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Abstract
Type classes provide a mechanism for varied implementations of
standard interfaces. Many of these interfaces are founded in mathe-
matical tradition and so have regularity not only of types but also of
properties (laws) that must hold. Types and properties give strong
guidance to the library implementor, while leaving freedom as well.
Some of this remaining freedom is in how the implementation
works, and some is in what it accomplishes.

To give additional guidance to the what, without impinging on
the how, this paper proposes a principle of type class morphisms
(TCMs), which further refines the compositional style of denota-
tional semantics. The TCM idea is simply that the instance’s mean-
ing follows the meaning’s instance. This principle determines the
meaning of each type class instance, and hence defines correctness
of implementation. It also serves to transfer laws about a type’s se-
mantic model, such as the class laws, to hold for the type itself. In
some cases, it provides a systematic guide to implementation, and
in some cases, valuable design feedback.

The paper is illustrated with several examples of types, mean-
ings, and morphisms.

1. Introduction
Data types play a central role in structuring our programs, whether
checked statically or dynamically. Data type representations col-
lect related pieces of information making its use more convenient.
Adding data abstraction gives a clean separation between a type’s
interface and its implementation. The ideal abstraction is as simple
as possible, revealing everything the users need, while shielding
them from implementation complexity. This shield benefits the im-
plementor as well, who is free to improve hidden implementation
details later, without breaking existing uses.

What kind of a thing is an interface that can connect implemen-
tors with users while still serving the distinct needs of each?

Part of the answer, which might be named the “form”, is a
collection of names of data types and names and types of operations
that work on them. For instance, for a finite map, the interface may
include operations for creation, insertion, and query:

abstract type Map :: ∗ → ∗ → ∗
empty :: (...) ⇒ Map k v
insert :: (...) ⇒ k → v → Map k v → Map k v
lookup :: (Eq k ...)⇒ Map k v → k → Maybe v

The type signatures will eventually include additional limitations
(constraints) on the type parameters. The representation of Map
and the implementation of its operations are not revealed.

By itself, the form of the interface does not deliver the promised
shield. Although it successfully hides implementation details, it
fails to reveal an adequate replacement. While the implementation
reveals too much information to users, the signatures provide too
little. It is form without essence. Users of this abstraction care about
what functionality these names have. They care what the names
mean.

Which leads to the question: what do we mean by “mean”?
What is the essence of a type, enlivening its form? One useful an-
swer is given by denotational semantics. The meaning of a program
data type is a type of mathematical object (e.g., numbers, sets, func-
tions, tuples). The meaning of each operation is defined as a func-
tion from the meanings of its arguments to the meaning of its result.
For instance, the meaning the type Map k v could be partial func-
tions from k to v . In this model, empty is the completely undefined
function, insert extends a partial function, and lookup is just func-
tion application, yielding Nothing where undefined. The meaning
of the type and of its operations can be spelled out precisely and
simply, as we will see throughout this paper.

Haskell provides a way to organize interfaces via type classes
(Wadler and Blott 1989; Jones 1993). Library designers can present
parts of a type’s interface as instances of standard type classes,
which then provides the library’s users with standard vocabularies,
thus making the library more easily learned. In addition to reducing
learning effort, type class instances make libraries more useful,
thanks to other libraries that contain functionality that works across
all instances of given type classes.

Type classes provide more than names and types of operations.
They also specify laws to be satisfied by any instance. For example,
a Monoid instance must not only define a ∅ value and a binary
(⊕) operation of suitable types (called “mempty” and “mappend”
in Haskell). Also, ∅ must be a left and right identity for (⊕), and
(⊕) must be associative. Thus a type class determines part of the
essence, as well as the form, of each of its instances.

What about the rest of the meaning of a type class instance–the
semantic freedom remaining after the types and laws have had their
say? This paper suggests a principle for answering that question:

The instance’s meaning follows the meaning’s instance.

That is, the meaning of each method application is given by ap-
plication of the same method to the meanings of the arguments. In
more technical terms, the semantic function is to be a type class
morphism, i.e., it preserves class structure.

For example, suppose we want to define a Monoid instance for
our finite map type. The type class morphism (TCM) principle tells
us that the meaning of ∅ on maps must be ∅ for partial functions,
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and the meaning of (⊕) of two maps is the (⊕) of the partial
functions denoted by those maps.

This paper provides several examples of types and their mean-
ings. Sometimes the TCM property fails, and when it does, exami-
nation of the failure leads to a simpler and more compelling design
for which the principle holds. In each case, class laws are guaran-
teed to hold, thanks to the morphisms, and so need not be proved
specifically. The laws thus come, if not “for free”, then “already
paid for”. Often, for a simple and fitting semantic model, some-
one already has done the hard work of verifying class laws, so the
library designer can smile and accept the gift. When the model is
unusual or complex enough that the work has not been done, it may
be that either the model can be improved, or someone can do the
hard work for the model and share it with others. If it is true, as I
believe, that good semantic models tend to be reusable, then there
is leverage to be gained from TCMs.

Adopting the discipline illustrated in this paper requires addi-
tional up-front effort in clarity of thinking, just as static typing does.
The reward is that the resulting designs are simple and general, and
sometimes have the feel of profound inevitability—as something
beautiful we have discovered, rather than something functional we
have crafted. A gift from the gods.

2. Denotational semantics and data types
Denotational semantics is a compositional style for precisely speci-
fying the meanings of languages, invented by Christopher Strachey
and Dana Scott in the 1960s (Scott and Strachey 1971; Stoy 1977).
The idea is to specify, for each syntactic category C,

• a mathematical model [[C]] of meanings, and
• a semantic function [[·]]C :: C → [[C]].

Moreover, the various [[·]]C must be compositional, i.e.,must be
defined by (mutual) structural recursion. Notationally, “[[·]]C c”
is shortened to “[[c]]C”, and when unambiguous, “[[·]]

C
” will be

shortened to “[[·]]”.
Similarly, we can apply denotational semantics to data types

within a language to give precise meaning, independent of its
implementation. Doing so yields insight into the essence of a type,
which may lead to its improvement, or to informed choices about its
use. It also supports clear reasoning while implementing or using
the type.

As an example, consider a data type of finite maps from keys
to values. The type is abstract, available only through an explicit
interface that does not reveal its representation. A central question
is “What does a map mean?” In other words, “A map is a repre-
sentation of what mathematical object?” A simple first answer is
a partial function from values to keys. Next, we’ll want to be clear
about the sense of “partial” here. When a map is queried for a miss-
ing key, we might want the map to yield an error (semantically ⊥).
More likely, we’ll want an indication that allows for graceful re-
covery. For this reason, it’s appealing to model a map’s partiality
via a success/failure type, for which Haskell’s Maybe type is well
suited. Thus a workable model for maps is

[[Map k v ]] = k → Maybe v

For a language, the meaning function is defined recursively over
the abstract syntactic constructors. This practice transfers directly
to algebraic data types. We are doing something different, however,
which is to define the meaning of an interface, without any refer-
ence to representation.

Return now to the interface from Section 1:

abstract type Map :: ∗ → ∗ → ∗

empty :: (...) ⇒ Map k v
insert :: (...) ⇒ k → v → Map k v → Map k v
lookup :: (Eq k ...)⇒ Map k v → k → Maybe v

The omitted additional type constraints contribute only to the im-
plementation and not the semantics. (With Ord k for insert and
lookup, the implementation can use a balanced tree representation
(Adams 1993).)

A semantics for Map then consists of a model, as given above,
and an interpretation for each member of the interface.

[[·]] :: Map k v → (k → Maybe v)

[[empty ]] = λk → Nothing
[[insert k ′ v m]] = λk → if k ≡ k ′ then Just v else [[m]] k
[[lookup m k ]] = [[m]] k

Many more functions on maps can be defined semantically within
this model, such as a left-biased “union”:

unionL :: (...)⇒ Map k v → Map k v → Map k v
[[ma ‘unionL‘ mb]] = λk → [[ma]] k ‘mbLeft ‘ [[mb]] k

mbLeft :: Maybe v → Maybe v → Maybe v
mbLeft (Just v) = Just v
mbLeft Nothing mb′ = mb′

Other functions can be defined in terms of simpler functions.
For instance, a map defined for only a single key is semantically
equivalent to one made via empty and insert .

singleton :: (...)⇒ k → v → Map k v
singleton k v ≡ insert k v empty

Given this relationship, an explicit semantics for singleton would
be redundant.

What is the meaning of equality (i.e., (≡)) here? The answer
used throughout this paper is that equality is semantic, i.e.,

a ≡ b ⇐⇒ [[a]] ≡ [[b]]

We can use lookup to find out whether a key has a correspond-
ing value, i.e., whether the key is in the map’s domain. Suppose we
want to know what the domain is without having to query? Maybe
we want to know the size of the map’s domain (number of defined
keys).

size :: Map k v → Integer
[[size m]] = |{k | [[m]] k 6≡ Nothing}|

This semantics does not give much hint of how to implement size .

