 

m (mAttrs, m-l 
newtype m- = D[spec] m 

where m = M [n] 
~[CATTLIST n 

declo . . . declk>] = data m-Attrs = 
m4ttrs { FT[declo] 

, . . . 
,F[deCb] } 

where m = M [n] 
d[declo ] 
. . . 
d(ldeclk] 

RHS of type declarations 
q(zo, 21,. . f ) n>]m = C[m 20 . . . zk]l 

V’[x:,] V’[Xl] . . . V’[Xk] 
DD[(zOl%lI . . . Ixk)]m = C[m x0] V’[zo] 

I C[m Xl] D’[ml 

. . 

. . . 

i ijim %k] v’[xk] 
= Maybe D'[x] 
= List1 ZYBZB 
= I: V’[x] I- - 
= C[m xc] 

Inner type expressions 
1 Y xk)] = ( V’[XOl~,~‘~jl)l 

Ixdl = co&o;, Vfio] V’[Xl] 

. . . D’l[xk] > 
= (Maybe D'[x] 1 
= (List.1 10'[2] 1 
= CD’[x]l 
= C[x] 

Name mangling 
. xk] = . . . unique constructor name 

based on m 
= . . . ensure initial upper-case 
= . . . ensure initial lower-case 

Named fields 
3[ n CDATA #REQUIRED ] 

= M’[n] 
F[ n CDATA #IMPLIED ] 

= M’[n]l 
F’I[ n (sOlsl[. . . [Sk) #REQUIRED ] 

= M’[n] 
F[ n (sOlsll.. . ISkI #IMPLIED ] 

= M’[n] 

:: String 

:: Maybe String 

:: M[n] 

: : Maybe M [n] 

Constrained attributes 
A[ n CDATA . . . ] = 4 
d[n (solsrl...lSk) . . . ] 

= data M[nJ = 
MUyl hfil;ll 

. . . 

Figure 9: DTD translation rules. 
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