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1 Introduction

I intend this document as a guide to the prototype EPIGRAM system. As things stand,
there are still a great many things which need to be done, but the system can now be
nursed through some useful small examples, so it seems appropriate to help people
play with it.

1.1 What you need

To run EPIGRAM, you will need a compiled binary of the executable, and a suitable
version of xemacs. I’m not an expert on xemacs, so | don’t know which versions
are suitable, but it’s not hard to find out if yours is. I’m using 21.1 just now.

Epigram is developed under linux, and has been caught working under Windows XP
(thanks Paul) and Mac OS X (thanks Michael). We now have a more stable web pres-
ence at

http://ww. dur ham ac. uk/ CARG epi gram
Subscribers to
epi gr am@ur ham ac. uk

get news of updates and things which do/don’t/might one day work. Please do sub-
scribe, and send . epi files, successful or otherwise.

To compile EPIGRAM, you will need a reasonably recent version of the Glasgow
Haskell Compiler, ghc: I use lots of non-98 language extensions very heavily, so other
systems probably won’t play. Version 5.02 is certainly sufficiently recent—it’s what |
use at the moment.



2 Thegeneral picture

The EPIGRAM system is an interactive editor and interpreter for the EPIGRAM pro-
gramming language, largely as defined in The view from the left [MMO04], or VFL, for
short. I’'m very bad at writing editors, so | cheated—EPIGRAM runs as an inferior
process under xenmacs. You start it by running the script

epi gram

which starts a new xemacs, with the EPIGRAM buffer in the foregroung, and the actual
interaction happening in another buffer offstage. You can look at it if you like to watch
computers working, but it may slow things down a touch. If you do look at it, you’ll
see that typing stuff in the EPIGRAM buffer causes event messages to be sent as textual
input to the underlying process, which spits back much Elisp in response.

Mea culpa. This rather Heath-Robinson arrangement can be a little flaky at times, but
that’s how it is until some kind soul guis it up. It’s not as dreadful as it was.

Important. The EPIGRAM buffer is read-only as far as xemacs is concerned. Key-
board input in that buffer is redirected. If you want to quit the EPIGRAM process, hit
Alt-Escape in the EPIGRAM buffer. If you want to quit emacs, either use the menu,
or switch to a buffer you can genuinely type in. Also useful is Ctrl-Backspace, which
refreshes the display: use this if it garbles on you, or if you change the width of the
frame.

2.1 What you see

EPIGRAM’s syntax is two-dimensional. The EPIGRAM buffer contains a document
with a rectangular region selected—highlighted with a bright background. A
document is a vertical sequence of lines; a

line is a horizontal sequence of boxes; a

box is either a character, or a bracket containing a document.

Hence, an EPIGRAM line can occupy more than one physical line in the buffer. You

can combine two EPIGRAM lines on one by separating them with ; , and split one into
two by prefixing the second with % A bracket is either a

group which has the usual functions of parenthesis

(

!
! !
! !
! )

ora



shed where you can tinker with text.

[ !
! !
! !
! ]

The EPIGRAM document is a concrete syntax tree, in which some leaves are sheds.
The part of the document outside the sheds is managed, typechecked, typeset, coloured
in and generally mucked about with by EPIGRAM; the content of a shed is monochrome,
but it belongs to you and you may edit it freely.

At the top level, the document is a vertical sequence of declarations delineated by
rules. A rule is a sequence of at least three - - - . The initial document has just one
declaration, consisting of a shed, waiting for you to start work.

Important. If you want to open a shed for a new declaration, double-click on a rule,
or select a rule and just start typing. Clicking below the buffer contents should select
the final rule.

Of course, your program won’t be happy if you keep it in the shed. You can let it escape
to a more fulfilling existence by pressing the Escape key. If your document parses
correctly, EPIGRAM will check it, and replace your lovely typesetting with something
ghastly that it likes better. If your document does not parse, nothing happens. Note that
the contents of nested sheds are still locked away. If you haven’tfinished your program,
you can leave sheds (not necessarily empty) for the unfinished parts and check the rest
anyway—EPIGRAM always tries to give as much feedback as possible, as early as
possible. Nested sheds allow you to work in little steps or big steps as you see fit.

Mea culpa. | realize that some syntax error diagnostics might be nice.