3. Simplicity
Most of the time, we programmers reason casually and informally
about our programs, and such reasoning is useful. Sometimes we
want to make sure that our casual reasoning is valid, so precision
tools are useful. For instance, an important aspect of software
design is simplicity of use. Specifying semantics precisely gives
us a precise way to measure and compare simplicity of designs.1

1 In my experience, simplicity often brings generality along with it. When
I design an interface, I usually have in mind some things I want to do
with it and how I want it to behave for those things. A complex design
is able to address each of those uses and desired behaviors specifically.
A simple design, however, requires achieving these specific goals without
correspondingly specific design features. Instead, the design must make
do with less specifics, by exploiting more general principles. As a result,
unforeseen uses are more likely to be covered as well.
“Perfection is achieved not when there is nothing left to add, but when there
is nothing left to take away” (Antoine de Saint-Exupéry). In mystical terms,
simplicity tugs the human designer out of the way and into the flow of the
master Designer (Mathematics, God, The Tao, the elegant universe, etc).
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Moreover, and of great practical importance, simpler designs are
easier to reason about, giving us the opportunity to reason further
and more deeply Benefits to software include wider applicability,
easier use, and better implementation performance.

The model we used for maps is fairly simple, k → Maybe v .
Can we simplify it further? It only has two parts, (→) and Maybe .
The function part is essential to what a map is, while the Maybe
part is an encoding of partiality.

One way to simplify our model is to keep just the function part,
and factor our the Maybe . Think of k → Maybe v not as a partial
map from k to v , but as a total map from k to Maybe v . Then
simplify and generalize to total maps to arbitrary types.2

abstract type TMap k v -- total map
[[TMap k v ]] = k → v

The interface for Map doesn’t quite fit TMap, so let’s make
some changes:

constant :: (...) ⇒ v → TMap k v
update :: (...) ⇒ k → v → TMap k v → TMap k v
sample :: (Eq k ...)⇒ TMap k v → k → v

• In place of an empty Map, we can have a constant TMap.
• Instead of inserting a key/value pair (possibly overwriting),

we’ll update a key (definitely overwriting).
• Sampling a map to a key always has a defined value.

As one might guess, simplifying the semantic model also sim-
plifies the semantic function:

[[·]] :: TMap k v → (k → v)

[[constant v ]] = λk → v
[[update k ′ v m]] = λk → if k ≡ k ′ then v else [[m]] k
[[sample m k ]] = [[m]] k

We can mimic partial maps in terms of total maps:

type Map k v = TMap k (Maybe v)

empty = constant Nothing
insert k ′ v m = update k ′ (Just v) m
sample m k = lookup m k

What can a unionL of total maps mean? For Map, unionL had
to handle the possibility that both maps assign a value to the same
key. With TMap, there will always be conflicting bindings. The
conflict resolution strategy for Map is specific to Maybe . We can
simplify the design by passing a combining function:

unionWith :: (...)⇒ (a → b → c)
→ TMap k a → TMap k b → TMap k c

[[unionWith f ma mb]] = λk → f ([[ma]] k) ([[mb]] k)

This unionWith function is simpler (semantically) than unionL

on Map. As the type shows, it is also more general, allowing maps
of different value types.

Some of our gained simplicity is illusory, since now the client
of unionWith must provide a definition of f . However, we can
provide functionality that is as easy to use, using our definition of
Map k v as TMap k (Maybe v).

unionL :: (...) Map k v → Map k v → Map k v
unionL ≡ unionWith mbLeft

This definition of unionL is semantically equivalent to the one in
Section 2.

2 For simplicity of presentation, this paper does not use the more strictly
compositional form: [[TMap k v ]] = [[k ]]→ [[v ]].

4. Type classes
Type classes provide a handy way to package up parts of an inter-
face via a standard vocabulary. Typically, a type class also has an
an associated collection of rules that must be satisfied by instances
of the class.

For instance, Map can be made an instance of the Monoid
class, which is

class Monoid o where
∅ :: o
(⊕) :: o → o → o

Haskell’s mempty and mappend are ∅ and (⊕), respectively. The
required laws are identity and associativity:

a ⊕ ∅ ≡ a
∅ ⊕ b ≡ b
a ⊕ (b ⊕ c) ≡ (a ⊕ b)⊕ c

Is our type Map a b of partial maps a monoid? To answer
“yes”, we’ll have to find definitions for ∅ and (⊕) that satisfy the
required types and properties. The types suggest a likely guess:

instance Monoid (Map k v) where
∅ = empty
(⊕) = unionL

It’s straightforward to show that Map satisfies the monoid laws
(Elliott 2009b). The crucial lemmas are that Nothing is a left and
right identity for mbLeft and mbLeft is associative.

[[ma ⊕ ∅]]
≡ { (⊕) on Map }

[[ma ‘unionL‘ empty ]]
≡ { definition of unionL }

[[unionWith mbLeft ma empty ]]
≡ { semantics of unionWith }
λk → [[ma]] k ‘mbLeft ‘ [[empty ]] k
≡ { semantics of Nothing }
λk → [[ma]] k ‘mbLeft ‘ Nothing
≡ { lemma }
λk → [[ma]] k
≡ { η reduction }

[[ma]]

The other proofs are similar.
What about TMap? Since total maps assign a value for every

key, ∅ will have to come up with a value from no information.
Similarly, (⊕) will have to combine the two values it finds, without
being given a specific combination function. Where do we get the
empty value and the combining function? From another monoid.

instance Monoid v ⇒ Monoid (TMap k v) where
∅ = constant ∅
(⊕) = unionWith (⊕)

This instance satisfies the monoid laws, which is easier to show
than for Map. The simplified reasoning testifies to the value of the
simpler semantic model.

However, there is a subtle problem with these two Monoid
instances. Can you spot it? (Warning: Spoiler ahead.)

Section 3 defined Map in terms of TMap. Given that definition,
the Monoid instance for TMap imposes a Monoid for the more
specific Map type. Are these two instances for Map consistent?

Look at the standard Monoid instance for Maybe values:

instance Monoid o ⇒ Monoid (Maybe o) where
∅ = Nothing
Just a ⊕Nothing = Just a
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Nothing ⊕ Just b = Just b
Just a ⊕ Just b = Just (a ⊕ b)

Since constant Nothing ≡ constant ∅, the two definitions
of ∅ for Map agree. So far, so good. Next, recall the combining
function used to define unionL on partial maps:

mbLeft :: Maybe v → Maybe v → Maybe v
mbLeft (Just v) = Just v
mbLeft Nothing mb′ = mb′

This combining function gives unionL its left bias. When we
define Map k v = TMap k (Maybe v), two changes result: the
left bias is lost, and a constraint is added that v must be a monoid.
So, no, the imposed Monoid instance for Map is not consistent
with its desired, original meaning.

We could eliminate this inconsistency by defining Map from
scratch rather than via TMap. This solution comes at the cost of
added complexity, overall. Fortunately, there is another solution
that improves rather than degrades simplicity: fix the semantic
model for Map.

The source of the inconsistency is that Maybe has a Monoid
instance, but it’s the wrong one. It’s unbiased where we want left-
biased. The type’s representation suits our needs, but its associated
instance does not. So, let’s keep the representation while changing
the type.

The Monoid library (Gill et al. 2001) provides some types for
this sort of situation, including two wrappers around Maybe:

newtype First a = First (Maybe a)
deriving (Eq ,Ord ,Read ,Show ,Functor , ...)

newtype Last a = Last (Maybe a)
deriving (Eq ,Ord ,Read ,Show ,Functor , ...)

The sole purpose of these type wrappers is to replace Maybe’s un-
biased Monoid instance with a left-biased (First) or right-biased
(Last) instance.

instance Monoid (First a) where
∅ = First Nothing
r@(First (Just ))⊕ = r
First Nothing ⊕ r = r

instance Monoid (Last a) where
∅ = Last Nothing
⊕ r@(Last (Just )) = r

r ⊕ Last Nothing = r

This (⊕) for First is just like the function mbLeft used for
defining unionL and hence (⊕) for Map. We can solve our con-
sistency problem by replacing Maybe with First in Map:

type Map k v = TMap k (First v)

With this change, the Monoid instance for Map can disappear
completely. The desired behavior falls out of the Monoid instances
for TMap and First .

This definition also translates to a new semantic model for
partial maps:

[[Map k v ]] = k → First v

This new version hints of the left-bias of (⊕). It also gives a single
point of change if we decide we prefer a right-bias: replace First
with Last .

5. Type class morphisms
Section 2 illustrated how denotational semantics gives precise
meaning to data types, which serves as a basis for casual and pre-
cise reasoning. Simplicity of semantic models (Section 3) improves

generality and ease of reasoning. Section 4 then brought in type
classes, which give a consistent way to structure interfaces. The se-
mantic models of instances give a basis for proving the associated
class properties.

Now we’re ready to get to the heart of this paper, which is a
synergy of the two disciplines of denotational semantics and type
classes.

5.1 Monoid
Consider again the Monoid instance for total maps:

instance Monoid v ⇒ Monoid (TMap k v) where
∅ = constant ∅
(⊕) = unionWith (⊕)

Now recast it into semantic terms, with a “semantic instance”,
specifying the meaning, rather than the implementation, of a type
class instance:

instancesem Monoid v ⇒ Monoid (TMap k v) where
[[∅]] = [[constant ∅]]
[[(⊕)]] = [[unionWith (⊕)]]

The meanings of constant and unionWith are given in Section 3:

[[constant v ]] ≡ λk → v
[[unionWith f ma mb]] ≡ λk → f ([[ma]] k) ([[mb]] k)

Substituting, we get

instancesem Monoid v ⇒ Monoid (TMap k v) where
[[∅]] = λk → ∅
[[ma ⊕mb]] = λk → [[ma]] k ⊕ [[mb]] k

The RHSs (right-hand sides) of these semantic definitions re-
semble an instance in the Monoid library:

instance Monoid b ⇒ Monoid (a → b) where
∅ = λa → ∅
f ⊕ g = λa → f a ⊕ g a

This instance lets us simplify the TMap semantic monoid instance:

instancesem Monoid v ⇒ Monoid (TMap k v) where
[[∅]] = ∅
[[ma ⊕mb]] = [[ma]]⊕ [[mb]]

This property of [[·]] has a special name in mathematics: [[·]] is a
monoid homomorphism, or more tersely a “monoid morphism”.

