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Abstract

Object-oriented programming languages promise to improve programmer productivity by supportingabstract data
types, inheritance, andmessage passing directly within the language. Unfortunately, traditional implementations of
object-oriented language features, particularly message passing, have been much slower than traditional
implementations of their non-object-oriented counterparts: the fastest existing implementation of Smalltalk-80 runs at
only a tenth the speed of an optimizing C implementation. The dearth of suitable implementation technology has forced
most object-oriented languages to be designed as hybrids with traditional non-object-oriented languages, complicating
the languages and making programs harder to extend and reuse.

This dissertation describes a collection of implementation techniques that can improve the run-time performance of
object-oriented languages, in hopes of reducing the need for hybrid languages and encouraging wider spread of purely
object-oriented languages. The purpose of the new techniques is to identify those messages whose receiver can only
be of a single representation and eliminate the overhead of message passing by replacing the message with a normal
direct procedure call; these direct procedure calls are then amenable to traditional inline-expansion. The techniques
include atype analysis component that analyzes the procedures being compiled and extracts representation-level type
information about the receivers of messages. To enable more messages to be optimized away, the techniques include
a number of transformations which can increase the number of messages with a single receiver type.Customization
transforms a single source method into several compiled versions, each version specific to a particular inheriting
receiver type; customization allows all messages toself to be inlined away (or at least replaced with direct procedure
calls). To avoid generating too much compiled code, the compiler is invoked at run-time, generating customized
versions only for those method/receiver type pairs used by a particular program.Splitting transforms a single path
through a source method into multiple separate fragments of compiled code, each fragment specific to a particular
combination of run-time types. Messages to expressions of these discriminated types can then be optimized away in
the split versions. The techniques are designed to coexist with other requirements of the language and programming
environment, such as generic arithmetic, user-defined control structures, robust error-checking language primitives,
source-level debugging, and automatic recompilation of out-of-date methods after a programming change.

These techniques have been implemented as part of the compiler for the SELF language, a purely object-oriented
language designed as a refinement of Smalltalk-80. If only pre-existing implementation technology were used for
SELF, programs in SELF would run one to two orders of magnitude slower than their counterparts written in a
traditional non-object-oriented language. However, by applying the techniques described in this dissertation, the
performance of the SELF system is five times better than the fastest Smalltalk-80 system, better than that of an
optimizing Scheme implementation, and close to half that of an optimizing C implementation.

These techniques could be applied to other object-oriented languages to boost their performance or enable a more
object-oriented programming style. They also are applicable to non-object-oriented languages incorporating generic
arithmetic or other generic operations, including Lisp, Icon, and APL. Finally, they might be applicable to languages
that include multiple representations or states of a single program structure, such as logic variables in Prolog and
futures in Multilisp.
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Chapter 1   Introduction

1.1 Introduction

Programming language designers have always been searching for programming languages and features that ease the
programming process and improve programmer productivity. One promising current approach isobject-oriented
programming. Object-oriented programming languages provide programmers with powerful techniques for writing,
extending, and reusing programs quickly and easily. Object-oriented languages typically involve some sort of
inheritance of implementation, allowing programmers to implement new abstract data types in terms of
implementations of existing abstract data types, and some sort ofmessage passing to invoke operations on objects of
unknown implementation. Several object-oriented languages have been designed and implemented, including
Smalltalk-80*  [GR83], C++ [Str86, ES90], Trellis/Owl [SCW85, SCB+86], Eiffel [Mey86, Mey88, Mey92], Modula-
3 [Nel91, Har92], CLOS [BDG+88], and T [RA82, Sla87, RAM90]. Unfortunately, traditional implementations of
object-oriented language features, particularly message passing, have been much slower than traditional
implementations of their non-object-oriented counterparts, and this gap in run-time performance has limited the
widespread use of object-oriented language features and hindered the acceptance of purely object-oriented languages.

Language designers have developed several other important language and environment features to improve
programmer productivity. First-classclosures allow programmers to define their own control structures such as
iterators over collection-style abstract data types and exception handling routines.Generic arithmetic supports general
numeric computation over a variety of numeric representations without explicit programmer intervention. Asafe,
robust implementation performs all necessary error checking to ensure that programs do not behave in an
implementation-dependent way (e.g., get a “mystery core dump”) when they contain errors such as array access out of
bounds or stack overflow. Completesource-level debugging helps programmers get programs working quickly,
significantly improving programmer productivity. Unfortunately, most languages and implementations do not support
all these desirable features, again because they historically have had a high cost in run-time performance.

1.2 The SELF Language

To maximize the potential benefits of object-oriented programming, David Ungar and Randy Smith designed the SELF
programming language [US87, HCC+91, UCCH91, CUCH91] as a refinement and simplification of the Smalltalk-80
language. SELF incorporates a purely object-oriented programming model, closures for user-defined control structures,
generic arithmetic support, a safe, robust language implementation, and support for complete source-level debugging.
(SELF will be described in more detail in Chapter 4.) Ungar and Smith strove to provide a simple, flexible language
and environment that maximized the expressive power and productivity of the programmer. However, SELF’s
powerful features initially appeared to make its implementation prohibitively inefficient: the fastest implementation of
Smalltalk-80, a language that does not include all the features of SELF, runs a set of small benchmark programs at only
a tenth the speed of optimized C programs.

1.3 Our Research

The goal of the work described in this dissertation is to design and build an efficient implementation of SELF on stock
hardware that does not sacrifice any of the advantages of the language or environment. Achieving our goal required us
to develop new implementation strategies for message passing, closures and user-defined control structures, generic
arithmetic, robust primitives, and source-level debugging. Our results have been surprisingly good: the same set of
benchmarks used to measure the performance of Smalltalk-80 programs indicate that SELF programs run between a
third and half the speed of the optimized C programs, roughly five times faster than the Smalltalk-80 implementation.
These new techniques are practical, since SELF’s compilation speed is roughly the same as an optimizing C compiler,
and SELF’s compiled code space usage is usually within a factor of two of optimized C.

Our new implementation strategies work well in overcoming the obstacles to good performance for SELF. Fortunately,
these new techniques could be included in the implementations of other object-oriented languages to improve their

* Smalltalk-80 is a trademark of ParcPlace Systems, Inc.
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run-time performance. Even non-object-oriented languages incorporating user-defined control structures and/or
generic arithmetic could benefit from our new implementation techniques. More importantly, we hope that the
techniques we have developed will pave the way for other purely object-oriented languages to be designed and
implemented without including compromises or restrictions solely for the sake of efficiency.

1.4 Outline

The next chapter of this dissertation describes the benefits of object-oriented programming, user-defined control
structures, generic arithmetic support, and a robust implementation, as well as their associated costs in run-time
performance. It also outlines various compromises and restrictions that other languages have included to achieve better
run-time efficiency. Chapter 3 reviews this related work in detail. Chapter 4 describes the SELF language.

Chapters 5 through 13 contain the meat of the dissertation. Chapter 5 presents the goals of this work and outlines the
organization of the compiler. Chapter 6 describes the framework in which the compiler functions, including the
memory system architecture and the run-time system. (An early design and implementation of the memory system was
described in Elgin Lee’s thesis [Lee88].) Chapters 7 through 12 present the bulk of the new techniques developed to
improve run-time performance. These techniques includecustomization, type analysis, type prediction, andsplitting.
Earlier designs and implementations of these techniques have been described in other papers [CU89, CUL89, CU90,
CU91]. Chapter 13 describes compiler support for the SELF programming environment, in particular techniques that
mask the effects of optimizations such as inlining and splitting from the SELF programmer when debugging; some of
these techniques have been described in other papers [CUL89, HCU92]. Section 5.3 contains a more detailed outline
of this part of the dissertation.

The performance of our SELF implementation is analyzed in Chapter 14. This analysis measures various configurations
of our implementation and identifies the individual contributions to performance of particular techniques. The compile
time and space costs of the system as a whole and of individual techniques are analyzed as well.

Finally, Chapter 15 concludes the dissertation and outlines some areas for future work.
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Chapter 2   Language Features and Implementation Problems

This chapter describes several desirable language features, all of which are included in SELF: abstract data types,
message passing, inheritance, user-defined control structures, error-checking primitives, and generic arithmetic. For
each feature, we describe its advantages for programmers, its adverse implementation consequences, and typical
compromises made in other languages for the sake of efficient implementation. Those readers familiar with these
language features and implementation challenges may choose to skim this chapter.

2.1 Abstract Data Types

2.1.1 Benefits to Programmers

The ability to describe and manipulate data structures is central to the expressive power of a language. Traditional
programming languages such as C [KR78] and Pascal [JW85] includerecord andarray data type declarations;
Lisp [WH81, Ste84], Prolog [SS86], and many functional programming languages [MTH90, Wik87, Pey87] include
cons cells. These type declarations buildconcrete data types. Manipulating concrete data structures is simply a matter
of extracting fields from records orcons cells and indexing into arrays.

Abstract data types [LZ74, LSAS77, LAB+81, LG86] provide a more expressive mechanism for describing and
manipulating data structures. An abstract data type abstracts away from a concrete data type by providing a set of
operations (theinterface) through which clients are to manipulate objects of the type. The abstract data type is
implemented in terms of some lower-level data type (therepresentation), but this implementation is hidden from
clients behind the abstract data type’s abstraction boundary. For example, a canonical abstract data type is thestack
data type, supportingcreate, push, pop, top, andisEmpty operations and represented using an array of stack
elements and an integer top-of-stack index.

The enforced abstraction boundary provides advantages to both implementors and clients of abstract data types over
traditional concrete data types. Implementors are free to change the representation of an abstract data type, and as long
as the interface remains the same, clients of the abstract data type remain unaffected. For example, thestack data
type could be reimplemented using a linked list in place of an array and an integer, and clients would be unaffected.
Thus, abstract data types encapsulate design decisions that may change, especially those about the representation of
critical data structures.

For clients, abstract data types provide a more natural interface for manipulating data structures than the language
primitives used with concrete data structures. The operations on abstract data types can directly reflect the conceptual
operations on the data type the programmer has in mind, rather than being translated into series of extraction and
indexing operations. In thestack example, clients may use the more naturalpush andpop operations in place of
array indexes and integer increments. These abstract operations also improve the reliability of the system, since adding

astack abstract data type

create

push

pop

isEmpty

top

abstraction boundary

external
 representation operations

for clients
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an element to a stack is implemented in a single place and debugged once, rather than being repeated in every client
at every call.

Abstract data types also provide a principle for organizing programs. When using abstract data types, the task of
programming an application tends to revolve around identifying, designing, and implementing abstract data types. For
many applications, this orientation is better than the more traditional orientation of top-down refinement of procedures
and functions [Wir71]. In addition, libraries of common abstract data types are developed that may be reused in future
applications, reducing development and maintenance costs.

2.1.2 Implementation Effects

Widespread use of abstract data types greatly increases the frequency of procedure calls over traditional programming
styles using concrete data types. Each manipulation of a concrete data type, such as record field extraction or array
indexing, is a built-in language construct, easily implemented by simple compilers in a few machine instructions. With
abstract data types, however, each manipulation is conceptually a procedure call that invokes the programmer’s
implementation of the abstract operation. In a system with heavy use of abstract data types, many operations are
implemented by the programmer to just call lower-level operations on the representation data type, magnifying the
overhead of abstract data types.

To eliminate the run-time cost of abstraction, implementations can expand the body of a called procedure in place of
the procedure call; this technique is known asprocedure integration or inlining. When an operation on an abstract data
type is invoked, the compiler can expand the implementation of the operation for that abstract data type in-line,
eliminating the procedure call. With aggressive use of inlining, the overhead of abstract data types can be virtually
eliminated, removing a performance barrier that might discourage the use of an important program structuring tool.
This inlining depends, however, on the fact that within a given program there is only a single implementation for a
particular abstract data type (this condition does not exist for object-oriented programming with message passing,
described next in section 2.2). If the implementation of an abstract data type changes, then the whole program may
need to be recompiled to inline the new operation implementations. Even in non-inlining implementations of abstract
data types, however, some amount of relinking after changing the implementation of an abstract data type is usually
necessary.

By inlining the implementation of an operation in place of its call, the compiler has in some ways violated the
abstraction boundary of the abstract data type. Fortunately, the compiler does not need to follow the same restrictions
as the human programmers, and so this “violation” is quite reasonable. Abstraction boundaries are great for people to
help organize their programs, but serve little purpose for the implementation.

2.2 Object-Oriented Programming

2.2.1 Benefits to Programmers

Object-oriented programming languages improve abstract data types by provideobjects or classes instead [Weg87].
Object-oriented languages typically include two features not found in languages with only abstract data types:message
passing andinheritance.

2.2.1.1 Message Passing

With abstract data types, clients are insulated from implementation details of abstract data types, allowing the
implementor of an abstract data type to replace the implementation of the abstract data type with a new one without
rewriting client code. Unfortunately, only one implementation of an abstract data type can exist in the system at a single
time, and changing the implementation of an abstract data type is a compile-time operation that requires recompiling
and relinking an application with the new implementation.

Object-oriented programming languages rectify this problem, allowing multiple implementations of the same abstract
data type to coexist in the same applicationat run time. Client code does not depend on which implementation of an
abstract data type is being accessed, and in fact different implementations of the abstract data type can be manipulated
at different times by the same client code. For example, both array-based and stack-based implementations of stacks
can be manipulated by clients interchangeably.
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To have this flexibility make sense, the operation invoked by some call must be determined dynamically based on the
actual implementation used in the call. For instance, when invoking thepush operation on a stack (in object-oriented
terminology,sending the push message), the procedure that gets run (themethod that implements the message)
depends on which implementation of stacks is being operated on. If the stack passed as an argument to thepush
operation (receiving thepush message) is a linked-list stack, then the linked-list-stack-specificpush method should
be invoked; if the stack is an array-based stack, then the array-based-stack-specificpush method should be run. Since
for different calls different stack implementations might be used, this determination of whichpush implementation
to invoke must be determined dynamically at run-time.Message passing is arguably the key to the expressive power
of object-oriented programming.

In a statically-typed language, variables are associated with types (typically by explicit programmer declaration but
sometimes by automatic compiler inference), and the type of a variable describes the operations that may be performed
on data values or objects stored in the variable. In traditional languages, including those with abstract data types, the
only data values that can be stored in a variable are those of the same type as the variable. In object-oriented languages,
where clients can manipulate objects of different implementations interchangeably via message passing, this
restriction on the types of objects stored in a variable is relaxed: an object can be stored in a variable as long as the
object supports at least the operations expected by the variable’s declared type. The object stored in the variable can
provide more operations that expected by the variable (can be asubtype of the variable’s declared type), since these
extra operations will be ignored by the client code. For example, client code that operates on stacks, say by sending
thepush andpop messages, will continue to operate correctly on any other object that supports thepush andpop
messages, such as a double-ended queue that supports both stack operations and additionallypush_bottom and
pop_bottom operations to add and remove elements from the opposite end of the stack.

In general, the various types of objects in a system form alattice, with more general types (i.e., types with fewer
required operations) higher in the lattice and more specific types lower in the lattice. In most object-oriented languages
this type lattice is restricted to be the same as the implementation inheritance graph (implementation inheritance is
described in the next section).

This looser connection in object-oriented languages between the statically-declared type of a variable and the actual
run-time type of the contents of the variable, enabled by the use of message passing to dynamically select the
appropriate implementation for a call, dramatically increases the potential reusability and applicability of client code.
Clients are further abstracted from implementation and representation issues by specifying only what operations are
required of objects, either explicitly using static type declarations or implicitly by the operations actually invoked, not
the implementation of the objects or even the precise interface or abstract data type of the objects. This level of
abstraction limits dependencies between clients and implementations to just those strictly required for correctly
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performing the client’s task, and allows the client code to be used with implementations that had not been written or
even imagined at the time the client’s code was written.

2.2.1.2 Inheritance

Frequently, two data types may have similar implementations. This commonality may be separated out (factored) into
a third data type and then shared (inherited) by the two original data types. For example, the linked-list implementation
of double-ended queues may be very similar to the linked-list implementation of stacks, and consequently the
programmer could factor out the similar parts into a third module that is inherited by both linked-list-based stacks and
linked-list-based double-ended queues. In fact, it is likely that the double-ended queue could inherit directly from the
stack implementation without a third shared implementation being necessary. In this situation, the stack
implementation would play the role of a reusable implementation and make the implementation and maintenance of
the double-ended queue much easier.

Factoring enables programs to be modified more easily since there is only one copy of code to be changed; changes to
factored code are automatically propagated to the inheriting data types. Factoring also facilitates extensions, since the
shared objects provide natural places for new operations to be implemented and automatically inherited by many
similar data types. For example, the programmer could add asize operation to stacks and double-ended queues
would automatically receive the same capability via inheritance.

These hierarchies of related data types are a characteristic feature of object-oriented systems. Object-oriented
programming extends abstract data type programming as an organizing principle for programs by supporting
hierarchies of implementations; statically-typed object-oriented languages also support hierarchies or lattices of
interfaces or types as described in the previous section. These hierarchies offer a focus for the initial design problem,
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a catalog of pre-designed, pre-implemented components upon which new applications can build, and a framework in
which new components can be integrated and made available to other programmers.

2.2.2 Implementation Effects

A client manipulates an object by sending it messages listed in the object’s interface. However, since object-oriented
languages allow several implementations to co-exist for any given interface, the method invoked for a particular
message send depends on the implementation of the receiver of the message. This implementation cannot always be
determined statically and in fact frequently may vary from one invocation to the next. Thus the system must be able
to determine the correct binding of the message send site to invoked method dynamically, potentially at each call. This
dynamic binding, while key to the expressive power of object-oriented programming, is the chief obstacle to good
performance of object-oriented systems.

Dynamic binding incurs the extra run-time cost needed to locate the correct method based on the implementation of
the message receiver object. This lookup involves an extra memory reference in some implementations (e.g., C++ and
Eiffel) and a hash table probe in others (e.g., Smalltalk-80 and Trellis/Owl), on top of the normal procedure call
overhead.

A more disastrous problem, however, is that dynamic binding prevents the inlining optimization used to reduce the
overhead of abstract data types. Inlining requires knowing the single possible implementation for an operation. This
requirement directly conflicts with object-oriented programming which purposefully severs the links between client
operation calls and the particular implementations they invoke. Consequently, in general dynamically-bound message
sends cannot be inlined to reduce the call overhead.

Inheritance can slow execution by requiring the run-time message dispatcher to perform a potentially lengthy search
of the inheritance graph to locate the method matching a message name. Consequently, most implementations of
message passing and inheritance use some form of cache to speed this search. Inheritance can also slow programs in
a more subtle way by encouraging programmers to write well-factored programs, which have a higher call density than
traditional programming styles. This overhead takes the form of messages sent toself, which would not have existed
had the program not been factored using inheritance.

2.2.3 Traditional Compromises

A pure object-oriented language, i.e., one that uses only message passing for computation and does not include non-
object-oriented features such as statically-bound procedure calls or built-in operators, offers the maximum benefit from
message passing and inheritance. Unfortunately, message passing slows down procedure calls with extra run-time
dispatching and prevents the crucial inlining optimizations that are needed to reduce the overhead of abstraction
boundaries. Since supporting a pure object-oriented language seems so inefficient, existing practical implementations
of object-oriented languages do not support a completely pure object-oriented model, instead making various
compromises in the name of efficiency.

Often language designers compromise by including non-object-oriented features or by extending an existing non-
object-oriented language with object-oriented features, as with C++ and CLOS. These languages include all the built-
in control structures and data types of the base non-object-oriented languages, and the base language features suffer
from none of the performance problems associated with object-oriented features. For example, C++ includes all the
built-in control structures available in C, and built-in data types such as integers, arrays, and structures may all be
manipulated using traditional C operators without extra overhead. However, these mixed languages have the serious
drawback that code written using the non-object-oriented features cannot benefit from any of the advantages of the
object-oriented features. For example, programs written to manipulate standard fixed-precision (e.g., 32-bit) integers
cannot later be used with arbitrary precision integers, even though both data types implement the same operations.
Additionally, code for collections of objects cannot be used to create a collection of fixed-precision integers, since
integers are not objects. Programmers of a hybrid language must choose between a well-written, reusable program and
good run-time performance.

Even languages that are supposedly pure object-oriented languages in which all data structures are objects and all
operations are dynamically-bound messages frequently “cheat” for the most common language features in an effort to
improve performance. For example, Smalltalk-80, widely regarded as one of the purest object-oriented languages,
hard-wires into the implementation the definitions of some common operations, such as+ and< applied to integers,
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preventing programmers from changing their implementation. Other operations such as==, ifTrue:, and
whileTrue: are treated specially by the implementation and are not dynamically-bound operations at all; the single
implementation of each of these messages is built into the compiler and cannot be changed or overridden by the
programmer. They are simply built-in operations and control structures for Smalltalk, albeit written in normal message
sending syntax.

Most object-oriented languages limit the power ofinstance variables (parts of the representation of objects, like fields
of records). In these languages, instance variables are accessed directly by the methods in the object’s implementation,
rather than by sending messages toself to access instance variables. Accesses to them may then be implemented by
just a load or store instruction, significantly faster than normal dynamically-bound operations. Unfortunately, this
practice reduces the potential reusability of abstractions by preventing instance variables to be overridden by inheriting
abstractions in the same manner as dynamically-bound methods.

For example, apolygon data type might define avertices instance variable containing a list of vertices making
up the polygon. The programmer might wish to define arectangle data type as inheriting from thepolygon data
type, but with a new representation: four integers defining thetop,bottom,left, andright sides of the rectangle.

The programmer could make rectangles compatible with polygons by overriding thevertices instance variable
with avertices method that computed the list of vertices from the four integer instance variables. Unfortunately,
in most object-oriented languages overriding an instance variable is not possible, and sorectangle cannot inherit
directly frompolygon as pictured. Trellis/Owl and SELF are two notable exceptions to this unfortunate practice.

Finally, object-oriented languages with static typing usually restrict the type lattice to be the same as the inheritance
graph: if one object inherits from another, then the child object must be a subtype of the parent, and if one type is a
subtype of another then it must inherit from the other. This restriction may perhaps be justified as a language
simplification. Some languages go even further, however, by restricting the inheritance graph to form a tree; an object
may inherit from only one other object. This restriction tosingle inheritance simplifies the implementation, allowing
relatively efficient implementations of dynamic dispatching using indirect procedure calls (e.g., the implementation of
virtual function calls in versions of C++ supporting only single inheritance). Unfortunately, when subtyping is tied to
inheritance of implementation, single inheritance can be very limiting to programmers. General abstract types such as
comparable andprintable cannot be easily defined and used as supertypes of the appropriate objects, since any
particular object cannot be a subtype of more than one such abstract type. Supporting multiple supertypes for one
object imposes significant extra run-time overhead on message sends given existing implementation technology, as
described in Chapter 3.
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2.3 User-Defined Control Structures

2.3.1 Benefits to Programmers

Programs can be smaller and more powerful if the language allows arbitrary chunks of code to be passed as arguments
to operations. These chunks of code are calledclosures orblocks [SS76, Ste76] and enable programmers to implement
their own iterators, exception handlers, and other sorts of control structures. For example, thestack data type could
provide an operation callediterate that would take a closure as its argument. The operation would iterate through
the elements of the stack, invoking the closure on each element in turn. This arrangement would be similar to a
traditionalfor loop but could be defined entirely by the programmer using only abstract data types and closures. Like
the body of afor loop, a closure islexically-scoped, meaning that it has access to the local variables of the scope in
which it is defined (e.g., the caller of theiterate operation). Thestack data type might also provide an operation
namedpopHandlingEmpty that would take a closure as an argument and either pop the stack (if not empty) or
invoke the closure to handle the empty-stack error. In this situation, the closure would act like an exception handler.

Closures typically provide a way to prematurely exit computations, either using first-classcontinuations as in Scheme
[AS85, RC86, HDB90] or usingnon-local returns as in Smalltalk-80 or SELF. When returning non-locally, the closure
returns not to its caller (e.g., thepopHandlingEmpty operation) but from its lexically-enclosing operation (e.g., the
caller ofpopHandlingEmpty). Thus non-local returns have an effect similar toreturn statements in C.

Closures can support all of the traditional control structures, includingfor loops,while loops, andcase statements.
In an object-oriented language, even basic control structures such asif statements may be completely implemented
using closures and messages; the implementation of theif message for thetrue object is different than that for the
false object, for instance. Thus closures enable pure object-oriented languages to be defined withoutany built-in
control structures other than message passing, non-local returns, and some sort of primitive loop or tail-recursion
operation, simplifying the language and moving the definition of control structures into the domain of the programmer.

