
The Essence of Cornpiling with Continuations

Cormac Flanagan* Amr Sabry’k Bruce F. Duba Matthias Felleisen*

Departmentof Computer Science

Rice University

Houston, TX 77251-1892

Abstract

In order to simplify the compilation process, many com-

pilers for higher-order languages use the continuation-

passing style (CPS) transformation in a first phase to

generate an intermediate representation of the source

program. The salient aspect of this intermediate fcmm

is that all procedures take an argument that represents

the rest of the computation (the “continuation”). Since

the naive CPS transformation considerably increases

the size of programs, CPS compilers perform reductions

to produce a more compact intermediate representation.

Although often implemented as a part of the CPS trans-

formation, this step is conceptually a second phase. Fi-

nally, code generators for typical CPS compilers treat

continuations specially in order to optimize the inter-

pretation of continuation parameters.

A thorough analysis of the abstract machine for CPS

terms shows that the actions of the code generator 2n-

vert the naive CPS translation step. Put differently,

the combined effect of the three phases is equivalent

to a source-to-source transformation that simulates the

compaction phase. Thus, fully developed CPS compil-

ers do not need to employ the CPS transformation but

can achieve the same results with a simple source-level

transformation.

1 Compiling with Continuations

A number of prominent compilers for applicative higher-

order programming languages use the language of

*Supported in part by NSF grants CCR 89-17022 and ~CCR
91-22518 and Texas ATP grant 91-003604014.

Permission to copy without fee all or part of this material is

granted provided that the copias are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwisa, or to rapublish, requires a fee

and/or specific permission.

ACM-SlGPLAN-PLDl-6 /93/Albuquerque, N.M.

01993 ACM 0-89791 -598 -41931000610237 . ..$1 .50

continuation-passing style (CPS) terms as their inter-

mediate representation for programs [2, 14, 18, 19]. This

strategy apparently offers two major advantages. First,

Plotkin [16] showed that the A-value calculus based on

the ~-value rule is an operational semantics for the

source language, that the conventional jull A-calculus

is a semantics for the intermediate language, and, most

importantly, that the A-calculus proves more equations

between CPS terms than the &-calculus does between

corresponding terms of the source language. ~anslated

into practice, a compiler can perform more transforma-

tions on the intermediate language than on the source

language [2:4-5]. Second, the language of CPS terms is

basically a stylized assembly language, for which it is

easy to generate actual assembly programs for different

machines [2, 13, 20]. In short, the CPS transformation

provides an organizational principle that simplifies the

construction of compilers.

To gain a better understanding of the role that the

CPS transformation plays in the compilation process,

we recently studied the precise connection between the

Au-calculus for source terms and the Lcalculus for CPS

terms. The result of this research [17] was an extended

A.-calculus that precisely corresponds to the A-calcu-

lus of the intermediate CPS language and that is still

semantically sound for the source language. The ex-

tended calculus includes a set of reductions, called the

A-reductions, that simplify source terms in the same

manner as realistic CPS transformations simplify the

output of the naive transformation. The effect of these

reductions is to name all intermediate results and to

merge code blocks across declarations and conditionals.

Direct compilers typically perform these reductions on

an ad hoc and incomplete basis.l

The goal of the present paper is to show that the true

purpose of using CPS terms as an intermediate repre-

sent ation is also achieved by using A-normal forms. We

base our argument on a formal development of the ab-

stract machine for the intermediate code of a CPS-based

compiler. The development shows that this machine is

1Personal communication: H. Boehm (also [4]), K. D ybvig,
R. Hieb (April 92).

237

http://crossmark.crossref.org/dialog/?doi=10.1145%2F173262.155113&domain=pdf&date_stamp=1993-06-01

M .._,.—

I ~et (z Ml) M,)

I (ifO MI M, M,)

I(MM, . . . Jfn)

I(ofkf, . . . &fn)

V C Values

c c constants

x c Variables

O C Primitive Operations

v ..—..— CIZI(AZ1. .,%M)

Figure 1: Abstract Syntax of Core Scheme (CS)

identical to a machine for A-normal forms. Thus, the

back end of an A-normal form compiler can employ the

same code generation techniques that a CPS compiler

uses. In short, A-normalization provides an organiza-

tional principle for the construction of compilers that

combines various stages of fully developed CPS compil-

ers in one straightforward transformation.

The next section reviews the syntax and semantics of

a typical higher-order applicative language. The follow-

ing section analyses CPS compilers for this language.

Section 4 introduces the A-reductions and describes A-

normal form compilers. Section 5 proves the equiva,

lence between A-normal form compilers and realistic

CPS compilers. The benefits of using A-normal form

terms as an intermediate representation for compilers is

the topic of Section 6. The appendix includes a linear

A-normalization algorithm.

2 Core Scheme

The source language is a simple higher-order applicative

language. For our purposes, it suffices to consider the

language of abstract syntax trees that is produced by

the lexical and syntactic analysis module of the com-

piler: see Figure 1 for the context-free grammar of this

language. The terms of the language are either val-

ues or non-values. Values include constants, variables,

and procedures. Non-values include let-expressions

(blocks), conditionals, function applications and prim-

itive operations.2 The sets of constants and primitive

procedures are intentionally unspecified. For our pur-

poses, it is irrelevant whether the language is statically

typed like ML or dynamically typed like Scheme.