Let’s look at an example

data (--------- ! where (------------ [ R e '
*

!plusxy:l\bt).

plus x y <= rec x
{ plus x y <= case x
{ plus zeroy []
plus (suc n) y => suc (plus ny)

Here, you can see the three available kinds of declaration:

data declarations declare data structures by giving the

formation rule which declares a type constructor and the



introduction rules which declare the data constructors by which the data struc-
ture acquires data; data constructors

let declarations define programs by giving a

type signature which establishes the type of the intended program and a

decision tree which establishes the strategy by which the program will deliver
output, given input;

inspect declarations allow you to inspect the value of an expression, so far as it has
one.

So, what have we here? We have the natural numbers, declared inductively; we have
begun to define addition by recursion and case analysis on its first argument, but we
have not filled in the zero case—there’s just a shed; we would like to know what 2 + 2
is. You can select the shed by clicking on it. If you then type

=> y
and press Escape, you will complete both the program and the example.

Important. Alt-Backspace is ‘undo last action’. Ctrl-Alt-Return is ‘restart’, and you
can undo it.

Mea culpa. My Swedish friends will doubtless emphasize the importance of having
the “‘local undo’ operation, which takes a selected region and pulls it back into a shed.
I agree entirely: this is high on my hit-list, and when it is done, it morally ought to be
bound to the Control-Escape key. It’s quite tricky, because the deletion of information
can have highly non-local effects, but there’s an obvious naive and inefficient way to
do it, which | propose to start with. ..

Try undoing the ‘return ’ step and sending
<= case y

instead. This expands the decision tree to

plus X y <=rec X
{ plus x y <= case x
{ plus zero y <= case y
{ plus zero zero []
plus zero (suc n) []
}
plus (suc n) y => suc (plus ny)
}
}

That is, we have adjusted the zero-case strategy to require a case analysis on the second
argument, and we now have two new subproblems to solve. If you send



=> suc (plus zero n)

for the zero-suc case, you will see that its background remains yellow, which is EPi-
GRAM’s way of expressing doubt. Here, it does not know why the recursive call makes
sense—if we want to do recursion on the second argument, we need to say so. If you
undo again, you can build this program instead

plus X y <=rec X
{ plus x y <= case x
{ plus zeroy <=rec y
{ plus zero x <= case X
{ plus zero zero => zero
plus zero (suc n) => suc (plus zero n)

}

plus (suc n) y => suc (plus nvy)

}
}

Mea culpa. EPIGRAM is very bad at choosing names. | plan both to make it much
better at choosing names, and to allow you to do systematic a-conversion (outside
sheds) by direct manipulation.

I hope this shows something of the flavour of EPIGRAM programming, not just pro-
grams. An EPIGRAM program is presented as a didactic dialogue between you and
your mechanical student. The left-hand sides which the machine generates are ques-
tions in search of explanations which you provide on the right. I’ve been programming
this way with human students for years, and it seems to do them some good. But |
accept that it’s a little prolix typing <= case x. Obviously pl us zero vy, pl us
(suc n) vy issomuch shorter.

2.2 Workingin ashed

When a shed is selected, you can edit its contents by typing. As I said, | hate writing
editors, so for now you get ordinary typing, plus arrow keys, backspace and delete.
You’ll find that if you type ( or [, the corresponding ] or ) appears also, with the cursor
between them—you’re now editing an inner document. The Return key makes a new
line in the local document; you can get out of the document by using the arrow keys,
or directly, by typing a closing bracket. You can also jump around with the mouse.

You can’t delete a bracket from inside it—you can backspace over it or delete it from
in front. The editor maintains the width of a bracketed document as the maximum of
the width of its lines, so you don’t need to worry about aligning the ! marks. Also, if
you type a rule inside a bracket, the editor aligns it vertically with the text outside the
bracket. Apart from that, things are quite normal, really.

Important. Some keystrokes you can use in another xemacs buffer:



Ctrl-c Ctrl-c sends the current buffer’s contents to a selected empty shed in the EpI-
GRAM buffer—this enables you to load work.

Ctrl-c Ctrl-r sends the currently selected region in the same way.

Ctrl-c Ctrl-e replaces the current buffer’s contents by those of the EPIGRAM buffer—
this enables you to use ‘ordinary’ editing, and also to save your work.

Mea culpa. | know that it’s not obvious whether the machine is rejecting its input or
just thinking very hard. This is, however, discernable, either by looking in the Epigram-
bin buffer, where you’ll see if the escape key event has had its response yet, or by trying
to type in the troublesome shed. Note that a buffer which isn’t properly bracketed will
be rejected by Ctrl-c Ctrl-c. Meanwhile, if your big shedload doesn’t parse, do try
sending it a bit at a time.