2.3.2 Implementation Effects

Unfortunately, straightforward implementations of control structures using closures introduces more run-time
overhead than traditional built-in control structures. Allocation and deallocation of closure objects bog down such
user-defined control structures when compared to built-in control structures which can usually be implemented by a
few compare and branch sequences. This allocation and deallocation cost is especially significant for extremely simple
control structures such asif statements. For looping statements such aswhile and for, the allocation and
deallocation cost can be amortized over the iterations of the body of the loop, but the extra procedure calling cost for
invoking the methods comprising the user-defined control structure and for invoking the closure object each time
through the loop still incurs a significant amount of overhead over the few instructions execution for a comparable
built-in control structure. In the SELF system a traditionalfor loop runs more than 20 methods during the execution
of the control structure, many of which are invoked for every iteration of the loop. In pure object-oriented languages
in which these procedure calls are really dynamically-bound messages, the cost becomes even greater, especially since
inlining of the user-defined code implementing the control structure becomes much harder.

2.3.3 Traditional Compromises

Because of the difficulty of efficient implementation, few languages support closures and user-defined control
structures. Most include only built-in control structures and require programmers to build their own iterator data
structures. Some, such as Trellis/Owl, provide built-in iterators and exceptions, supporting two of the most common
uses for closures. However, many kinds of user-defined control structures go beyond simple iteration and exception
handling, and these control structures cannot be implemented directly in Trellis/Owl.

Scheme provides first-class closures and continuations, but also provides a number of built-in control structures; these
built-in control structures are implemented more efficiently (and invoked more concisely) than are general user-defined
control structures using closures. Most Scheme programs rely heavily on these built-in control structures to get good
performance. Smalltalk-80 nominally relies entirely on user-defined control structures and blocks (Smalltalk’s term for
closures). Unfortunately, as mentioned in section 2.2.3, Smalltalk-80 restricts some common control structures such
asifTrue: andwhileTrue: so that the compiler can provide efficient implementations that do not create block
objects at run-time. The primary disadvantage of such restrictions, from the point of view of the Smalltalk programmer,
is that the large performance differential between the restricted control structures optimized by the compiler and
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control structures defined by the user tempts the programmer to use the fast control structures even if they are less
appropriate than some other more abstract control structures. This implementation compromise thus discourages good
use of abstraction.

2.4 Safe Primitives

2.4.1 Benefits to Programmers

At the leaves of the call graph of a program are theprimitive operations built into the system, such as object creation,
arithmetic, array accessing, and input/output. Frequently a primitive operation is defined only for particular types of
arguments. For example, arithmetic primitives are defined only for numeric arguments, and array access operations are
defined only for arrays and integer indices within the bounds of the corresponding array. Even procedure calls could
be considered primitive operations that are legal only as long as there is enough stack space for new activation records.

In many environments, especially compiled, optimized environments, the programmer is responsible for ensuring that
primitive operations are only invoked with legal arguments. If the program contains an error that leads to a primitive
being invoked illegally, the system can become corrupted and probably crash mysteriously sometime later in
execution. For example, C implementations do not check for array accesses out-of-bounds, and so an out-of-bounds
store into an array can corrupt the internal representation of another object. Subsequent behavior of the system
becomes unpredictable. Programs developed on such unsafe systems are extremely difficult to debug, since some
programming errors can lead to seemingly random behavior far away in time and space from the cause of the errors.

On the other hand, asafe or robust system always verifies for each invocation of a primitive operation that its
arguments are legal and that the primitive can be performed to completion without error. If the primitive call is illegal,
then a robust system either halts gracefully (for example by entering a debugger) or invokes some user-definable
routine or closure, thus enabling the programmer to handle the error. Robust programming systems make program
development much easier by catching programming errors quickly, giving the programmer a much better chance at
identifying the cause of the illegal invocation. Since a robust system never becomes internally corrupted as a result of
a programming error, the penalty for such errors is greatly reduced, speeding the debugging process.

2.4.2 Implementation Effects

Implementing safe primitives requires type checking and sometimes range checking (such as for array accesses out of
bounds) for arguments to primitives. With statically-typed non-object-oriented languages, the type checking of
primitive arguments can be done at compile-time. However, with object-oriented languages and dynamically-typed
languages, this type checking cannot in general be performed statically, thus incurring extra run-time overhead. Run-
time range checking in general cannot be optimized away even in statically-typed non-object-oriented languages.

2.4.3 Traditional Compromises

Few languages provide completely robust primitives. Most languages check the types of arguments to primitives,
either at compile-time (for statically-typed languages) or at run-time (for dynamically-typed languages), and some
check that array references are always in bounds (at least as an option). Few systems handle procedure call stack
overflow gracefully.

2.5 Generic Arithmetic

2.5.1 Benefits to Programmers

Most languages incorporate multiple numeric representations, such as integers and floating point numbers of various
ranges and precisions. These representations offer different trade-offs between accuracy and efficiency. Some
languages allow these numeric representations to be freely mixed in programs, and support automatic conversion from
one numeric representation to another. For example, a language supporting this kind ofgeneric arithmetic might
include arithmetic primitives that handle overflows and underflows by returning results in representations with greater
range or precision than the original arguments to the primitives (or providing the means for programmers to implement
their own conversion routines). Languages with generic arithmetic relieve the programmer of the burden of dealing
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with numeric representation issues. Code written with one numeric representation in mind becomes automatically
reusable for all other numeric representations without any explicit programmer interactions.

2.5.2 Implementation Effects

Generic arithmetic imposes significant run-time overhead. The system must perform extra run-time dispatching to
select an implementation of the numeric operation appropriate for the representation of the arguments. This
dispatching overhead is similar to that imposed by message passing; in fact, generic arithmetic can be viewed as an
object-oriented subpart of a language, albeit one that in an otherwise non-object-oriented language may not be user-
extensible. Generic arithmetic also requires extra run-time checking for overflows and underflows.

Overflows and underflows impose a serious indirect cost that is often overlooked when calculating the cost of generic
arithmetic. Since the representation of the result of an arithmetic operation may be different than the representation of
the operation’s arguments, the compiler cannot in general statically determine the representation of the result of a
numeric operation even if the compiler has determined the representation of the arguments. For example, even if the
compiler knows that the type of the arguments to an operation are represented as standard machine integers, the result
may be represented as an arbitrary-precision integer if an overflow occurs. Thus overflow checking limits the
effectiveness of traditional flow analysis to track the representations of numeric quantities.

2.5.3 Traditional Compromises

Because of these costs, few languages support generic arithmetic. Of those that do, several also provide alternative
representation-specific arithmetic operations that avoid the run-time overhead associated with generic arithmetic, but
also sacrifice the safety and expressiveness of generic arithmetic.

2.6 Summary

Object-oriented languages provide a number of important enhancements over traditional procedural programming
languages, among them abstract data types, message passing, and inheritance. User-defined control structures enhance
the abstract data type model, and when coupled with object-oriented features eliminates the need for built-in control
structures. Safe primitives are a must for an effective development environment. Support for generic arithmetic
increases both the programmer’s power and the program’s reliability.

Unfortunately, these desirable language features don’t come cheap. They impose significant implementation costs,
particularly in run-time execution speed. Abstract data types and user-defined control structures conspire to
dramatically increase the frequency of procedure calls, and dynamic binding both increases the cost of these procedure
calls and prevents direct application of traditional optimizations such as procedure inlining. Generic arithmetic and
safe primitives increase the expense of the basic operations at the leaves of the call graph.

The standard approach to solving these problems in existing language implementations is to cheat. Abstract data types
are compromised by distinguishing variables and functions in interfaces. Common control structures, operations, and
data types are built into the language definition, forcing programmers to choose between reusable, malleable programs
and execution speed. Generic arithmetic support is either non-existent or too expensive to use, and error-checking of
primitives is forgone in the name of execution speed.

SELF includes all the features described in this chapter as important, desirable language features. (The SELF language
will be described in detail in Chapter 4.) However, we were unwilling to cheat to get good performance. This dilemma
was the driving force that led to the research described in this dissertation.
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Chapter 3   Previous Work

In this chapter we describe previous software solutions for optimizing the execution speed of object-oriented
languages. We also review some techniques originally developed for traditional non-object-oriented languages that
relate to techniques for optimizing SELF.

3.1 Smalltalk Systems

Of all the commercial languages, Smalltalk is the closest to SELF. Consequently, efforts to improve the performance
of Smalltalk programs are probably the most relevant to achieving good performance for SELF.

3.1.1 The Smalltalk-80 Language

Smalltalk-80 incorporates most of the language features we identified in the previous chapter as contributing to
expressive power and implementation inefficiency: abstract data types, message passing, inheritance, dynamic typing,
user-defined control structures, error-checking primitives, and generic arithmetic [GR83]. However, the designers of
Smalltalk-80 included several compromises in the definition of the language and the implementation to make Smalltalk
easier to implement efficiently.

Smalltalk (and most object-oriented languages) treats variables differently from other methods. Variables are accessed
directly using a special mechanism that avoids a costly message send. Unfortunately, this run-time benefit comes at a
significant cost: a subclass can no longer override a superclass’ instance variable with a method, nor vice versa. This
restriction prevents certain kinds of code reuse, such as a class inheriting most of the code of a superclass but changing
part of the representation. A canonical example, described in section 2.2.3, is a programmer who wants to define a
rectangle class as a subclass of the generalpolygon class but is stymied when he cannot provide a specialized
representation for rectangles that differs from that used for polygons.

Another less visible compromise sacrifices the purity of the object-oriented model by introducing built-in control
structures and operations. The definitions of many common methods are “hard-wired” into the compiler, including
integer arithmetic methods such as+ and<, the object equality method==, boolean methods such asifTrue:, and
block iteration methods such aswhileTrue:. By restricting the semantics and flexibility of these “messages,” the
Smalltalk compiler can implement them efficiently using low-level sequences of special byte codes with no message
sending overhead.

These compromises significantly improve run-time performance but sacrifice some of the purity and flexibility of the
language model. For one, programmers are no longer able to change the definitions of the hard-wired methods, such
as to extend or instrument them. The compiler assumes that there is only a single system-wide definition of==, for
example, and any new definitions added by programmers are ignored. Programmers cannot define their own identity
methods for their new object classes. Similarly, for messages likeifTrue:ifFalse: with block literals as
arguments, the compiler assumes that the receiver will either betrue orfalse, and no other object is allowed as the
receiver, even if the programmer provides an implementation ofifTrue:ifFalse: for that object. Clearly these
restrictions compromise the simple elegance and extensibility of the language, and programmers can be inflicted with
completely unexpected behavior if they violate any of these assumptions.

Even worse, since there is such a large difference in performance between the handful of control structures hard-wired
into the implementation and the remaining control structures written by the programmer, programmers are tempted to
use the faster built-in control structures even if they are inappropriate. If succumbed to, this temptation will lead to
programs that are less abstract, less malleable, and less reusable. A better solution would be to develop techniques that
improve the performance ofall user-defined control structures uniformly, including those written by the programmer,
and encourage the programmer to maintain a high level of abstraction.

3.1.2 Deutsch-Schiffman Smalltalk-80 System

The definition of Smalltalk-80 specifies that source code methods are translated intobyte codes, the machine
instructions of a stack machine. Originally, Smalltalk-80 ran on Xerox Dorados implementing this instruction set in
microcode [Deu83]. Subsequent software implementations of Smalltalk-80 on stock hardware supplied avirtual
machine that interpreted these byte codes in software. Needless to say this interpretation was quite slow [Kra83].
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Additionally, Smalltalk-80 activation records are defined and implemented as first-class objects, allocated in the heap
and garbage collected when no longer referenced. This design further slowed the implementation of method call and
return with the cost to allocate and eventually deallocate these activation record objects.

Peter Deutsch and Allan Schiffman developed several techniques for implementing Smalltalk-80 programs better than
these interpreters without specialized hardware support [DS84]. They overcame the interpretation overhead by
introducing an extra invisible translation step from virtual machine byte codes into native machine code, with the
system directly executing the native machine code instead of interpreting the original byte codes. This translation
primarily eliminates the overhead in the interpreter for decoding each byte code and dispatching to an appropriate
handler.

The Deutsch-Schiffman system is based ondynamic compilation (called dynamic translation by Deutsch and
Schiffman): byte codes are translated into machine code on demand at run-time rather than at compile-time. Dynamic
compilation has a number of advantages over traditional static batch compilation. The compiler only has to compile
code that actually gets used, reducing the total time to compile and run a program. Programming turn-around is
minimized since the program can begin execution immediately after a programming change without waiting for the
compiler to recompile all changed code; any recompilations will be deferred until needed at run-time.

With dynamic compilation, the compiled code can be treated as acache on the more compact byte-coded
representation of programs. If a compiled method has not been used recently, its code can be thrown away (flushed
from the cache) to save compiled code space. If a method is needed again later, it can simply be recompiled from the
byte-coded representation. Deutsch and Schiffman’s compiler is fast enough that recompiling a method from its byte
code form is faster than paging in its compiled code from the disk, so this caching technique is especially useful for
machines with only small amounts of main memory.

The Deutsch-Schiffman system optimizes method call and return by initially stack-allocating activation records. If the
program begins manipulating stack-allocated activation records as first-class objects (e.g., by running the debugger)
or if external references to the activation record still exist when the activation record is about to return (e.g., when a
nested block outlives its lexically-enclosing activation record), then the system “promotes” activation records from the
stack to the heap, preserving the illusion that activation records were heap-allocated all along. Most activation records
never get promoted to the heap, so the performance of method call and return approaches the performance of procedure
call and return in a traditional language implementation and the load on the garbage collector is greatly reduced.

To reduce the cost of dynamic binding, Deutsch and Schiffman introduce a technique calledin-line caching. They
observe that for many message send call sites, the class of the receiver of the message remains the same from one call
to the next. This is symptomatic ofmonomorphic code: code in which the polymorphism afforded by dynamic typing
and dynamic binding is not being actively used. To take advantage of this situation, the call instruction that originally
invoked the run-time message lookup system is overwritten orbackpatched with a call instruction that invokes the
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result of the lookup. This effectively replaces the dynamically-bound call with a statically-bound call, eliminating the
overhead of the run-time message lookup system.

Of course, this static binding is not necessarily always correct. The class of the receiver of the message might change,
in which case the result of the message lookup might be different. To handle this situation, the Deutsch-Schiffman
system prepends aprologue to each method’s compiled code that first checks to see if the class of the receiver is correct
for this method. If the class is not correct, then the normal run-time message lookup system is invoked, backing out of
the mistakenly-called method. Thus the backpatched call instruction acts like a cache, one entry big, of the most
recently called methods. If the hit rate is high enough and the cost of checking for a cache hit is low enough, overall
system performance is improved.

Since a method may be inherited by more than one receiver class, whether or not the receiver’s class is correct for the
cached method may be an expensive computation to perform. Deutsch and Schiffman solve this problem by storing
the receiver’s class in a data word after the call instruction when the instruction is backpatched. The method’s prologue
then simply compares the current receiver’s class with the one stored in the word after the call site (reachable using
the return address for the call). If they are the same, the static binding is still correct and the method is executed. If they
are different, the prologue calls the run-time lookup routine to locate the method for the new receiver class. This
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approach has a lower hit rate than is possible (since a different class might still invoke the same method), but allows a
relatively fast check for a cache hit. Depending on the memory system organization, this technique requires two or
three memory references and four or five extra instructions to verify an in-line cache hit.

These techniques, along with a faster garbage collection strategy called deferred reference counting [DB76], made
significant improvements in the performance of Smalltalk-80 systems on stock hardware. The run-time performance
of the Deutsch-Schiffman implementation is close to twice the speed of the interpreted version of Smalltalk. However,
even with these techniques, plus the compromises in the language definition for commonly-used operations and control
structures, the performance of Smalltalk-80 programs is still markedly slower than implementations of traditional
statically-typed non-object-oriented languages. As described in Chapter 14, the current performance of the Deutsch-
Schiffman implementation of Smalltalk-80 on a set of small benchmarks is roughly ten times slower than optimized
C, measured on a Sun-4/260 workstation. This order of magnitude performance difference is unacceptable to many
programmers and is certainly one of the major reasons that Smalltalk is not more widely used.

Deutsch and Schiffman’s techniques are completely transparent to the user. Both dynamic translation of byte codes to
native code and stack allocation of activation records are performance optimizations hidden from the user; Smalltalk
programmers think they are simply getting a better interpreter. No user intervention is required to invoke the compiler
or any optimizations, and the user’s programming model remains at the level of interpreting, and debugging, the source
code. The speed of the translation from byte codes to machine code is so fast that it is hard to notice any pauses for
compilation at all. Future systems should attempt to achieve this level of unobtrusiveness.

3.1.3 Typed Smalltalk and TS Optimizing Compiler

Many researchers have noted that the chief obstacle to improving the performance of Smalltalk programs is the lack
of representation-level type information upon which to base optimizations like procedure inlining [Joh87]. In an effort
to improve the speed of Smalltalk programs, Ralph Johnson and his group at the University of Illinois at Urbana-
Champaign have designed an extension to Smalltalk called Typed Smalltalk [Joh86, JGZ88, McC89, Hei90, Gra89,
GJ90]. They added explicit type declarations to Smalltalk and built an optimizing compiler, called TS, that uses these
type declarations to improve run-time performance.

A type in Typed Smalltalk is either a (possibly singleton) set of classes*  or asignature. A variable declared to be of a
set-of-classes type is guaranteed to contain instances of only those classes included in the set. To allow a variable to
contain an instance of a subclass of one the listed classes, the subclass must also appear explicitly in the list. A signature
type is more abstract, listing the set of messages that may legally be sent to variables of that type. Any object that
understands the required messages can be stored in a variable declared with a signature type, independent of its
implementation. A signature type can be converted into a set-of-classes type by replacing the signature with all classes
compatible with the signature; this translation depends on the particular definition of the class hierarchy and may
change if the class hierarchy is altered.

Both kinds of types are used to perform static type checking of Typed Smalltalk programs, but the TS optimizing
compiler exploits set-of-classes types in several ways to improve run-time performance. If a variable is declared to
contain instances of only a single class (the set of classes is a singleton set), the compiler can statically bind every
message sent to the contents of the variable to the corresponding target methods. Similarly, if a primitive operation
expects arguments of a particular class, this check may be performed at compile-time instead of run-time if the type of
the argument is a singleton set. Methods that the user has marked as “inlinable” may be inlined if they are invoked
from a statically-bound call site.

If the set of classes is not a singleton set but is still small (say, two or three members in the set), the TS compiler
performscase analysis. The compiler generates type testing code to “case” on the class of the receiver at run-time,
branching to one of several sections of code, one section for each member of the set of classes in the type declaration.
The exact class of the receiver is known statically in each arm of the case, allowing the message to be statically bound
and inlined (if the user has marked the target method “inlinable”). This case analysis usually takes more compiled code
space than the original message send, since several potentially inlined versions of the message send are compiled, but
the run-time performance of the message is improved, especially if the message is inlined in the case arms. Control
flow rejoins after each arm of the case.

* Some class types in Typed Smalltalk can be parameterized by other classes, e.g.,Array of: Integer.
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Case analysis becomes too expensive in compiled code space and possibly even in execution time once the number of
possible classes becomes large. The TS compiler falls back on the Deutsch-Schiffman technique of in-line caching
beyond three or so possible classes. In-line caching is also used for messages sent to objects of signature types, since
these types tend to match many different classes.

To reduce the burden on the programmer of specifying static type declarations, the Typed Smalltalk system includes a
type inferencer that, when invoked, can automatically infer the appropriate type declarations for a routine. The
programmer must provide type declarations for instance variables and class variables (although Justin Graver states in
his dissertation that even these type declarations are not strictly necessary), and the inferencer will compute the
appropriate type declarations for method arguments, results, and locals.

Unfortunately, this inferencing process is complicated by the more dynamic nature of control flow in languages with
dynamic binding of messages to methods and by existing Smalltalk programming practice which virtually requires
flow-sensitive type checking. To handle these problems, the Typed Smalltalk type checker usesabstract interpretation
of top-level expressions to combine the inferred method signatures together based on the control flow required to
evaluate the top-level expression. While quite powerful, this style of type checking can be very slow (since in the worst
case their abstract interpretation takes time exponential in the size of the Smalltalk system), and the whole process may
need to be repeated for each new top-level expression. Also, since the system infers signature types rather than set-of-
classes types, the new type declarations are not very useful for the TS optimizing compiler. Manual type declarations
are still the rule in Typed Smalltalk when it comes to improving run-time performance.

In the TS compiler, the front-end translates the Typed Smalltalk code into a relatively machine-independentregister-
transfer language (RTL); the back-end then optimizes these RTL instructions and converts them into native machine
code. Primitive operations may be written by the programmer in the same register-transfer language, supporting a more
user-extensible system and allowing inlining of calls to primitive operations using the same mechanisms as inlining of
statically-bound message sends. Many standard optimizations are performed by the back-end of the compiler,
including common subexpression elimination, copy propagation, dead assignment elimination, dead code elimination,
and various peephole optimizations.

One interesting extension of constant folding included in the TS back-end is calledconstant conditional elimination;
this optimization is related to oursplitting technique described in Chapter 10. In conventional constant folding of
conditionals, when a conditional expression can be evaluated to eithertrue orfalse at compile-time, the compiler
can eliminate the test and either the true or the false branch. The TS extension also handles cases where the conditional
expression is not a compile-time constant within the basic block containing the test, but where the conditional
expression is compile-time evaluable in some of the block’s predecessors. In this situation, an algorithm called
rerouting predecessors copies the basic block containing the test for each predecessor that can evaluate the conditional
expression at compile-time, redirecting the predecessor to flow into the copy. The test can then be eliminated from the
copied basic block, and perhaps from the original basic block, too, now that it has fewer predecessors.
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Opportunities for this optimization occur frequently in Smalltalk code (and in SELF code, too). One common sequence
in Smalltalk and SELF is something of the formi < j ifTrue: [ ... ]. This is Smalltalk’s and SELF’s version
of a standardif conditional expression. Straightforward Smalltalk compilers would generate the following code
(displayed as a control flow graph):

This sequence of code first loads either thetrue object or thefalse object (in the common case that the arguments
are integers) and then immediately tests for thetrue object and thefalse object. Neither test can be eliminated
directly, since the result of the< message is not a single constant. But after rerouting predecessors and copying the
tests for each of the possible< outcomes, the tests can be turned into constant conditionals for the first two predecessors
and eliminated:

Subsequently, the loads oftrue andfalse may be eliminated as dead assignments, leaving code that is comparable
in quality to optimizing C compilers, once the two initial type tests have been executed.

i int?

j int?

i < j

t1 ← true t1 ← false t1 ← “<”(i, j)

t1 true?

t1 false?

“ifTrue:”(t1, [. . .]). . . nop

i int?

j int?

i < j

t1 ← true t1 ← false t1 ← “<”(i, j)

t1 true?

t1 false?

“ifTrue:”(t1, [. . .]). . . nop
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Published performance results for an early version of the TS optimizing compiler indicated that adding explicit type
declarations (of the set-of-classes variety) and implementing the optimizations described here led to a performance
improvement of 5 to 10 times over the Tektronix Smalltalk interpreter for small examples on a Tektronix 4405 68020-
based workstation. Rough calculations based on the speed of the Deutsch-Schiffman Smalltalk implementation on a
similar machine indicate that the TS optimizing compiler runs Typed Smalltalk programs about twice as fast as the
Deutsch-Schiffman system runs comparable untyped Smalltalk-80 programs. Unfortunately, this is still somewhere
between 3 and 5 times slower than optimized C.

The implementation of Typed Smalltalk is not complete. One serious limitation is that support for generic arithmetic
has been disabled: no overflow checking is performed on limited-precision integers (instances ofSmallInteger in
Smalltalk), and so the type checker assumes that the result of a limited-precision integer arithmetic operation is another
limited-precision integer. Additionally, in-line caching is not currently implemented, and so message sends in which
the type of the receiver may be one of more than a couple of classes cannot be executed by their system (although they
can be type-checked). Finally, only a small amount of the Smalltalk system has been converted into Typed Smalltalk
by adding type declarations, and so only small benchmarks may be executed; a full test of the type system and the
implementation techniques has not been performed.

One disadvantage of the Typed Smalltalk approach is that users must add many type declarations to programs that work
fine without them. To see real performance improvements, these type declarations must be of the set-of-classes variety,
and users will be tempted to make the set as small as possible to achieve the best speed-ups, limiting the reusability of
the code. In addition, users need to annotate all small, commonly-used methods as “inlinable” so that the TS compiler
will inline calls to them.

Another disadvantage of the Typed Smalltalk system is that it compiles slowly. This disrupts the user’s illusion of
sitting at a Smalltalk interpreter. Johnson notes that the implementation has not been fully tuned for compile-time
performance yet, nor has it been annotated with type declarations and optimized with itself yet. Johnson speculates that
these improvements might make the TS compiler run as fast as the Deutsch-Schiffman compiler; however, we are
skeptical that an optimizing compiler written in Typed Smalltalk could ever run as fast as a simple compiler written in
C, as is the Deutsch-Schiffman compiler.