Note what has happened here. The semantics of the Monoid
part of the TMap interface is completely specified by saying that
[[·]] is a morphism for that class.

The methods (∅ and (⊕)) on the LHSs refer to the type being
specified (here TMap k v ), while the same methods on the RHSs
refer to that type’s meaning (here k → v ). The meaning of each
method application is given by application of the same method
on the meanings of the arguments. In other words, the semantic
function is a morphism with respect to the class, i.e., preserves the
structure defined by the class.

Besides succinctness, why else might we care that a meaning
function is a monoid morphism? Because this property means that,
at least for the Monoid part of the interface, the type behaves like
its model. As users, we can therefore think of the type as being its
model. Functions are well-studied, so the experience we have with
the model is a great help in thinking about the type. Our reasoning is
shielded from the implementation complexity. The flip side is that
we are cut off from reasoning about its operational performance.

What about other type classes, besides Monoid?

5.2 Functor
The Functor interface is
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class Functor f where
fmap :: (a → b)→ f a → f b

with laws:

fmap id ≡ id
fmap (h ◦ g) ≡ fmap h ◦ fmap g

A total map can be made an instance of Functor . Mapping a
function over a total map applies the function to each value in a
key/value binding:

instancesem Functor (TMap k) where
[[fmap f m]] = λk → f [[m]] k

This semantic definition for fmap satisfies the compositional disci-
pline of denotational semantics, in that the meaning of fmap f m is
defined in terms of the meaning of its TMap argument, m . More-
over, this semantics also satisfies the Functor laws:

[[fmap id m]]
≡ { semantics of fmap }
λk → id [[m]] k
≡ { definition of id }
λk → [[m]] k
≡ { η contraction }

[[m]]

[[fmap (h ◦ g) m]]
≡ { semantics of fmap }
λk → (h ◦ g) [[m]] k
≡ { definition of (◦) }
λk → h (g [[m]] k)
≡ { semantics of fmap }
λk → h [[fmap g m]] k
≡ { semantics of fmap }
λk → [[fmap h (fmap g m)]] k
≡ { η contraction }

[[fmap h (fmap g m)]]

Now let’s play with this definition. Write the RHS in point-free
form, using function composition:

[[fmap f m]] = f ◦ [[m]]

Next, note the Functor instance for functions:

instance Functor ((→) a) where fmap = (◦)

Our fmap semantics then become

[[fmap f m]] = fmap f [[m]]

This property of [[·]], often written as [[·]] ◦ fmap f ≡ fmap f ◦ [[·]],
also has special name in mathematics: [[·]] is a natural transforma-
tion, also called a “morphism on functors” (Mac Lane 1998) or (for
consistency) a “functor morphism”.

5.3 What is a type class morphism?
The monoid and functor morphism properties say that the method
structure is preserved. That is, the interpretation of a method appli-
cation on a type T is the same method applied to the interpretations
of the type-T arguments.

As a design guide, I recommend that any semantic function for
a type T (a) be as simple as possible without loss of precision, and
(b) be a type class morphism (TCM) with respect to each of the type
classes it implements. Consequently, users can think of the type as
being its (simple) model, rather than being an implementation of
the model.

Another way to describe the TCM property is:

The instance’s meaning follows the meaning’s instance.

In other words, meaning preserves class structure, by preserving
the structure of each method application, in ways suited to the type
of each method. For instance, as shown above for TMap k v ,

[[fmap f m]] = fmap f [[m]]

[[∅]] = ∅
[[ma ⊕mb]] = [[ma]]⊕ [[mb]]

In the RHSs, [[·]] is recursively applied to each TMap argument,
within exactly the same structure as appears in the LHSs.

5.4 Applicative functor
Let’s try one more. The Applicative (applicative functor) type
class has more structure than Functor , but less than Monad . The
interface:

infixl 4~
class Functor f ⇒ Applicative f where

pure :: a → f a
(~) :: f (a → b)→ f a → f b

As usual, this class also comes with collection of laws (McBride
and Paterson 2008).

This time, instead of thinking about what Applicative instance
we might want for TMap, let’s see if the TCM property will tell
us. Suppose that TMap is an applicative morphism, i.e.,

instancesem Applicative (TMap k) where
[[pure b]] = pure b
[[mf ~mx ]] = [[mf ]]~ [[mx ]]

Indeed, there is an Applicative instance for functions, where
pure and (~) are the classic K and S combinators:

instance Applicative ((→) a) where
pure b = λa → b
h ~ g = λa → (h a) (g a)

Substituting the semantic instance (Applicative on functions)
in the RHS of our Applicative instance for TMap above yields

instancesem Applicative (TMap k) where
[[pure v ]] = λk → v
[[mf ~mx ]] = λk → ([[mf ]] k) ([[mx ]] k)

In other words, a pure map is one that maps all keys to the same
value; and “application” of a map full of functions to a map full of
arguments is defined pointwise.

Often (~) is used via n-ary lifting functions:

liftA2 :: Applicative f ⇒ (a → b → c)
→ f a → f b → f c

liftA3 :: Applicative f ⇒ (a → b → c → d)
→ f a → f b → f c → f d
...

liftA2 h u v = pure h ~ u ~ v
liftA3 h u v w = pure h ~ u ~ v ~ w

...

For functions, simplifying the RHS of liftA2 gives

liftA2 h u v ≡ λx → h (u x ) (v x )

and similarly for liftA3.
With these definitions in mind, let’s look again at two of our

functions on total maps, from Section 3

constant :: (...)⇒ v → TMap k v
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unionWith :: (...)⇒ (a → b → c)
→ TMap k a → TMap k b → TMap k c

[[constant v ]] ≡ λk → v
[[unionWith f ma mb]] ≡ λk → f ([[ma]] k) ([[mb]] k)

Now we see that constant and unionWith are just synonyms for
pure and liftA2, so we can eliminate the former terms (and their
definitions) in favor of the Applicative ones. This change gives us
more for less: our type’s specification is simpler; and it can be used
with libraries that work with applicative functors.

We have a last question to answer: Does our Applicative in-
stance satisfy the required laws?

6. Class laws
Section 5 showed that TMap satisfies the Monoid and Functor
laws. Does TMap also satisfy the Applicative laws? We’ll now
see that the answer is “yes”, simply because TMap is (by con-
struction) an applicative morphism.

Consider, for instance, the composition law.

pure (◦)~ u ~ v ~ w ≡ u ~ (v ~ w)

We are defining equality semantically, i.e., u ≡ v ⇐⇒ [[u]] ≡ [[v ]],
so the composition law is equivalent to

[[pure (◦)~ u ~ v ~ w ]] ≡ [[u ~ (v ~ w)]]

Working left to right,

[[pure (◦)~ u ~ v ~ w ]]
≡ { [[·]] is an applicative morphism }

[[pure (◦)]]~ [[u]]~ [[v ]]~ [[w ]]
≡ { [[·]] is an applicative morphism }
pure (◦)~ [[u]]~ [[v ]]~ [[w ]]
≡ { composition law on semantics }

[[u]]~ ([[v ]]~ [[w ]])
≡ { [[·]] is an applicative morphism }

[[u]]~ [[v ~ w ]]
≡ { [[·]] is an applicative morphism }

[[u ~ (v ~ w)]]

The proofs for the other laws follow in exactly the same way.
These proofs make no use of the specifics of the Applicative

instance for TMap. They are, therefore, applicable to every type
for which equality is defined by an applicative morphism (e.g., [[·]]).