2.3 Workingin xemacs

In the absence of local-undo, it’s a reality that tinkering tends to happen offstage, in
xemacs. In that respect, I’ve implemented a few low-budget gadgets to make life a
little easier. Firstly, Ctrl-Alt-Return undoably returns EPIGRAM to the blissful state
of ignorance it was born with. You can fire in a new version of your work when
you’re done tinkering. To help you tinker, I’'ve added some xeracs keystrokes which
exploit its support for rectangles, selected by dragging from top-left to bottom-right—
the selection won’t look but rectangular, but these will work all the same:

Ctrl-c r rectangle to selected empty shed
Ctrl-c Ctrl-s shed rectangle

Ctrl-c Ctrl-b bracket rectangle

3 Concrete syntax

This is the useful concrete syntax so far. It’s mostly an ASClIfication of that in VFL.
The parser is slightly more liberal than this would suggest.

Mea culpa. Omitted here are some bits of concrete syntax which do not yet have
elaborators, notably tuples. There are also some forms of term which do not yet have
concrete syntax.

Important. The concrete syntax as presented here is not considered to be stable, al-
though changes will be floated on the mailing list first and signalled in future versions
of this document. Too many prototypes do suffer from bad syntax whose only justifi-
cation is legacy. Not this one. We just wire up the old parser to the new renderer. ..



3.1 Terms

term

head

gadget

head seqlhead, €] opt[: term]

al | sigs => term

| amsigs => term

ex sigs => term

head seq[head, €] - > term

head seqlhead,e] = head seq[head, €]
gadget term

*

identifier
( term)
Zero
One

0

refl

?
[ document[term]]

case|rec |view|neno|gen

3.2 Declarations

source

decl

maybe[- - - ]
seq[decl,- - -]
opt[- - -]

dat a sigs wher e sigs

| et sigs; program

i nspect term opt[=> term)|
[ document[source] ]

application

universal quantification
lambda abstraction
existential quantification
simple function space
proof irrelevant equality
data eliminator

type of types

variable

grouped term

proof irrelevant empty type
proof irrelevant unit type
the proof of One
constructor for equations
‘let me be explicit’

‘go figure’



3.3 Signatures
5498 =

59

siguar =

deduction =

proforma =

3.4 Programs

program =
\

rhs

programs =

3.5 Utilities

opt[cat]

seq[cat, sep]

more[cat, sep|

seq[sig,; |

sigvar

siguar . term

( deduction )

[ document|[sigs] ]

identifier
_ identifier

519S
proforma . term

sigvar seq[siguar, €]
[ document[proforma)] ]

head seq[head, €] rhs
[ document[program] ]

=> term
<= term programs

[ document|[rhs] ]

€
{ seq[programs,;] }

cat

= ¢
| cat more[cat, sep]

untyped declaration
typed declaration
natural deduction rule

normal bound variable
implicitly bound variable

typical application

return value
by eliminator

no programs
some programs

= opt[sep cat more[cat, sep]]



4 Declarations

What can you put in a declaration shed? A sequence of declarations (including decla-
ration sheds), separated by - - - . Let’s now look in a little more detail at the varieties
of declaration currently supported.

41 data

Declarations of inductive families[Dyb91] take the form
dat a formationSig wher e constructorSigs

That is, you first declare the constructor for the family of types you are declaring,
which appears in Blue, followed by the constructors of the data which populate it,
which appear in red.!

An inductive family is an indexed collection of mutually defined inductive types. The
type constructor must construct types, so its declaration typically takes the form of a
deduction:

(6555)

Constructor declarations generally resemble

_ A
cA:D3

As in VFL, Greek capitals stand both for a sequence of declarations (as above the line)
and for the argument-sequence of variables so defined (as below it). We have already
seen

- . n : Nat
data (Nat : *) where (zero : Nat) ! (sucn : Nat)

This notation is a little more prolix than Haskell, say, for simple definitions, but with
EPIGRAM’s implicit syntax technology—more about this shortly—it pays off in spades
the more dependent your types get. In any case, there is not yet any good reason why
you should not write

(1]

data Nat : x where zero : Nat; suc : Nat — Nat

By the way, if you just type dat a in a declaration shed, you will get a template for a
data declaration.

EPIGRAM will only accept strictly positive families. That is, a constructor’s argument
types must either be nonrecursive, not mentioning D, or recursive—function types

For those of you watching in black-and-white, blue is represented by sans-serif type and an initial capital
letter, whilst red has the same typeface, but alower case initial.



(possibly with no arguments) returning some D 7, but with no other reference to D.