3.1.4 Atkinson’s Hurricane Compiler

Robert Atkinson pursued an approach similar to the Typed Smalltalk project in attempting to speed Smalltalk-80
programs [Atk86]. He devised a type system very similar to Typed Smalltalk’s set-of-classes types and allowed
Smalltalk programmers to annotate their programs with type declarations. He designed and partially implemented an
optimizing compiler, called Hurricane, that uses these types in exactly the same way as the TS optimizing compiler:
the compiler would statically bind and inline messages sent to receivers of singleton types, and statically bind and
inline messages sent to receivers of small-set types after casing on the type of the receiver (the latter of these techniques
was designed but not implemented).

Unlike the Typed Smalltalk approach, type declarations in Hurricane arehints, not guarantees, and no static type
checking is performed to verify that type declarations are correct. This requires that all optimizations based on type
declarations be prefixed with a run-time test to verify that the type declaration provided by the programmer is correct.
In case the declaration is ever incorrect, the Hurricane compiler generates code to restart an unoptimized, untyped
version of the method. Atkinson notes that this restarting severely limits the kinds of methods that can be optimized,
presumably to just those that have no side-effects before any code that verifies the types of variables.

Few optimizations other than inlining statically-bound messages were implemented, and in fact some optimizations
present in the Deutsch-Schiffman compiler, including inlining calls to common primitives such as integer arithmetic,
were omitted. Even with these limitations in Hurricane’s implementation, Atkinson reports a factor of two speed-up
over the Deutsch-Schiffman system for small examples running on a Sun-3 workstation. This speed-up appears to be
similar to that obtained by the TS optimizing compiler, although precise comparisons are difficult since the two groups
use different machines and compare against different baseline systems (a Deutsch-Schiffman dynamic compilation
system versus a Tektronix interpreter). No information is available about the speed of the compiler itself. It is
interesting to note that Atkinson implemented his Hurricane compiler in a single summer.
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3.1.5 Summary

The Deutsch-Schiffman Smalltalk-80 system, with its dynamic compilation, in-line caching, and other techniques,
represented the state of the art when we began our work in implementing dynamically-typed purely object-oriented
languages. Unfortunately, even with several serious compromises in the purity of the language and the programming
environment for the sake of better performance, the Deutsch-Schiffman Smalltalk-80 system runs small benchmark
programs at just a tenth the speed of a traditional language such as C when compiled using an optimizing compiler.
Attempts to boost the performance of Smalltalk on stock hardware rely on explicit user-supplied type declarations to
provide more information to the compiler that enables it to statically-bind and inline away many expensive messages.
This approach typically doubles the speed of small benchmark programs, but still leaves a sizable performance gap
between type-annotated Smalltalk and a traditional language and sacrifices much of the ease of programming,
flexibility, and reusability of the original untyped code.

3.2 Statically-Typed Object-Oriented Languages

Several statically-typed object-oriented languages have been implemented, and in this section we describe techniques
used in these languages to achieve relatively good performance.

3.2.1 C++

C++ is a statically-typed class-based object-oriented language [Str86, ES90]. The original version of C++ included
only single inheritance; recent versions (C++ 2.0 and later) have extended C++ to support multiple inheritance. C++
contains C as an embedded sublanguage and so incorporates all of C’s built-in control structures and data types.
Neither user-defined control structures nor generic arithmetic are supported directly. Operations on built-in data types
are checked at compile-time for type correctness, but other checks, such as array access bound checks, are not, so the
built-in operations in C++ are not robust. Current versions of C++ do not support parameterized data structures or
exceptions, but future versions of the language probably will. Statically-bound procedure calls are available even when
performing operations on objects; messages are dynamically-bound only when the target method is annotated with the
virtual keyword. These language properties enable C++ programmers to reduce the performance penalty of object-
oriented programming by skirting features that incur additional cost, such as dynamic binding. Of course, the benefits
of object-oriented programming also are lost when non-object-oriented alternatives are selected.

C++ equates types with classes. A subclass may specify whether or not it is to be considered a subtype of its
superclass(es) (by inheriting from the superclass eitherpublicly or privately); if so, the C++ compiler verifies
that the subclass is a legal subtype of the superclass(es). With only single inheritance, this static type system severely
hampers reusability of code, since instances of two classes unrelated in the inheritance hierarchy cannot be
manipulated by common code, even if both classes provide correct implementations of all operations required by the
code. This deficiency is rectified with the addition of multiple inheritance, since the two previously unrelated classes
may be extended with an additional common parent defining virtual functions for all the operations required by the
common code, thus relating the two classes.
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Most C++ implementations incorporate a special technique to speed dynamically-bound message passing enabled by
the presence of static type checking. In the versions of C++ supporting only single inheritance, each object contains
an extra data field that points to a class-specific array of function addresses (the_vtbl array). Each method that is
declaredvirtual is given an index, in increasing order from base class to subclass; all overriding implementations
are given the same index as the method they override._vtbl arrays for each class are initialized to contain the
addresses of the appropriate method, each method’s address at its corresponding index in the_vtbl array.

To implement a dynamically-bound message send, the compiler generates a sequence of instructions that first loads
the address of the receiver’s_vtbl array, then loads the function address out of the_vtbl array at the index
associated with the message being sent, and then jumps to this function address to call the method. Thus dynamically-
bound calls have an overhead of only two memory indirections per call. Of course, additional overhead arises from the
fact that dynamically-bound calls are not inlined, while a statically-bound call could be.

This_vtbl technique may be extended to work with the versions of C++ that support multiple inheritance. The trick
is to embed in the object a complete representation, including the_vtbl pointer, of each superclass other than the
first, and to pass the address of the embedded object whenever assigning a reference to the object to a variable that
expects an object of the superclass (or when casting an expression from the subclass type to the superclass type). Users
of an object reference do not know whether the object they manipulate is a “real” object, or if they are manipulating
an embedded object instead.

struct A {
int a;
virtual int m();

};

struct B: A {
int b;
virtual int m();
virtual int n();

};

struct C: B {
int c;
virtual int m();
virtual int n();
virtual int o();

};

_vtbl

a

_vtbl

a

_vtbl

a

b

b

c

&A::m

&B::m

&B::n

&C::m

&C::n

&C::o

C++ Virtual Function Implementation
(Single Inheritance Version)
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Since this assignment goes on implicitly when invoking a virtual function defined on one of the object’s superclasses
(assigning the receiver of the message to thethis argument of the virtual function), the_vtbl array and the
implementation of message dispatch need to be extended. The_vtbl array is extended to be an array of<function
address, embedded object offset> pairs.

The function address works the same as for single inheritance. The offset is added to the address of the receiver object
to change it into a pointer into the embedded subobject if necessary. Thus, the overhead for invoking a dynamically-
bound method is three memory indirections and an addition (again ignoring the overhead for not being able to
statically-bind and inline away the message send entirely). This is roughly the same overhead as for the inline caching
technique used in the fast Smalltalk-80 implementations when the inline cache gets a hit, but the_vtbl array
technique does not slow down for message sends in which the receiver’s class changes from one send to the next (there
is no extra cache miss cost). In the multiple inheritance case, the_vtbl array technique requires additional add
operations for some assignments from a subclass to a superclass.

Supportingvirtual base classes in C++ adds even more complication. Since multiple inheritance in C++ can form a
directed acyclic graph, a particular base class can be inherited by some derived class along more than one derivation
path. If the base class is declaredvirtual, then only one copy of the virtual base class’ instance variables is to exist
in the final object; non-virtual base classes have independent copies of instance variables along each distinct derivation
path. Since the embedding approach does not work directly with virtual base classes (in general, only one of the
derivation paths can have the virtual base class embedded within it), C++ implementations include a pointer to the
virtual base class in the representation of every subclass of the virtual base class, as shown in the diagram on page 24.

struct A {
int a;
virtual int m();
virtual int s();

};

struct B {
int b;
virtual int n();
virtual int t();

};

struct C: A, B {
int c;
virtual int m();
virtual int n();
virtual int o();

};

_vtbl

b

_vtbl

a

_vtbl

a

c

b

&A::m

&B::n

&B::t

&C::m

&A::s

&C::n

C++ Virtual Function Implementation
(Multiple Inheritance Version)
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0

0

0
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&B::t
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Assignments of the subclass to the virtual base class (or casts from the subclass to the base class) do not simply add a
constant to the variable’s address but instead must perform a memory indirection to load the virtual base class’ address
out of the object, increasing the overhead for these sorts of assignments from an add instruction to a memory
indirection.

Virtual base classes should not be written off as an obscure C++-specific feature. In fact, most other class-based object-
oriented languages define multiple inheritance of instance variables as if all superclasses are virtual base classes.
Consequently, the extra overhead associated with virtual base classes in C++ also would be incurred by other object-
oriented languages with multiple inheritance.

The space overhead for the_vtbl-based virtual function implementation includes the space taken up for the_vtbl
function arrays and the extra words in each object to point to the_vtbl arrays and to virtual base classes. The_vtbl
function arrays may be shared by all instances of a class, but not with instances of subclasses. With the single
inheritance scheme, there is a single_vtbl array per class, of length equal to the number of virtual functions defined
by (or inherited by) the class; subclasses thus may have longer_vtbl arrays than superclasses. With multiple
inheritance, a particular class must define_vtbl arrays for itself and every superclass that isn’t the first superclass in
a class’ list of superclasses; each of these_vtbl arrays are twice as big as in the single inheritance version since they
include offsets in addition to function addresses. The space overhead for each instance includes a pointer to each of its
class’_vtbl arrays (one in the single inheritance case, possibly more in the multiple inheritance case) and a pointer
to a virtual base class for each subclass of all virtual base classes in the object. This space overhead is significantly
more than the single extra word per object required for the in-line caching technique used in the fast Smalltalk-80
implementations.

This _vtbl-based implementation of message passing may work for C++, but could pose problems for other
languages that need to support garbage collection (C++ does not support garbage collection). C++’s multiple
inheritance layout scheme can create pointers into the middle of an object (e.g., to point to an embedded superclass or
virtual base class), but without any easy way of locating the outermost non-embedded object. This can be problematic
for some fast garbage collection algorithms. Slowing down the garbage collector could offset some (or perhaps all) of
the extra performance advantage of this implementation approach over a simpler scheme such as in-line caching that
never produces pointers into the middle of an object.

3.2.2 Other Fast Dispatch Mechanisms

John Rose describes a framework for analyzing_vtbl-array-style message send implementations [Ros88]. His
framework can describe several variations on the array-lookup implementation, and Rose carefully analyzes their
relative performance. Not all variations are practical for all object-oriented languages; techniques such as that
implemented in single-inheritance C++ are probably the fastest available short of statically binding and optionally
inlining the message send.

Several researchers have proposed techniques for using a single_vtbl array even in languages with multiple
inheritance (the implementation of multiple-inheritance C++ uses multiple_vtbl arrays per object and pointer
adjusting for assignments and method calls). These proposed techniques potentially waste some space by having
entries in_vtbl arrays that are unused for some classes, but only need a single_vtbl array pointer per object and
a single_vtbl array per class. The central idea behind these techniques is to determine a system-wide mapping of
message names to_vtbl array indices such that no two message names defined for the same object map to the same
index. Dixonet al use a graph coloring technique to determine message names which must be given distinct indices
[DMSV89]; they report that only a small amount of space is wasted in empty_vtbl array entries. Pugh and Weddell
propose a novel extension that allowsnegative indices [PW90]. The extra degree of freedom in assigning indices
without wasting space saves a significant amount of space. They report only 6% wasted space for a Flavors system
with 564 classes and 2245 fields using their technique, versus 47% wasted space for a more conventional index
assignment algorithm. Although Pugh and Weddell’s technique is couched in terms of laying out the instance variables
of an object to allow field accesses with a single memory indirection, their approach easily could be applied to laying
out the entries in a class-specific array of member function addresses to allow virtual function calls with only two extra
memory indirections above a normal direct procedure call, the same as for single-inheritance C++ implementations.

Unfortunately, the usefulness of these techniques is limited by their need to examine the complete class hierarchy prior
to assigning indices to message names and compiling code. Additionally, adding a new class may require the system-
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struct A {
int a;
virtual int m();
virtual int n();
virtual int o();

};

struct B: virtual A {
int b;
virtual int n();
virtual int p();

};

struct C: virtual A {
int c;
virtual int m();
virtual int q();

};

struct D: virtual A, B, C {
int d;
virtual int p();

};

_vtbl

b

_vtbl

a

a

&A::m

&A::m

&B::n

C++ Virtual Function Implementation
(Multiple Inheritance with Virtual Base Classes)

_vtbl

0

0

+3

_vbase

_vtbl

c

a

_vtbl

_vbase

&A::n 0

&A::o +3

&A::m 0

&B::n -3

_vtbl

b

&C::m

&B::n 0

+4

_vbase &A::o +7

d

_vtbl

c

a

_vtbl

_vbase

&D::p 0

&C::q +4

&A::o 0

&B::p 0

&A::o 0

&C::m

&A::n +3

0

&A::o +3

&C::m -3

&A::n 0

&C::q 0

&A::o 0

&C::m

&B::n -4

0

&A::o +3

&C::m -3

&B::n -7

&C::q 0

&A::o 0



25

wide assignment to be recalculated from scratch, since new conflicts may be introduced that invalidate the previous
assignment. Dixonet al suggest a scheme whereby the index assignments are not treated as constants by the compiler
but instead as global variables defined in a separately compiled module, thus limiting recompilation overhead to just
the separate module that defines the assignments. However, this scheme slows down message lookup by at least an
extra memory indirection to load the appropriate “constant” from its global variable location, thus largely eliminating
the performance advantage of the global index allocation techniques.

The basic_vtbl array approach used in C++ implementations and the faster versions described above all rely on
static type checking to guarantee that messages will not be sent to objects that do not expect them. The techniques may
be extended to work with dynamically-typed languages by performing array bounds checking before fetching a
function pointer out of a function array and also checking the actual message name against the name expected by the
function extracted out of the array. If either of these tests fails, then the message is not understood by the receiver
object, and a run-time type error results. The extra cost for these run-time checks may be significant, and when
combined with the original cost of the two to four additional memory indirections may be much more than the expected
average cost of in-line caching.

3.2.3 Trellis/Owl

Trellis/Owl is a statically-typed class-based object-oriented language supporting multiple inheritance [SCW85,
SCB+86]. Trellis/Owl equates types with classes, and a subclass is required to be a legal subtype of its superclasses.
Trellis/Owl includes the conventional kinds of built-in control structures, plus atype_case control structure that
tests the run-time type of an expression. Trellis/Owl does not support user-defined control structures or closures, but
does provideiterators andexceptions.*  An iterator is a user-defined procedure invoked by thefor built-in control
structure. Unlike a normal procedure, an iterator may successively yield a series of values before returning. Each
yielded value is assigned to the iteration variable local to thefor loop, and the body of thefor loop is executed once
per yielded value. Control alternates between the iterator procedure and thefor-loop body; thefor loop exits when
the iterator returns normally. Iterators provide a way for user-defined abstract data types (such as collections) to be
iterated through conveniently, one element at a time, while preserving the abstraction boundary between the caller and
the abstract data type. Exceptions provide a way for procedures to signal that a non-standard situation has occurred,
and for callers to handle the exceptional situation at a point separate from the normal return point. Exceptions can help
organize programs, streamlining the code for handling the normal common-case situations and clearly distinguishing
the code handling unusual cases.

Thetype_case control structures, iterators, and exceptions are three common uses for closures. By building them
into the language, the implementation of Trellis/Owl can include special techniques to make them relatively efficient.
However, even thoughtype_case’s, iterators, and exceptions extend traditional control structures in useful ways,
there are still user-defined control structures that cannot be expressed easily using these built-in control structures. For
example, exceptions as defined in Trellis/Owl automatically terminate the routine that raises the exception. Exceptions
implemented using general closures could either terminate the routine, restart it, or continue it, at the discretion of the
caller. As another example of the limitations of built-in control structures, Trellis/Owl’s iterators provide a mechanism
for performing some action uniformly on every element of a collection, but a user-defined control structure could treat
the first, middle, and last elements of a collection differently, taking three closures as arguments. First-class closures
and user-defined control structures are more expressive and simpler than any selection of built-in control structures.

Trellis/Owl supports object-oriented data abstraction very well. It is a pure object-oriented language, in that all
operations on objects are performed using message sends, with no statically-bound procedure calls in the language,**

and even variables are accessed solely via messages. The Trellis/Owl implementation has been concerned primarily
with eliminating the overhead for these messages [Kil88]. As its principle implementation technique, Trellis/Owl
automatically compiles a separate version of each source method for each inheriting subclass. Each version is used
only for receivers whose class is exactly the same as the one assumed by the copy. This allows the compiler to know
the exact type of the receiver within the copied method, enabling the compiler to statically bind all messages sent to
the receiver. This static binding is not possible with only a single shared version of the source method, since each
subclass is free to provide new implementations for all methods defined on the receiver. Additionally, to save compiled

* These control structures were pioneered in the CLU language [LAB+81], of which Trellis/Owl is a descendant.
** Operations on classes may only be invoked on class constants (variables cannot contain classes), and so are effectively statically-

bound. Operations on classes primarily create new instances.
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code space, if the compiled code of a method for a subclass is the same as for a superclass, then the subclass’ method
will share the compiled code of the superclass; the Trellis/Owl compiler only generates a new compiled method when
it differs from all other compiled methods. Our customization technique, described in Chapter 8, is similar to Trellis/
Owl’s “copy-down” compilation strategy.

Trellis/Owl can statically bind messages in two other situations. If the receiver of a message is a compile-time constant,
the message sent to the constant can be statically bound. If the static type of the receiver of a message is annotated with
no_subtypes, thus preventing the programmer from defining subclasses and overriding methods, the compiler
again can statically bind the message. Unfortunately, theno_subtypes declaration violates the pure object-oriented
model by explicitly preventing any future inheritance from classes declared to haveno_subtypes, and therefore the
declaration is a classic example of implementation efficiency concerns compromising an otherwise clean object model.
In fact, the same efficiency benefits could be achieved without compromising the language definition by simply
checking at link-time whether a class has any subclasses, thus inferring theno_subtypes declaration without
modifying the source code.

If a message send has been statically bound, the compiler uses a direct procedure call to speed message dispatch. If the
target of the message is an instance variable accessor (remember that all instance variables are accessed through
messages in Trellis/Owl), then the accessor method is inlined, further increasing the speed of these messages.
Currently, Trellis/Owl does not inline any other methods, even common methods such as integer arithmetic.

If a message remains dynamically bound, then Trellis/Owl uses the same in-line caching technique pioneered by the
Deutsch-Schiffman Smalltalk-80 system. If this cache misses, then an external hash table specific to the class of the
receiver is consulted for the target method. Trellis/Owl’s calling overhead for dynamically-bound messages should
compare favorably to fast Smalltalk-80 systems.

Unfortunately, no performance data is available for Trellis/Owl. The implementation does very little traditional
optimization and does not even do as much optimization as fast Smalltalk-80 systems, other than copying methods
down for each receiver class. The implementors openly admit that Trellis/Owl’s performance is not near that of
traditional languages, but report that performance is “good enough” for their users.

3.2.4 Emerald

Emerald is a statically-typed pure object-oriented language for distributed programming [BHJL86, Hut87, HRB+87,
JLHB88, Jul88]. Emerald is unusual in lacking both classes and implementation inheritance: Emerald objects are
completely self-sufficient. Emerald does include a separate subtyping hierarchy, however, and recent versions include
a powerful mechanism for statically-type-checked polymorphism [BH90]. All Emerald data structures are objects, and
the only way to manipulate or access an object is to send it a message. Thus, Emerald is just as pure as Trellis/Owl.
Unfortunately, Emerald sacrifices complete purity and elegance for the sake of efficiency in a manner similar to the
no_subtypes declaration in Trellis/Owl. Several common object types such asint,real,bool,char,vector,
andstring are built-in to the implementation and can be neither modified nor subtyped. This allows the compiler to
statically bind and inline messages sent to objects statically declared to be one of the built-in types to improve
efficiency, at the cost of reduced reusability and extra temptation of programmers to misuse lower-level data types.
Also, some messages such as== are not user-definable; there is a single system-wide definition of==, and
programmers cannot redefine or override this definition. This restriction allows the compiler to generate in-line code
for == rather than generating a full message send.

Most of the implementation techniques developed for Emerald address distributed systems, such as including run-time
tests to distinguish references to local objects from references to remote objects and optimizations to eliminate many
of these tests. The Emerald compiler also includes a flow-insensitive type inferencer which can determine the
representation-level concrete type of an expression if that expression is a literal, a variable known to be assigned only
expressions of a particular concrete type, or a message send whose receiver is known to be a particular concrete type
(enabling the compiler to statically-bind the message send to a particular method) and whose bound method’s result is
a literal. This simple interprocedural concrete type inference is used to statically-bind message sends, eliminating the
run-time message lookup, and also to support the analyses for determining whether an object is guaranteed to remain
local to the current node. The Emerald compiler performs no inlining of user-defined methods, however, even when
statically-bound.
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3.2.5 Eiffel

Eiffel is a statically-typed class-based object-oriented language supporting multiple inheritance [Mey86, Mey88,
Mey92]. Like C++ and Trellis/Owl, Eiffel equates classes with types, and treats subclassing as subtyping. However,
Eiffel does not verify that subclasses are legal subtypes of their superclasses, and in fact provides many commonly-
used features that violate the standard subtype compatibility rules assumed by other statically-typed object-oriented
languages. Eiffel provides no support for user-defined control structures, but does include an exception mechanism and
an assertion mechanism that optionally checks assertions at run-time, generating an exception if an assertion is
violated.

Eiffel uses dynamically-bound message passing for all procedure calls, but includes explicit variables that cannot be
overridden in subclasses (Eiffel does allow methods to be overridden by variables, in which case they are accessed
using dynamically-bound messages as in Trellis/Owl). This speeds variable accesses at the cost of reduced reusability;
thepolygon andrectangle example used in section 3.1.1 to illustrate problems with Smalltalk-80 applies equally
to Eiffel.

Unfortunately, no information has been published on implementation techniques or run-time performance for Eiffel.

3.2.6 Summary

C++ is widely described as an efficient object-oriented language. Much of this efficiency, however, comes from its
embedded non-object-oriented language, C. A C++ program achieves good efficiency primarily by avoiding the
object-oriented features of C++, relinquishing both the performance overhead and the programming benefits
associated with these features. Trellis/Owl, Emerald, and Eiffel, while being much more purely object-oriented than
C++, compromise their purity with restrictions designed to enable a more efficient implementation.

C++ implementations use a virtual function table implementation that reduces the overhead of message passing over
normal direct procedure calls to between two and four memory indirections and in some cases an add instruction,
depending on whether the system supports single or multiple inheritance, whether virtual base classes are involved,
and whether function table indices are assigned using only local information or globally using system-wide
information. Unfortunately, the performance of these implementations relies on static type checking to verify that all
messages will be sent to objects that understand them, and so they are not directly applicable to a dynamically-typed
language such as SELF; adding in extra run-time checking to detect illegal messages would sacrifice any performance
advantage held by the virtual function table implementation over a system like in-line caching.

3.3 Scheme Systems

Scheme is a dynamically-typed function-oriented language descended from Lisp [AS85, RC86]. Scheme supports
several language features described in Chapter 2 as desirable, including closures and generic arithmetic. Consequently,
insights into the construction of efficient Scheme implementations may help in building efficient implementations of
object-oriented languages, particularly ones with user-defined control structures and generic arithmetic. Conversely,
techniques developed for implementing object-oriented languages may be useful for implementing Scheme. This
section describes work on efficient Scheme implementations.

3.3.1 The Scheme Language

Scheme includes a number of built-in control structures, data types, and operations. In addition, Scheme supports
lexically-scopedclosures with which Scheme programmers may build a wide variety of user-defined control
structures. Closures are first-class data values which may be passed around Scheme programs, stored in data structures,
and invoked at any later time, much like blocks in SELF and Smalltalk. Scheme closures and Smalltalk blocks are
defined to be “upwardly mobile”: they may be invoked after their lexically-enclosing scope has returned, even if they
refer to local variables defined in the enclosing scope. Closures are a key ingredient of the functional programming
style based on higher-order lexically-scoped functions.