The language Core Scheme has the following context-

sensitive properties, which are assumed to be checked

by the front-end of the compiler. In the procedure

(Ax, . . . zn, iM) the parameters Z1, Zn are mutually

distinct and bound in the body M. Similarly, the ex-

pression (let (z Ml) Mz) binds z in M2. A variable that

2The language is overly simple but contains all ingredients that
are necessary to generate our result for full ML or Scheme. In par-

ticular, the introduction of assignments, and even control opera-

tors, is orthogonal to the analysis of the CPS-based compilation

strategy.

is not bound by a A or a let is free; the set of free vari-

ables in a term M is FV(M). Like Barendregt [3:ch 2,3],

we identify terms modulo bound variables and we as-

sume that free and bound variables of distinct terms do

not interfere in definitions or theorems.

The semantics of the language is a partial function

from programs to answers. A program is a term with

no free variables and an answer is a member of the

synt attic category of constants. Following conventional

tradition [1], we specify the operational semantics of

Core Scheme with an abstract machine. The machine

we use, the CEK machine [10], has three components: a

control string C, an environment E that includes bind-

ings for all free variables in C, and a continuation 1{

that represents the ‘(rest of the computation”.

The CEK machine changes state according to the

transition function in Figure 2. For example, the state

transition for the block (let (z Ml) ib12) starts the eval-

uation of Ml in the current environment E and modifies

the continuation register to encode the rest of the com-

putation (It x, Mz, E, K). When the new continuation

receives a value, it extends the environment with a value

for z and proceeds with the evaluation of Mz. The re-

maining clauses have similarly intuitive explanations.

The relation -* is the reflexive transitive closure

of the transition function. The function y constructs

machine values from syntactic values and environments.

The notation E(z) refers to an algorithm for looking up

the value of x in the environment E. The operation

E[xl := V;,$m := V;] extends the environment E

such that subsequent lookups of Zi return the value Vi”.

The object (cl xl . . .xn, M, E) is a closure, a record that

contains the code for M and values for the free variables

of (Axl . . . Zn .M). The partial function 6 abstracts the

semantics of the primitive operations.

The CEK machine provides a model for designing di-

rect compilers [6, 11, 15]. A compiler based on the CEK

machine implements an efficient representation for en-

vironments, e.g., displays, and for continuations, e.g., a

stack.3 The machine code produced by such a compiler

3The machine also characterizes compilers for first-order lan-

guages, e.g., Fortran. In this case, the creation and deletion of

the environment and continuation components always follows a

stack-like behavior. Hence the machine reduces to a traditional

stack machine.

238

Semantics: Let M G CS,

e?dd(kf) = c if (M, 0, stop)%’ (stop, c).

Data Specifications:

S ~ Stated = 6’S X Eravd X 6’Odd I Codci X Vdbed (machine states)

E G Envd = Varhbles ++ Vdtted (environments)

v“ c valued= cl(clzl. ..z~, M,E) (machine values)

~ e ~Odd = stop I (ap (..., V*, *, M), E,K)E, K) I (lt z, M, E,K) (continuations)

[(if J41, M., E,K) I (pr O,(..., V*, @,M,), E,K), K)

Transition Rules:

(V, E, K) +---+ (K, -Y(V, E))

((let (s MI) MQ), E, K) x (Jfl, E, (lt ~, Jfz, E, K))

((ifO,Ml Lfz Jfs), E, K) ++ (MI, E, (if M,, Ms, E, K))

((MM, . . . Mn), E,K) +-+ (M, E, (ap (c, Ml,..., M~), E, K))

((OM, M, ... Mn), E,K) +--+ (M1, E, (pr 0,(0,M2,...,~n))E)~))

((it z, M, E, K), V*) _ (M, E[z := V*], K)

((if MI, M2, E, K),0) _ (MI, E,K)

((if MI, Mz, E, K), V”) + (M,, E, K) where V* # O
((ape..., ~*, e, M,...), E, K), T&,) +--+ (M, E,(ap (..., K*, Ul,, C), E,~)), ~))

((ap V*, ~*,..., ●), E, K),V;) + (M’, .~’[$1 := VI*, Zn := v;], ~) if V* = (cl ZI . .. T~. Jf’, E’)

((pr O,(..., V*, o,M ,...), E, K), K$I) t---+ (M, E,(pr 0,(..., K*, K:,,), E,K)), K))

((pr O,(V*,.. .,c), E, K”), V:) * (K,6(0, Vi*,. ... V;)) if 6(0, VI*, V:) is defined

Converting syntactic values to machine values:

7(c, E) = C

T(z, E) = E(x)

7((AX1 . ..xn.M). E) = (CIZ,L . ..zn. M,E)

Figure 2: The CEK-machine

realizes the abstract operations specified by the CEK

machine by manipulating these concrete representations

of environments and continuations.