Similar reasoning and conclusions hold for the Monoid , Functor ,
Monad , and Arrow classes. As in (Wadler 1990), [[·]] is a monad
morphism iff

[[return a]] ≡ return a
[[u >>= k ]] ≡ [[u]]>>= [[·]] ◦ k

The monad laws:

return a >>= f ≡ f a -- left identity
m >>= return ≡ m -- right identity
(m >>= f )>>= g ≡ m >>= (λx → f x >>= g) -- associativity

Left identity:

[[return a >>= f ]]
≡ { [[·]] is a monad morphism }

[[return a]]>>= [[·]] ◦ f
≡ { [[·]] is a monad morphism }
return a >>= [[·]] ◦ f
≡ { left identity on semantics }

[[f a]]

Right identity:

[[m >>= return]]
≡ { [[·]] is a monad morphism }

[[m]]>>= [[·]] ◦ return
≡ { [[·]] is a monad morphism }

[[m]]>>= return
≡ { right identity on semantics }

[[m]]

Associativity:

[[(m >>= f )>>= g ]]
≡ { [[·]] is a monad morphism }

[[m >>= f ]]>>= [[·]] ◦ g
≡ { [[·]] is a monad morphism }

([[m]]>>= [[·]] ◦ f )>>= [[·]] ◦ g
≡ { associativity on semantics }

[[m]]>>= (λx → [[f x ]]>>= [[·]] ◦ g)
≡ { [[·]] is a monad morphism }

[[m]]>>= (λx → [[f x >>= g ]])
≡ { definition of (◦) }

[[m]]>>= [[·]] ◦ (λx → f x >>= g)
≡ { [[·]] is a monad morphism }

[[m >>= λx → f x >>= g ]]

The same reasoning applies to arrows (Hughes 2000) as well.
One law has a form different from those we’ve looked at so far,
which is the extensionality property: If h is onto, then

arr h >>> f ≡ arr h >>> g =⇒ f ≡ g

The proof:

arr h >>> f ≡ arr h >>> g
=⇒

[[arr h >>> f ]] ≡ [[arr h >>> g ]]
=⇒ { [[·]] is an arrow morphism }

[[arr h]]>>> [[f ]] ≡ [[arr h]]>>> [[g ]]
=⇒ { [[·]] is an arrow morphism }
arr h >>> [[f ]] ≡ arr h >>> [[g ]]

=⇒ { extensionality on semantics, and h is onto }
[[f ]] ≡ [[g ]]

=⇒ { semantic equality }
f ≡ g

7. Type composition
Trying the TCM game with Map in place of TMap reveals a
problem. The Monoid case comes out fine, but let’s see what
happens with Functor . First, we’ll have to make Map abstract
again (not a synonym) so that we can define a Functor instance.

abstract type Map
[[Map k v ]] = k → First v

Mapping a function over partial map modifies the defined values:

instancesem Functor (Map k) where
[[fmap f m]] = λk → fmap f [[m]] k

The RHS fmap uses the Functor for First (derived from Maybe).
Now if we simplify and re-arrange as with TMap, we get

instancesem Functor (Map k) where
[[fmap f m]] = fmap (fmap f ) [[m]]

So [[·]] is not a Functor morphism.
A similar difficulty arises with Applicative . The map pure v

has value v for every key. For a function-valued map mf and an
argument-valued map mx , the map mf ~ mx assigns a defined
value of f x to a key k if f is the defined value of mf at k and
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x is the defined value of mx at k . If mf or mx is undefined at k
then so is mf ~ mx . This meaning is formalized in the following
Applicative instance, which uses the Applicative instance for
First (derived from Maybe):

instancesem Applicative (Map k) where
[[pure v ]] = λk → pure v
[[mf ~mx ]] = λk → [[mf ]] k ~ [[mx ]] k

Using the Applicative instance for functions, this instance be-
comes

instancesem Applicative (Map k) where
[[pure v ]] = pure (pure v)
[[mf ~mx ]] = liftA2 (~) [[mf ]] [[mx ]]

Thus [[·]] is also not an Applicative morphism.
These failures again looks like bad news. Must we abandon the

TCM principle, or does the failure point us to a new, and possibly
better, model for Map, as in Section 4?

The rewritten semantic instances above do not make use of any
properties of Map other than being a composition of two functors
for the first instance and two applicative functors for the second.
So let’s generalize. As McBride and Paterson (2008) observed,
Functor and Applicative are closed under composition:

newtype (h ◦ g) a = O (h (g a))

instance (Functor h,Functor g)
⇒ Functor (h ◦ g) where

fmap f (O hga) = O (fmap (fmap f ) hga)

instance (Applicative h,Applicative g)
⇒ Applicative (h ◦ g) where

pure a = O (pure (pure a))
O hgf ~O hgx = O (liftA2 (~) hgf hgx )

Define the meaning of a composition to be a composition:

[[(h ◦ g) t ]] = ([[h]] ◦ g) t -- types
[[O hga]]

h◦g = O [[hga]]
h

-- values

If [[·]]
h

is a Functor morphism, then [[·]]
h◦g is also a Functor

morphism, and similarly for Applicative . To see why, first consider
fmap:

[[fmap f (O hga)]]
h◦g

≡ { fmap on h ◦ g }
[[O (fmap (fmap f ) hga)]]

h◦g
≡ { [[·]]

h◦g definition }
O [[fmap (fmap f ) hga]]

h
≡ { [[·]]

h
is a Functor morphism }

O (fmap (fmap f ) [[hga]]
h
)

≡ { fmap on [[h]] ◦ g }
fmap f (O [[hga]]

h
)

≡ { [[·]]
h◦g definition }

fmap f [[O hga]]
h◦g

Then pure:

[[pure a]]
h◦g

≡ { pure on h ◦ g }
[[O (pure (pure a))]]
≡ { [[·]]

h◦g definition }
O [[pure (pure a)]]

h
≡ { [[·]]

h
is an Applicative morphism }

O (pure (pure a))
≡ { pure on [[h]] ◦ g }
pure a

Finally, (~):

[[O hgf ~O hgx ]]
h◦g

≡ { (~) on h ◦ g }
[[O (liftA2 (~) hgf hgx )]]

h◦g
≡ { [[·]]

h◦g definition }
O [[liftA2 (~) hgf hgx ]]

h
≡ { [[·]]

h
is an Applicative morphism }

O (liftA2 (~) [[hgf ]]
h

[[hgx ]]
h
)

≡ { (~) on [[h]] ◦ g }
O [[hgf ]]

h
~O [[hgx ]]

h
≡ { [[·]]

h◦g definition }
[[O hgf ]]

h◦g ~ [[O hgx ]]

Now redefine Map:

type Map k ≡ TMap k ◦ First

More explicitly,

[[Map k v ]] = [[(TMap k ◦ First) v ]]
∼= k → First v

These definitions say exactly what we mean, more directly than the
previous definition. A (left-biased) partial map is a composition of
two simpler ideas: total maps and First (left-biased Maybe). Given
this new, more succinct definition, we can scrap the Functor and
Applicative semantic instance definitions as redundant.

It may look like we’ve just moved complexity around, rather
than eliminating it. However, type composition is a very reusable
notion, which is why it was already defined, along with supporting
proofs that the Functor and Applicative laws hold.

8. Deriving type class instances
Implementations of type class instances can sometimes be derived
mechanically from desired type class morphisms. Suppose we have
[[·]] :: T → T ′, where T ′ belongs to one or more classes and [[·]]
is invertible. Then, combining [[·]] and [[·]]−1 gives instances that
satisfy the morphism properties.

For instance, consider the Monoid morphism properties:

[[∅]] ≡ ∅
[[u ⊕ v ]] ≡ [[u]]⊕ [[v ]]

Because [[·]] ◦ [[·]]−1 ≡ id , these properties are satisfied if

[[[[∅]]]]−1 ≡ [[∅]]−1

[[[[u ⊕ v ]]]]−1 ≡ [[[[u]]⊕ [[v ]]]]−1

Then, because [[·]]−1 ◦ [[·]] ≡ id , these properties are equivalent to
the following class definition:

instance Monoid T where
∅ = [[∅]]−1

u ⊕ v = [[[[u]]⊕ [[v ]]]]−1

By construction, [[·]] is a Monoid morphism. Similarly for the
other type classes. Assuming the class laws hold for T ′, they hold
as well for T , as shown in Section 6.

If [[·]] and [[·]]−1 have implementations, then we can stop here.
Otherwise, or if we want to optimize the implementation, we can
do some more work, to rewrite the synthesized definitions.

9. Memo tries
As an example of synthesizing type class instances, let’s consider
a form of memoization, based on a variant of the total maps from
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Section 2, namely a complete memo trie. The central idea of the
function memoizer is associating a type of trie to each domain type
we want to memoize over.

Following the idea of generic tries (Hinze 2000) and its imple-
mentation with associated types (Chakravarty et al. 2005), define a
class of types with trie representations:3

class HasTrie a where
data (�) a :: ∗ → ∗

The type a � b represents a trie that maps values of type a to
values of type b. The trie representation depends only on a .

The HasTrie class also contains converters between functions
and tries:

trie :: (a → b)→ (a � b)
untrie :: (a � b)→ (a → b)

The untrie and trie methods must be an embedding-projection
pair:

trie ◦ untrie ≡ id
untrie ◦ trie v id

The reason for (v) is that keys get fully evaluated while building
and searching the trie structure, even if they are not evaluated by
the function being memoized.

Given the HasTrie class, memoization is trivial to implement:

memo :: HasTrie a ⇒ (a → b)→ (a → b)
memo = untrie ◦ trie

The second inverse property implies that memo approximates the
identity function (semantically). In practice, memo ≡ hyperstrict ,
where

hyperstrict :: Hyper a ⇒ (a → b)→ (a → b)
hyperstrict f a = hyperEval a ‘seq ‘ f a

Here I’ve assumed a hyperEval function to evaluate its argument
fully. This function could either be built-in magic, or defined as a
method from a type class, Hyper .

Multi-argument curried functions can be memoized by repeated
uses of memo. For instance,

memo2 :: (HasTrie a,HasTrie b)⇒
(a → b → c)→ (a → b → c)

memo2 f = memo (memo ◦ f )

9.1 A semantic false start
Using [[·]] = untrie as the semantic function looks promising.
However, untrie has no inverse, simply because it only produces
hyper-strict functions. This lack of invertibility means that the
synthesis technique in Section 8 fails to apply.

Worse yet, untrie cannot be a monoid morphism for any
Monoid instance of a � b. To see why, assume the simplest
morphism property, the Monoid identity: untrie ∅ ≡ ∅. Applying
trie to both sides, and using trie ◦ untrie ≡ id , it must be that
∅ ≡ trie ∅. It then follows that

untrie ∅ ≡ untrie (trie ∅)
≡ hyperstrict ∅

We’re okay if hyperstrict ∅ ≡ ∅, but that is not the case, because ∅
on functions is λx → ∅, which is not even strict (assuming ∅ 6≡ ⊥).