Scheme also supports first-classcontinuations. A continuation is a function object that encapsulates “the rest of the
program” at the time it is created. Continuations may be used by programmers to build powerful control structures,
such as exception handlers, coroutines, and backtracking searches. Non-local returns in SELF and Smalltalk are a
specialized form of continuation creation and invocation.
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Like most Lisps, Scheme supports generic arithmetic. Therefore, although Scheme is not directly object-oriented, it
includes a sizable object-oriented subsystem (albeit not extensible by the programmer). Primitive operations in
Scheme are robust, performing all necessary error checking to detect programmer errors. Since variables are untyped,
this checking cannot in general be performed statically, thus incurring additional run-time cost. Unchecked versions
of many common primitives are also available to the speed-conscious programmer, with a corresponding loss of safety.
Also, type-specific unchecked versions of arithmetic functions exist for programmers who are willing to sacrifice both
safety and reusability in the quest for speed.

3.3.2 The T Language and the O RBIT Compiler

T is an object-oriented extension to Scheme [RA82, Sla87, RAM90]. It includes all the features of Scheme, including
first-class closures and continuations, and adds the ability to declare dynamically-bound generic operations and object
structure types. An operation called with an object as its first argument invokes the implementation of the operation
associated with the object; a default implementation of the operation may be provided for built-in data types and
objects that do not implement the operation. T is not a pure object-oriented language, since all the built-in data types
and procedures of Scheme are still available in T, but T is better than most hybrid languages in that many built-in
procedures inherited from Scheme are defined as dynamically-bound operations in T, and the T programmer can
override any statically-bound procedure with a dynamically-bound version. Thus, a T programmer may turn his T
system into a nearly pure object-oriented language; common practice, however, still relies heavily on the traditional
built-in data types and operators from Lisp, such ascons, car, andcdr, which are not redefined as dynamically-
bound operations.

The ORBIT T compiler by Kranzet al is a well-respected Scheme compiler [KKR+86, Kra88]. The ORBIT compiler
analyzes the use of closures and continuations and attempts to avoid heap allocation of closures whenever possible.
Early measurements indicate that ORBIT’s performance is comparable both to other Lisps without closures and even
to traditional languages such as Pascal. However, as seems to be the rule with Lisp benchmarks, the unsafe type-
specific versions of arithmetic operators are used to achieve fast performance; the compiler does not optimize the
performance of true generic arithmetic [Kra90]. Additionally, no user-defined control structures are used in the
benchmarks measured, only the built-in control structures. Finally, ORBIT does not optimize the object-oriented
features of T [Kra89].

3.3.3 Shivers’ Control Flow Analysis and Type Recovery

Olin Shivers has developed a set of algorithms for constructing relatively large control flow graphs from Scheme
programs using interprocedural analysis, even in the presence of higher-order functions and closures [Shi88]. The
resulting large control flow graph is more amenable to traditional optimizations than the original small control flow
graphs, thus potentially boosting the performance of Scheme programs to that achieved by optimizing compilers for
traditional languages.

Shivers also developed a technique fortype recovery in Scheme that attempts to infer the types of variables in programs
[Shi90]. His algorithm begins with assignments from constants (which have a known type) and propagates this
information though his extended interprocedural control flow graph along subsequent variable bindings, much like
traditional data flow analysis (described in section 3.4.1). He proposes using this type information to eliminate run-
time type tests around type-checking primitive operations. Our type analysis, described in Chapter 9, has much in
common with this proposal. Unfortunately, his techniques have not yet been developed into a practical, working
system; for example, his system does not yet generate machine code, only small examples have been examined, and
the compiler is quite slow. Also, while Scheme programs contain higher-order functions, they are not object-oriented,
so the interprocedural analysis used in the construction of the extended control flow graph upon which the type
recovery is based cannot be performed easily and accurately in the presence of the dynamically-bound message passing
that is characteristic of object-oriented systems.

3.3.4 Summary

While Scheme supports several of the same seemingly expensive features that SELF does, such as closures, generic
arithmetic, and robust primitives, it also includes enough inexpensive alternatives for programmers to avoid the
expensive features. Scheme includes built-in control structures to avoid much of the overhead of closures, and most
Scheme systems include unsafe primitives and type-specific arithmetic operators to avoid the overhead of generic
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arithmetic and robust primitives. Of course, by avoiding the overhead of the expensive features the programmer also
loses their advantages in flexibility, simplicity, and safety. Some techniques used Scheme systems, however, are
relevant to SELF, including analysis of the use of closures to avoid heap allocation and analysis of type information to
avoid run-time tests.

3.4 Traditional Compiler Techniques

Since we are attempting to make SELF competitive with the performance of traditional languages and optimizing
compilers, we will likely need to include and possibly extend traditional optimizing compiler techniques in the SELF
compiler. In this section we discuss several conventional techniques that relate to techniques used for SELF.

3.4.1 Data Flow Analysis

Much work has been done on developing techniques to optimize traditional statically-typed non-object-oriented
imperative programming languages such as Fortran [BBB+57], C, and Pascal [ASU86, PW86, Gup90]. Many of these
techniques revolve arounddata flow analysis, a framework in which information is computed about a procedure by
propagating information through the procedure’s control flow graph. The information computed from data flow
analysis may be used to improve both the running time and the compiled code space consumption of programs. Some
examples of optimizations performed using the results of data flow analysis include constant propagation, common
subexpression elimination, dead code elimination, copy propagation, code motion (such as loop-invariant code
hoisting), induction variable elimination, and range analysis optimizations such as eliminating array bounds checking
and overflow checking. Several of the techniques used in the SELF compiler are akin to data flow analysis, in particular
type analysis described in Chapter 9.

Data flow analyzers propagate information, usually in the form of sets of variables or values, around the control flow
graph, altering the information as it propagates across nodes in the control flow graph that affect the information being
computed. The analysis may propagate either forwards or backwards over the control flow graph, depending on the
kind of information being computed. Data flow analysis that examines only a single piece of straight-line code (abasic
block) is calledlocal; data flow analysis that examines an entire procedure is calledglobal.

Data flow analysis is complicated by join points in the control flow graph (merge nodes for forward propagation,
branch nodes for backward propagation). At join points, the information derived from each of the join’s predecessors
may be different. Data flow analysis algorithms combine the information from the predecessors in aconservative
approximation, meaning that no matter what path execution actually takes through the program, the information data
flow analysis computes will be correct (i.e., it is conservative), although it might not be as precise as possible (i.e., it
may be only an approximation). The conservativeness of data flow analysis algorithms is required in order that the
optimizations performed using the computed information preserve the semantics of the original program. Ideally, the
approximations are as close to the “truth” as can be achieved without too much compile-time expense.

Data flow analysis gets even more complicated in the presence of loops. The loop entry point (the head of the loop in
forward data flow analysis) acts like a join point, but the first time the loop entry point is reached the information for
the looping “backwards” branch has not yet been computed. One common approach to handling this problem first
assumes the best possible information about the loop branch, analyzes the loop under this assumption, and keeps
reanalyzing the loop until the information computed for the looping branch matches the information assumed for the
looping branch. Thisiterative data flow analysis finds the bestfixpoint in the information computed for the loop, but
can be a relatively expensive operation since the body of the loop can be reanalyzed many times before the fixpoint is
found. Our iterative type analysis technique works similarly, as described in Chapter 11.

Iterative data flow analysis extracts information from arbitrary control flow graphs. For certain restricted kinds of
control flow graphs calledreducible control flow graphs typically produced by programmers of traditional languages
using “structured programming,” asymptotically faster but more complex techniques such asinterval analysis can be
used to extract similar kinds of information. Unfortunately, the control flow graphs manipulated by the SELF compiler
are not always reducible, especially after splitting loops as described in Chapter 11.
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3.4.2 Abstract Interpretation

Abstract interpretation is a more semantics-based approach to the data flow analysis problem [CC77]. In this
framework, the semantics of the original programming language is abstracted to capture only relevant information; this
new abstract semantics is called anon-standard semantics. The program can then be analyzed by interpreting the
program using the non-standard semantics. Of course, some conservative approximation is usually required to be able
to interpret the non-standard semantics of the original program in a bounded amount of time; this approximation
frequently can be captured formally in the way the non-standard semantics is defined. Abstract interpretation and data
flow analysis are both techniques for statically analyzing programs, but a particular analysis problem can sometimes
be described more elegantly using abstract interpretation.

3.4.3 Partial Evaluation

Partial evaluation is a technique for optimizing a program based on a partial description of its input [SS88]. A partial
evaluator takes as input a program (say a circuit simulator), written for a large class of potential inputs, and a particular
input to the program (say a circuit description), and produces as output a new program optimized for the particular
input (a simulator optimized for a particular circuit). Partial evaluation is intended to allow a programming style in
which a single general program is written that can be optimized for particular cases, improving on the alternative style
of writing many specialized programs.

Partial evaluators produce these optimized programs using a form of interprocedural analysis, propagating the
description of the input program through the entire program call graph and taking advantage of this extra information
through heavy use of constant folding, procedure inlining, and the like. Partial evaluation systems also commonly
produce multiple versions of a particular procedure (calledresidual functions), each optimized for a particular calling
environment; procedure calls then branch to the appropriate optimized residual function instead of the more general
and presumably slower original function. Our customization technique, described in Chapter 8, can be viewed as
partial evaluation based on run-time information, as is discussed in section 8.4.

3.4.4 Common Subexpression Elimination and Static Single Assignment Form

Global common subexpression elimination is one of the most important of the traditional optimizations. The standard
approach to common subexpression elimination uses data flow analysis to propagate sets ofavailable expressions,
which are computations that have been performed earlier in the control flow graph [ASU86]. After computing the
expressions available at a control flow graph node such as an arithmetic instruction node, the compiler can eliminate
the node if the result computed by the node is already available.

For example, the result of the followingadd control flow graph node would be added to the available expressions set:

If some later node in the graph calculates the same value, and the result of the earlier node is still available:

then the compiler can replace the second redundant calculation with a simple assignment node from the result of the
earlier node to the result of the eliminated node:

Common subexpression elimination via comparing against available expressions relies heavily on determining when
two expressions (such as the twoi + j expressions above) are equivalent. When the two expressions include the

n1 ← add i, j

available: {n1 = i + j}

r ← add i, j

available: {n1 = i + j)

r ← n1

available: {n1 = i + j}

available: {n1 = i + j}
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same variable names, one would expect the expressions to be the same. However, any assignment to a variable
referenced by an available expression would cast this equivalence into doubt, and so an expression must be removed
from the available expression set whenever one of the variables in the expression are assigned. For example, ifi were
assigned a new value between the first and second computations above, then the expression must be considered
unavailable, and the second expression would not be eliminated. On the other hand, if the value ofi were assigned to
third variable,k, and the second calculation referencedk instead ofi, then the two computations would compute the
same result, but the available expression system would need to be more sophisticated to track such assignments and
detect that the two computations produce the same result.

Several researchers have developed techniques to improve the effectiveness of determining when two expressions are
equal. Perhaps the best current approaches are based onstatic single assignment (SSA) form [AWZ88]. The invariant
maintained by a program in SSA form is that each variable is assigned at most once, and exactly one definition of a
variable reaches any use of that variable. Arbitrary programs can be transformed into an equivalent program in SSA
form by replacing each definition of a variable in the original program with a definition of a fresh new variable
(pedagogically named by adding a subscript to the original variable name). Each use of the original unsubscripted
variable also is changed to use the appropriate subscripted variable. Finally, to preserve the invariant that exactly one
definition reaches any use, at merge points reached by different subscripted variables of the same original
unsubscripted variable, a fresh new subscripted variable is created for the merge and assigned the result of aφ-function
of the incoming subscripted variables; such pseudo-assignments do not generate any code, but simply preserve the
SSA invariant.

SSA form supports optimizations such as common subexpression elimination better than the traditional approach
based on the original variable names because SSA form does not need to take into account assignments to variables;
SSA’s renamed subscripted variables are only assigned once. Assignments to variables do not kill existing available
expressions, since the assignments are guaranteed to be to different variables after the renaming. In addition, theφ-
functions of SSA form can track expressions as they flow through control structures, supporting better identification
of constant expressions and equivalent expressions, which in turn can enable more common subexpressions to be
eliminated.

As will be described in section 9.6, the SELF compiler also performs global common subexpression elimination. While
the SELF compiler does not use precisely SSA form, itsvalues, described in section 9.1.3, are quite similar.

3.4.5 Wegman’s Node Distinction

Mark Wegman describes a generalization of several standard code duplication and code motion optimizations called
node distinction [Weg81]. Given some differentiating criterion computable through data flow analysis, Wegman’s
technique splits nodes downstream of a potential merge point if the merging paths have different values of the
differentiating criterion. Several traditional code motion techniques, such as code hoisting, and some novel techniques,
such as splitting nodes based on the value of some boolean variable, can be expressed in this framework.

Node distinction is remarkably similar to our splitting technique, described in Chapter 10. One drawback of node
distinction as described by Wegman is that the differentiating criterion must be known in advance, prior to data flow
analysis and node distinction. Our splitting, on the other hand, does not require any such advance knowledge and so is
more suitable for a practical compiler. The relationship between splitting and node distinction will be explored further
in section 10.2.5.

3.4.6 Procedure Inlining

Many researchers have worked on improving the performance of procedure calls through inline expansion of the
bodies of the callees in place of the calls; this technique is also known asinlining, procedure integration, andbeta
reduction. Some languages, including C++, provide mechanisms through which the programmer can tell the compiler
to inline calls to particular routines. More sophisticated systems attempt to determine automatically which routines
should be inlined [Sch77, AJ88, HC89, RG89, McF91]. Inlining itself is not a particularly difficult transformation, but
it is harder to devise a set of good heuristics to control automatic inlining, balancing compiled code space and
compilation time increases against projected run-time performance improvements and operating correctly in the
presence of recursive routines. Chapter 7 will describe the heuristics used in the SELF compiler to guide automatic
inlining. Also, inlining is possible only when the target of a call is known at compile-time, and so inlining is not directly
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applicable to purely object-oriented systems where messages are always dynamically bound. Many of the techniques
included in the SELF compiler are designed to enable many common messages to be inlined away.

3.4.7 Register Allocation

One of the most important techniques, included in virtually all optimizing compilers, isglobal register allocation.
Many modern register allocators treat the problem of allocating a fixed number of registers to a larger number of
variables as an instance ofgraph coloring of the interference graph. The nodes of the interference graph are the
variables that are candidates for allocation to registers. The interference graph contains an arc between two nodes if
the corresponding variables are simultaneously live at some point in the procedure being allocated. Coloring the graph
(i.e., assigning each node a color such that no adjacent nodes have the same color) corresponds to a register allocation,
where each color represents a distinct register.

Since only a fixed number of registers can be used for register allocation, the goal of the coloring process is to find a
coloring of the interference graph with no more colors than allocatable registers. Unfortunately, determining whether
a graph is colorable withk colors is an NP-complete problem, so much of the work in implementing graph-coloring-
based register allocators in real compilers involves developing heuristics that can usually find a coloring of the
interference graph in a reasonable amount of time, and in handling spilling of variables to memory if no coloring can
be quickly found [CAC+81, Cha82, CH84, LH86, BCKT89, CH90].

In practice, the nodes in the interference graph may be portions of a variable’s lifetime, particularly if these portions
represent disconnected regions with no real data flow between regions (i.e., separate “def-use chains”), thus allowing
different parts of a variable’s lifetime to be allocated to different registers. Additionally, two variables may be
coalesced into a single node if the two variables are not simultaneously live and one variable is assigned to the other.
Thissubsumption process can eliminate unnecessary register moves, but might also make the graph harder to color.

Section 12.1 will describe the implementation of global register allocation in the SELF compiler, discussing its current
strengths and weaknesses.

3.4.8 Summary

Several implementation techniques have been developed and exploited in various language implementations of object-
oriented languages that are relevant to our quest for an efficient implementation of SELF. Many of these techniques
speed dynamic binding. The most effective techniques reduce a dynamically-bound message send to a statically-bound
procedure call by determining the class of the receiver at compile-time. The TS Typed Smalltalk compiler and the
Hurricane compiler both use type declarations to determine the types of receivers of messages, and statically-bind and
possibly inline away messages sent to receivers known to be of a single type; these compilers use case analysis if the
receiver may be one of a small set of types. Trellis/Owl uses a copy-down scheme to additionally statically-bind and
sometimes inline away messages sent toself, in particular instance variable accesses. This static binding and inlining
away of extra layers of abstraction is especially important in pure object-oriented languages.

Other techniques have been developed for cases where the type of the receiver cannot be determined statically.
Smalltalk systems and Trellis/Owl use an in-line caching technique to speed message sends where the class of the
receiver remains fairly constant; the resulting speed of a message send is only 3 to 4 times slower than a normal
procedure call. In cases where the in-line cache misses, a hash table is used to locate the target method quickly.

Implementations of C++ implement message passing using an indirect array accessing technique. This approach
exploits information present in the class hierarchy to produce a mapping from message name to array index, reducing
the cost of message passing to around 2 to 3 times the cost of a normal procedure call in the single-inheritance case, 3
to 5 times the cost for the multiple-inheritance case. Some extensions to this approach can reduce the cost of the
multiple inheritance scheme to just the cost of the single inheritance scheme, at the cost of some wasted space and
significant extra compile time.

Most languages include built-in control structures, data types, and operations to ease the burden on the implementation
of message passing. Even Smalltalk, supposedly a pure object-oriented language with no built-in control structures,
includes several critical compromises in the language design to speed performance. Other languages, such as C++ and
T, make no attempt at purity, and much of the processing that takes place in such languages is in the base non-object-
oriented sublanguage. Consequently, the speed of the object-oriented features has not been heavily optimized, since
programmers concerned with speed may “code around” the problems using the faster non-object-oriented facilities.
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In summary, with existing technology the overhead of dynamic binding can be eliminated only in a limited number of
cases, namely those in which the type of the receiver can be identified precisely. If a message send cannot be statically
bound to the target method, then current techniques imply a direct overhead of at least 2 to 3 times slowdown in the
speed of a message send in a statically-typed language, more in a dynamically-typed language. These techniques
impose the additional indirect overhead of preventing inlining to reduce the cost of the extra abstraction boundaries
introduced in well-designed, well-factored code and in user-defined control structures; in many cases this “indirect”
overhead is much more damaging than the direct slowdown of procedure calls. Finally, the other impediments to good
performance, user-defined control structures, generic arithmetic, and robust language primitives, are not significantly
optimized in any of the implementations described. Consequently, the performance of existing object-oriented
languages lags far behind the performance of conventional languages.
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Chapter 4   The S ELF Language

SELF is a dynamically-typed prototype-based object-oriented language with multiple, dynamic inheritance, originally
designed by David Ungar and Randy Smith at Xerox PARC in 1986 [US87, HCC+91, UCCH91, CUCH91] as a
successor to the Smalltalk-80 programming language. Like Smalltalk, SELF is intended for exploratory programming
environments in which rapid program development and modification are primary goals. Hence SELF is dynamically-
typed, affording greater flexibility and ease of development and modification, at the cost of reduced reliability and,
given existing implementation technology, reduced run-time performance. Additionally, SELF includes the features
described in Chapter 2 as desirable in an object-oriented language: abstract data types, a pure object-oriented model
with dynamic binding on all messages (including all variable accesses), closures for user-defined control structures and
exceptions, robust primitives, and support for generic arithmetic. Those readers familiar with SELF may choose to
skim this chapter.

4.1 Basic Object Model

A SELF object consists of a set ofnamed slots, each of which contains a reference to some other object. Some slots
may be designated as parent slots. Objects may also have SELF source code associated with them, in which case the
object is amethod. To make a new object in SELF, an existing object (called theprototype) is simplycloned (shallow-
copied) to produce a new object with the same name/value pairs as the prototype.

For example, the following picture portrays several SELF objects. The bottom-left object represents a cartesian point
“instance” containing 5 slots: a parent slot namedparent (identified as a parent slot by the asterisk next to the slot’s
name) containing a reference to the point traits object, two slots namedx andy containing references to integer objects,
and two slots namedx: andy: that contain references to the assignment primitive method (notated using the←
symbol and described below). A second cartesian point object lies to its right.

The top-left object labeledpoint traits is inherited by all cartesian point objects. It also contains a parent slot
namedparent containing a reference to another object not shown in this diagram, a slot namedprint and+ each
containing a reference to a method object.

Method objects differ from other objects only in that they have attached SELF code in addition to slots. Each method
object has a parent slot namedself that is an argument slot; its contents in filled in with the receiver of the message
when the method is invoked, as described below. The+ method has an additional argument slot namedarg that is
filled in with the right-hand argument to the+ message when the method is invoked. The two integer objects also have
their own slots, but for conciseness we omit them from this diagram.

Two other kinds of objects appear in SELF: object arrays and byte arrays. Arrays are just like normal data objects,
except that they additionally contain a variable number of array elements indexed by number instead of name. As their
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names suggest, object arrays contain elements that are arbitrary objects, while byte arrays contain only integer objects
in the range 0 to 255, but in a more compact form suitable for interacting with external character- or byte-stream based
systems. Primitive operations support fetching and storing elements of arrays as well as determining the size of an
array and cloning a new array of a particular size.

4.1.1 Object Syntax

A programmer may describe a SELF object in textual form by listing the object’s slots and its code inside parentheses.
The slots are listed between vertical bars at the beginning of the object, with the code following afterwards; either of
these components of an object may be omitted. A slot declaration begins with the slot’s name, then an asterisk if the
slot is a parent slot,*  then either a left-arrow or an equal sign depending on whether or not, respectively, an assignment
slot is desired, and then an expression which is evaluated to determine the slots contents. An assignable slot initialized
to nil may be declared concisely by omitting the left-arrow and the initializer expression. Slots are separated by
periods.

For example, the cartesian point object above could be defined as follows (comments are between double quotes):

( |
parent* = traits point. “evaluates to the point traits object”

x <- 3. “left-arrow creates corresponding assignment slot”

y <- 4.

| )

This example illustrates the use of= to define a single data slot and<- to define a data slot/assignment slot pair; the
name of the assignment slot is computed by appending a colon to the name of the data slot.

The point traits object could be defined as follows:

( |
parent* = ... “code to evaluate to the parent of point traits”

print = ( x print. '@' print. y print ).

+ = ( | :arg | (clone x: x + arg x) y: y + arg y ).

| )

Theprint and+ method objects are defined directly as contents of slots. Method objects look just like other object
declarations, except that they specify code in addition to any slots. Argument slots are prefixed with colons and may
not be initialized. SELF defines a syntactic sugar for argument slots that allows them to be written in as part of the slot
name; the+ slot declaration could also have been written as follows:

+ arg = ( (clone x: x + arg x) y: y + arg y ).

SELF includes a few other forms for object literals, including integer and floating point literal expressions that evaluate
to the corresponding integer and floating point objects and string literals delimited by single quotes.

4.2 Message Evaluation

When a message is sent to an object (called thereceiver of the message), the receiver object is scanned for a slot with
the same name as the message. If a matching slot is not found, then the contents of the object’s parent slots are searched
recursively, using SELF’s multiple inheritance rules to disambiguate any duplicate matching slots. For example, if the
x message were sent to the cartesian point object pictured above, the system would search the cartesian point for a slot
whose name isx, locating the slot referring to the 3 object. If instead theprint message were sent to the cartesian
point object, the system would first scan the cartesian point object for a slot namedprint, unsuccessfully. The system
would then search each object stored in a parent slot of the cartesian point, which in this example would be the point
traits object, and the system would find the matchingprint slot in this parent object.

Once a matching slot is found, the object referred to by the slot isevaluated and the result is returned as the result of
the message send. An object without code evaluates to itself, and so the slot holding it acts like a variable. For example,
when sending thex message to the cartesian point, the system locates thex slot in the point, extracts its contents (the

* The current version of SELF supports prioritized parents with differing numbers of asterisks for different parent priorities. Further
details may be found in [CUCH91].
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3 integer object), evaluates it (in this case just returning 3 again, since the 3 object contains no code and hence evaluates
to itself), and returns the result (3) as the result of the originalx message.

An object with code (a method) is treated as a prototype activation record. When evaluated, the system clones the
method object, fills in the clone’sself slot with the receiver of the message, fills in the clone’s argument slots with
the arguments of the message (if any), and executes its code. For example, if theprint message were sent to the
cartesian point, the system would locate theprint slot in the point traits object, extract theprint method object
referenced by the slot, and evaluate the method object. Evaluating the method would involve cloning the method object
to create a fresh activation record, filling in the contents of theself slot of the new activation record with the receiver
cartesian point object, and then executing the messages specified by the code associated with theprint method. The
result of the last message in theprint method would be returned as the result of theprint message.