3 CPS Compilers

Several compilers map source terms to a CPS intermedi-

ate representation before generating machine code. The

function f [12] in Figure 3 is the basis of CPS trans-

formations used in various compilers [2, 14, 19]. It uses

special A-expressions or continuations to encode the rest

of the computation, thus shifting the burden of main-

taining control information from the abstract machine

to the code. The notation (~z. . . .) marks the adntin-

istrattve A-expressions introduced by the CPS transfor-

mation. The primitive operation 0’ used in the CPS

language is equivalent to the operation O for the source

language, except that O’ takes an extra continuation ar-

gument, which receives the result once it is computed.

The transformation f introduces a large number of

administrative ~-expressions. For example, f maps the

code segment

IV~(+

into the CPS term

(+2 2) (let (z 1) (f z)))

((I/c,. ((~k,. (~ 2))

(At,. ((M4. (kq 2))

(Xtz.(+’ h f,~z))))))
(Xts.((m~

(Qk,. (k, 1))

(Atq.(letJz t~)

((M,. ((II%$.(~ f))

(x,. ((M,, (k,z))

(Ro. (tslb t~))))))

k,)))))

(X7. (+’ k t3h))))))

By convention, we ignore the context (M.[]) enclosing

all CPS programs.

To decrease the number of administrative ~-

abstractions, realistic CPS compilers include a simplifi-

cation phase for compacting CPS terms [2:68–69, 14:5–

6, 19:49–51]. For an analysis of this simplification phase,

239

its optimality, and how it can be combined with Y, we

refer the reader to Danvy and Filinski [9] and Sabry

and Felleisen [17]. This phase simplifies administrative

redexes of the form ((~z .P) Q) according to the rule:

((~z.P) Q) + P[z := Q] (P)

The term P[z := Q] is the result of the capture-free

substitution of all free occurrences of z in P by Q; for

example, (Az.zz)[z := (Ay. x)] = (Au.u(~y. z)), Apply-

ing the reduction @ to all the administrative redexes in

our previous example produces t]

form term:

cps(N) = (+’ (Itl. (let (z 1) (j

2 2)

e following ~-normal

Xtz.(+’ k i~f~))z)))

The reduction ~ is strongly-normalizing on the lan-

guage of CPS terms [17]. Hence, the simplification

phase of a CPS compiler can remove all ~-redexes from

the output of the translation 7.4 After the simpli-

fication phase, we no longer need to distinguish be-

tween regular and administrative J-expressions, and use

the notation (~.) for both classes of A-expression.

With this convention, the language of ~-normal forms,

CPS(CS), is the following [17]:

P ::= (k w) (return)

\ (let (z w) P) (btnd)

I (ifO W PI P,) (branch)

[(wkw, . ..wn) (ta~l call)

I (w (A$.P) w, . . . w.) (call)

I(o’kw, . ..wn) (pn?n-clp)
\ (0’ (AZ.P) w, . . . Wn) (pram-q)

4The CPS translation of a conditional expression contains

two references to the continuation variable k. Thus, the ~-

normalization phase can produce exponentially larger output.

Modifying the CPS algorithm to avoid duplicating k removes the

potential for exponential growth. The rest of our technical devel-

opment can be adapted mutatis mutandts.

w ::= c I z I (Akz?l. ..8P)P) (values)

Indeed, this language is typical of the intermediate rep-

resentation used by CPS compilers [2, 14, 19].

Naive CPS Compilers The abstract machine that

characterizes the code generator of a naive CPS com-

piler is the C.P,E machine. Since terms in CPS(CS)

contain an encoding of control-flow information, the

machine does not require a continuation component

(K) to record the rest of the computation. Evalua-

tion proceeds according to the state transition func-

tion in Figure 4. For example, the state transition

for the tail call (W k W1 Wn) computes a closure

(cl k’xl . . ~n, P’, E’) corresponding to W, extends E’

with the values of k, WI, Wn and starts the inter-

pretation of P’.

Realistic CPS Compilers Although the CCP,E ma-

chine describes what a na~ve CPS compiler would do,

typical compilers deviate from this model in two re-

gards.

First, the naive abstract machine for CPS code repre-

sents the continuation as an ordinary closure. Yet, real-

istic CPS compilers “mark” the continuation closure as

a special closure. For example, Shivers partitions pro-

cedures and continuations in order to improve the data

flow analysis of CPS programs [18:sec 3.8.3]. Also, in

both Orbit [14] and Rabbit [19], the allocation strategy

of a closure changes if the closure is a continuation. Sim-

ilarly, Appel [2: 114–124] describes various techniques for

closure allocation that treat the continuation closure in

a special way.

In order to reflect these changes in the machine, we

tag continuation closures with a special marker ‘(ar”

that describes them as activation records.

Second, the CPS representation of any user-defined

procedure receives a continuation argument. However,

Steele [19] modifies the CPS transformation with a

“continuation variable hack” [19:94] that recognizes in-

stances of CPS terms like ((~klP) k2 . . .) and trans-

240

Semantics: Let P G CPS(CS),

ev&(P) = c if (P, o[k := (cl x, (k $), O[k := stop])]) +--+* ((k Z), o[z := c, k := stop]).