Note, these are ‘old Swedish’ families, rather than the more puritan ‘new Swedish’
families, which allow constructors only the ‘unfocused’ return type D Z, rather than
an arbitrarily “focused’ D . | propose focused and unfocused as the terminology we
have long been lacking in discussing this distinction, although Peter Hancock prefers
‘Roman Catholic’ and ‘Presbyterian’. The fact remains that Catholicism is just more
fun.

Mea culpa. EPIGRAM does not currently accept mutually defined type families, but
the fact that an inductive family is a family of mutually defined types does at least
provide a workaround.

When the formation signature and constructor signatures have been successfully elab-
orated, EPIGRAM generates the case, rec and view operators for the type family. As
these are what make data data, data successfully elaborates too.

Remark. | have implemented (barring mutual definition) a fairly standard notion of
inductive family, but | intend to extend this eventually to induction-recursion [DS01],
and indeed to dependent mutual definition of families (my favourite example being
Ctxt : %x; Type : Ctxt — %; Term : VI': Ctxt = Type ' — %). And then there’s
codata. ..and then there’s mixed data-codata families (modelled by alternating least
and greatest fixpoints). A big zoo is a happy zoo.

4.2 Signatures
The basic form of a signature, whether in a data or let declaration, or just inside A, V
or3,is

z: T

declaring a variable in a type. You may omit the : T if you want the machine to
attempt to infer the type—there is no guarantee that it will succeed. You may also
prefix the variable _z to indicate that it is implicit. Moreover, you may group variables
21, %2, .-, &, if they are intended to share the same type. Signatures form sequences
vertically (thus horizontally if separated by ; ).

EPIGRAM also supports a first-order syntax for declaring higher-order objects—deductions,
which generally resemble

()

meaning
VA=T

where A is a signature sequence, perhaps itself including deductions, and f A is a

10



proforma—a ‘typical application’ of the declared symbol to variables.

However, by a technological miracle, you get to omit ‘sufficiently obvious’ signatures
from above the line—you may also omit variables from below the line if you wish them
to be treated as implicit arguments; you may not permute the variables from the order
in which you declare them. The technological miracle is, of course, Hindley-Milner-
Damas type inference [DM82] over a Miller-style mixed quantifier prefix [Mil92], a
combination which | gather Frank Pfenning came up with.

So, we get

X % o fx: X; zs: ListX
data (ListX : *) where (nil : ListX) ’ ( consz zs : List X )

and even

data [ %= X; xs : List X
. Inz zs : %

. tl : Inz xs
where (now : Inx(cons:vxs)) ’ (Iater tl - Inx(consyzs))

That’s a whole bunch of symbols we didn’t need to declare—and the element types
didn’t get mentioned in the constructor signatures at all. For the type of well-ordered
trees, we get

data (WB:*) where <supaf:WB>

which is just as well, as the standard W A B was a rude word when | was growing up.
Note that although a is not declared, it’s sensible to make it an explicit argument of sup
as it cannot usually be inferred unless B is a partially applied type constructor.

This is just to emphasize that, whilst type inference as a global property of a depen-
dently type language is a non-starter—Haskell is sufficiently dependently typed not to
possess it—the technology underlying type inference still buys us a great deal. The
idea is now to say enough to make the plan clear, then let the machine help you follow
the plan.

Note that although one usually just writes the explicit arguments in the proforma, you
can be clear about the order of the implicit arguments too, by prefixing them with _.
You could write sup _A _B a f to have the same effect more explicitly. Sometimes, if
you leave this information out, there is more than one choice available to the machine
for where and in which order the implicit arguments should be quantified. The current
implementation keeps them as far to the right as possible; a previous version pushed
them as far left as possible. 1 make no promises—if you want to rely on a particular
choice and there is more than one, better to make the proforma explicit rather than
trusting to luck.

One more note of caution: if you are using nested deductions, implicit variables are by

11



default quantified as locally as possible. For example, you could try declaring

. b:Ba
(Baa‘ f4*> (fb:NotWB)
data | oo /| where

NotW B : % supa f : NotW B

but the machine would try to quantify A locally to the first nested deduction, and ev-
erything but f in the second: you would not get what you want.

. .. b:Ba
4; (é’a' fl*) B; a; <fb:W’B>
data “WEB  x where

W' B supaf : W' B

is the form equivalent to the original. One might argue that ¢ and B are obviously
meant to be quantified in the outer deduction as they are mentioned in its conclusion,
but this requires extracting information from the conclusion before it is in scope.