SELF supports assignments to data slots by associating anassignment slot with each assignable data slot. The
assignment slot contains theassignment primitive method object, which takes one argument. When the assignment
primitive is evaluated as the result of a message send, it stores its argument into the associated data slot. A data slot
with no corresponding assignment slot is called aconstant or read-only slot (as opposed to anassignable data slot),
since a running program cannot change its value. For example, most parent slots are constant slots. However, SELF’s
object model allows a parent slot to be assignable just like any other slot, simply by defining its corresponding
assignment slot. Such an assignable parent slot permits an object’s inheritance to change on-the-fly at run-time, for
instance as a result of a change in the object’s state. We call such run-time changes in an object’s inheritancedynamic
inheritance, and we have found this facility to be of practical value in our SELF programming. Further information on
the uses of dynamic inheritance may be found in [UCCH91].

4.2.1 Message Syntax

SELF message syntax is much like Smalltalk-80 message syntax. Both languages define three classes of message,
distinguished syntactically:

• Unary messages. A unary message takes no arguments other than the receiver. Syntactically, a unary message
name is written after its receiver expression (in postfix form), and is distinguished from other forms of message
name by being an sequence of letters or digits that begins with a lower-case letter and does not end with a colon.
Thusx, print, andisFirstQuadrant are all valid unary message names. Unary messages have highest
precedence, and associate from left to right.

• Binary messages. A binary message takes a receiver and one argument, with the binary message name separating
the two. A binary message is easily distinguished as any sequence of punctuation characters (excluding a few
reserved sequences). Thus>, &&, =, and&^$#^ are legal binary message names. Binary messages have medium
precedence. No associativity is defined for binaries (programmers must explicitly add parenthesis to disambiguate
sequences of binary messages), except that two binary messages left-associate if they are the same binary
message. Therefore expressions like3 + 4 + 5 are legal, with3 + 4 being evaluated first, while expressions
like 3 + 4 * 5 are illegal and must be explicit parenthesized. Arguments are always evaluated from left to right.

parent*
x
y
x:
y: ←

3

4←

a cartesian point

. . .

print
+

parent*
point traits

x print.

(clone  x:  x + arg x)

’@’ print.
y print.

self* <arg>
print method

self*
arg

y:  y + arg y

<arg>
<arg>

+ method
x print.
’@’ print.
y print.

self*
print activation recordclone
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• Keyword messages. A keyword message takes a receiver and one or more arguments. Keyword message names
are unusual in that the message name is written interspersed between the arguments to the message. Each piece of
a keyword message name is a sequence of letters and digits, beginning with a letter, and ending with a colon
(unlike unary messages which do not end with a colon). To aid in limiting the number of parentheses required for
parsing, the first keyword piece must begin with a lower-case letter, while all subsequent keyword pieces must
begin with an upper-case letter. The receiver is written before the keyword message, with an argument after each
colon at the end of the keyword message pieces. The name of the message is the concatenation of the various name
pieces. Therefore,x:, ifTrue:, andifTrue:False: are all legal keyword message names, the first two
taking one argument (and a receiver) and the third taking two arguments, whileifTrue:ifFalse: is not.

Keyword messages have lowest precedence and associate from right to left. For example, the messagex
ifTrue: 5 False: 6 sends theifTrue:False: message to the result of thex message with 5 and 6 as
arguments, while the messagex ifTrue: 5 ifFalse: 6 first sends thex message, then theifFalse:
message to 5 with 6 as an argument, and then theifTrue: message to the result of thex message with the result
of theifFalse: message as an argument, as if the original message were parenthesized asx ifTrue: (5
ifFalse: 6).

The code part of a method is simply a sequence of period-separated messages.

4.3 Blocks

SELF allows programmers to build their own control structures usingblocks, SELF’s version of closures. A block in
SELF is an object with a slot namedvalue that contains a special kind of method. When invoked (by sendingvalue
to the block object), this special block method runs as a child of its lexically-enclosing activation record (the activation
record that was executing when the block object was created). A block method does not include aself parent slot,
but instead has an anonymous parent slot that refers to the lexically-enclosing activation record object; the value of
self is inherited from the enclosing method activation. These differences from “normal” methods enable blocks and
block methods to act like lexically-scoped closures; SELF uses normal inheritance to implement lexical scoping.

Syntactically, blocks are identical to other method definitions, except that they are enclosed in square brackets instead
of parentheses. In particular, variables local to a block activation record are declared as normal data slots in the slot list
of the block literal.

For example, suppose anisFirstQuadrant method were added to the point traits object. This method tests
whether both thex andy components of the receiver point are positive and if so returns the string literal'1st
quadrant'. Otherwise the string literal'not first quadrant' is returned.

The following diagram shows the state of the system after invoking theisFirstQuadrant method and creating a
new activation record.

The block object corresponds to the block literal enclosed in square brackets in theisFirstQuadrant method. The
block’svalue slot refers to a block method object with an anonymous lexical parent slot, which refers to the block’s
lexically-enclosing activation record object.
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x
y
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y: ←

3

4←

a cartesian point

. . .

isFirstQuadrant
. . .

parent*
point traits

(x > 0) && (y > 0)
self* <arg>

isFirstQuadrant method

clone
ifTrue: [ ^ ‘1st quadrant’ ].

‘not first quadrant’

(x > 0) && (y > 0)
self*

isFirstQuadrant activation record

ifTrue: [ ^ ‘1st quadrant’ ].
‘not first quadrant’

parent*
value

a block
. . .

<lexical parent>*
block method

^ ‘1st quadrant’
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A block method may terminate with anon-local return by prefixing the result expression with a ^ symbol (reminiscent
of an up-arrow), causing the result to be returned not to the caller of the block method (the sender ofvalue) but to
the caller of the lexically-enclosing normal (non-block) method. Non-local returns thus have much the same effect as
areturn statement in C. For example, when executing the non-local return in theisFirstQuadrant example,
the block would return not to the sender ofvalue somewhere inside theifTrue: user-defined control structure but
instead to the caller of the lexically-enclosing method, in this case returning the'1st quadrant' string object to
the sender ofisFirstQuadrant.

4.4 Implicit Self Sends

Local variables and arguments are accessed in SELF usingimplicit selfsends. These sends haveself as the receiver
of the message but begin the search for a matching slot with the current activation record rather thanself. This search
will follow the lexical chain of activation records (following the anonymous parent slots of nested block methods).
Since arguments and local variables are simply normal slots in method prototype objects and their cloned activation
records, implicit self message sends can support argument and local variable accesses using the same mechanisms used
to access data slots and methods in “normal” objects. Sinceself is a parent slot of the outermost method activation
record, implicit self sends can also be used to access slots in the receiver or its ancestors.

Implicit self sends are so termed because theself receiver is elided from the message send syntax; a message without
an explicit receiver is implicitly a send toself. For example, the point+ method contains the fragmentx + arg
x. This code first sends thex message toself implicitly. The lookup starts with the current activation record, and
since the activation record does not contain anx slot, the system will scan the contents of the activation record’s parent
slots. The activation record’sself slot is the only parent slot, and so the system will search the contents of theself
slot, the receiver cartesian point, for anx slot. This search will be successful, and the system will evaluate the contents
of thex slot to compute the result of thex message.

The example code fragment will next send thearg message toself implicitly. Again the lookup will begin with the
current activation record, but this time the system will find a matchingarg slot in the activation record. The contents
of thearg local slot are accordingly evaluated, returning the argument to the original+ message send.

Implicit self messages allow the SELF syntax for local slot accesses and slot accesses in the receiver to have the same
concise syntactic expression as local, instance, and global variable accesses in Smalltalk, but with the more powerful
semantics of full message sends. In particular, code which looks like it is accessing an instance variable, and which
originally did access an instance variable, can be reused in situations in which the message actually invokes a method.
This possibility enables the SELF system to solve such thorny reuse problems as thepolygon andrectangle
example from section 2.2.3 and thecartesian andpolar point example to be described in section 4.6.

4.5 Primitives

Much of the real work of a SELF program is performed by primitive operations provided by the virtual machine and
implemented below the level of the language. Integer arithmetic, array accessing, and input/output are all provided via
primitives to the SELF programmer. Primitive operations are invoked with the same syntax used to send a message,
except that the message name begins with an underscore (“_”). For instance,_IntAdd: invokes the standard integer
addition primitive. Every call of a primitive operation may optionally pass in a block to be invoked if the primitive
fails by appendingIfFail: to the message name and passing in the block as an additional argument. If invoked, the
block is passed an error string identifying the nature of the failure (such overflow, divide by zero, or incorrect argument
type). For example,3 _IntAdd: 'abc' IfFail: [ | :code | ...] passes a failure block in addition to
the arguments to be added; this block will be invoked with the'badTypeError' object by the primitive since the
arguments to the primitive are not both fixed-precision integers.

Loops are implemented in SELF via the_Restart primitive. A call to_Restart transfers control back to the
beginning of the scope containing the_Restart call, creating a loop. The programmer uses a non-local return to
break out of such a loop. Programmers can combine_Restart, non-local returns, and closures to build arbitrary
user-defined looping control structures.
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SELF uses_Restart to implement loops explicitly. Other languages such as Scheme instead performtail-recursion
elimination to automatically transform recursion into iteration, without introducing an extra language construct
explicitly for iteration. Unfortunately, tail-recursion elimination, and more generallytail-call elimination, violates the
user’s execution and debugging model by eliminating activation records that the user expects to see. The Scheme
language definition specifies that all tail-recursive calls must be transformed into iterations, which effectively
introduces a special language mechanism for looping. In SELF, such looping code is explicit and easy to recognize,
since only_Restart creates a loop. In Scheme, on the other hand, any procedure call that happens to be tail recursive
will be transformed into an iterative loop, whether or not the programmer desired or expected it, and identifying when
a procedure call is tail-recursive can be tricky.

4.6 An Example: Cartesian and Polar Points

The figure below presents an example collection of SELF objects. The bottom objects are two-dimensional point
objects, the left ones represented using cartesian coordinates and the right ones using polar coordinates. The cartesian
point traits object is the immediate parent object shared by all cartesian point objects, and defines four methods for
interpreting cartesian points in terms of polar coordinates; the polar point traits object does the reverse for polar point
objects. The point traits object is the shared ancestor of all point objects, defining general methods for printing and
adding points, regardless of coordinate system. The point traits object inherits in turn from the topmost object in the
diagram, which defines even more general behavior, such as how to copy objects.

Sending thex message to the leftmost cartesian point object finds thex slot immediately. The contents of the slot is
the integer3, which evaluates to itself (it has no associated code), producing3 as the result of thex message. Sending
x to the rightmost polar point object, however, does not find a matchingx slot immediately. Consequently, the object’s
parent is searched, finding thex slot defined in the polar point traits object. Thatx slot contains a method that computes
a polar point’sx coordinate from itsrho andtheta coordinates. The method gets cloned and executed, producing
the floating point result1.25.

If the print message were sent to a point object, theprint slot defined in the point traits object would be found.
The method contained in the slot prints out the point object in cartesian coordinates. If the point were represented using
cartesian coordinates, thex andy messages (implicitly sent toself) would access the corresponding data slots of the
cartesian point object. But theprint method works fine even for points represented using polar coordinates: thex
andy messages would find the conversion methods defined in the polar point traits object to compute the correctx and
y values.

This example illustrates conventional SELF programming practice. Most SELF code is structured into hierarchies of
traits objects, abstract objects used to hold behavior to be inherited and refined by child objects. These traits objects
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play a role similar to one of the roles of classes in class-based languages. Concrete objects inherit from the traits
objects, filling in any missing implementation, such as assignable data slots holding object-specific state information.
The initial concrete objects are used as prototypical instances of the abstract data type and are cloned to create new
instances.

The example also illustrates some of the challenges facing the SELF implementation. The frequency of message sends
is very high; in thisprint example, nearly every source token corresponds to a message send. Even instance variables
are accessed using message sends. Some other challenges facing the implementation that are not illustrated by this
short example include user-defined control structures and generic arithmetic support.
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Chapter 5   Overview of the Compiler

This chapter introduces the overall design of the SELF compiler. The next section describes the goals of our work.
Section 5.2 describes the primary purpose of most of the new techniques developed as part of the SELF compiler: the
extraction of representation-level type information. Section 5.3 relates the novel parts of the SELF compiler to the
traditional front-end and back-end division of a compiler and outlines topics covered by the next several chapters.

5.1 Goals of Our Work

Our immediate goal is to build an efficient, usable implementation of SELF on stock hardware. However, we are not
willing to compromise SELF’s pure object model and other expressive features. We want to preserve the illusion of the
system directly executing the program as the programmer wrote it, with no user-visible optimizations. This constraint
has several consequences that distinguish our work from other optimizing language implementations:

• The programmer must be free to edit any procedure in the system, including the most basic ones such as the
definition of+ for integers andifTrue: for booleans, and provide overriding definitions for other data types
when desired.

• The programmer must be able to understand the execution of the program and any errors in the program solely in
terms of the source code and the source language constructs. This requirement on the debugging and monitoring
interface to the system disallows any internal optimizations that would shatter the illusion of the implementation
directly executing the source program as written. Programmers should be unaware of how their programs get
compiled or optimized.

• The programmer should be isolated even from the mere fact that the programs are getting compiled at all. No
explicit commands to compile a method or program should ever be given, even after programming changes. The
programmer just runs the program.

This illusion of hiding the compiler would break down if the programmer were distracted by mysterious pauses
due to compilation, analysis, or optimization. Ideally any pauses incurred by the implementation of the system
would be imperceptible, such as on the order of a fraction of a second when in interactive use. Longer running
batch programs can be interrupted by longer pauses, as long as the total time of the program is not slowed so much
that the programmer becomes aware of the pauses.

Within these constraints on the user-visible semantics of the system, our main objective is excellent run-time
performance. We wish to make SELF and other pure object-oriented languages with similar powerful features
competitive in performance with traditional non-object-oriented languages such as C and Pascal. In particular, where
the SELF program is not taking advantage of object-oriented features, such as in an inner loop that could have been
written just as easily in C as in SELF, we want the performance of SELF to be close to the performance of optimized
C. If these performance goals are met, many programmers may be able to switch from traditional languages to pure
object-oriented languages and begin to reap the benefits afforded by pure object-oriented programming, user-defined
control structures, generic arithmetic, and robust primitives.

Other goals are secondary to the constraint of a source-level execution model and the goal of rapid execution. In
particular, run-time and compile-time space overheads are less of a concern than run-time speed. Modern computer
platforms, especially workstations, are typically equipped with a large amount of physical main memory, and this
amount is increasing at a rapid rate. We therefore are willing to use more space than would a straightforward
implementation in order to meet our execution speed goals.

When we began this work, there were no techniques available to implement pure object-oriented languages like SELF
efficiently without relying on special-purpose hardware support, cheating in the implementation, or diluting the object-
oriented model by introducing non-object-oriented constructs into the language. Therefore the main part of our work
involved developing and implementing new techniques for implementing object-oriented languages efficiently on
stock hardware. These new techniques have enabled us to largely meet our goals both for faithfulness to the source
code and run-time execution speed.

Of course, we do not only wish to implement SELF efficiently, but also a larger class of SELF-like languages.
Fortunately, the new techniques are not specific to the SELF language. Most object-oriented languages, including C++,
Eiffel, Trellis/Owl, Smalltalk, T, and CLOS, would benefit (to varying degrees) from the techniques we have
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developed. Also, languages with object-oriented subsystems would benefit, including languages supporting some form
of generic arithmetic such as Lisp, APL [Ive62, GR84], PostScript [Ado85], and Icon [GG83], languages with logic
variables such as Prolog, and languages with futures such as Multilisp [Hal85] and Mul-T [KHM89].

5.2 Overall Approach

This section describes the overall approach to achieving an efficient implementation of SELF and similar languages.

5.2.1 Representation-Level Type Information Is Key

Dynamically-typed object-oriented programming languages historically have run much slower than traditional
statically-typed non-object-oriented programming languages. This performance gap is attributable largely to the lack
of representation-level type information in the dynamically-typed object-oriented languages. This representation-level
information about an object is embodied in the object’sclass in a class-based system. (Section 6.1.1 will describemaps,
internal implementation structures that embody representation-level type information for prototype-based languages
such as SELF.)

If the compiler could infer the classes (or maps) of objects at compile-time, it could eliminate much of the run-time
overhead associated with dynamic typing and object orientation. In a dynamically-typed language, the compiler must
insert extra run-time type-checking code around type-safe primitives and extra run-time type-casing code in support
of generic arithmetic. If the compiler could infer the classes of the arguments to the type-checking primitive, then it
could perform the type checks at compile-time rather than run-time. Similarly, if the compiler could infer the classes
of the arguments to generic arithmetic primitives, then it could perform the type-casing at compile-time, generating
code for a type-specific arithmetic operation instead of the slower generic operation.

In an object-oriented language, the compiler must insert extra run-time message dispatching code to implement
dynamic binding of message names to target methods based on the run-time class of the receiver. If the compiler could
infer the class of the receiver of a message, then it could perform message lookup at compile-time instead of run-time,
replacing the dynamically-bound message with a statically-bound procedure call; the statically-bound call would
subsequently be amenable to further optimizations such as inlining (described in Chapter 7) that can significantly boost
performance.

5.2.2 Interface-Level Type Declarations Do Not Help

Clearly, the run-time performance of dynamically-typed object-oriented programs could be dramatically improved if
the compiler could infer representation-level type information in the form of objects’ classes or maps. On the surface,
this would seem to imply that statically-typed object-oriented languages, with lots of type information available to the
compiler, would have a huge advantage in performance over their dynamically-typed counterparts. Perhaps
surprisingly, this advantage is in fact quite small.

In a non-object-oriented language, the type of a variable specifies the representation or implementation of the contents
of the variable. This static information corresponds to knowing the exact class of the contents of the variable and hence
supports the optimizations described above that reduce the gap between dynamically-typed object-oriented languages
and statically-typed non-object-oriented languages. In an object-oriented language with interface-level type
declarations, however, the type of a variable specifies only the set of operations that are guaranteed to be implemented
by objects stored in the variable. The interface-level type deliberately doesnot specify anything about how the objects
stored in the variable willimplement the operations, in order to maximize the generality and reusability of the code.
With only interface-level type information, the compiler cannot perform the optimizations that require representation-
level type information. For example, knowing that an objectunderstands the+ message does not help the compiler
generate more efficient code for the+ message; only knowledge about how the objectimplements the+ message (such
as by executing the+ method for integers) enables optimizations such as inlining that markedly improve performance.*

* Interface-level type information can be useful in special cases given system-wide knowledge. The compiler can examine all the
possible implementations in the system that satisfy some interface and sometimes infer useful representation-level type
information. For example, if only one object or class implements a particular interface, the static interface-level type information
implies representation-level information. These kinds of optimizations are less likely to speed operations on basic data structures
such as numbers and collections, however, where many implementations of the same interface are the norm.



45

5.2.3 Transforming Polymorphic into Monomorphic Code

The lack of static representation-level type information limits the run-time performance of object-oriented languages,
whether dynamically-typed or statically-typed. Consequently, our new compilation techniques will strive to infer this
missing representation-level type information, so that the compiler can perform optimizations to eliminate the
overhead of dynamic typing and object orientation. Once these optimizations have been performed, the task of
compiling a dynamically-typed object-oriented program reduces to the task of compiling a traditional statically-typed
procedural program.

To perform inlining the SELF compiler must prove that the receiver of a message has a single representation, i.e., that
the receiver expression ismonomorphic. In general, however, SELF code ispolymorphic: expressions may denote
values of different representations at different times, and the same source code works fine for all these representations.
Such polymorphism is central to the power of object-oriented programming. However, in some cases the SELF
program does not exploit the full power of polymorphism. Sometimes a message receiver can be a member of only a
single clone family. To exploit such cases, the compiler includes techniques such astype analysis (described in Chapter
9) to identify monomorphic expressions and subsequently optimize them.

In most cases, however, the compiler’s task is not so easy: most SELF expressions really are potentially polymorphic.
Nevertheless, the compiler can frequently optimize even polymorphic messages. The compiler includes several
techniques such ascustomization (described in Chapter 8),type casing (described in section 9.3),type prediction
(described in section 9.4), andsplitting (described in Chapter 10) that can transform some kinds of polymorphic
expressions into monomorphic expressions; these monomorphic expressions are then suitable for further optimization.
All these techniques work by duplicating code, transforming a single polymorphic expression withN possible
representations intoN separate monomorphic expressions. Each monomorphic case can be optimized independently;
without this separation no optimization would be possible. These techniques for trading away compiled-code space to
gain run-time speed form the heart of the SELF compiler and are our key contribution to compilation technology for
object-oriented languages.

Since identifying and creating monomorphic sections of code can be fairly time consuming, the SELF compiler seeks
to conserve its efforts. In particular, the compiler attempts to compile only those parts of the SELF program that are
actually executed. The compiler only performs customization on demand, exploiting SELF’s dynamic compilation
architecture as described in section 8.2. Additionally, many cases that could arise in principle but rarely arise in
practice, such as integer overflows, array accesses out of bounds, or illegally-typed arguments to primitives, are never
actually compiled by the SELF compiler, thus saving a lot of compile time and compiled code space and allowing better
optimization of the parts of programs thatare executed. Thislazy compilation of uncommon branches is described in
section 10.5.
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5.3 Organization of the Compiler

Traditional compilers are typically divided into afront-end, which performs lexical analysis and parsing, and aback-
end, which performs optimizations and generates code. The SELF parser, described in section 6.2, performs the
functions of a traditional front-end by translating SELF source into a byte-coded representation. The SELF compiler
performs many of the functions of a traditional back-end; Chapter 12 describes the SELF compiler’s version of most
of these traditional functions. The bulk of the SELF compiler effort, however, lies in between the two halves of a
traditional compiler. This “middle half” of the SELF compiler performs the representation-level type analysis and
inlining that bridges the semantic gap between the high-level polymorphic program input to the SELF compiler and
the lower-level monomorphic version of the program suitable for the optimizations performed by a traditional compiler
back-end.

The next chapter describes the supporting services provided by the rest of the SELF system architecture, including a
description of themap data structures that convey representation-level type information of objects to the compiler. The
“middle half” of the SELF compiler is described in the following several chapters. Chapter 7 describes inlining in more
detail. Chapter 8 presentscustomization, one the SELF compiler’s important new techniques. Chapter 9 describestype
analysis, the technique used by the SELF compiler to infer and propagate the representation-level type information
through the control flow graph. It also presentstype prediction, a technique for guessing the types of some objects
based on the names of messages and built-in profile information. Chapter 10 describessplitting, the primary technique
used in the SELF compiler to turn polymorphic pieces of code into multiple monomorphic pieces of code. Chapter 10
also describeslazy compilation, a technique for only compiling those parts of methods that the compiler judges to be
likely to be executed. Chapter 11 concludes the discussion of the middle end by describing type analysis and splitting
in the presence of loops.
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Chapter 6   Overall System Architecture

The SELF compiler does not operate in isolation. It is an integral part of the whole SELF system, depending on the
facilities provided by the rest of the system and constrained to satisfy requirements imposed by the rest of the system.
To place the compiler in context, this chapter describes the overall architecture of the SELF system, focusing on the
impact these other parts of the system have on the design of the compiler.*  The following several chapters describe the
compiler itself.

6.1 Object Storage System

Theobject storage system (also called thememory system) represents SELF objects and their relationships. It provides
facilities for creating new objects and automatically reclaims the resources consumed by inaccessible objects. It
supports modifying objects via programming and for scanning objects to locate all occurrences of certain kinds of
references.

Much of the memory system design exploits technology proven in existing high-performance Smalltalk and Lisp
systems. For minimal overhead in the common case, the SELF system represents object references using direct tagged
pointers, rather than indirectly through an object table as do some Smalltalk systems. An early version of the SELF
memory system was documented by Elgin Lee [Lee88]; a more recent version was described in [CUL89].

The following two subsections describe techniques for efficient object storage systems pioneered by the SELF
implementation. Subsection 6.1.3 describes constraints placed on the compiler by SELF’s garbage collection
algorithm. Appendix A describes object formats in detail.

6.1.1 Maps

In traditional class-based languages, a class object contains the format (names and locations of the instance variables),
methods, and superclass information for all its instances; the instances contain only the values of their instance
variables and a pointer to the shared class object. Since SELF uses a prototype model, each object is self-sufficient,
defining its own format, behavior, and inheritance. A straightforward implementation of SELF would therefore
represent both the class-like format, method, and inheritance information and the instance-like state information in
each SELF object. This representation would consume at least twice as much space as for a traditional class-based
language.

Fortunately, the storage efficiency of classes can be regained even in SELF’s prototype object model by observing that
few SELF objects have totally unique format and behavior. Almost all objects are created by cloning some other object
and then possibly modifying the values of the assignable slots. Wholesale changes in the format or inheritance of an
object, such as those induced by the programmer, can be accomplished only by invoking special primitives. Therefore,
a prototype and the objects cloned from it, identical in every way except for the values of their assignable slots, form
what we call aclone family.