The conclusion that untrie cannot be a monoid morphism
sounds like a failure, while in fact it gives us helpful informa-
tion. It says that untrie cannot be our semantic function and why it
cannot. The difficulty came from the presence of non-hyper-strict

3 This formulation is based on a design from Spencer Janssen.

functions in the semantic domain, so let’s remove them. Instead of
modeling tries as functions, model them as hyper-strict functions,
which we’ll write as “a H→ b”:

Hyper-strict functions can be defined purely mathematically, for
use in specifications only, or they can be defined in the implemen-
tation language:

newtype a
H→ b = H {unH :: a → b}

With the condition that the contained a → b is hyper-strict.
With this new and improved semantic domain, we can define a

semantic function:

[[·]] :: (a � b)→ (a
H→ b)

[[·]] = H ◦ untrie

The reason we can legitimately use H here is that untrie always
produces hyper-strict functions.

9.2 Type class morphisms regained
The problem with our first attempt (Section 9.1) was that the se-
mantic function was not invertible. The new semantic function,
however, is invertible.

[[·]]−1 :: (a
H→ b)→ (a � b)

[[·]]−1 = trie ◦ unH

That [[·]]−1 ◦ [[·]] ≡ id follows as before:

[[[[t ]]]]−1

≡ { [[·]]−1 and [[·]] definitions }
trie (unH (H (untrie t)))
≡ { unH ◦H ≡ id }
trie (untrie t)
≡ { trie ◦ untrie ≡ id }
t

To show [[·]]◦ [[·]]−1 ≡ id , we’ll have to exploit hyper-strictness:

[[[[hf ]]−1]]
≡ { [[·]] and [[·]]−1 definitions }
H (untrie (trie (unH hf )))
≡ { untrie ◦ trie ≡ hyperstrict }
H (hyperstrict (unH hf ))
≡ { unH hf is already hyper-strict }
H (unH hf )
≡ { H ◦ unH ≡ id }
hf

Because (
H→) is a newtype, H and unH are both strict, so this

last step works even if hf ≡ ⊥, The next-to-last step relies on ⊥
being hyper-strict (trivially true, since ⊥ maps everything to ⊥).

Because [[·]] is invertible, we can synthesize instances for a � b

for all of the classes that the semantic model (a H→ b) inhabits, as
shown in Section 8. As desired, [[·]] is, by construction, a morphism
with respect to each of those classes.

9.3 Some trie representations
Now let’s consider choices for trie representations. As in (Hinze
2000), the key is to exploit type isomorphisms. Letting a S→ b be
the set of (head-)strict functions from a to b,

1
S→ a ∼= a

(a+ b)
S→ c ∼= (a→ c)× (b→ c)

(a× b) S→ c ∼= a→ (b→ c)
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instance HasTrie () where
data ()� a = UnitTrie a
trie f = UnitTrie (f ())
untrie (UnitTrie a) = λ()→ a

instance (HasTrie a,HasTrie b)⇒
HasTrie (Either a b) where

data (Either a b)� x = EitherTrie (a � x ) (b � x )
trie f = EitherTrie (trie (f ◦ Left)) (trie (f ◦ Right))
untrie (EitherTrie s t) = either (untrie s) (untrie t)

instance (HasTrie a,HasTrie b)⇒ HasTrie (a, b) where
data (a, b)� x = PairTrie (a � (b � x ))
trie f = PairTrie (trie (trie ◦ curry f ))
untrie (PairTrie t) = uncurry (untrie ◦ untrie t)

Figure 1. Some instances for memo tries

which correspond to the familiar laws of exponents:

a1 ∼= a

ca+b ∼= ca × cb

ca×b ∼= (cb)a

(These isomorphisms are slightly simpler than in (Hinze 2000),
because they describe total rather than partial maps.)

The intention is to apply these isomorphisms recursively, but
head-strictness will only take us one level. To go all the way, we’ll
need hyper-strictness.

1
H→ a ∼= a

(a+ b)
H→ c ∼= (a

H→ c)× (b
H→ c)

(a× b) H→ c ∼= a
H→(b

H→ c)

Writing these type isomorphisms in Haskell:

()
H→ a ∼= a

Either a b
H→ c ∼= (a

H→ c, b
H→ c)

(a, b)
H→ c ∼= a

H→(b
H→ c)

which leads to the HasTrie instances defined in Figure 1. Since
there is only one (non-bottom) value of type (), a trie over () con-
tains just a single value, as suggested in the isomorphism equa-
tion. A trie for sum-valued domains contains two tries, while a
trie for pair-valued domains contains nested tries. Tries for other
types, such as Bool , can be implemented via isomorphisms using
the types above, or directly. For instance, Bool is isomorphic to to
Either () ().

Exercise: Prove that trie ◦ untrie ≡ id and untrie ◦ trie ≡
hyperstrict for the definitions above.

9.4 Instances for hyper-strict functions
If we want [[·]] to be a monoid morphism, then its range (the
semantic domain) must be a monoid, and similarly for other type
classes.

Indeed, there are simple instances for hyper-strict functions:

instance (Hyper a,Monoid b)⇒ Monoid (a
H→ b) where

∅ = hyper ∅
H f ⊕H g = hyper (f ⊕ g)

where

hyper = H ◦ hyperstrict

Similarly for Functor and Applicative .
Using the Monoid instance for functions, we can get a more

explicit definition of (⊕):

hyper (f ⊕ g)
≡ { (⊕) on functions }
hyper (λa → f a ⊕ g a)
≡ { definitions of hyper and hyperstrict }
H (λa → hyperEval a ‘seq ‘ (f a ⊕ g a))

Since f and g were inside an H , they are hyper-strict, so the
additional hyper-evaluation of a is unlikely to be needed. Rather
than carry it around, let’s add an assumption, which is that (⊕) is
strict in its first or second argument. Under this assumption, f ⊕ g
is already hyper-strict.

Starting again,

H (hyperstrict (f ⊕ g))
≡ { hyper-strictness of f ⊕ g }
H (f ⊕ g)

Now we can show that the monoid laws hold. Start with the
right-identity law, hf ⊕ ∅ ≡ hf . There are two cases: hf ≡ H f
for some hyper-strict f , or hf ≡ ⊥. First take the defined case:

H f ⊕ ∅
≡ { ∅ for a

H→ b }
H f ⊕ hyper ∅
≡ { hyper definition }
H f ⊕H (hyperstrict ∅)
≡ { (⊕) on a

H→ b }
H (hyperstrict (f ⊕ hyperstrict ∅))
≡ { assumption on (⊕) }
H (hyperstrict (hyperstrict (f ⊕ ∅)))
≡ { monoid right-identity for functions }
H (hyperstrict (hyperstrict f ))
≡ { f is hyper-strict }
H (hyperstrict f )
≡ { f is hyper-strict }
H f

The case of hf ≡ ⊥ is easier:

⊥⊕ ∅
≡ { pattern-match on ⊥ }
⊥

The other two monoid morphism laws follow similarly.

10. Numeric overloadings
Overloading makes it possible to use familiar and convenient nu-
meric notation for working with a variety of types. The principle
of type class morphisms can help to guide such overloadings, sug-
gesting when to use it and how to use it correctly.

10.1 Functions
As an example, we can apply numeric notation for manipulating
functions. Given functions f and g , what could be the meaning of
f + g , f ∗ g , recip f , sqrt f , etc? A useful answer is that the
operations are applied point-wise, i.e.,

f + g = λx → f x + g x
f ∗ g = λx → f x ∗ g x
recip f = λx → recip (f x )
sqrt f = λx → sqrt (f x )

...



10 Denotational design with type class morphisms (extended version)

It’s also handy to add literal numbers to the mix, e.g., 5 ∗ sqrt f ,
which can mean λx → 5 ∗ sqrt (f x ). In Haskell, numeric literals
are overloaded, using fromInteger and fromRational , so add

fromInteger n = const (fromInteger n)

And similarly for rational literals.
Thanks to the Functor and Applicative instances for functions

(given in Section 5), these interpretations are equivalent to

fromInteger = pure ◦ fromInteger
(+) = liftA2 (+)
(∗) = liftA2 (∗)
recip = fmap recip
sqrt = fmap sqrt
...

With this rephrasing, these definitions can be used not just with
functions, but with any applicative functor.

This notation is convenient and pretty, but what justifies it, se-
mantically? Looking below the notation, in what sense can func-
tions be interpreted as numbers?

A compelling answer would be a simple function [[·]] mapping
functions to a familiar number type, such that the [[·]] is a “nu-
meric morphism”, i.e., a morphism over all of the standard numeric
classes.

Is there such a [[·]]? Yes! And better yet, there’s a great wealth of
them. The functions f and g above have type a → b for a numeric
type b. Define a family of interpretation functions indexed over a .
For all x :: a ,

[[·]]x :: (a → b)→ b

[[h]]x = h x

Then every [[·]]x is a numeric morphism. To see why, consider two
operations. The others all work out similarly.4

[[fromInteger n]]x ≡ (fromInteger n) x
≡ (const (fromInteger n)) x
≡ fromInteger n

[[f + g ]]x ≡ (f + g) x
≡ f x + g x

≡ [[f ]]x + [[g ]]x

There is another way to prove the numeric morphisms, which trans-
fers to many similar situations. Show that the numeric morphism
properties follow from the second style of definition above, in terms
of fmap, pure , and liftA2, which is a very common pattern. To
make the proof go through, change the model trivially, to be Id b
instead of b, and make use of Id being a functor and applicative
functor.