Data Specifications:

s. C State. =

E c Envn =

W“ g Value. =

Transition Rules:

((k W), E) w

((let (z W) P), E) w

((ifO W P, Pz), E) _

((W k W, . . . Wn), E) “~

((W (Ax.P) W, . . . Wn), E) +--+

((0’ k W, . . . Wn), E) _

((0’ (Az.P) W, . W.)j E) _

CPS(CS) x Envn (machine states)

Variables +-+ Value. (environments)

Cl(clkxl . . . x~, P, E) I (cl o, P, E) I stop (machine values)

(P’, E’[x := ~(W, E)]) where E(k)= (cl z, P’, E’)

(P, E[z := @V, E)])

(Pi, E) where P(W, E) = O

(Pz, E) where ,u(W, E) # O

(P’, E’[k’ := E(k), q := W:,.. .,x~ := W;])

where P(W, E) = (cl k’zI . . . x~, P’, E’) and for 1< i < n, W,* = p(W,, E)

(P’, E’[k’ := (cl z, P, E), q := W;,.. .,xn := W;])

where p(W, E) = (cl k’zl . ..z~. P’, E’) and for 1 < z < n, W,* = IJ(W, ,E)

(P’, E’[z := &(O’, W;, W;)]) if 6.(0’, W;, . . ., W;) is defined,

where E(k) = (cl z, P’, E’) and for 1 < z < n, W,* = p(W,, E)

(P, E[Z := 8.(0’, w;, w:)]) if 6C(0’, W?, ..., W;) is defined,

and for 1< i < n, W,” = I.J(W,, E)

Converting syntactic values to machine values:

P(C, E) = C

P(:z, E) = E(x)

P((NW1 ...zn.P).E) = (cl kzl . ..zn. P,E)

Figure 4: The naive CPS abstract machine: the C.p, E machine.

forms them to ((A. ~~.P[/cl := kz]) . .). This “optimiza-

tion” eliminates “some of the register shuffling” [19:94]

during the evaluation of the term. Appel [2] achieves

the same effect without modifying the CPS transforma-

tion by letting the variables kl and kz share the same

register during the procedure call.

In terms of the CPS abstract machine, the optim-

ization corresponds to a modification of the oper-

ation E’[k’ := E(k), xl := W;, . . .,zn := W:] to

J!7[lrl: =w; ,...,z n:= W;] such that E and E’ share

the binding of k. In order to make the sharing explicit,

we split the environment into two components: a com-

ponent Ek that includes the binding for the continu-

ation, and a component E- that includes the rest of

the bindings, and treat each component independently.

This optimization relies on the fact that every control

string has exactly one free continuation variable, which

implies that the corresponding value can be held in a

special register.5

Performing these modifications on the naive abstract

machine produces the realistic CPS abstract machine

5This fact also holds in the presence of control operators as

there is always one identifiable current continuation.

in Figure 5. The new CCP,EK machine extracts the

information regarding the continuation from the CPS

terms and manages the continuation in an optimized

way. For example, the state transition for the tail

call (W k W1 . . . W.) evaluates W to a closure

(cl kc, . . . X., P’, E;), extends E; with the values of

WI,..., Wn and starts the execution of P’. In particu-

lar, there is no need to extend E; with the value of k as

this value remains in the environment component Ek.

4 A-Normal Form Compilers

A close inspection of the C=P,EK machine reveals that

the control strings often contain redundant information

considering the way instructions are executed. First, a

return instruction, i.e., the transition WC, dispatches

on the term (k W), which informs the machine that the

“return address” is denoted by the value of the variable

k. The machine ignores this information since a re-

turn instruction automatically uses the value of register

Ek as the “return address”. Second, the call instruc-

tions, i.e., transitions ~, and ~., invoke closures

that expect, among other arguments, a continuation k.

241

Semantics: Let P G CPS(CS),

ew&(P) = c if (P, O, (ar z, (k z), O, stop)) w: ((k z), O[z := c], stop).

Data Specifications:

SC E Statec =

E- E Envc =

W* G Valuee =

Ek E Contc =

Transition Rules:

((k W), E-, Ek) @+c (P’

CPS(CS) x Envc x Cont. (machine states)

Variables m Valuec (environments)

c I (CllCZI... Z~, P,)-) (machine values)

stop I (ar z, P, E-, Ek) (continuations)

E;[z := p(W, E-)], Ef) where Ek = (ar x, P’, El–, E!)

((let (z W) P), E-, E’) F@+= (P, E-[z := ,u(W, E-)], E’)

{(if’O W PI .P2), E-, Ek) ~c (Pi, E-, E’) where K(W,.E-) = O
or (Pz, E-, E’) where K(W, E-) # O

((wkw, .. . W~), E-, Ek) w= (P’, E~[z] := W:,z. := WJ, Ek)

where v(W, E–) = (cl k’zl . . .xn, P’, El-) and for 1 5 t < n, W,” = P(W,, E–)

((w (AS.P) w, . . . Wn), E-, E~) ~c (P’, E~[zl := WY,. ... zn := W:], (ar z, P, E-, Ek))

where p(W, E-) = (cl k’zl . ..~n. P’, E1-) and for 1< i < n, W,* = p(W; ,E–)

((0’ k W, . . Wn), E-, Ek) WC (P’, Efl[z := &(O’, W:,..., W;)], E;)

where Ek = (ar x, P’, E;, E!) and for

((o’ (/kz.P) w, . . . W~), E-, Ek) UC (P, E-[x := &(O’, W:,..., W~)], Ek)

and for 1 < i < n, W,* = p(W,, E–)

if 8C(0’, W~, W;) is defined,

1< i < n, W? = ,U(W,, E-)

if ISC(O’, W:, W;) is defined,

Figure 5: The realistic CPS abstract machine: the C,-P, EK machine.