The SELF implementation usesmaps to represent members of a clone family efficiently. In the SELF object storage
system, objects are represented by the values of their assignable slots, if any, and a pointer to the object’s map; the map
is shared by all members of the object’s clone family. For each slot in the object, the map contains the name of the slot,
whether the slot is a parent slot, and either the offset within the object of the slot’s contents (if it is an assignable slot)
or the slot’s contents itself (if it is a constant slot, such as a non-assignable parent slot). If the object has code (i.e., is

* Many of the techniques described in this chapter were designed by the SELF group as a whole and implemented by various
members of the SELF group, including Elgin Lee, Urs Hölzle, David Ungar, and the author, and so should not be viewed as
contributions solely attributable to the author.
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a method), the map stores a pointer to a SELF byte code object representing the source code of the method (byte code
objects are described further in section 6.2).

Maps are immutable so that they may be freely shared by objects in the same clone family. However, when the user
changes the format of an object or the value of one of an object’s constant slots, the map no longer applies to the object.
In this case, a new map is created for the changed object, thus starting a new clone family. The old map still applies to
any other members of the original clone family. If no other members exist (i.e., the modified object was the only
member of its clone family), the old map will be garbage-collected later automatically.

From the implementation point of view, maps look much like classes, and achieve the same sorts of space savings for
shared data. In addition, the map of an object conveys its static properties to the SELF compiler, much as does an
instance’s class in a class-based language. Nevertheless, maps are completely invisible to the SELF programmer.
Programmers still operate in a world populated by self-sufficient objects that in principle could each be unique. The
implementation simply is optimizing representation and execution based on existing usage patterns, i.e., the presence
of clone families.

6.1.2 Segregation

The memory system frequently scans all object references for those that meet some criterion:

• The scavenger scans all objects for references to objects in from-space as part of garbage collection.

• The programming primitives have to find and redirect all references to an object if its size changes and it has to
be moved.

• The browser may need to search all objects for those that contain a reference to a particular object that interests
the SELF user (i.e., following “backpointers”).

To support these and other functions, the SELF implementation has been designed for rapid scanning of object
references.

Ideally the system could just sweep through all of memory word-by-word to find object references matching the
desired criterion. Unfortunately, since the elements of byte arrays are represented using packed bytes rather than tagged
words (see Appendix A), byte array elements maymasquerade as object references if byte arrays are scanned blindly.
Most systems handle this problem by scanning the heap object-by-object rather than word-by-word. To scan an object,
the system examines the header of the object to locate the part of the object containing object references and skip the
part containing packed bytes (or other non-pointer data that could masquerade as a pointer). The pointer parts of the
object are scanned, while the other parts are ignored. The scanner then proceeds to the next object. This procedure
avoids the problems associated with scanning byte arrays, but slows down the scan with the overhead to parse object
headers and compute object lengths.

The SELF system avoids the problems associated with scanning byte arrays without degrading the object reference
scanning speed bysegregating the packed untagged bytes from the other SELF objects. Each Generation Scavenging
memory space (described more in the next section) is divided into two areas, one for the bytes parts of byte arrays and
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one for the rest of the data (including the object-reference part of byte arrays).*  To scan all object references, only the
object reference area of each space needs to be scanned (ignoring any scans for references to integers in the range
[0..255], which require special support but almost never occur). This optimization speeds scans by eliminating the need
to parse object headers.

To avoid slowing the tight scanning loop with an explicit end-of-space check, the word after the end of the space is
temporarily replaced with asentinel reference that matches the scanning criterion. This enables the scanner to check
for the end of the space only on a matching reference, instead of on every word. Early measurements on a 68020-based
Sun-3/50 showed that the SELF system scanned memory at the rate of approximately 3 megabytes per second.
Measurements of the fastest Smalltalk-80 implementation on the same machine, ParcPlace Smalltalk-80, indicated a
scanning speed for non-segregated memory spaces of only 1.6 megabytes per second. Current measurements indicate
a scanning speed for SELF of 12 megabytes per second on a SPARC-based Sun-4/260 workstation.

For some kinds of scans, such as finding all objects that refer to a particular object (following backpointers), the
scanner needs to find the objects thatcontain a matching reference, rather than the reference itself. In a system that
scans object-by-object, this task is no more difficult than searching for references. However, in a system that scans
word-by-word it may be difficult to locate the beginning of the object containing the matching reference. To support
these kinds of scans without resorting to object-by-object scanning the SELF system specially tags the first header word
of every object (called themark word) to identify the beginning of the object. Thus, to find all objects containing a
particular reference, the scanner proceeds normally, searching for matching references. Once a reference is found, the
scanner locates the object containing the reference by scanning backwards to the object’s mark word and then
converting the mark word’s address into an object reference by adding the right tag bits to the address.

6.1.3 Garbage Collection

The SELF implementation reclaims inaccessible objects using a version ofGeneration Scavenging [Ung84, Ung87]
with demographic feedback-mediated tenuring [UJ88], augmented with a traditional mark/sweep collector to reclaim
tenured garbage. The SELF heap is currently configured using a 200KBeden memory space for newly-allocated
objects, a pair of 200KBsurvivor memory spaces for objects that have survived at least one scavenge but have not yet
been tenured, and a 5MBold space for tenured objects.

The implementation of this algorithm imposes certain constraints on the compiler. The run-time system must be able
to locate all object references embedded in compiled instructions whenever a scavenge or garbage collection occurs.
Conversely, the garbage collector must be protected from examining any data values which could falsely masquerade
as an object reference. In particular, the SELF compiler does not producederived pointers to the interior of an object.
This restriction allows the garbage collector to assume that all data tagged as an object reference really points to the

* This design is slightly different from segregation as described in [Lee88] and [CUL89], in which byte arrays were stored
completely in the bytes area. The design was changed so that a byte array could have user-defined references to other objects in
addition to its array of bytes.

A Segregated S ELF Memory Space

bytes area grows downward;
contains all packed bytes parts
but no object references

object reference area grows upward;
contains all object references but
no confusing untagged packed bytes
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beginning of an object in the heap, thus speeding the collector at some hopefully small cost in run-time efficiency for
certain kinds of programs (notably those that iterate through arrays).

Generation Scavenging requires the compiler to generatestore checks. Each store to a data slot in the heap needs to be
checked to see whether it is creating a reference from an object in old-space to an object in new-space; all such
references need to be recorded in a special table for use at scavenges. The current SELF implementation uses acard
marking scheme similar to that used by some other systems [WM89].*  Each card corresponds to a region of a SELF
memory space (currently 128 bytes long), and records whether any of the words in the corresponding region contain
pointers to new space. Whenever the compiler generates a store into an object that might be in old-space to an object
that might be in new-space, the compiler also must generate code to mark the appropriate card for the modified data
word.

Since stores into objects need to be fast, the SELF compiler attempts to generate code that is as fast as possible. If the
compiler can prove that the target of the stored reference is an integer or a floating point immediate value (i.e., not a
pointer), then no store check needs to be generated, since such a store does not create a reference from old- to new-
space. Otherwise the compiler generates the following sequence (given in SPARC assembly syntax):

st %dest, [%source + offset] ; do the store

add %source, offset, %temp ; compute address of modified word

sra %temp, log_base_2(card_size), %temp ; compute card index

stb %g0, [%card_base + %temp] ; mark card by zeroing

The compiler generates code to shift the address of the modified data slot right by a number of bits equal to the log2 of
the card size, adds it to the contents of a dedicated global register on the SPARC (a global variable on the Motorola
680x0), and zeros the byte at that address. Our system uses a whole byte per card, even though only a single bit is
required to record whether the card is marked, since the store checking code would be slowed by the bit manipulation
operations. Space for cards is allocated even for objects in new space so that the store checking code doesn’t have to
check to see whether or not the object being modified is in old space; the scavenger simply ignores the cards for objects
in new space. With 128-byte cards, the space required to store the card mark bytes is less than 1% of the total space of
the SELF heap, adding less than 45KB for our standard heap size of 5.6MB. The amount of space overhead can be
varied against the cost of scanning a card at scavenging time by changing the size of the cards.

The dedicated global register named%card_base in the code above represents the base address of the array of bytes
for the cards. It is initialized so that the address of the lowest memory word in the heap, shifted right the appropriate
number of bits, and added to the global register contents yields the address of the first byte in the array of cards:

%card_base = &cards[0] - (&heap[0] >> log_base_2(card_size))

This store checking design imposes a relatively small overhead of 3 instructions for each store into memory to support
generation scavenging; we are not aware of any other store checking designs that impose less overhead.

6.2 The Parser

To minimize parsing overhead, textual SELF programs are parsed once when entered into the system, generating SELF-
levelbyte code objects, much like Smalltalk-80CompiledMethod instances [GR83]. Each method object represents
its source code by storing a reference to the pre-parsed byte code object in the method’s map; all cloned invocations
of the method thus share the same byte code object since they share the same map. A byte code object contains a byte
array holding the byte codes for the source and an object array holding the message names and object literals used in
the source; the byte code object also records the original unparsed source and the file name and line number where the
method was defined for user-interface purposes.

* Earlier SELF implementations including that described in [Lee88] used a more traditionalremembered set to record old objects
containing pointers to new objects.
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Each byte code in the byte array represents a single byte-sized virtual machine instruction and is divided into two parts:
a 3-bit opcode and a 5-bit object array index. The opcodes used to represent SELF programs are the following:

0: INDEX-EXTENSION <index extension>
extend the next index by prepending this index extension

1: SELF
push self onto the execution stack

2: LITERAL <value index>
push a literal value onto the execution stack

3: NON-LOCAL RETURN
execute a non-local return from the lexically-enclosing method activation

4: DIRECTEE <parent name index>
direct the next message send (which must be a resend) to the named parent

5: SEND <message name index>
send a message, popping the receiver and arguments off the execution stack and pushing the result

6: IMPLICIT SELF SEND <message name index>
send a message to (implicit) self, popping the arguments off the execution stack and pushing the
result; begin the message lookup with the current activation record

7: RESEND <message name index>
send a message to self but with the lookup beginning with the parents of the object containing the
sending method, popping the arguments off the execution stack and pushing the result; like a super
send in Smalltalk*

These opcodes are specified as if for direct evaluation by a stack-oriented interpreter; in reality, the SELF system
dynamically compiles machine code that simulates such an interpreter. The index specified by several of the opcodes
is an index into the byte code object’s accompanying object array. The 5-bit index allows the first 32 message names
and literals to be referenced directly; indices larger than 32 are constructed using extraINDEX-EXTENSION
instructions. Since primitive operations are invoked just like normal messages, albeit with a leading underscore on the
message name, the normalSEND byte codes can be used to represent all primitive operation invocations, simplifying
the byte codes and facilitating extensions to the set of available primitive operations.

For example, the following diagram depicts the method object and associated byte code object for the pointprint
method originally presented in section 4.1. The top-left object is the prototype activation record, containing
placeholders for the local slots of the method (in this case, just theself slot) plus a reference to the byte code object
representing the source code (actually stored in the method’s map). The byte code object contains a byte array for the
byte codes themselves, and a separate object array for the constants and message names used in the source code.

* Resends and directed resends are described in detail in [CUCH91] and [HCC+91].
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6.3 The Run-Time System

6.3.1 Stacks

A running SELF program is a collection of lightweight processes, each process sharing the SELF heap address space
but with its own set of activation records. As with most traditional language implementations, these activation records
are implemented as a stack of frames, linked by stack pointers and frame pointers. The machine hardware provides
support for efficiently managing stack frames. For example, the Motorola 680x0 architectures provide special
instructions such aslink, jsr, andmovem for managing linked stacks of activation records and stack pointers
[Mot85], and the Sun SPARC architecture provides hardware register windows to support fast procedure calls and
returns with little register saving and restoring overhead [Sun91].

Garbage collection places some requirements on the design and implementation of the run-time system and the
compiler. The garbage collector must be able to locate all object references stored in registers or on the stack. In the
current SELF implementation, the compiler places asaved locations mask word at a fixed offset from each call
instruction that could trigger a scavenge (i.e., all message sends and many primitives), identifying to the scavenger
which registers and stack locations may contain tagged heap object references and should be scanned. On the SPARC,
any of the 8 incoming and 8 local registers can contain valid object references (the 8 outgoing registers are handled by
the next frame, which calls them its incoming registers, and none of the 8 global registers contain valid object
references), thus requiring 16 bits of the saved locations mask word to mark which registers to scan. The remaining 16
bits of the 32-bit mask word indicate which of the first 16 stack temporary locations need to be scanned. Any additional
stack temporaries are assumed to always need scanning; the compiler zeros these excess temporaries upon entering the
method so that their contents will always be acceptable to the garbage collector.*  This mask-word-based design allows
the compiler more freedom in allocating data to registers than the alternative approach of fixing which registers can
contain only object references and which can contain only non-pointer data. It does, however, slow scavenging with
the overhead to extract and interpret the mask word for every stack frame; fortunately, we have not noticed this
potential problem to be a performance bottleneck in practice.

In keeping with SELF’s robust implementation, stack overflow is detected and reported via a signal to the process-
controlling SELF code. In the current implementation, stack overflow is detected through an explicit check at the
beginning of each compiled method that requires a new stack frame. On the SPARC, a dedicated global register
maintains the current stack limit. On entrance to a compiled method, this global register is compared against the current
stack pointer (also a register), and if the current stack pointer is past the stack limit, the stack overflow code is invoked.
The 680x0 system is similar, except that the current stack limit is stored in a global variable in memory rather than a
dedicated register. This stack overflow detection imposes a small run-time overhead to check for overflow on every
method invocation.**

This polling for stack overflows at the beginning of methods actually is used for much more in the SELF system: it also
is used for signal handling, keyboard interrupt handling, and memory scavenging requests. Whenever a running SELF
process needs to be interrupted, either because a signal has arrived or a scavenge needs to be performed, the current
stack limit is reset back to the base of the stack. This causes execution to be interrupted at the next message send point.
When the stack overflow handler is invoked, it first checks to see what caused the “overflow”: a pending signal, a
scavenge request, or a real stack overflow, and branches to the appropriate handler.

Unfortunately, this polling approach to handling interrupts does not work for loops in which all message sends have
been inlined away. To support interrupts and scavenges in these loops, the compiler generates extra code to check the
stack limit value against the current stack pointer at the end of each loop body (at the_Restart primitive call,
described in section 4.1). This ensures that interrupt handlers are always invoked relatively quickly after an interrupt
is posted.

* Earlier memory system implementations only used the saved locations mask word for registers but not for stack locations. This
forced methods with stack temporaries to execute a lengthy prologue to zero out all the stack locations. The new design avoids
this overhead in nearly all cases arising in practice.

** An alternate implementation could avoid this run-time overhead by using hardware page protection to protect the memory page
at the upper limit of the stack. If this page were accessed, the run-time system would interpret the subsequent memory access trap
as a stack overflow error.
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Interrupting SELF programs only at message send boundaries allows the compiler more freedom in generating code.
The execution environment (the stack and registers) needs to be in a consistent state only when an interrupt could be
caught (such as at message send boundaries) rather than at each instruction boundary. Debugging information to
describe the state of execution, such as the saved locations mask word and the mapping from variable names to register
assignments (described in section 13.1), need only be generated for interruption points such as message sends rather
than for every machine instruction.

6.3.2 Blocks

In the current SELF implementation, blocks cannot outlive their lexically-enclosing scope. A block may only be passed
down to the called routine, such as when the block is part of a user-defined control structure or is an exception handler.*

This restriction is included so that activation records may be stack-allocated without additional special implementation
techniques. Since blocks cannot outlive their lexically-enclosing scope, the contents of the implicit lexical parent slot
of the block can be represented as a simple untagged pointer to the stack frame representing the lexically-enclosing
activation record. Since all stack frames are aligned on a double-word (8-byte) boundary on the SPARC and at least a
half-word (2-byte) boundary on the 680x0, the untagged address of the stack frame can be used in the representation
of a block without fear of unfortunate interactions with the garbage collector.

The SELF implementation does not prevent a block object from being returned by its lexically-enclosing scope or
stored in a long-lived heap data structure, but instead disallows the block’svalue method from being invoked after
the lexically-enclosing scope has returned; such a “zombie” block is termed anon-LIFO block, since its lifetime does
not follow the normal last-in-first-out (LIFO) stack discipline. To enforce this restriction, the compiler generates code
to zap each block when its lexically-enclosing scope returns by zeroing out the block’s frame pointer. Subsequent up-
level accesses through a zapped block’s null frame pointer cause segmentation faults which are caught by the SELF
implementation, interpreted as non-LIFO block invocation errors, and signalled back to the SELF program.

6.4 Summary

The SELF memory system provides several important facilities for the compiler. Maps capture essential similarities
among clone families, embodying the representation-level type information crucial to the compiler’s optimizations.
However, the garbage collector and the run-time system place constraints on the design and implementation of the
compiler. Some of these constraints impose extra overhead on the run-time execution of programs (such as the current
design of polling for interrupts) while others restrict the possible optimizations included in the compiler (such as
disallowing derived pointers that could confuse the garbage collector). Fortunately, these restrictions are not too
severe, and some parts of the overall system architecture ease the burden on the compiler, such as limiting interrupts
to well-defined points in the compiled code and placing no restrictions on the allocation of pointer and non-pointer data
to registers.

* Because they cannot be returned upwards, SELF blocks are not as powerful as blocks in Smalltalk or closures in Scheme. We do
not miss this power in our SELF programming, since we can use heap-allocated objects created from in-line object literals to hold
the long-lived state shared by the lexically-enclosing method and the nested blocks, and allow this in-line object to be returned
upwards. Even so, this restriction on the lifetime of blocks in some ways reduces the elegance of the language, and some future
SELF implementation may relax this restriction; we believe this can be accomplished without seriously degrading performance.
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Chapter 7   Inlining

This chapter describes inlining of methods and primitive operations. Many people have researched the problem of
improving the performance of procedure calls through inlining, as described in section 3.4.6. In this chapter we
describe the approach taken in the SELF compiler and detail the heuristics used to guide inlining automatically.

7.1 Message Inlining

The SELF compiler reduces the overhead of pure object-orientation and user-defined control structures primarily
throughmessage inlining. If the compiler can infer the exact type (i.e., map) of the receiver of a message, then the
compiler can perform the message lookup at compile-time instead of at run-time. If this lookup is successful (as it will
be in the absence of dynamic inheritance and message lookup errors in the program), then the compiler canstatically
bind the message send to the invoked method, thereby reducing the message to a normal procedure call. Static binding
improves performance, since a direct procedure call is faster than a dynamically-dispatched message send, but it does
not help to reduce the high call frequency. Once a message send is statically bound, however, the compiler may elect
to inline a copy of the target of the message into the caller, eliminating the call entirely.

To illustrate, on the SPARC the call and return sequence for a dynamically-bound message send takes a minimum of
11 cycles in our current SELF implementation (ignoring additional overhead such as LRU compiled method
reclamation support described in section 8.2.3 and interrupt checking described in section 6.3.1). The call and return
sequence for a statically-bound procedure call, on the other hand, takes just 4 cycles. But an inlined call takesat most
0 cycles, and usually takes even less, since the inlined body of the called method can be further optimized for the
particular context of the call site. For example, any register moves added to get the arguments to the message in the
right locations as dictated by the calling conventions can be avoided by inlining, and optimizations such as common
subexpression elimination can be performed across what before inlining was a call boundary. Inlining is so good that
in many situations the additional benefits derived from inlining are greater than the initial benefits derived from static
binding. As reported in section 14.3, without inlining SELF would run between 4 and 160 times slower.

The effect of message inlining depends on the contents of the slot that is evaluated as a result of the statically-bound
message:

• If the slot contains a method, the compiler can inline-expand the body of the method at the call site, if the method
is short enough and not already inlined (i.e., is not a recursive call).

• If the slot contains a blockvalue method, the compiler can inline-expand the body of the blockvalue method
at the call site, if it is short enough. If after inlining there are no remaining uses of the block object, the compiler
can optimize away the code that would have created the block object at run-time.

• If the slot is a constant data slot (i.e., the slot contains a normal object without code and there is no corresponding
assignment slot), the compiler can replace the message send with the value of the slot; the message then acts like
a compile-time constant expression. These kinds of messages typically access what in other languages would be
special constant identifiers or global variables, such astrue andrectangle.

• If the slot is an assignable data slot (i.e., the slot contains a normal object without code and there is a corresponding
assignment slot), the compiler can replace the message send with code that fetches the contents of the slot, such
as a load instruction. These kinds of messages typically access what in other languages would be instance
variables or class variables.

• If the slot is an assignment slot (i.e., the slot contains the assignment primitive method), the compiler can replace
the message send with code that updates the contents of the corresponding data slot, such as a store instruction.
These kinds of messages typically assign to what in other languages would be instance variables or class variables.

The next few subsections discuss interesting aspects of compile-time message lookup and inlining in the SELF
compiler.

7.1.1 Assignable versus Constant Slots

As described above, the SELF compiler treats constant and assignable data slots differently. The compiler inlines the
contents of a constant (non-assignable) data slot, but only inlines theoffset or access path of an assignable data slot.
This reflects the compiler’s expectations about what will remain constant during the execution of programs and what
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may change frequently at run-time. The only object mutations that running programs are expected to perform are
assignments to assignable data slots. Object formats and the contents of non-assignable data slots and method slots can
only be changed using special programming primitives, which are not expected to be invoked frequently during the
execution of programs. Accordingly, the compiler makes different compile-time/run-time trade-off decisions for
rarely-changing information and for frequently-changing information:

• Rarely-changing information (i.e., the formats of objects, the definitions of methods, and the contents of non-
assignable slots) is embedded in compiled code. This makes normal programs as fast as possible but incurs a
significant recompilation cost if the information does change.

• Frequently-changing information (i.e., the contents of assignable slots) is not embedded in compiled code. This
allows programs to change the information without cost but may sacrifice some opportunities for optimization.

Assignable parent slots are particularly vexing to the compiler. Most parent slots are non-assignable data slots.
Consequently, the compiler feels free to assume their contents will not change at run-time. This assumption enables
compile-time message lookup (the result of which depends on the contents of the parents searched as part of the
lookup), which in turn enables static binding and inlining, the keys to good run-time performance.

In contrast, encountering an assignable parent slot blocks compile-time lookup even if the receiver type is known.
Since the parent slot is assignable, the compiler assumes that the parent is likely to change at run-time, potentially
invalidating any compile-time message lookup results. Consequently, the current SELF compiler does not statically
bind or inline a message if an assignable parent is encountered during compile-time message lookup. This decision
allows assignable parent slots to be changed relatively cheaply, but imposes a significant cost to the use of dynamic
inheritance by slowing all messages looked-up through an assignable parent. We are currently exploring techniques
that might reduce this cost.

In summary, the SELF compiler makes heavy use of the distinction between assignable and constant slots, and exploits
the fact that whether or not a slot is assignable can be determined by examining only the object containing the data
slot. If all slots in SELF were implicitly assignable, or if a data slot could be made assignable by adding a corresponding
assignment slot in a child object (as was the case in an early design of SELF), then the compiler would no longer be
able to treat most parent slots as unchanging. In the absence of appropriate new techniques, these alternative language
designs would have serious performance problems.

These issues are specific to SELF’s reductionist object model, however. The facilities supported in SELF using constant
slots are supported in other languages using special language mechanisms. For example, Smalltalk uses different
language mechanisms for instance variables, global variables, superclass links, and methods, while SELF uses slots for
all of them. Therefore, the situations in which the SELF compiler takes advantage of a slot being constant correspond
to the situations in which a Smalltalk compiler using similar techniques could assume a feature was constant because
of the semantics of that language feature. Dynamic inheritance is also a SELF-specific problem, arising directly out of
SELF’s reductionist and orthogonal object model; we are aware of no other language which has a similar
implementation issue.

7.1.2 Heuristics for Method Inlining

Whenever a message is statically-bound to a single target method, the compiler can inline the message to speed
execution. However, unrestricted inlining can also drastically increase compiled code space requirements and slow
compilation. Consequently, the compiler should not inline methods when the costs of inlining are too great. The
compiler therefore must decide when presented with a statically-bound message whether or not to inline the message.

In the SELF system, the compiler is responsible for making inlining decisions; SELF programmers are not involved in
or even aware of inlining. The compiler uses heuristics to balance the benefits of inlining against its costs in compiled
code space and compilation time, electing to inline messages whose benefits significantly outweigh their costs. Of
course, the compiler must avoid performing costly analysis to decide whether a method should be inlined, since that
itself would significantly increase compilation time. The next two subsections describe the principle heuristics used by
the SELF compiler in deciding whether to inline a message: method length checks and recursive call checks.
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7.1.2.1 Length Checks

Ideally, to calculate the benefits and costs of inlining a method, the compiler would inline the method, optimize it in
the context of the call, and then calculate the performance improvement attributable to inlining and the extra compile
time and compiled code space costs of the inlined version. The compiler would then have enough accurate information
upon which to base its inlining decision. If in the end the compiler decided not to inline the message, the compiler
would back out of its earlier decision, reverting the control flow graph to its state before inlining. Unfortunately,
compilation time could not be returned by backing out of an unwise inlining decision, and so this ideal method is too
impractical to use directly.