[[·]]x :: (a → b)→ Id b

For now, assume that [[·]]x is a Functor and Applicative mor-
phism, and that the numeric instances are defined in terms of fmap,
pure , and Applicative as above.

[[fromInteger n]]x

≡ { fromInteger on type }

4 There is a technical difficulty in a Haskell implementation. The Num class
(and hence its descendants) are required also to implement Eq and Show .
The methods of those classes cannot be defined such that [[·]]x is an Eq or
Show morphism, because (≡) yields Bool and show yields String , One
could perhaps fix this problem by making these classes more morphism-
friendly or by eliminating them as a superclass of Num . My thanks to
Ganesh Sittampalam for pointing out this issue.

[[pure (fromInteger n)]]x

≡ { [[·]]x is an Applicative morphism }
pure (fromInteger n)
≡ { fromInteger on model }
fromInteger n

[[f + g ]]x

≡ { (+) on type }
[[liftA2 (+) f g

≡ { [[·]]x is an Applicative morphism }
liftA2 (+) [[f ]]x [[g ]]x

≡ { (+) on model }
[[f ]]x + [[g ]]x]]x

This proof makes no use of the specifics of the Funtor and
Applicative instances.

Now show that [[·]]x is indeed a Functor and Applicative
morphism:

[[fmap h f ]]x

≡ { fmap on functions }
[[h ◦ f ]]x

≡ { definition of [[·]]x }
Id (h (f x ))
≡ { fmap on Id }
fmap h (Id (f x ))
≡ { definition of [[·]] }
fmap h [[f ]]

[[pure a]]x

≡ { pure on functions }
[[const a]]x

≡ { definition of [[·]]x }
Id (const a x )
≡ { definition of const }
Id a
≡ { pure on Id }
pure a

[[hf ~ af ]]x

≡ { (¡*¿) on functions }
[[λz → (hf z ) (af z )]]x

≡ { definition of [[·]]x }
Id ((hf x ) (af x ))
≡ { (~) on Id }
ID (hf x )~ ID (af x )
≡ { definition of [[·]] }

[[hf ]]~ [[af ]]

10.2 Errors
For semantic simplicity, errors can be represented as⊥. If we want
to respond to errors in a semantically tractable way (hence without
resorting to IO), we’ll want an explicit encoding. One choice is
Maybe a , where Nothing means failure and Just s means success
with values s :: a . Another choice is Either x a , where Left err
means a failure described by err ::x , while Right s means success.

Programming with either explicit encoding can be quite tedious,
but a few well-chosen type class instances can hide almost all of the
routine plumbing of failure and success encodings. The key again
is Functor and Applicative . The following instances suffice.

instance Functor (Either x ) where
fmap (Left x ) = Left x
fmap f (Right y) = Right (f y)
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instance Applicative (Either x ) where
pure y = Right y
Left x ~ = Left x

~ Left x = Left x
Right f ~ Right x = Right (f x )

A simple semantics for Either forgets the error information,
replacing it with ⊥:

[[·]] :: Either e a → a
[[Left e]] = ⊥
[[Right a]] = a

To give Either e a numeric instances, follow the same tem-
plate as with functions (Section 10.1), e.g., (+) = liftA2 (+). The
numeric morphism properties hold only if the numeric methods on
the type a are strict. For an n-ary function h that is strict in all n
arguments:

[[liftAn f e1 ... en]] ≡ f [[e1]] ... [[en]]

where fmap ≡ liftA1. The relevance of (⊥-)strictness here is
that (~) on Either yields a Left if either argument is a Left . For
instance, consider fmap:

[[fmap f (Left x )]]
≡ { fmap for Either x }

[[Left x ]]
≡ { definition of [[·]] }
⊥
≡ { strictness of f }
f ⊥
≡ { definition of [[·]] }
f [[Left x ]]

The other liftAn are proved similarly. Assuming (+) is strict then,

[[e + e ′]]
≡ { (+) on Either x y }

[[liftA2 (+) e e ′]]
≡ { (+) is strict }

[[e]] + [[e ′]]

The semantic property on liftAn above is nearly a morphism
property, but the liftAn is missing on the right. We can restore it by
changing the semantic domain:

newtype Id a = Id a

[[·]] :: Either e a → Id a
[[Left e]] = Id ⊥
[[Right a]] = Id a

[[·]] is almost a Functor and Applicative morphism, but not quite,
because of the possibility of non-strict functions. The proof at-
tempts:

[[fmap f (Left x )]] ≡ [[Left x ]]
≡ Id ⊥
≡ Id (f ⊥) -- if f is strict
≡ fmap f (Id ⊥)
≡ fmap f [[Left x ]]

[[fmap f (Right y)]] ≡ [[Right (f y)]]
≡ Id (f y)
≡ fmap f (Id y)
≡ fmap f [[Right y ]]

[[pure y ]] ≡ [[Right y ]]
≡ Id y

≡ pure y

[[Left x ~ y ]] ≡ [[Left x ]]
≡ Id ⊥
≡ Id ⊥~ [[y ]]
≡ [[Left x ]]~ [[y ]]

[[Right f ~ Left x ]] ≡ [[Left x ]]
≡ Id ⊥
≡ Id (f ⊥) -- if f is strict
≡ Id f ~ Id ⊥
≡ [[Right f ]]~ [[Left x ]]

[[Right f ~ Right x ]] ≡ [[Right (f x )]]
≡ Id (f x )
≡ Id f ~ Id x
≡ [[Right f ]]~ [[Right x ]]

10.3 Expressions
Another use of numeric overloading is for syntax manipulation, as
in compiling domain-specific embedded languages (Elliott et al.
2003; Augustsson et al. 2008). In this context, there is a parame-
terized type of numeric expressions, often an algebraic data type.
Using generalized algebraic data types (Peyton Jones et al. 2006)
helps with static typing.

10.3.1 Simple expressions
A simple representation for expressions replaces each method with
a constructor:

data E :: ∗ → ∗ where
FromInteger :: Num a ⇒ Integer → E a
Add :: Num a ⇒ E a → E a → E a
Mult :: Num a ⇒ E a → E a → E a

...
FromRational :: Fractional a ⇒ Rational → E a
Recip :: Fractional a ⇒ E a → E a

...

A convenient way to build up expressions is through numeric over-
loading, e.g.,

instance Num a ⇒ Num (E a) where
fromInteger = FromInteger
(+) = Add
(∗) = Mult

...

instance Fractional a ⇒ Fractional (E a) where
fromRational = FromRational
recip = Recip

...

Expressions are not just representations; they have meaning. To
make that meaning precise, define a semantic function:

[[·]] :: E a → a

[[FromInteger n]] = fromInteger n
[[Add a b]] = [[a]] + [[b]]
[[Mult a b]] = [[a]] ∗ [[b]]

...
[[FromRational n]] = fromRational n
[[Recip a]] = [[recip a]]

...
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To ensure that expressions behave like what they mean, check
that [[·]] is a morphism over Num and Fractional . The definitions
of [[·]] and the instances make the proofs trivially easy. For instance,

[[a + b]] ≡ [[Add a b]] ≡ [[a]] + [[b]]

using the definitions of (+) on E and [[·]] on Add .
How robust are these numeric morphisms? If the representation

deviates from their one-to-one correspondence with methods, will
the numeric morphism properties still hold?

Let’s try some variations, including self-optimizing expressions
and expressions with variables.

10.3.2 Generalizing literals
As a first step, replace FromInteger and FromRational with a
general constructor for literals.

data E :: ∗ → ∗ where
Literal :: a → E a
...

Change the relevant methods:

instance Num a ⇒ Num (E a) where
fromInteger = Literal ◦ fromInteger

...

instance Fractional a ⇒ Fractional (E a) where
fromRational = Literal ◦ fromRational

...

Finally, replace two [[·]] cases with one:

[[Literal x ]] = x

Everything type-checks; but does it morphism-check? Verify the
two affected methods:

[[fromInteger n]]
≡ [[Literal (fromInteger n)]]
≡ fromInteger n

and simiarly for fromRational . Morphism check complete.

10.3.3 Adding variables
Our expressions so far denote numbers. Now let’s add variables. We
will use just integer-valued variables, to keep the example simple.5

The new constructor:

VarInt :: String → E Int

This small syntactic extension requires a significant semantic
extension. An expression now denotes different values in different
binding environments, so the semantic domain is a function:

type Env = TMap String Int

type Model a = Env → a

[[·]] :: E a → Model a

The semantic function carries along the environment and looks up
variables as needed:

look :: String → Model Int
look s e = sample e s

[[Literal x ]] = x
[[VarInt v ]] e = look v e

[[Add a b]] e = [[a]] e + [[b]] e
[[Mult a b]] e = [[a]] e ∗ [[b]] e

5 Multi-type variable binding environments can be implemented with an
existential data type and a GADT for type equality.

[[Recip a]] e = recip [[a]] e

Again, we must ask: is [[·]] a numeric morphism? In order for the
question to even make sense, the semantic domain must inhabit the
numeric classes. Indeed it does, as we saw in Section 10.1.