Again, the machine ignores the continuation parameter

in the closures and manipulate the “global” register Ek

instead.

Undoing CPS The crucial

elimination of the redundant

CCP,EK machine corresponds to

insight is that the

information from the

an inverse CPS trans-

formation [7, 17] on the intermediate code. The func-

tion Z./ in Figure 6 realizes such an inverse [17]. The in-

verse transformation formalizes our intuition about the

redundancies in the CCP.EK machine. It eliminates the

variable k from return instructions as well aa the param-

eter k from procedures. The latter change implies that

continuations are not passed as arguments in function

calls but rather become contexts surrounding the calls.

For example, the code segment cps (IV) in Section 3 be-

comes:

A(iV) = (let (f~ (+ 2 2))

(let (z 1)

(let (t,(f %))

(+ -t,t2))))

Based on the above argument, it appears

compilers perform a sequence of three steps:

that CPS

(7s $3
CPS

b o

I

I

Al @normalization
I

I

I

t
A(C’S) i

un-CPS
e CPS(CS)

The diagram naturally suggests a direct translation A

that combines the effects of the three phases. The iden-

tification of the translation A requires a theorem re-

lating ~-reductions on CPS terms to reductions on the

source language. This correspondence of reductions was

the subject of our previous paper [17]. The resulting set

of source reductions, the A-reductions, is in Figure 7.6

Since the A-reductions are strongly normalizing, we can

characterize the translation A aa any function that aP-

plies the A-reductions to a source term until it reaches

a normal form [17: Theorem 6.4].

The definition of the A-reductions refers to the con-

cept of evaluation contexts. An evaluation context is a

term with a “hole” (denoted by []) in the place of one

subterm. The location of the hole points to the next

6Danvy [8] and Weise [21] also recognize that the compaction

of CPS terms can be expressed in the source language, but do not

explore this topic systematically.

L-t/&

—
The inverse CPS transformation:

I?J: CPS(CS) +

U[(k w)] =

U[(let (z W) P)] =

U[(if’O W P1 Pz)] =

Z.f[(w k WI . . . w.)] =

U[(W (AZ.P) WI . . . w.)] =

U[(o’ k- WI . . . Wn)] =

q(o’ (XZ.P) WI . . . Wn)] =

V2:w+

W[c] =

!qx] =

qMx] . ..%. q =

A(CS)

V[w]

(let (z iU[W]) U[P])

(if’(l Q[W] UIP1] U[l%])

(w[w] ‘3qw,] . . . V[wn])

(let (z (V[W] Ui[Wl] . . . If[W.])) U[P])

(o W[w,] . . . W[wn])

(let (z (O VIW1] . . . f17[Wn])) L/[P])

v

c

x

Axl . ..xn.u[itq

The language A(CS)

M ::= V

I (let (z V) M)

l(if13V MM)

I(VK . . . Vn)

I (let (x (V K Vn)) M)

I(ovl... vn)

\ (let (x (O Vi . . . V~)) M)

v ::= clxl(kc]. ..x M)M)

Figure 6: The inverse CPS transformation and its output

(return)

(bind)

(branch)

(tad call)

(call)

(prira-op)

(prim-op)

(values)

Evaluation Contexts:

& ::= [1

The A-reductions:

l(let(z$)M) l(ifO~MM) I(FV. V8M.. .M) where F= Vor F=O

~[(let (X M) AT)] + (let (x M) S[N]) where&# [], z @ FV(f)

t[(i~ v M, M,)] -+ (ifO V SIMI] S[MZ]) where ~ # []

t[(F VI . . . Vn)] + (let (t (F VI . . . V~)) t[t])

where F = V or F = O,: # ~’[(let (Z []) M)], $ # [],t C FV(~)

Figure 7: Evaluation contexts and the set of A-reductions

(AI)

(Az)

(A)

subexpression to be evaluated according to the CEK se- The A-reductions transform programs in a natu-

mantics. For example, in an expression (let (% Ml) flfz), ral and intuitive manner. The first two reductions

the next reducible expression must occur within Ml, merge code segments across declarations and condi-

hence the definition of evaluation contexts includes the t ionals. The last reduction Iifis redexes out of eval-

clause (let (z ~) M). uation contexts and names intermediate results. Us-

ing evaluation contexts and the A-reductions, we can

243

Semantics: Let M G A(CS),

ewda(M) = c if (M, 0, (ar z, z, O,stop)) ++; (x, O[z := c], stop).