Finally, on stepwise editing for signatures. Basically because I’m lazy, you can refine
a signature shed to a deduction template by sending

ﬁ but not %

I think it saved me one syntactic category, or something.

Note also that you can type a (vertical) sequence of signatures (or signature sheds) into
a signature shed.

43 et
You can introduce a definition, and in particular, a program with a| et declaration, of
the form

let functionSig

program

If you omit the program, EPIGRAM will generate an opening programming problem
from the signature as soon as it elaborates. You can get a template for the signature by
sending just | et to a declaration shed.

The initial programming problem is constructed directly from the proformain a deduc-
tion signature; if you give a direct f : T signature, EPIGRAM presumes that you intend
to give a direct term for f.

12



You might send
z,y : Nat
let (plus:cy : Nat)
and you will get the starting problem
z,y : Nat .
let (plusxy : Nat) » pluszy ]

ready to go!
More on programming in section 6.

EPIGRAM relies on and carefully maintains the well-foundedness of the context. Re-
cursive programs aren’t really recursive at all! The recursion in EPIGRAM comes
ultimately from the rec gadget you get with a datatype, which introduces a memo-
structure—recursive calls are just syntactic(?) sugar for the extraction of the appropri-
ate value from a memo-structure. We shall extend this approach to explicitly grouped
top-level mutually recursive definitions (by allowing let to take multiple signatures and
programs) in due course. The main design choice required is in developing the syntax
to explain how the recursive programs share a common recursive strategy, giving each
program access to the appropriate memo-structure for the others.

We shall also be extending terms to support local let and programs to support local
helper functions via some kind of ‘where clause’.

4.4 i nspect

Thei nspect declaration enables you to run programs you have written.
inspect ¢

where ¢ is a term, elaborates to
inspect ¢ = v : T

where v is ¢’s value and T is its type.

As it stands, i nspect can only be expected to behave sensibly when ¢ elaborates
fully in terms of objects which have been completely defined, but it’s inevitable from
the way EPIGRAM is implemented that i nspect can also be used to run programs
you haven’t written.

Broadly speaking, if there are pieces missing from the program, you will get strange
orange ?s in the value of your term (and possibly its type). As more information be-
comes available, you will see these being instantiated. What does not happen at the
moment is that incomplete terms which become reducible on the instantiation of their
holes will be replaced by their values—the holes will be instantiated but the reduction

13



will not visibly take place. | shall attend to this oversight in due course. Moreover, the
mysterious orange ?s should be rendered as the lumps of unelaborated concrete syntax
to which they correspond. This will allow to run programs which contain type errors
and see where those errors bite by example. Years spent listening to undergraduates
whingeing that ‘the typechecker won’t let my program work’ have obviously had some
impact.

5 Terms

This section examines a little more closely the syntax of EPIGRAM terms, and how the
elaborator treats them. In particular, it outlines what happens with implicit syntax.

5.1 Basics

We start with a fairly basic type theory:

_ IES: % iz S;AF
F Tyz:SF Iyz:S;AFz: S
I'kFs:S THRBS=pT T+ Tiz:SETx]:
F'Fs: T Fkx:x I'FVz:S5= Tlz]:
[y2:SF tla] : T[x) FHf:Ve:85=T[z] Tks: S
THAz:S=t[z]: Vz: 5= T[z] THfs: T[s]

The simple function space S — T is just syntactic sugar for Vo : S = T.

Yes, with % : %, this system is inconsistent, but it’s a good place to start. EPIGRAM
implements these rules: here 8 computes 5-normal forms and = 7 is the n-equality for
type T'. In particular

Iz: S+ B(f z) =11 Blg 2)
IN =vz:S=T[z] 9

5.2 Datatypes

The effect of a data declaration is to add the type- and data-constructors to the context,
generate the appropriate case and rec operators, and extend 3 appropriately.

If we have
data = where .- AV
— DE: % cA; :DF

we get

14



z : Df
casezr : VP :VE=>DE—«

m; : VA; = Pg(CAi)

=>Plz
Note that case z is a term, but case is not. Its type actually explains how to do case

analysis on z. The computational behaviour is as follows:

Fl—ﬂac—)ncid’
It B(case z) — AP;m = m; @

Let us leave rec aside for the moment, but it too has a type which explains how to do
structural recursion.