Looking again at the numeric methods for functions, we can see
a familiar pattern in the [[·]] definition just above. Using the function
methods from Section 10.1, we get a more elegant definition of [[·]]:

[[Literal x ]] = pure x
[[VarInt v ]] = look v

[[Add a b]] = [[a]] + [[b]]
[[Mult a b]] = [[a]] ∗ [[b]]

[[Recip a]] = [[recip a]]

With this [[·]] definition, the morphism properties follow easily.

10.3.4 Handling errors
So far, expression evaluation is assumed to succeed. The variable
environment yields values for every possible variable name, which
is unrealistic. Let’s now add error-handling to account for unbound
variables and other potential problems. The result of a variable
look-up or an expression evaluation will be either an error message
or a regular value.

type Result a = Either String a

type Env = Map String Int

type Model a = Env → Result a

look :: String → Model Int
look s e | Just n ← lookup e s = Right n

| otherwise = Left ("unbound: " ++ s)

[[·]] :: E a → Model a

Again, we’ll rely on the Model having numeric instances, which
is the case, thanks to the definitions in Sections 10.1 and 10.2.

As with the semantic function in Section 10.3.3, the numeric
methods for the semantic domain do almost all the work, leaving
our semantic definition nearly intact. The only change is for literals:

[[Literal x ]] = pure (pure x )

As before, most of the morphism proofs are trivial, due to the
simplicity of the definitions. The fromInteger and fromRational
morphisms use Literal :

[[fromInteger x ]]
≡ { fromInteger definition }

[[Literal (fromInteger x )]]
≡ { [[·]] on Literal }
pure (pure (fromInteger x ))
≡ { fromInteger on Either a }
pure (fromInteger x )
≡ { fromInteger on a → b }
fromInteger x

and similarly for fromRational .

10.3.5 Self-optimizing expressions
So far our expressions involve no optimization, but it’s easy to
add. For example, replace the simple method definition (+) =
Add with the following version, which does constant-folding and
recognizes the additive identity:

Literal x + Literal y = Literal (x + y)
Literal 0 + b = b
a + Literal 0 = a
a + b = Add a b
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Other methods can perform similar optimizations.
With this change, we must re-check whether [[a + b]] ≡ [[a]] +

[[b]]. There are four cases to consider, corresponding to the four
cases in the (+) definition.

[[Literal x + Literal y ]]
≡ [[Literal (x + y)]]
≡ x + y
≡ [[Literal x ]] + [[Literal y ]]

[[·]] (Literal 0 + b)
≡ [[b]]
≡ 0 + [[b]]
≡ [[Literal 0]] + [[b]]

The third case is similar; and the fourth case is as in Section 10.3.1.
Notice that the correctness of the second case hinges on the

very mathematical property that it implements, i.e., that zero is a
left identity for addition. Any such property can be encoded into
the implementation and then verified in this way. The discipline of
type class morphisms ensure that all optimizations are correct.

11. Fusing folds
Folds are common in functional programming, to express a cumu-
lative iteration over a list (or other data structure), reducing to a
single value. There are two flavors, left- and right-associating:

foldl (�) a [b1, b2, ..., bn ] ≡ (...((a � b1)� b2)� ...)� bn
foldr (�) a [b1, b2, ..., bn ] ≡ b1 � (b2 � ...(bn � a)...)

Written recursively,

foldl :: (a → b → a)→ a → [b ]→ a
foldl (�) a [ ] = a
foldl (�) a (b : bs) = foldl (�) (a � b) bs

foldr :: (b → a → a)→ a → [b ]→ a
foldr a [ ] = a
foldr (�) a (b : bs) = b � (foldr (�) a bs)

There is also strict variant of foldl , which eliminates a common
form of space leak.

If a fold is the only use of a list, then lazy evaluation and garbage
collection conspire to produce efficient use of memory. Laziness
delays computation of list cells until just before they’re combined
into the fold result (using (�)), after which they become inacces-
sible and can be collected. This pattern allows list generation and
folding to run in constant space, regardless of the length of inter-
mediate list. (Compile-time fusion can make this process even more
efficient.) Non-strict and right folds can leak due to thunks.

On the other hand, if a single list is folded over twice, then
the entire list will be kept in memory to make the second fold
possible. Borrowing a common example, consider the following
naı̈ve implementation of the average of the values in a list:

naiveMean :: Fractional a ⇒ [a ]→ a
naiveMean xs = sum xs / fromIntegral (length xs)

Each of sum and length can be defined as a (strict) left-fold:

sum = foldl (+) 0
length = foldl (λa → a + 1) 0

Max Rabkin (2008) gave an elegant way to fuse these two foldl
passes into one, reducing the space usage from linear to constant.
We’ll see that Max’s optimization and its correctness flow from a
semantic model and its type class morphisms.

As a first step, let’s look at a simpler setting: turning a pair of
non-strict left foldings into a single one. Given combiners (�) and

(�) and initial values e and e ′, come up with (�) and e ′′ such that
one fold replaces a pair of them:

(foldl (�) e bs, foldl (�) e ′ bs) ≡ foldl (�) e ′′ bs

11.1 Folds as data
We want to combine the two left folds before supplying the list
argument, rather than after. To do so, make a data type for the partial
application that does not include the final (list) argument.

data FoldL b a = F (a → b → a) a

The FoldL is not just a representation; it has meaning, which is
partially applied folding:

[[·]] :: FoldL b a → ([b ]→ a)
[[FoldL (�) e]] = foldl (�) e

With this representation and meaning, we can rephrase our goal:
given two left folds f and f ′, find another fold f ′′ such that

([[f ]] bs, [[f ′]] bs) ≡ [[f ′′]] bs

In other words,

[[f ]] &&& [[f ′]] ≡ [[f ′′]]

where (&&&) is a common operation on functions (more generally,
on arrows (Hughes 2000)):

(&&&) :: (x → a)→ (x → b)→ (x → (a, b))
f &&& g = λx → (f x , g x )

Of course, we want a systematic way to construct f ′′, so we’re
really looking for a combining operation

combL :: FoldL c a → FoldL c b → FoldL c (a, b)

such that for for all f and f ′

[[f ]] &&& [[f ′]] ≡ [[f ‘combL‘ f ′]]

This last form is tantalizingly close to a type class morphism.
What’s missing is a shared type class method.

11.2 Generalized zipping
Consider the types of the following three functions:

zip :: Stream a → Stream b → Stream (a, b)
(&&&) :: (c → a)→ (c → b)→ (c → (a, b))
combL :: FoldL c a → FoldL c b → FoldL c (a, b)

These functions and more can be subsumed by a more general no-
tion of zipping. Streams, functions, and folds also have in common
that they provide a “unit”, which will turn out to be useful later.
These two common features are embodied in a type class:

class Zip f where
unit :: f ()
(?) :: f a → f b → f (a, b)

Streams and functions zip. Do folds?
The Zip class corresponds to Monoidal class (McBride and Pa-

terson 2008, Section 7), except that Monoidal requires a Functor ,
which is not the case with FoldL.

Generalized (?) gives us our target TCM. Zipping a left fold
means finding a semantic Zip morphism, i.e.,

[[unit ]] ≡ unit
[[f ]] ? [[f ′]] ≡ [[f ? f ′]]

The following definition suffices:6

6 With this definition, the (?) morphism property fails when f ≡ ⊥ or
f ′ ≡ ⊥. To fix this problem, use lazy patterns in the definition. My thanks
to Ryan Ingram for pointing out this bug.
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instance Zip (FoldL b) where
unit = F const ()
F (�) e ? F (�) e ′ = F (�) (e, e ′)

where
(a, a ′) � b = (a � b, a ′ � b)

To prove that [[·]] is Zip morphism, first substitute the definitions
of (?) for functions and for folds and the definition of [[·]] into the
morphism property. We’ll want some structure to work with, so let
F (�) e = f and F (�) e ′ = f ′. First, the unit morphism
property, for empty lists:

[[unit ]] [ ]
≡ { [[·]] definition }
foldl const () [ ]
≡ { foldl definition }

()
≡ { unit for functions }
unit [ ]

Then for empty lists:

[[unit ]] (b : bs)
≡ { [[·]] definition }
foldl const () (b : bs)
≡ { foldl definition }
foldl const (const () b) bs
≡ { const definition }
foldl const () bs
≡ { const definition }
foldl const () bs
≡ { [[·]] definition }

[[unit ]] bs
≡ { induction }
unit bs

After simplifying, the second morphism law becomes

foldl (�) (e, e ′) bs ≡ (foldl (�) e bs, foldl (�) e ′ bs)
where

(a, a ′) � b = (a � b, a ′ � b)

Prove this form inductively in the list bs , using the definition of
foldl . First, empty lists.

foldl (�) (e, e ′) [ ] where (�) = ...
≡ { foldl definition }

(e, e ′)
≡ { foldl def, twice }

(foldl (�) e [ ], foldl (�) e ′ [ ])

Next, non-empty lists.

foldl (�) (e, e ′) (b : bs) where (�) = ...
≡ { foldl definition }
foldl (�) ((e, e ′) � b) bs where (�) = ...
≡ { (�) definition }
foldl (�) (e � b, e ′ � b) bs where (�) = ...
≡ { induction hypothesis }

(foldl (�) (e � b) bs, foldl (�) (e ′ � b) bs)
≡ { foldl def, twice }

(foldl (�) e (b : bs), foldl (�) e ′ (b : bs))

11.3 Variations
Right folds work similarly. Strict folds are trickier but also impor-
tant, to prevent space leaks. See (Rabkin 2008) and (Elliott 2008).