The compiler approximates this ideal approach by calculating thelength of the target method, and inlining the method
only if the method is shorter than a built-in length threshold value; the compiler always inlines statically-bound
messages that access constant data slots, assignable data slots, and assignment slots, since the inlined code (e.g., a load
or store instruction) is frequently smaller than the original message send. This approach seeks to predict the compile
time and compiled code space costs of inlining the method from the definition of the method at a fraction of the cost
of the ideal method. If the length calculation is reasonably accurate at predicting which methods should be inlined and
which should not, then this approach should achieve run-time performance results similar to those produced by the
ideal approach with similar costs in compiled code space, but with little cost in compile time.

The formula for calculating a method’s length plays a central role in deciding whether to inline a method, and so
developing a good formula is extremely important to the effectiveness of the compiler. The length calculations in the
SELF compiler have evolved over time, we hope becoming more and more effective at distinguishing “good” methods
to inline from “bad” methods to inline.

To a first approximation the compiler calculates a method’s length by counting itsSEND, IMPLICIT SELF SEND, and
RESEND byte codes. This length metric assumes that the number of sends is a good measure of the cost in terms of
compiled code space and compile time of inlining the message, and thatLITERAL and other administrative byte codes
are relatively free. While sounding reasonable at first, this assumption has at least two glaring problems.

One problem is that it assumes that all sends are equally costly, since it assigns them all equal weight. This assumption
is grossly inaccurate when considering sends that access local variables (recall that SELF uses implicit self messages
to access local variables, as described in section 4.4) and sends that access data slots such as “instance variable”
accesses. To improve the accuracy of the length calculation, the SELF compiler excludes from the length count
IMPLICIT SELF SEND byte codes that access local variables or data slots in the receiver; the compiler does not
“penalize” a method for accessing local variables or instance variables. The compiler might also reasonably exclude
SEND byte codes that would access data slots in ancestors of the receiver (such as sends that would access the SELF
equivalent of class variables or globals), but the cost of checking whether aSEND byte code accesses such a data slot
would be relatively high (involving at least a call to the compile-time message lookup system), and so the current SELF
compiler does not perform these additional checks. However, the increase in accuracy possible by performing these
additional checks may someday be deemed important enough to outweigh the additional cost in compile time.

Excluding messages that only access local and instance variables greatly reduces the spread of cost for messages. Even
so, there remains a fairly significant range of costs for the messages that are left. A future compiler might include
additional heuristics that use the name of a message as an indicator of its cost. For example, a message like+,
ifTrue:, or at: is probably cheaper to compile (and more important to optimize) than a message like
initializeUserInterface which is unknown to the compiler. The compiler could reflect this expectation by
incrementing the length count for an unknown message by more than for a “recognized” message such as+ or
ifTrue:. This distinction would mesh well with static type prediction, to be described in section 9.4.

The original assumption thatLITERAL byte codes are free compared toSEND byte codes also frequently is mistaken
when the literal in question is a block. If the block itself gets inlined (and in most cases the compiler will work hard to
inline blocks so that it can optimize away the block creation code), then the cost of compiling the method will include
the cost of compiling the block (plus the cost of compiling any inlined methods between the outer method and the
block). To correct this deficiency, the SELF compiler adds the length of any nested blocks to the length of a method.
This rule errs on the side of not inlining a method with nested blocks when inlining would have been reasonable,
possibly reducing run-time performance, but is much better than erring in the other direction (inlining methods which
should not be inlined) and possibly drastically lengthening compile times. One exception to the nested block rule is
that failure blocks (blocks passed as theIfFail: argument to a primitive) are not added to a method’s total length;
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techniques such as lazy compilation of uncommon cases, described in section 10.5, ensure that failure blocks are
almost never inlined.

Since optimizing away block creations is so important to good performance, the compiler uses more generous inlining
length cut-offs for methods which either are blockvalue methods themselves or are methods which take blocks as
arguments (such as methods in a user-defined control structure).

• If the method is a blockvalue method, the compiler uses a high length threshold (currently 75), intended to inline
all reasonable blockvalue methods.

• If the method is being passed a block as one of its arguments, the compiler uses a medium length threshold
(currently 8). This seeks to preferentially inline methods that are part of user-defined control structures, in the hope
that all uses of the block can be inlined away and the block creation code can then be removed.

• Otherwise, the compiler uses a low threshold (currently 5).

Additionally, along uncommon branches of the control flow graph, the compiler uses drastically-reduced length
thresholds (currently 1) to prevent inlining of methods where the run-time pay-off is expected to be low. Since a
message in an uncommon branch will probably never be sent at all, any effort expended to optimize it is likely to be
wasted.

These heuristics do a reasonable job for most methods in inlining the right messages. For example, most common user-
defined control structures such asfor loops get inlined down to the primitive operations, enabling the SELF compiler
to generate code similar to that generated by a traditional compiler. Unfortunately, these length calculation heuristics
sometimes make serious mistakes, leading to overly long compile pauses when the compiler underestimates the cost
of inlining several messages, and missed opportunities for optimization when the compiler errs in the opposite
direction. Improved heuristics to support automatic inlining thus remain a promising area for future research.

7.1.2.2 Recursion Checks

The compiler must not inline forever when analyzing a recursive routine. For example, when given the factorial
function

factorial = ( <= 1 ifTrue: 1 False: [ * predecessor factorial ] )*

the compiler should not inline the recursive call tofactorial even though it can infer that the type of the receiver
to factorial is an integer. This requires the compiler to include some mechanism to prevent unbounded inlining of
recursive methods.

One approach that would be sufficient to prevent unbounded inlining would have the compiler record the internal call
graph of inlined methods, and not inline the same method twice in any particular path from the root to the leaves of
the call graph; the recursive message send could be statically bound but not inlined. Since the internal call graph data
structure is already maintained by the compiler to support source-level debugging (as will be described in section
13.1), this would be easy to include as part of recursion testing.

* This code may look strange to the SELF novice because all theself keywords that would be present in the Smalltalk-80 version
have been elided using SELF’s implicit self message syntax. Thus the receivers of the<=, *, andpredecessor messages are
all implicitly self.

factorial

<= ifTrue:False:

value

predecessor factorial*

do not inline
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A more precise approach would also check to see whether the type of the receiver was the same in both calls of the
method, and allow the method to be inlined as long as the receiver maps were different. Since there are only a finite
number of maps in the system, and new maps are not created during compilation, this receiver map check would be
adequate to prevent unbounded inlining. In practice, only a few different maps ever are encountered in one run of the
compiler, so this check would place quite a tight bound on the amount of “recursive” inlining allowed.

Unfortunately, even this more precise recursion check is too restrictive to handle user-defined control structures and
blocks as desired. Consider the following simple code fragment:

test = ( ... ifTrue: [ ... ifTrue: [ ... ] ] )

If this were C code, a C compiler would end up “inlining” bothif statements. Similarly, we would like both calls of
ifTrue: to be inlined, but the recursion check described above would disallow it, since the second call toifTrue:
occurs within an existing call toifTrue:.

This example is typical of many similar situations in the implementations of common user-defined control structures
such asto:Do: andwhileTrue:, and some solution must be found in order to achieve good run-time performance.

The SELF compiler solves this problem by augmenting the approach described above with special treatment of
lexically-scoped blockvalue methods. When traversing the call stack, searching for pre-existing invocations of some
method, the compiler follows the lexical parent link for blockvalue methods instead of the dynamic link as with
normal methods. This revised rule allows the example to be inlined as desired (since the outerifTrue: method is
skipped when following the lexical chain of the nestedifTrue: message), but still prevents unbounded recursive
inlining since only a finite number of “recursive” invocations of a message can be made, one per lexical scope.

ifTrue:

value

test

ifTrue:. . .

. . .

do not inline
(but inlining is desired!)

ifTrue:

value

test

ifTrue:. . .

. . .

value

. . .

lexical parent links

inline!
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Even this recursion checking is conservative, however. The compiler might be able to inline a recursive call without
getting into an infinite loop, if other information available to the compiler makes the processing of the two method
invocations somehow different. To illustrate this possibility, consider theprint method defined forcons cells that
simply sendsprint to each of the receiver’s subcomponents:

“Shared behavior for all cons cells”
traits cons = ( |
...
print = ( left print. right print. ).
...

| ).

“Representation of an individual cons cell”
cons = ( |
parent* = traits cons.
left.
right.

| ).

“Shared behavior for all collections”
collection = ( |
...

“Concatenate two collections by creating a cons cell”
, collection = ( (cons clone left: self) right: collection ).
...

| ).

“Test program”
outOfBoundsError: index = (
('index ', index printString, ' out of bounds!\n') print.

).

When compiling theoutOfBoundsError: method, the compiler inlines the “,” concatenation messages down to
the low-levelconsing code, retaining intimate knowledge about the contents of theleft andright subcomponents
of thecons cells.

The compiler inlines the initialprint message sent to the top-mostcons cell (since it knows the receiver’s map)
and inlines the nestedleft andright messages. At this point the compiler could inline the nestedprint messages,
since it knows the types of the contents of the subcomponents of thecons cell it just constructed; in fact, the compiler
has enough information to inline this whole example down to a series of three_StringPrint primitive calls, plus
a call toindex printString, thus optimizing away thecons’ing completely. Unfortunately, the recursion
detection system prevents the compiler from inlining the secondprint message sent to the nestedcons cell since
the receiver maps are the same for the twoprint messages and one is invoked directly within the other, even though
actually performing the inlining would not send the compiler into an infinite loop. With the current SELF compiler only
the outermost level ofcons’ing and the outermost level ofprint’ing is eliminated in this example.

Unfortunately, detecting when recursion would not lead to infinite looping is difficult. The SELF compiler remains
conservative by never inlining a method with the same receiver map twice in the same mixed lexical and dynamic call
chain. As an extension the compiler could inline a recursive method up to some small number of times. This change
would speed both tightly recursive programs by “unrolling” the recursion a few times and would catch some cases like
the cons cell example above where the recursion is in fact bounded. Of course, these benefits would need to be
balanced against the extra compile time and space needed to unroll recursive calls.

left

right

left

right

’index ’

’ out of bounds!\n’

index printString
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7.1.3 Speeding Compile-Time Message Lookup

Compile-time message lookup turns out to be a bottleneck in the SELF compiler, consuming around 15% of the total
compilation time. To speed compile-time message lookups, the compiler maintains a cache of lookup results, much
like the run-time system includes a cache of message results to speed run-time message lookups. A compile-time
message cache should be most important for certain classes of message sends, such as sends accessing global slots such
asnil, true, andfalse which require a lot of searching of the inheritance hierarchy, and common messages such
as+ andifTrue: which are sent frequently.

Unfortunately, because of the compiler’s internal memory allocation scheme, the current compile-time lookup cache
can only cache message lookup results during a single compilation; the cache must be flushed at the end of each
compile.*  This significantly reduces the hit rate of the cache, since the cache must be refilled with each new
compilation. For example, one of our benchmark suites performed approximately 16,750 compile-time message
lookups. Of these, 4,150 accessed slots other than local slots (12,600 were argument and local variable accesses, which
did not go through the compile-time lookup cache). Of the 4,150 “real” messages, only 1,300 were found in the
compile-time lookup cache; 2,850 caused misses, for a hit rate of only 30%. Consequently, the compile-time lookup
cache reduces compile time by only 2% or 3%, as reported in section 14.3. A long-lived compile-time lookup cache
would presumably have a much higher hit rate, since the cache-filling overhead associated with the per-compilation
cache would be amortized over all compilations, and thus reduce the compile time costs of compile-time message
lookup further. One possible implementation strategy for this cache that would interact well with change dependency
links is outlined in section 13.2.

7.2 Inlining Primitives

In addition to user-defined methods, the compiler inlines the bodies of some primitive operations. Since primitive
invocations are not strictly messages, but are more analogous to statically-bound procedure calls, the compiler can
always inline calls of primitive operations. The implementations of certain commonly-used primitives, such as integer
arithmetic and comparison primitives, the object equality primitive, and array accessing and sizing primitives, are
built-in to the compiler. When any of these “known” primitives is called, the compiler generates code in-line to
implement the primitive. Non-inlined primitives are implemented by a call to a function in the virtual machine that
executes the primitive.

The compiler inlines commonly-used primitives to achieve good performance. The call and return overhead for small
primitives is frequently larger than the cost of the primitive itself. Also, since primitives in SELF are robust, they
always check the types and values of their arguments for legality (for instance, that the arguments to an integer addition
primitive are integers or that the index to an array access primitive is within the bounds of the array). Many of these
checks can be optimized away using the type information available at the primitive call site.

* The compiler allocates all internal data structures, including the compile-time lookup cache, in a special region of memory. When
the compilation completes, the entire region is emptied. This approach relieves the compiler of the burden of manual garbage
collection (the virtual machine, written in C++, has no support for automatic garbage collection of internal data structures) at the
cost of not being able to easily allocate data structures that outlive a single compilation.
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If the arguments to a side-effect-free, idempotent primitive are constants known at compile-time, the compiler can
constant-fold the primitive, executing the primitive operation at compile-time instead of run-time and replacing the
call to the primitive with its compile-time constant result. Constant folding is especially important for optimizing some
user-defined control structures whose arguments may frequently be simple constants that control the behavior of the
control structure. For example, theto:Do: control structure (SELF’s form of a simple integerfor loop) is defined
in terms of the more generalto:By:Do: control structure, with a step value of1:

to: end Do: block = ( to: end By: 1 Do: block ).

The body of theto:By:Do: routine tests the sign of the step value to see if thefor loop is stepping up or down:

to: end By: step Do: block = (
step compare: 0

IfLess: [ to: end ByNegative: step Do: block ]
Equal: [ error: ‘step is zero in to:By:Do: loop’ ]
Greater: [ to: end ByPositive: step Do: block ] ).

to: end ByNegative: step Do: block = (
“step down fromself toend”
| i |
i: self.
[ i >= end ] whileTrue: [
block value: i.
i: i + step. “step is negative, soi gets smaller”

] ).

to: end ByPositive: step Do: block = (
“step up fromself toend”
| i |
i: self.
[ i <= end ] whileTrue: [
block value: i.
i: i + step.

] ).

The compiler can constant-fold the comparisons in thecompare:IfLess:Equal:Greater: method, since it
knows the receiver is1 and the argument is0:

compare: arg IfLess: ltBlock Equal: eqBlock Greater: gtBlock = (
< arg ifTrue: ltBlock

False: [ = arg ifTrue: eqBlock False: gtBlock ] ).

Constant folding is critical to optimizing away the overhead of the generalto:By:Do: loop to just the
to:ByPositive:Do: loop.

7.3 Summary

Inlining methods and primitives slashes the call frequency in pure object-oriented languages and languages based on
user-defined control structures, opening the door for traditional optimizations such as global register allocation and
common subexpression elimination that work well only for code with few procedure calls. However, inlining a
message requires static knowledge of the map of the message receiver, and so requires sophisticated techniques for
inferring the types of objects. These techniques are the subject of the next four chapters.
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Chapter 8   Customization

Customization, one of the SELF compiler’s main techniques, provides much of the type information enabling compile-
time message lookup and inlining. This chapter describes customization and discusses important related issues.

8.1 Customization

Programmers using object-oriented languages receive much of their expressive power by applying inheritance to
organize code, factoring common fragments of code out into shared ancestors. In many cases, the factored code must
be parameterized by specific information available to the inheriting objects or subclasses. The factored code can gain
access to the specific information by sending a message toself and relying on the inheriting objects or subclasses to
provide specific implementations of the message that take care of the more specific computation. For example, the
pointprint example presented in section 4.6 uses sends toself to access behavior specific to either cartesian or
polar points:

Sending thex andy messages to (implicit)self allows the singleprint method to work for both kinds of points,
irrespective of how they actually implement thex andy messages.

Most object-oriented systems generate one compiled-code method for each source-code method. The single compiled
method must be general enough to handle all possible receiver types that might inherit the single source method. In
particular, a send toself must be implemented as full dynamically-bound messages, since different inheriting objects
will provide different implementations of the message. This implementation architecture places well-factored object-
oriented code at a performance disadvantage relative to less-well-factored code.

. . .

. . .

parent*
rho

theta
rho:

theta: ←

3
180
←

parent*
rho

theta
rho:

theta:

print
+ arg

parent*

parent*
x
y
x:
y: ←

7
9.2
←

parent*
x
y
x:
y:

. . .

. . .

clone . . .

a cartesian point a polar point

cartesian point traits polar point traits

point traits

general traits

rho * theta cos
rho * theta sin

(x*x + y*y) sqrt
(y / x) arctan

x print.  ’@’ print.  y print
(clone  x:  x + arg x)  y:  y + arg y
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←
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←

a polar point
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The SELF compiler avoids penalizing well-factored code by compiling aseparate version of a source-code method for
each receiver type (i.e., each receiver map) on which the method is invoked. Each version is invoked only for receivers
with a particular map. Within the method, the compiler knows the precise type ofself (the single receiver map for
self) and therefore can perform compile-time message lookup and inlining for all sends toself. For example, in
the pointprint example, the compiler generates one compiled version ofprint for cartesian point receivers and
another compiled version for polar point receivers.

Within each version, the type ofself is known statically, and thex andy messages can be statically bound to target
methods and inlined.

Since in SELF many common messages are sent toself, including instance variable accesses, global variable
accesses, and some control structures, this extra type information makes a huge difference in the performance of SELF
programs; as shown in section 14.3, without customization SELF would run an average of 3 times slower.
Customization completely overcomes the apparent performance disadvantage of accessing instance variables and
global variables via messages as in SELF rather than special restrictive linguistic constructs as in Smalltalk and most
other languages.

8.2 Customization and Dynamic Compilation

Customization potentially could lead to an explosion in compiled code space consumption. If a single source method
were inherited by many different receiver types, it could be compiled and customized many different ways.
Fortunately, this potential space explosion can be controlled in most cases by integrating customization with the
dynamic compilation strategy used by the Deutsch-Schiffman Smalltalk-80 system, described in section 3.1.2.

As described in section 6.2, SELF source code is first parsed into byte code objects; no compilation takes place until
run-time. When a method is first invoked, the compiler generates code for that method based on the byte-coded pre-
parsed description of the source code. The compiler stores the resulting generated code in a cache (called thecompiled
code cache) and finally jumps to the generated code to execute the method.

The Deutsch-Schiffman Smalltalk-80 system generates a single compiled method for each executed source method. In
the SELF compiler, dynamic compilation is integrated with customization: a method is custom-compiled only when
first invoked with a particular receiver map. This approach usually limits the code explosion potentially created by
customization, since instead of customizing for every inheriting receiver type, the system only customizes for those
inheriting receiver types currently being manipulated as part of the user’s “working set” of programs. Section 8.6
describes some pathological cases where dynamic customized compilation is still too wasteful of compiled code space,
however, and suggests some approaches for handling these rare situations.

8.2.1 Impact of Dynamic Compilation

Dynamic compilation has a marked effect on the flavor of the system. Dynamic compilation is naturally incremental,
enabling an effective programming environment. Turnaround time for programming changes can be short, since only
code that needs to be executed must be compiled after a change, and only code affected by the change need be
recompiled at all.

With dynamic compilation, compilation speed becomes much more important. Most programmers are unwilling to
accept lengthy compilation pauses interleaved with the execution of their programs, even if the total compile time with

point +
source code

customize customize

compiled code
point +

(cartesian point version)
compiled code

point +

(polar point version)
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the dynamic compilation system is less than with a traditional batch compilation system. Ideally, programmers should
be unaware of compilation entirely, implying that each compilation or series of compilations should take only a second
or two in a long-running non-interactive program or small fraction of a second in an interactive program or a program
with real-time needs such as an animation play-back program. Traditional batch compilers, especially optimizers,
normally do not labor under such compilation speed restrictions, probably because users do not expect compilation to
be fast or unnoticeable. In a sense, dynamic compilation has created this problem by raising the level of expectation
of users. The SELF compiler thus takes special pains to reduce compilation time, such aslazy compilation of
uncommon branches as described later in section 10.5.

8.2.2 Compiled Code Cache

Dynamic compilation systems require that both the compiler and all the source code for the system be available at run-
time (although possibly in a compact form, like the SELF byte code objects). These needs seem to imply that a
dynamically compiled system will take up more space at run-time than a corresponding statically-compiled system.
However, in both our SELF system and in the Deutsch-Schiffman Smalltalk-80 system, the dynamically-compiled
code iscached in a fixed-sized region. If the code cache overflows, some methods are flushed from the cache to make
room for new compiled code; the flushed methods will be recompiled when next needed. Caching has the advantage
that only the working set of compiled code needs to exist in compiled form; all other methods exist only in the more
compact byte code form. This organization can actually save space over similar statically-compiled systems, since in
a statically-compiled system all compiled code must exist all the time, while in a dynamically-compiled system only
the more compact byte codes need be kept all the time.

On the other hand, a dynamically-compiled system that caches the results of compilation may incur more compilation
overhead than a dynamically-compiled system without caching (i.e., with a “cache” that only ever grows larger, never
flushing code unnecessarily) or a statically-compiled system (assuming that all compiled code will eventually be
needed). The size of the compiled code cache (and whether it is unbounded) is thus an important parameter to
controlling the behavior of a system based on dynamic compilation: too small a compiled code cache can lead to
excessive compilation overhead akin to thrashing, while too large a compiled code cache can lead to excessive paging
on systems with virtual memory. In the current SELF system, the compiled code cache is sized at about 4MB for
machine instructions (with additional space reserved for other information output by the compiler along with
instructions), which is enough to hold all the commonly-used compiled code for the prototype SELF user interface,
currently the largest SELF application.

8.2.3 LRU Cache Flushing Support

The current implementation of dynamic compilation and caching requires some support from the compiler to
implement the replacement algorithm used in the compiled code cache. To select the compiled method(s) to flush to
make room for new compiled methods, the code cache uses aleast-recently-used (LRU) approximation strategy. Each
compiled method is allocated a word of memory, used to record whether the method has been used recently. At the
beginning of each compiled method, the compiled code must zero its word to mark the method as recently used. Partial
sweeps over the compiled code cache check which methods have been used recently (i.e., which have their words
zeroed), transferring this information to a separate, more compact data structure. After scanning, the examined words
are reset to non-zero to begin the next time interval. This clock-like LRU detection strategy imposes a small run-time
overhead to clear a word of memory at a fixed address on every method invocation.

8.3 Customization and Static Compilation

SELF can use customization without incurring a huge blow-up in compiled code space because the SELF compiler
relies on dynamic compilation to limit customization to those receiver type/source method combinations that actually
occur in practice. However, most object-oriented language implementations use traditional static compilation. In such
environments, customization would appear to become much less practical, since compiled versions of source methods
would have to be compiled “up front” for all possible receiver type/source method combinations, irrespective of
whether the combinations occur in practice.

Nevertheless, the Trellis/Owl system (described in section 3.2.3) automatically compiles customized versions of
methods for all inheriting subclasses statically. Trellis/Owl, like SELF, accesses instance variables via messages, and
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consequently Trellis/Owl’s implementors developed a similar optimization to overcome the potential performance
problems. Their system includes several techniques that together apparently keep down the costs of static
customization. The Trellis/Owl compiler conserves space by generating a new compiled version of a method only
when it differs from the compiled code of its superclass’ version. This technique would solve theequalsString:
problem by having all non-string classes share the same compiled code for the default definition ofequalsString:.
Trellis/Owl also keeps compiled code space costs and compile time costs down by performing little optimization and
no inlining of methods or primitives; only messages toself accessing instance variables are inlined. Global variables
and constants are accessed directly, not by messages, so objects such asfalse can be accessed directly without
sending messages, unlike in SELF wherefalse is accessed via a normal implicit-self message. Finally, Trellis/Owl
includes a suite of built-in control structures and special declarations to make it easier to compile code for common
types such as integers and booleans. We doubt that static customization would remain practical in an aggressively
optimizing system like SELF with a pure language model, although further research to verify this belief would be
useful.

8.4 Customization as Partial Evaluation

Customization can be viewed as a kind of partial evaluation (introduced in section 3.4.3): by customizing the compiler
partially-evaluates a source method with respect to the type of its receiver to produce a residual function (the
customized compiled code). Also like partial evaluation systems, the SELF compiler makes heavy use of type analysis
and inlining to optimize routines.