5.3 Implicit Syntax

Implicit syntax in EPIGRAM is inspired by Pollack’s treatment in LEGO [Pol92], but
differs in several ways. Firstly, EPIGRAM has a separate implicit function space:

Fiz:SFTx] - +
FFVYz:5= Tx] : x
Tiz:SEtx] : Tx] F'Ff:Va:8= T[]
FFAz:S=>tz] :Vae:5=>Tz] T'Hf_:Vz:S= Tx]
FEBS— S Tiz:SEB(Ez) - t'[x]
B((Az: S = t[z]) o) = Az : 8" = t'[z]

The postfix operator - makes an implicit function explicit. The elaborator silently com-
pletes any term whose type is implicitly quantified, unless it is of form ¢_and thus made
explicit. Completion works by sticking in metavariables (or ‘holes’) for the implicit ar-
guments and hoping they get solved by unification.

Other forms of implicit syntax—omitting types in quantifiers, etc, also work via metavari-
ables. You can reliably leave off the quantifiers from A unless it is being applied—this
information is available in the type.

Mea culpa. The background colour of a completed term should indicate whether the
machine has been successful at inferring the missing arguments, but |1 haven’t wired
that up yet. Also, you should ideally be able to expose implicit arguments—by double-
clicking a completed term, say—in order to edit those which have not been successfully
inferred and need to be supplied explicitly.

Note that, in an application, if an argument of implicit type is required, the argument
you supply is elaborated under an implicit A\. The bound variable has no name, but it

15



can (and hopefully will) be used in the values inferred for implicit arguments.

Important. The implicit syntax mechanism makes a key simplifying assumption when
itis inferring missing information: A metavariable never stands for an implicit function
type. Without some such assumption, you get deadlock: if the type of an argument is
a metavariable, you can’t complete it to form the type which gets unified with the
domain of the function to solve the metavariable. With the assumption, an argument of
unknown type is complete already. It’s common sense: the computer isn’t as clever as
you, so you should only expect it to solve easy problems by itself.

6 Programs

EPIGRAM programs are trees which explain how to solve a programming problem.
Perhaps the easiest way to explain what is going on is to tell it pretty much like it is. If
you supply the signature

A
et A7

then the initial programming problem is
VA= (fA: T)

This funny type in angle-brackets what VFL calls a labelled type, and it means ‘the
T that is £ A’. These labels f 7 are used to compute the left-hand sides of programs.
The p are the patterns, and there is no a priori reason to presume that they are linear
or consist solely of constructor forms. The right-hand side of a program line explains
how to split a programming problem into zero or more subproblems: it elaborates
to an LCF-style tactic, pairing a collection of subproblems with a combinator which
computes the solution to the original problem from those of the subproblems.

One way to solve a programming problem
VA= (fp: T)
is to supply a return,
=1 where Akt : T
so that your program looks like
fp=t
However, you can also split a programming problem by invoking an eliminator:
Ee

where the eliminator e is any expression whose type looks like this

16



VP : VE= x
mq :VA1:>P§1

m, : VA, = P 3,
=>P{

We call 7 the targets of the eliminator, because they are what it eliminates; P is called
the motive because it stands for what we hope to achieve by the elimination; the m; are
the methods—they explain how to achieve the motive in each possible circumstance.

Now, EPIGRAM has a built-in type which captures the idea of equality. When you
invoke < e for our typical programming problem, EPIGRAM takes

P )ESVAA={(F: T
This makes
mi VA A8 =1t-FF:T)

EPIGRAM then tries to solve 5; = # by applying the substitutivity for equality and the
disjointness and injectivity of equality, which is how the patterns in the subproblems
become more instantiated. Moreover, in the case where the equations are clearly false,
the subproblem disappears—this is why there is no ‘nil’ case when you implement
‘tail” for nonempty length-indexed lists.

More details of this process can be found in VFL, or [McB00].

The point here is that the types of eliminators provide an abstract interface to the
decomposition of programming problems. The eliminator itself is a higher-order func-
tion, computing the solution to the main problem from its subproblems. Constructor
pattern matching is no longer hardwired into the compilation of functions: it is just one
possible eliminator, generated for free with every datatype. The fun with EPIGRAM
really starts when you roll your own.

VFL also gives a third way to solve programming problems: the ‘with’ rule, which
allows you to abstract the value of an intermediate computation, adding it to the col-
lection of values under scrutiny on the left. In first-order programming, this often
eliminates the need for local case-expressions in right-hand-side terms. That’s just
as well, because local case-expressions don’t really make sense in dependently typed
programming—inspecting one value tells you more about other values too, and about
the type of the thing you’re trying to construct. Good! What’s the point of testing
something if it doesn’t make any difference?