Data Specifications:

s. C State. = A(CS) x Enva x Conta (machine states)

E G Enva = Variables++ Vakea (environments)

v* E Valuea = c I (cl Z1 . . . z~, M, E) (machine values)

K E Conta = stop I (ar z, M, E, K) (continuations)

Transition Rules:

(~ E, K“) Q. (M’, E’[z := Y(V, E)], K’) where K = (ar z, M’, E’, K’)

((let (z V) M), E, K) @+a (M, E[z := T(V, E)], K)

((ifll V Ml Mz), E, K) u. (Ml, E, K) where 7(V, E) = O

or (Mz, E, K) where ~(~ E) # O

((vu . . . V~), E, K) ~. (M’, E’[q := V;, xn := V:], K)

where T(V, E) = (cl ZI .z~, M’, E’) and for 1< t < n, ~“ = ~(~,E)

((let (z (V VI . . . Vn)) M)j E, K) ~. (M’, E’[zl := ~“, ,z~ := V~], (ar z, M, E, A’))

where Y(V, E) = (cl ZI . . .z~, M’, E’) and for 1 < z < n, V,* = y(V,, E)

((OU . . . V~), E, K) ma (M’, E’[z := c$(O, V;,..., V:)],)’) if 6(0, VI*, V;) is defined,

where K = (ar z, M’, E’j K’) and for 1 < i < n, V,* = -y(V,, E)

((let (z (O VI . . Vn)) M), E, A-) Ua (M, E[z := 8(0, ~“, ,V~)], K) if 8(0, VI*, VJ) is defined,

and for 1 < i“< n, V,* = -y(V, jE)

Figure 8: The C.EK machine

rewrite our sample code segment IV in Section 3 as fol-

lows. For clarity, we surround the reducible term with

a box:

N = I(+(+22) (let (x 1) (~ z))) I

- (let (t, (+2 2)) (A,)

I (+ t, (let (z 1) (j z))) I)

+ (let (t, (+2 2)) (AI)
(let (x 1)

~))

— (let (t, (+2 2)) (A,)

(let (x 1)

(let (t, (f x))

(+ ~1 b))))

The appendix includes a linear algorithm that maps

Core Scheme terms to their normal form with respect

to the A-reductions.

Compilers In order to establish that the A-

reductions generate the actual intermediate code of CPS

compilers, we design an abstract machine for the lan-

guage of A-normal forms, the C. EK machine, and prove

that this machine is “equivalent” to the CPS machine

in Figure 5.

The C.EK machine is a CEK machine specialized to

the subset of Core Scheme in A-normal form (Figure 6).

The machine (see Figure 8) has only two kinds of con-

tinuations: the continuation stop, and continuations of

the form (ar z, M, E, K). Unlike the CEK machine,

the C. EK machine only needs to build a continuation

for the evaluation of a non-tail function call. For exam-

ple, the transition rule for the tail call (V VI . . . Vn)

evaluates V to a closure (cl xl . . . ~n, M’, E’), extends

the environment E’ with the values of VI, Vn and

continues with the execution of M’. The continuation

component remains in the register K. By comparison,

the CEK machine would build a seperate continuation

for the evaluation of each sub-expression V, VI, Vm.

5 Equivalence of Compilation

Strategies

A comparison of Figures 5 and 8 suggests a close

relationship between the CCP,EK machine and the

CaEK machine. In fact, the two machines are identi-

cal modulo the syntaz of the control strings, as cor-

responding state transitions on the two machines per-

form the same abstract operations. Currently, the tran-

sition rules for these machines are defined using pattern

L-t-l

matching on the syntax of terms. Once we reformulate

these rules using predicates and selectors for abstract

syntax, we can see the correspondence more clearly.

For example, we can abstract the transition rules
(5) (5)

-a and I---+C from the term syntax as the higher-order

functional 75:

T5[ca11-var, call-body, cal!?, call- args, ca!l-fn] =

(c, E,K) -. if ca//?(C)

where = ca/Lvar(C)

~ = call-body(C)

V = ca/Lfn(C)

Vl,vn = ca!l-argsl(C)

The arguments to 75 are abstract-syntax functions for

manipulating terms in a syntax-independent manner.

Applying 75 to the appropriate functions produces ei-

ther the transition rule ~. of the C. EK machine or

the rule WC of the C.P, EK machine, i.e.,

ma = T5[A-ca/Lvar, A-calLfn]

&Zc = T~~cps-call-var, cps-call-fn]

Suitable definitions of the syntax-functions for the

language A(CS) are:

A-calLvar[(let (z (V VI . . . V~)) M)] = x

A-call-body [(let (z (V V1 . . . Vn)) M)] = M

. . .

A-call-fn[(let (z (V VI . . . Vn)) M)] = V

Definitions for the language CPS(CS) follow a similar

pattern:

cps-calLvar[(W (kc. P) WI . . . IVn)] = x

cps-calLbody[(W (Az. P) W1 . . . Wn)] = P

. . .

cps-ca/Lfn[(W (~z.P) W1 . . . Wn)] = W

In the same manner, we can abstract each pair of transi-

tion rules tia and WC as a higher-order functional T..

Let S. and $C be abstract-syntax functions appro-

priate for A-normal forms and CPS terms, respectively.

Then the following theorem characterizes the relation-

ship between the two transition functions.

Theorem 5.1 (Machine Equivalence) For 1< n <

7,~a = 7n[Sa]and @c = 7n[SC].

The theorem states that the transition functions of the

CaEK and CCP,EK machines are identical modulo syn-

tax. However, in order to show that the evaluation of an

A-normal form term M and its CPS counterpart on the

respective machines produces exactly the same behav-

ior, we also need to prove that there exists a bijection M
between machine states that commutes with the transi-

tion rules.