Can we add more instances for FoldL, with corresponding se-
mantic morphisms? Let’s try Functor :

instance Functor (FoldL b) where
fmap h (FoldL (�) e) ≡ FoldL (�) e ′ where ... ??

The functor morphism law says that

[[fmap h (FoldL (�) e)]] ≡ fmap h [[FoldL (�) e]]

Substituting our partial fmap definition on the left and (◦) for fmap
on the right, as well as the definition of [[·]], the property becomes

foldl (�) e ′ ≡ h ◦ foldl (�) e where ...

At this point, I’m stuck, as I don’t see a way to get foldl to apply
h just at the end of a fold. Max solved this problem by adding a
post-fold function to the FoldL type (Rabkin 2008). Generalizing
from his solution, we can extend any zippable type constructor to
have Functor instance, and many to have Applicative , as we’ll
see next.

12. Enhanced zipping
To get from Zip to Functor and Applicative , add a final phase

data WithCont z c = ∀a.WC (z a) (a → c)

The “∀a” keeps the intermediate value’s type from complicating
the type of a WithCont .

Given a semantic function 〈〈·〉〉 :: z a → u a , for a functor u ,
the meaning of WithCont is

[[·]] :: WithCont z c → u c
[[WC z k ]] = fmap k 〈〈z 〉〉
For instance, adding Max’s post-fold step just requires wrapping

FoldL with WithCont :

type FoldLC b = WithCont (FoldL b)

Since the meaning of a FoldL is a function, the fmap in [[·]] is
function composition, exactly as we want for applying a post-fold
step. It’s now easy to define instances.

12.1 Functor and Zip
The Functor instance accumulates final steps:

instance Functor (WithCont z ) where
fmap g (WC z k) = WC z (g ◦ k)

Its morphism property:

[[fmap g (WC z k)]]
≡ { fmap on WithCont }

[[WC z (g ◦ k)]]
≡ { [[·]] definition }
fmap (g ◦ k) 〈〈z 〉〉
≡ { Second Functor law }
fmap g (fmap k 〈〈z 〉〉)
≡ { [[·]] definition }
fmap g [[WC z k ]]

[To do: Also consider ⊥.] The Zip instance delegates to the inner
Zip, and pairs up final transformations.

instance Zip z ⇒ Zip (WithCont z ) where
unit = WC ⊥ (const ())
WC fa ka ?WC fb kb = WC (fa ? fb) (ka × kb)

First unit :

[[unit ]]
≡ { unit on WithCont }

[[WC ⊥ (const ())]]
≡ { [[·]] definition }
fmap (const ()) 〈〈⊥〉〉
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If we had the following property, we would be done:

fmap (const ()) m ≡ unit -- required

This property is satisfied for some functors (including ((→) a)) but
not others (e.g., [ ]), so the unit morphism property holds only for
some functors z (with semantic model u), including the meaning
of FoldL.

Next, the (?) morphism property:

[[WC fa ka ?WC fb kb]]
≡ { (?) on WithCont }

[[WC (fa ? fb) (ka × kb)]]
≡ { [[·]] definition }
fmap (ka × kb) 〈〈fa ? fb〉〉
≡ { 〈〈·〉〉 is a Zip morphism }
fmap (ka × kb) (〈〈fa〉〉 ? 〈〈fb〉〉)
≡ { naturality of (?) }
fmap ka 〈〈fa〉〉 ? fmap kb 〈〈fb〉〉
≡ { [[·]] definition, twice }

[[WC fa ka]] ? [[WC fb kb]]

12.2 Applicative
As pointed out in (McBride and Paterson 2008, Section 7), the
Applicative class has an equivalent but more symmetric variation,
which is the (strong) lax monoidal functor, which has the interface
of Zip, in addition to Functor . Using the standard Applicative
instance for lax monoidal functors:

instance (Functor z ,Zip z )⇒
Applicative (WithCont z ) where

pure a = fmap (const a) unit
wf ~ wx = fmap app (wf ? wx )

app (f , x ) = f x

the morphism proof runs into a bit of trouble for pure:

[[pure a]] ≡ [[fmap (const a) unit ]]
≡ fmap (const a) [[unit ]]
≡ fmap (const a) unit
≡ pure a -- note: only sometimes

Again, the required property is satisfied for some functors, includ-
ing the meaning of FoldL. Continuing,

[[fs ~ xs]] ≡ [[fmap app (fs ? xs)]]
≡ fmap app [[fs ? xs]]
≡ fmap app ([[fs]] ? [[xs]])
≡ [[fs]]~ [[xs]]

Thanks to this morphism, we have a zipping law for folds:

liftA2 h (k ◦ foldl (�) e) (k ′ ◦ foldl (�) e ′)
≡
[[liftA2 h (WC k (FoldL (�) e)) (WC k ′ (FoldL (�) e ′))]]

and similarly for liftA3, etc. The proof is a direct application of the
semantics and the morphism properties. This transformation could
be automated with rewrite rules (Peyton Jones et al. 2001).

Returning to the example of combining two folds into one.

naiveMean :: Fractional a ⇒ [a ]→ a
naiveMean xs = sum xs / fromIntegral (length xs)

In point-free form,

naiveMean = liftA2 (/) sum (fromIntegral ◦ length)

So an equivalent optimized definition is

zippedMean =
[[liftA2 (/) (WC id (FoldL (+) 0))

(WC fromIntegral (FoldL (λa → a + 1) 0))]]

13. Some more examples
13.1 Functional reactive programming
My first exposure to type class morphisms was in giving a denota-
tional semantics to functional reactive programming (FRP) struc-
tured into type classes (Elliott 2009c). “Classic FRP” is based on a
model of behaviors as functions of time (Elliott and Hudak 1997).

[[·]] :: Behavior a → (Time → a)

For instance, a 3D animation has type Behavior Geometry , and
its meaning is Time → Geometry .

Much of FRP can be re-packaged via type classes. In most
cases, the semantics is specified simply and fully by saying that
the semantic function is a TCM. For events, where the TCM princ-
ple is not applied successfully, the semantics is problematic. (For
instance, the monad associativity law can fail.)

13.2 Functional image synthesis
PAN is a system for image synthesis and manipulation with a purely
functional model and a high-performance implementation (Elliott
2003; Elliott et al. 2003). The semantic model for images in Pan is
simply functions of continuous infinite 2D space:

[[·]] :: Image a → (R2 → a)

With this semantic model, the Image type has instances for
Functor and Applicative , which form the basis of all point-wise
operations, including cropping and blending. With the TCM prin-
ciple clearly in mind, the Image interface can be made more con-
venient, regular and powerful, via instances of Monoid , Monad
and Comonad , as well all of the number classes.

The implementation uses a self-optimizing syntactic represen-
tation, packaged as numeric class instances, akin to that in Sec-
tion 10.3.5. The semantic function, therefore, is a morphism over
all of the classes mentioned.

13.3 Automatic differentiation
Automatic differentiation (AD) is a precise and efficient method for
computing derivatives. It has a simple specification in terms of type
class morphisms, from which an elegant, correct implementation
can be derived. The specification and implementations can then
be generalized considerably to computing higher-order derivatives
(infinitely many of them, lazily) and derivatives of functions over
arbitrary vector spaces (Elliott 2009a).

14. Conclusions—advice on software design
With the examples in this paper, I am conveying some advice to
my fellow programmers: when designing software, in addition to
innovating in your implementations, relate them to precise and
familiar semantic models. Implementing those models faithfully
guarantees that your library’s users will get simple semantics and
expected properties, in addition to whatever performance benefits
you provide.

By defining a type’s denotation clearly, library designers can
ensure there are no abstraction leaks. When the semantic function
maps two program values to the same mathematical value, the de-
signer must ensure that those program values be indistinguishable,
in order to prevent semantic abstraction leaks. The discipline of
denotational semantics, applied to data types, ensures that this con-
dition is satisfied, simply because each operation’s meaning is de-
fined purely in terms of the meaning of its arguments.
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Type classes introduce a new source of potential abstraction
leaks, by allowing a single name to be used at different types.
Although a type class dictates a set of necessary properties, it also
leaves room for variation in semantics and implementation. For
each program type, the library designer must take care that each
interface (type class) implementation behaves consistently with the
type’s model, i.e.,

The instance’s meaning follows the meaning’s instance.

which is to say that the semantic function is to be a “type class mor-
phism” (TCM) for each type class implemented. When a library not
only type-checks, but also morphism-checks, it is free of abstraction
leak, and so the library’s users can safely treat a program value as
being its meaning. As a bonus, type class laws are guaranteed to
hold, because they carry over directly from the semantic model. As
much as good models tend to be widely reusable, effort invested in
studying them is leveraged.

Finally, I see denotational, TCM-based design as in the spirit of
John Reynolds’s use of category theory for language design.

Our intention is not to use any deep theorems of category
theory, but merely to employ the basic concepts of this field
as organizing principles. This might appear as a desire to be
concise at the expense of being esoteric. But in designing a
programming language, the central problem is to organize a
variety of concepts in a way which exhibits uniformity and
generality. Substantial leverage can be gained in attacking
this problem if these concepts are defined concisely within
a framework which has already proven its ability to impose
uniformity and generality upon a wide variety of mathemat-
ics (Reynolds 1980).
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