7 Thingstodo

This is a proportion of the current wish list. It gets longer more quickly than it shrinks.

17



7.1 Known bugs

Things which are supposed to work but are known not to. Don’t hesitate to tell me if
something goes wrong. | generally respond as quickly as humanly possible.

Currently, there’s some funny business with the equation-solving in the <= rule. We’ll
see.

Important. The patterns you get when you apply an eliminator arise from equation
solving. If the machine cannot solve the equations, then you will get less instantiation
of patterns than you might wish for. This is correct. One benefit of Epigram’s internal
explanation of pattern matching by elimination with equational constraint is that you
are not completely scuppered when this happens, as was the case in ALF. If the trou-
blesome equation involves defined functions, it’s not a big surprise that the machine is
not clever enough—it’s not as clever as you. If you can do another elimination which
unblocks the function call, you may find the rest of your pattern appearing.

On the other hand, if the equation really ought to have a solution by standard first-
order constructor methods, 1’ll put my hand up to a problem. If you suspect this to
be the case, then it’s the usual story: send me a bogey, and I’ll Alt-Return it. If you
feel intrepid, Alt-Return it yourself. No—I haven’t implemented no-cycle yet, but I’m
planning to cheat.

There’s also a bit too much rigidity when it comes to implicit arguments in natural
deduction rules. An explicitly mentioned but implicitly declared argument which first
appears to the right of where it is first needed will not be shunted backwards as it should
be.

7.2 Elaboration of terms

There are several things with no elaborators yet:

Tuples Existential quantification is already elaborated. The parser knows about tuples
but the elaborator doesn’t. A tuple will be a vertical group of terms. Implicit el-
ements will be preceded by _. Right-nesting will be flattened. Tuples occurring
where type information is being pushed inwards should not need type annota-
tions. Others might, and at the moment, I’m trying to think of a neater way
than slapping a huge cast on the whole thing. Elimination—see left-hand-sides.
Needs care.

Anonymous lambda 1’m sure | can do a better job of type inference for these. Needs
care.
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7.3 Elaboration of left-hand sides

More patterns | have only implemented first-order patterns with functions/constructors
and pattern variables. Any term can potentially be a pattern. Needs care.

n-expansion in patterns You should be able to match existential types with tuples,
universals with lambda, etc, without any explicit eliminator on the right. Inter-
actively, it should just be a double-click. Needs care.

Unhiding A space which conceals an implicit argument should cough it up if you
double-click on it. Easy job.

a-conversion Double-clicking on a pattern variable should replace it by a shed; send-
ing an acceptable variable name should cause a-conversion. Otherwise, shed
stays open. Trouble is, if you save the file in that state, it won’t reload properly.
I reckon we need to put the old name back first, or something. Needs some
rejigging.

Better names | have a heuristic in mind for guessing better names during interactive
programming, based on the ones you use in data declarations. Needs some re-

jigging.

7.4 Elaboration of right-hand sides

With rule Abstracting intermediate computations. | need to write a typchecking ab-
stractor. Needs much care, but no damage.

From rule Bringing the next argument to the left. Easy job.

Multi-by Doing a bunch of eliminations on one line. Ideally, you should be able to
see what subproblems you would get if you stopped adding more. Needs much
care and some rejigging.

Helper functions You should be able to invoke a helper function on the right-hand
side which should automatically generate some kind of ‘where clause’. The
machine should be able to figure out the type signature if the usage is a Miller-
pattern (help vary ... wvary). You should be able to lift the helper function out
to be a mutually defined top-level function. Dream on.

7.5 Elaboration of recursion
Matching Constraint-solving for recursive calls extracted from memo-structure should

be by matching—any match will do. I haven’t written a matcher yet, so I’m using
unification, which is much too paranoid. Needs care.
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Nesting Double recursion now works by stopping the motive-generator quantifying
over memo-structures. This gives lexicographic recursion. A better solution
would be to teach the thing to find memo-structures. See ‘resource-bounded
proof search’.

7.6 Proof search for thingsimplicit

At the moment, this applies n-rules, but apart from that, it just hopes unification does
the business.

Equational simplification should work the same way as with programming problems;
constructor equations to be proven should also be split; reflexivity should be an
automatic win. Needs care.

Vacuity having the empty type as a hypothesis should be an instant win; having a
refutation as a hypothesis should start a proof search. Dream on.

Resource-bounded proof search A reasonable strategy seems to me to limit backchain-
ing to things you haven’t used yet in that branch of the proof. The context is our
initial set of gadgets. Of course, the context gets bigger in higher-order proof
search: should we be worried? You can use local definition (when 1’ve imple-
mented it) to copy things which need to be used more than once. PhD student?