Definition 5.2. (M, 7?, V, and K)

M : Statec - Statea

M((P, E-, Ek)) = (U[P], R(E-), K(Ek))

EnvC + Enva

XI(E-) = E where E($) = V(E- (x))

Value. - Valuea

v(c) = c

V((cl klzl . . .~n, P, E-)) =

(cl z,. . .rn,U[P],7?(E-)) -

Conic * Cont.

)qstop) = stop

K((ar z, P, E-, Ek)) =

(ar LZ,U[P], R(E-), K(E’))

Intuitively, the function M maps C.P,EK machine states

to C. EK machine states, and l?, V and K perform a

similar mapping for environments, machine values and

continuations respectively. We can now formalize the

previously stated requirement that O and 0’ behave in

the same manner.

Requirement For all W;, W: E Vaiuec,

V(6. (0’, W:,..., w;)) = 6(0, V(W;), V(wq)).

The function M commutes with the state transition

functions.

Theorem 5.3 (Commutativity Theorem)

Let S E Statec: S ~c S’ if and only zf JU(S) @+.
M(S’).

s
fic s,

A A
I I

I I

M(i’) ma M(s)

Proofi The inverse CPS transformations U is bijec-

tive [17]. Hence by structural induction, the functions

M, 7?, V and K are also bijective. The proof proceeds

by case analysis on the transition rules. ~

Intuitively, the evaluation of a CPS term P on the

CCP,EK machine proceeds in the same fashion as the

evaluation of U [P] on the CaEK machine. Together

with the machine equivalence theorem, this implies that

both machines perform the same sequence of abstract

operations, and hence compilers based on these abstract

machines can produce identical code for the same input.

The A-normal form compiler achieves its goal in fewer

passes.

245

6 A-Normal Forms as an Inter-

mediate Language

Our analysis suggests that the language of A-normal

forms is a good intermediate representation for compil-

ers. Indeed, most direct compilers use transformations

similar to the A-reductions on an ad hoc and incomplete

basis. It is therefore natural to modify such compilers to

perform a complete A-normalization phase, and analyze

the effects. We have conducted such an experiment with

the non-optimizing, direct compiler CAML Light [15].

This compiler translates ML programs into bytecode via

a A-calculus based intermediate language, and then in-

terprets this bytecode. By performing A-normalization

on the intermediate language and rewriting the inter-

preter as a C. EK machine, we achieved speedups of be-

tween 50’?ZOand 100’% for each of a dozen small bench-

marks. Naturally, we expect the speedups to be smaller

when modifying an optimizing compiler.

A major advantage of using a CPS-based intermedi-

ate representation is that many optimizations can be

expressed as sequences of /3 and q reductions. For

example, CPS compilers can transform the non-tail

call (W’ (Az.kx) WI . . w’~) to the tail-recursive call

(Wkw, . . . W.) using an q-reduction on the con-

tinuation [2]. An identical transformation [17] on the

language of A-normal forms is the reduction f?,d:

(let (x (V V, . . Vn)) %)+ (V V, . . . Vn),

where V, Vi,..., V. are the A-normal forms correspond-

ing to W, W1, Wn respectively. Every other opti-

mization on CPS terms that corresponds to a sequence

of ~~-reductions is also expressible on A-normal form

terms [17].

The A-reductions also expose optimization opportu-

nities by merging code segments across block declara-

tions and conditionals. In particular, partial evaluators

rely on the A-reductions to improve their specializa-

tion phase [5]. For example, the addition operation and

the constant O are apparently unrelated in the following

term:

(addl (let (3 (~ 5)) O))

The A-normalization phase produces:

(let (z (f 5)) (addl O)),

which specializes to (let (x (f 5)) 1).

In summary, compilation with A-normal forms char-

acterizes the critical aspects of the CPS transformation

relevant to compilation. Moreover, it formulates these

aspects in a way that direct compilers can easily use.

Thus, our result should lead to improvements for both

traditional compilation strategies.

A Linear A-Normalization

The linear A-normalization algorithm in Figure 9 is

written in Scheme extended with a special form match,

which performs pattern matching on the syntax of pro-

gram terms. It employs a programming technique for

CPS algorithms pioneered by Danvy and Filinski [9].

To prevent possible exponential growth in code size, the

algorithm avoids duplicating the evaluation context en-

closing a conditional expression. We assume the front-

end uniquely renames all variables, which implies that

the condition z @ FV(S) of the reduction Al holds.

Acknowledgments We thank Olivier Danvy, Preston

Briggs, and Keith Cooper for comments on an early

version of the paper.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

AHO) A., SETHI, R., AND ULLMAN, J.

Compile rs—Prmciples, Techniques, and Took.

Addison-Wesley, Reading, Mass., 1985.

AIWIZL) A. Compiling with Continuations. Cam-

bridge University Press, 1992.

BARENDREGT, H. The Lambda Calcu!us: Its Syn-

tax and Semantics, revised ed. Studies in Logic

and the Foundations of Mathematics 103. North-

Holland, 1984.

BOEHM, H.-J., AND DEMERS, A. Implement-

ing Russel. In Proceedings of the ACM SIG-

PLAN 1986 Sympostum on Comptler Construction

(1986), vol. 21(7), Sigplan Notices, pp. 186-195.

BONDORF, A. Improving binding times without

explicit CPS-conversion. In Proceedings of the 1992

ACM Conference on LMp and Functional Program-

ming (1992), pp. 1–10.

CLINGER, W. The Scheme 311 compiler: An ex-

ercise in denotational semantics. In Proceedings of

the 1984 ACM Conference on Lzsp and Functional

Programmmg (1984), pp. 356-364.

DANVY, O. Back to direct style. In Proceedings

of the ith European Symposium on Programming

(Rennes, 1992), Lecture Notes in Computer Sci-

ence, 582, Springer Verlag, pp. 130–150.

DANVY, O. Three steps for the CPS transforma-

tion. Tech. Rep. CIS-92-2, Kansas State University,

1992.

DANVY, O., AND FILINSKI, A. Representing con-

trol: A study of the CPS transformation. Mathe-

matical Structures in Computer Science, 4 (1992),

361-391.

246

(define na-rndize-terrn(lambda (M) (w-make M (lambda (z) z))))

(define normalize

(lambda (M k)

(match M

(’(lambda ,paranu ,My) (k ‘(lambda ,pararns ,(norrnalize-terrn ZIody)))]

~(let (,z ,MI) ,Mz) (rwrrmdize Ml (lambda (Nl) ‘(let (,z ,Nl) ,(normalize M, k))))]

~(ifO ,MI ,Mz ,M3) (normalize-name Ml (lambda (t)(k ‘(ifO ,t,(normalize-term M2) ,(norrmdize-term Ms)))))]

~(,Fn ,M*) (if (PrirnOp? Fn)

(normcdwe-name* M* (lambda (t*) (k ‘(,Fn . ,t”))))

(normalize-name Fn (lambda (t)(normalize-nom.’ M* (lambda (t*) (k ‘(jt . ,t”)))))))]
[v (k v)])))

(define normalize-name

(lambda (M k)

(rzormahze M (lambda (N) (if (Value? N) (k N) (let([t (neuwar)]) ‘(let (,t ,N) ,(k t))))))))

(define normaiize-name”

(lambda (M* k)

(if (null? M*)

(k ‘())

(normalize-name (car M*) (lambda (t) (normalize-name” (cxtr M*) (lambda (t*)(k ‘(,t . at’)))))))))

Figure 9: A linear-tilme A-normalization algorithm

[10]

[11]

[12]

[13]

[14]

FELLEISEN, M., AND FRIEDMAN, D. Control op-

erators, the SECD-machine, and the A-calculus. [n

Formal Description of Programmmg Concepts III

(Amsterdam, 1986), M. Wirsing, Ed., Elsevier Sci-

ence Publishers B.V. (North-Holland), pp. 19;3–

217.

FESSENDEN, C., CLINGER, W., FRIEDMAN,

D. P., AND HAYNES, C. T. Scheme 311 version 4

reference manual. Computer Science Technical R,e-

port 137, Indiana University, Bloomhy.$on, Indi-

ana, Feb. 1983.

FISCHER, M. Lambda calculus schemata. In Pro-

ceedings of the ACM Conference on Proving As-

sertions About Programs (1972), vol. 7(l), Sigplim

Notices, pp. 104-109.

KELSEY, R., AND HUDAK, P. Realistic com-

pilation by program transformation. In Confer-

ence Record of the 16th Annuai ACM Symposium

on Principles of Programming Languages (Austin,

TX, Jan. 1989), pp. 281-292.

KRANZ, D., KELSEY, R., REES, J., HUDAK, E’.,

PHILBIN, J., AND ADAMS, N. Orbit: An op-

timizing compiler for Scheme. In Proceedings of

the ACM SIGPLAN 1986 Symposium on Compi/er

Construction (1986), vol. 21(7), Sigplan Notices,

pp. 219-233.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

LEROY, X. The Zinc experiment: An economical

implementation of the ML language. Tech. Rep.

117, INRIA, 1990.

PLOTKIN, G. Call-by-name, call-by-value, and the

A-calculus, Theoretical Computer Science 1 (1975),

125-159.

SAE+RY, A., AND FELLEISEN, M. Reasoning about

programs in continuation-passing style. In Pro-

ceedings of the 1992 ACM Conference on Lisp

and Functional Programming (1992), pp. 288–298.

Technical Report 92-180, Rice University.

SHIVERS, O. Control-Flow Analysis of Higher-

Order Languages or Tamtng Lambda. PhD thesis,

Carnegie-Mellon University, 1991.

STEELE, G. L. RABBIT: A compiler for Scheme.

MIT AI Memo 474, Massachusetts Institute of

Technology, Cambridge, Mass., May 1978.

WAND, M. Correctness of procedure representa-

tions in higher-order assembly language. In Pro-

ceedings of the 1991 Conference on the Mathemat-

ical Foundations of Programing Semantics (1992),

S. Brookes, Ed., vol. 598 of Lecture Notes an Com-

puter Scaence, Springer Verlag, pp. 294-311.

WEISE, D. Advanced compiling techniques.

Course Notes at Stanford University, 1990.

247