7.7 Syntactic mod cons

Infix operators Especially - >. | think | know what I’m going to do...later. My
inclination is to implement postfix operators which have a pull to the left and
deliver a term of a given weight. Postfix operators apply to the largest term to the
left whose weight is < their pull. Variables and groups weigh 0. An application
weighs what the function weighs. Operators are presumed prefix unless declared
postfix. Exactly what a postfix declaration should look like, I’'m not sure. 1d
like to be able to use relative pulls and weights, rather than raw numbers. Scary
idea: make postfix info live in function types—that way, you can make all sorts
of daft things happen—no, maybe not.

Comments Just now, the best you can do is keep top-level comments in declaration
sheds. | wonder how we could do better. Of course, comments should really
be handled by the user interface (see below). Comments should also be able to
quote terms which are subject to update/a-conversion.

7.8 User interface

I’m planning a bit of refactoring in order to facilitate the clean separation of the user
interface. The interface will communicate with the elaborator using the concrete syntax
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as an interchange language. The interface will be entirely responsible for both layout
and parsing, and will keep the contents of sheds to itself. Concrete syntax trees will
have nodes labelled with the names of elaboration problems/solutions. Node replace-
ment will be the main sort of message that the elaborator sends the interface; node
selection and shed instantiation will be the main messages the other way. This will
facilitate:

Local undo Interface reverts a node to text in a shed and sends an undo event to the
elaborator. The elaborator reverts everything else to concrete syntax and starts
again. There are some obvious safe but not subtle ways to do a bit more infor-
mation accountancy and ensure that only a few bits of the buffer get redone, but
a really precise story here is future work.

Local information There should be another buffer/window/whatever which displays
local information pertinent to the selected subobject: eg value (if known), (de-
sired) type, what’s in the context, what’s in the context that might solve the goal,
unsolved constraints, type errors for brown things, syntax errors for sheds which
won’t escape, goodness knows what else. In particular, when you sit at an empty
shed, there should be a menu of candidate lumps of concrete syntax you might
like to choose from.

Filing You should be able to select a contiguous bunch of declarations and send them
to a file, causing them to be replaced with an import declaration. The elaborator
should be none the wiser.

7.9 Exporting Epigram
It should be possible to persuade Epigram to export piles of stuff to:
IATEX The interface should be able to generate IATEX source from concrete syntax.

Easy to do badly.

Coq It should not be too hard to make Epigram generate Coq .o files, although we
have a few eta-rules they don’t, which might put some sand in the vaseline. Easy
to get somewhere; hard to get everywhere.

Edwin’s compiler (I) For swift run-time-only code. Should be easy.

Edwin’s compiler (11) For partial-evaluation-safe preloaded implementations of li-
braries. Needs care.

An independent typechecker Epigram’s type theory isn’t too outlandish. | already
have an ugly-printer for raw terms which | use when I’m looking under the bon-
net. Any self-respecting PhD student working in this general area should not find
it too hard to build their own checker. Easy job.
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A Summary of keystrokes and mouse actions

In the EPIGRAM buffer:

Escape elaborate a shed

Alt-Backspace undo last change

Ctrl-Backspace refresh display

Alt-Escape quit

Alt-Return dump elaborator state

Ctrl-Alt-Return return Epigram to initial state (but you can undo)

Double click on:
arule to get a new declaration shed
In another xemacs buffer:

Ctrl-c Ctrl-c buffer to selected empty shed

Ctrl-c Ctrl-r region to selected empty shed

Ctrl-c r rectangle to selected empty shed

Ctrl-c Ctrl-e replace current buffer’s contents by EPIGRAM buffer
Ctrl-c Ctrl-s shed rectangle

Ctrl-c Ctrl-b bracket rectangle

By ‘rectangle’, | mean a rectangular selection traced out by clicking on the top-left
corner and dragging to the bottom-left corner. The highlighting won’t look rectangular,
but as xemacs has some gadgets for manipulating rectangular selections, these things
were too good to miss.

B Recent changes

lexicographic recursion now works (see above)
typing on a dividing rule now opens up a shed
clicking below the buffer now selects the final rule
new keystrokes see above

Empty type It’s currently called Zer o. It was already present in the type of values,
and it’s proof irrelevant. It is eliminated with case.

Unit type It’s currently called One, and it’s constructed by () . It’s already present in
the type of values, and it’s proof irrelevant, so why bother eliminating it?
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