There are several important distinctions between the SELF compiler and partial evaluators. The SELF compiler
partially-evaluates (i.e., customizes) methods using type information extracted at run-time using dynamic compilation
without any user type or data declarations, while partial evaluation systems typically are given an extensive static
description of the input to the program over which the program is to be partially evaluated. Partial evaluators primarily
propagate constant information, while the SELF compiler typically propagates more general information such as the
representation-level types of expressions. Finally, partial evaluators typically unroll loops or inline recursive calls as
long as they can be “constant folded” away, and therefore do not terminate on non-terminating input programs, such
as programs containing errors that lead to infinite recursions. The SELF compiler must be more robust, compiling code
in a reasonable amount of time even for programs that contain errors. Accordingly, the SELF compiler does not unroll
loops arbitrarily (sacrificing some opportunities for optimization in the process), and its recursion detection rules
(described in section 7.1.2.2) are more elaborate than those found in most partial evaluators.

8.5 In-Line Caching

8.5.1 In-Line Caching and Customization

With customized methods, the message lookup system has the additional job of locating the particular customized
version of a source method that applies to the receiver type. Fortunately, this selection can be folded intoin-line
caching for no additional run-time cost. Like the Deutsch-Schiffman Smalltalk-80 system (described in section 3.1.2),
the SELF system uses in-line caching to speed non-inlined message sends. In traditional in-line caching, the compiler
verifies the cached method by checking whether the receiver’s map is the same as it was when the method was cached
in-line. This check extends naturally to handle customized methods by instead verifying that the receiver’s map is the
one for which the method was customized. This test has the same hit rate as for traditional in-line caching, since if the
receiver’s map is the same as before then its map will be the one for which the method was customized, and vice versa.
The modified test also takes up less compiled-code space, since the cached receiver map no longer needs to be stored
in-line at the call site. Finally, the new check is faster to perform, since the cached last receiver map no longer needs
to be fetched from its in-line memory location (the required map value is now a compile-time constant embedded in
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the instructions of the method’s prologue). The following SPARC instructions implement this check at the beginning
of methods invoked through dynamically-dispatched message sends:

• If customized for integer receivers:
andcc %receiver, #3 ; test low-order two bits for00 integer tag
bz,a _hit
; instruction beginning rest of method prologue (in delay slot)

_miss:
sethi %hi(_InlineCacheMiss), %t ; call in-line cache miss handler
jmp [%t + %lo(_InlineCacheMiss)]

_hit:
; rest of method prologue

• If customized for floating point receivers:
andcc %receiver, #2 ; test second low-order bit for10 float tag (cannot be mark (11))
bnz,a _hit
; instruction beginning rest of method prologue (in delay slot)

_miss:
sethi %hi(_InlineCacheMiss), %t ; call in-line cache miss handler
jmp [%t + %lo(_InlineCacheMiss)]

_hit:
; rest of method prologue

• If customized for other receivers:
andcc %receiver, #1 ; test low-order bit for01 memory tag (cannot be a mark (11))
bnz,a _map_test
ld [%receiver + 3], %map ; load receiver’s map (in delay slot)

_miss:
sethi %hi(_InlineCacheMiss), %t ; call in-line cache miss handler
jmp [%t + %lo(_InlineCacheMiss)]

_map_test:
sethi %hi(<customized map constant>), %t ; load 32-bit map constant
add %t, %lo(<customized map constant>), %t
cmp %map, %t ; compare receiver’s map to customized map constant
beq,a _hit
; instruction beginning rest of method prologue (in delay slot)
ba,a _miss ; branch back to call of in-line cache miss handler

_hit:
; rest of method prologue

For messages that miss in the modified in-line cache, the compiled code table is consulted to find the appropriate
customized version of the target method. To support customization, the map of the receiver object is included in the
key that indexes into the table. If a version of the method with the right receiver map has not yet been compiled, then
the compiler is invoked to produce a new customized version, and the resulting version is added to the compiled code
table for future uses of the same source method with the same receiver type. The in-line cache is thenbackpatched
(i.e., overwritten) to call the newly-invoked method, so that future executions of the same message send will test the
most recently invoked method first.*

* After the bulk of the research reported in this dissertation was completed, Urs Hölzle and other members of the SELF group
designed and implemented an extension to normal in-line caching calledpolymorphic inline caching [HCU91]. Polymorphic
inline caches roughly act like dynamically-growing chains of normal “monomorphic” in-line caches, eventually increasing the
hit rate for a polymorphic inline cache to 100%. The performance data presented in Chapter 14 includes the improvements from
polymorphic inline caches.
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8.5.2 In-Line Caching and Dynamic Inheritance

In the presence of dynamic inheritance, the outcome of method lookup depends on more than just the map of the
receiver: it also depends on the run-time contents of any assignable parent slots traversed by the lookup. Consequently,
the simple in-line cache receiver map check is insufficient to guarantee that the cached method is correct for the
receiver. One approach, used in an early SELF implementation, would simply disable in-line caching for messages
affected by dynamic inheritance; a full lookup would be performed for every message involving assignable parents.
Unfortunately, this approach places a severe run-time overhead on the use of dynamic inheritance.

The current SELF system extends in-line caching to also check the state of any assignable parents as part of checking
for an in-line cache hit. The compiler generates extra code in the method prologue after the receiver type check that
verifies the contents of any assignable parent slots. In most cases, the compiler only has to check the map of the
assignable parent against a statically-known constant; in some cases the compiler must check the parent object’s
identity (these cases relate to certain aspects of SELF inheritance rules that depend on the relative identities of objects
involved in the message lookup). If all assignable parents are correct for the cached method, then the in-line cache hits
and the body of the method is executed. Otherwise, the in-line cache misses and additional processing is needed to
resolve the miss, potentially involving a full message lookup.

This implementation of dynamic inheritance is much better than the simple approach of disabling in-line caching
altogether, but it is still not as fast as desired, since the presence of dynamic inheritance currently blocks compile-time
message lookup and message inlining. To make dynamic inheritance truly competitive in performance with messages
involving only static inheritance, the system would need to include some means of statically-binding and inlining
messages influenced by dynamic inheritance.

8.5.3 In-Line Caching and _Performs

In SELF, users may send a message whose name is a computed run-time value rather than a static compile-time string
using a_Perform primitive.*  For example, the following SELF code could be used to implement thefor loop
control structure more succinctly than the current way presented in section 7.2:

to: end By: step Do: block = (
step compare: 0

IfLess: [ to: end By: step Sending: ‘>=’ Do: block ]
Equal: [ error: ‘step is zero in to:By:Do: loop’ ]
Greater: [ to: end By: step Sending: ‘<=’ Do: block ] ).

to: end By: step Sending: name Do: block = (
“step either up or down fromself toend”
| i |
i: self.
[ i _Perform: name With: end ] whileTrue: [
block value: i.
i: i + step.

] ).

This version of thefor loop control structure passes in the name of the message to be used to test whether the loop is
done.

To implement_Perform’ed messages efficiently, we generalize the notion of a message, and generalize the in-line
cache prologue to handle this more general kind of message. A general message involves a number of parameters that
control the message lookup, including the receiver’s map and the name of the message. Each of these parameters may
be either a compile-time constant or a run-time computed quantity. A normal message send is simply a special case of
this generalized message, with the message name a compile-time constant. For_Perform’s the message name may
be a run-time computed value. In addition, the receiver map, normally a run-time computed value, might be a compile-
time constant, for instance if the message has been statically-bound but not inlined (such as for a recursive call). The
generalized in-line cache is responsible for checking any run-time computed parameters to the message lookup that
are not guaranteed to be compile-time constants (and so already checked at compile-time), such as the receiver’s map
or the message name.

* Other variants of_Perform allow other aspects of the message lookup, such as the object with which to start the search, to be
computed and passed in as run-time values.
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The compiler attempts to determine statically as many of the parameters to a message as possible, since the compiler
can generate better code if it knows more about the message. For example, if the compiler can infer the value of the
message name argument of the_Perform primitive statically, it replaces the_Perform primitive with a normal
message send, which the compiler then attempts to optimize further. In this way the compiler integrates the treatment
of normal messages and_Perform’ed messages, using the same kinds of techniques and run-time mechanisms to
improve the performance of both.

8.6 Future Work

A logical extension to our current system would be to customize on the types of arguments in addition to the type of
the receiver. There is no theoretical reason why customization should not apply to arguments in addition to the receiver,
and the performance of some programs likely would improve with argument customization. From a practical
standpoint, however, in a singly-dispatched language such as SELF the receiver is more important than the other
arguments, since message lookup depends on the type of the receiver but not on the types of the arguments.
Customizing on the receiver comes at no additional run-time cost, since in-line caching can handle customized
methods at least as easily as non-customized methods. In contrast, any argument customization would require
additional run-time checks in the method prologue. Whether argument customization pays off in practice depends on
whether the benefits of knowing the types of arguments outweigh the run-time costs associated with checking the types
of the customized arguments in method prologues and the costs in additional compiled code space. It seems likely that
a successful system would only customize on those arguments, if any, that received heavy use in the body of a method,
since customization on all arguments for all methods would almost surely lead to significant compiled-code space and
compilation time overheads.

Even though customization usually improves performance significantly without greatly increasing compiled code
space usage, customization may not be appropriate for all source methods. For some methods, the extra space cost
associated with customization may not be worth the improvement in run-time performance, either because the method
does not send messages toself often enough or because the method is called with many different receiver types. For
example, in the current SELF system, testing two arbitrary objects for equality is implemented usingdouble
dispatching [Ing86]. The implementation of= for strings, for example, is the following:

traits string = ( |
...
= anObject = ( anObject equalsString: self ).
equalsString: s = (
“both arguments are strings; now compare characters”

... ).
...

| ).*

If both arguments to= are strings, then the version ofequalsString: for strings is called, which proceeds to
compare individual characters within the strings. If, however, the argument to= is not a string, then the default version
of equalsString: is called instead:

traits defaults = ( |
...
equalsString: s = ( false ).
...

| ).

This version just returnsfalse, since a string is never equal to something that is not also a string. The compiler
generates a separate customized version of this method for all non-string receiver types compared against strings in
practice. Normally this would be a small set, but one SELF program iterated through all the objects in the heap
comparing them to a particular string; this program caused the compiler to generate a customized version of the default
equalsString: message forevery non-string type in the system. Clearly a single shared version of this method
would be better. To prevent such pathological cases, we are investigating approaches in which the compiler can elect
not to customize methods where the costs of customization outweigh the benefits.

* This syntax is not precisely SELF syntax; we using a more intuitive syntax in this dissertation for pedagogical reasons.
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8.7 Summary

The SELF compiler performs customization as one of its main techniques to improve performance. Customization
provides the compiler with precise static knowledge of the type ofself, enabling it to statically-bind and inline
messages sent toself. These kinds of messages are extremely common in SELF, since instance variables and global
variables are accessed by sending messages toself rather than by special-purpose language mechanisms with limited
expressive power. Customization directly overcomes the performance disadvantages of SELF’s more expressive
approach, clearing the way for future languages to rely on messages for variable accesses without adverse performance
impact. By coupling customization with dynamic compilation, the space overhead for customization can be kept
reasonable. By coupling customization with in-line caching, no extra run-time work is required to select the right
customized version of an invoked source method.
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Chapter 9   Type Analysis

Type information plays a critical role in improving performance of object-oriented languages such as SELF. To obtain
the maximum benefit from any type information the compiler can infer, the compiler uses sophisticated flow analysis
to propagate type information through the control flow graph. This propagation is calledtype analysis, and is the
subject of this chapter. To simplify the exposition, only type analysis for straight-line code without loops is discussed
here; type analysis of loops will be described later in Chapter 11.

9.1 Internal Representation of Programs and Type Information

9.1.1 Control Flow Graph

The compiler represents the method being compiled using a control flow graph data structure, with different kinds of
nodes in the control flow graph for different kinds of operations. These nodes include high-level nodes such as message
send nodes,

instruction-level nodes such as add instructions,

control flow nodes such as merge nodes

and conditional branch nodes,*

and bookkeeping nodes such as assignment nodes.

Most passes in the compiler involve some sort of traversal of this graph.

* In all diagrams in this dissertation, the “yes” or “success” arc of a branch node will exit on the left.

n1 ← “+”(i, j)

n2 ← add i, j

i < j

n3 ← i n4 ← 17
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9.1.2 Names

The compiler usesnames to capture data dependencies among the nodes. A name corresponds to either a source-level
variable name (such as an argument or local variable) or a compiler-generated temporary name (such as a name
referring to the result of a subexpression in the source code). The compiler treats both kinds of names in the same way.
Names represent the flow of data through nodes in the graph by having some nodes bind names to computed results,
with other nodes referring to bound names as arguments. For instance, the message send node

passes the data values bound to the namesi andj as the receiver and argument to the+ message, and binds the result
data value to the (temporary) namen1.

To illustrate control flow graphs, names, and inlining, consider the above message send node. If the compiler can infer
that the type of the receiveri of the+ message is, say, an integer, then it can lookup the+ message for integers at
compile-time and locate the following method:

+ x = ( _IntAdd: x IfFail: [ . . . ] ).

The compiler then can inline this method. Inlining a method entails constructing a new control flow graph for the
inlined method

and splicing this control flow graph into the main graph in place of the message send node. Name assignment nodes
are inserted to assign the names of the actual receiver and arguments to the names used as the formals in the inlined
control flow graph, and likewise to assign the name of the result used in the inlined control flow graph to the name of
the result of the eliminated message send node.*

* Names likeself2 andx2 correspond to formals of inlined methods. New names are created for each inlined copy of a method.

n1 ← “+”(i, j)

result ← intAdd(self, x, n2)

n2 ← blockClone([. . .], thisFrame)

n2 ← blockClone([. . .], thisFrame)

x2 ← j

self 2 ← i

n1 ← result 2

result 2 ← intAdd(self 2, x2, n2)
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The compiler can also inline-expand the call to theintAdd primitive.

Most of the transformations of the control flow graph performed by the SELF compiler are of this flavor.

9.1.3 Values

In our view, names are merely mechanisms for programmers and the compiler to refer to underlying data values and
have no run-time existence. These underlying data values referred to by names are represented explicitly in the SELF
compiler asvalues. Each value data structure in the compiler represents a particular run-time object. Many names may
refer to the same value at a particular point in the program, and a single name may refer to different values at different
points in the program. For example, after the assignment node

bothn1 andn2 refer to the same value object (the value thatn2 referred to before the assignment node);n1 may refer
to a different value after the assignment than before the assignment. Since assignment nodes simply affect the
compiler’s internal mappings from names to values, they do not directly generate any machine code.

The primary invariant relating names and values is that if two names map to the same value at some point in the
program, then both names are guaranteed to refer to the same object at run-time at that point. On the other hand, if two
names map to different values, then the compiler cannot tell whether the names will refer to the same object at run-
time or not. Values are immutable; a new value is created whenever the compiler needs a representation for a run-time
object that is potentially different from any other object. For example, the receiver and argument names of the method

self 2 int?

x2 int?

n3 ← add self 2,x2

result 2 ← “value”(n2)

no overflow?

n2 ← blockClone([. . .], thisFrame)

x2 ← j

self 2 ← i

result 2 ← n3

n1 ← result 2

n1 ← n2

n1: v1
n2: v2

n1: v2
n2: v2
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being compiled are initialized to new unique values, as are the results of non-inlined message sends, primitives, and
integer arithmetic. References to the contents of assignable data slots in the heap (such as instance variable accesses)
also are bound to new unique values.

Merges in the control flow graph pose an interesting problem for maintaining the invariant relating names and values.
If a name is bound to a valuev1 along one predecessor branch of a merge node and bound to a different valuev2 along
another predecessor branch, to what value should the name be bound after the merge?

If either v1 or v2 is chosen, then for some paths through the program at run-time the compiler will have inferred
incorrect information, potentially leading it to make incorrect optimizations that cause the optimized program to
misbehave or even crash. Since neither incoming value is acceptable, a brand new value must be created to represent
the run-time data value referred to by the name after the merge. The new values created by merge nodes are called
union values.

Union values are very similar to theφ-functions of SSA form, described in section 3.4.4.

Currently, each name that needs a new union value at a merge node is given a unique union value. A more accurate
analysis would locate those names that for each predecessor branch are bound to the same value and assign them all
the same new union value after the merge. For example, after the following merge node bothn1 andn2 are guaranteed
to refer to the same run-time object, and so should be given the same union value.

The SELF compiler’s analysis currently is not sophisticated enough to recognize this situation, and son1 andn2 each
will be given its own new union value after the merge.

Values provide a better base than names for certain kinds of analysis and optimizations. As a consequence of
aggressive inlining of user-defined control structures and operations, new names are created at a high rate, with many
trivial assignment nodes introduced merely to assign one name to another (e.g., the name of an actual to the name of
a formal). Values provide an explicit representation of the objects flowing through these names and as such are closer
to the variables of a traditional language and compiler. Techniques and optimizations that are normally based on
variable names in a traditional compiler, such as register allocation and common subexpression elimination, are more
naturally based on values in the SELF compiler. (Common subexpression elimination with values will be described in
section 9.6; global register allocation will be described in section 12.1.) In these respects, values serve purposes similar
to those served by subscripted variables in SSA form (described in section 3.4.4). However, we feel that explicitly
separating values from names, propagating values through the control flow graph independently from names and
testing the values for equality, is simpler than first transforming the program into SSA form, with each name replaced

n: v1 n: v2

n: ??

n: v1 n: v2

n: uv3

n1: v1 n1: v2

n1: uv3

n2: v1 n2: v2

n2: uv3

n1: v1 n1: v2

n1: uv3

n2: v1 n2: v2

n2: uv4
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with several subscripted names, then merging subscripted names into equivalence classes, and then testing the
subscripted names for membership in the same equivalence class.

Values also improve the effectiveness of type analysis. Run-time type tests of a particular name, such as those
implementing run-time type checking of the arguments of primitives or verifying guesses as part of type prediction
(described in section 9.4), alter the type associated with thevalue that is bound to the tested name, instead of just the
name itself as would happen in a simpler system that mapped names directly to types. This allows a single type test to
alter the inferred type of several names, i.e., all those that are currently bound (aliased) to the same tested value. For
example, without values, the type of only the tested value would be updated, while with values all aliased names will
be updated with the improved type information.

Since many of these type tests occur deeply nested in inlined control structures and operations, the names that are used
as part of the test are just local temporary names. Values therefore become critical for communicating this important
type information beyond the local scope of the inlined control structure or operation. As shown in section 14.3, without
values, SELF would run an average of 50% slower.

9.1.4 Types

Types are the primary data structures used by the compiler to represent type information and support various kinds of
type-related optimizations such as compile-time message lookup and constant folding. A type describes a set of run-
time objects usually sharing some common property. The particular kinds of sets the compiler is capable of describing
concisely through types are motivated primarily by the optimizations currently performed by the compiler; new sorts
of optimizations might require new kinds of type information to be represented and propagated through the control
flow graph. The types currently used in the SELF compiler are described in the next few subsections.

9.1.4.1 Map Types

A map type specifies all objects that share a particular map, i.e., all objects in a single clone family.*  This kind of type
is perhaps the most important kind of type, since it is the most general type that still enables the compiler to perform
message lookup at compile time and to perform type-checking of primitive arguments at compile time.

Map types are introduced by several sources:

• The type ofself is a map type as a result of customization (described in Chapter 8).

• A run-time type test (such as testing whether an object is an integer) marks the tested object as being of a particular
map type along the branch in which the test is successful.

• Some primitive operations are known to return objects of particular map types. For example, integer addition
primitives are known to return integers if the primitive succeeds, and the_Clone primitive always returns an
object with the same map as its receiver.

* For a class-based language this kind of type would specify all objects that are instances of a particular class and would be called
aclass type.

x int?

i: v1
n2: v1

x: v1

v1: unknown

i: v1
n2: v1

x: v1

v1: int

i: v1
n2: v1

x: v1

v1: not int

x int?

i: unknown
n2: unknown

x: unknown

i: unknown
n2: unknown

x: int
i: unknown
n2: unknown

x: not int

Without Values With Values



76

9.1.4.2 Constant Types

A constant type specifies a single object, i.e., a compile-time constant value. Constant types support the same sorts of
optimizations as do map types, plus additional optimizations such as constant-folding of primitives.

Constant types are introduced by several sources:

• A literal in SELF source code is of constant type.

• The result of an inlined message that accesses a constant data slot (such as thetrue message) is of constant type.

• A run-time value test (such as testing for thetrue object at run-time) marks the tested object as being of a
particular constant type along the success branch.

9.1.4.3 Integer Subrange Types

An integer subrange type specifies a range of integer values from a lower bound to an upper bound. Integer subrange
types allow the compiler to perform some kinds of range analysis optimizations. For example, the compiler can
eliminate an array bounds check when the range of the index is guaranteed to be within the bounds of the array.
Similarly, the compiler can eliminate the overflow check from an integer arithmetic operation when the ranges of the
two arguments prove that the result will not overflow the normal 30 bit integer representation. The compiler can even
“constant-fold” an integer comparison when the ranges of the two arguments do not overlap. The integer map type and
the integer constant types may be viewed as extreme cases of integer subrange types, although they are represented
more concisely than other integer subrange types.

Integer subrange types are introduced by several sources:

• The result of a successful integer arithmetic primitive is an integer subrange (or an integer constant or the integer
map type) computed from the ranges of the arguments to the operation.

• An integer comparison operation narrows the types of its arguments depending on the outcome of the comparison.
For example, when comparingi < j, along the true branch the compiler can lower the upper bound of the type of
i to be one less than the upper bound of the type ofj (and similarly raise the lower bound of the type ofj); along
the false branch the analogous narrowing can occur. This narrowing can convert an integer map type into an
integer subrange type.

• Some primitive operations are known to return integers within a particular range. For example, the array size
primitive returns only non-negative integers less than some upper limit bounded by the maximum size of the heap.

9.1.4.4 The Unknown Type

Theunknown type specifies all possible objects and so conveys no information to the compiler. The compiler associates
the unknown type with incoming arguments to the method being compiled (no customization is performed for
arguments), the results of non-inlined messages, the contents of assignable data slots in the heap (e.g., instance
variables), and the results of some primitive operations.

9.1.4.5 Union Types

A union type specifies the union of the objects specified by its component types. If a name is known to be of a particular
union type, the contents of the variable at run-time could be any of the objects possible for any of the component types.
If all the component types are covered by the same map type (i.e., all the component types specify objects in a single
clone family), then the union type allows the same sorts of optimizations as a map type. It is more common, however,
for the component types to be of different clone families, and so a union type typically provides less information than
a map type but more information than the generic unknown type. Union types guide both run-time type casing
(described in section 9.3) and splitting (described in Chapter 10).

Union types are created primarily as a result of merges in the control flow graph in which one value is associated with
different types on different predecessor branches, analogously to union values. For example, if some value is
associated with the integer map type along one predecessor branch of a merge, and associated with the floating point
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map type along the other predecessor branch, after the merge the value will be associated with the union type whose
components are the integer map type and the floating point map type.

Union types are also created as the result of certain primitive operations. For example, the type of the result of a
comparison primitive (along the success branch) is the union of thetrue constant type and thefalse constant type:
{true, false}.

9.1.4.6 Exclude Types

An exclude type specifies a set of component types that the associated value is knownnot to be. Exclude types are
introduced as a result of unsuccessful run-time type tests, such as recording that an object cannot be an integer along
the failure branch of an integer type test. The compiler uses exclude types to avoid repeated tests for possibilities that
are guaranteed not to occur.

Exclude types are not as expressive as would be full-fledgeddifference types. A difference type would specify those
objects that were in one type but not in another, i.e., the set difference of the objects specified by two types. An exclude
type is equivalent to the difference of the unknown type and the union of the excluded types:

<not t1, t2, t3> ⇔ <unknown type> - <{t1, t2, t3}>

Only differences from the unknown type can be expressed with an exclude type; an exclude type cannot express
differences from some more precise type. For example, the current type system cannot record that some possibilities
out of a map type are excluded, such as after a failed run-time value test of an object whose map type was known. A
full-fledged difference type could describe this type as the difference between the known map type and the union of
the excluded possibilities within the map type.

Unfortunately, generalizing exclude types to difference types would create new problems. With general difference
types, a single type could be represented in multiple ways, significantly complicating type equality testing and other
sorts of comparisons on types, such as whether one type covers another. This problem already exists in the current type
system to some extent for integers, since an integer subrange type can represent the same type as a union of adjacent
or overlapping integer constant types and/or integer subrange types. For example, the following types should all be
considered equivalent:

{0, 1, 2, 3, 4, 5} a union of integer constant types

{[0..2], 3, [4..5]} a union of integer subrange and integer constant types

[0..5] an integer subrange type

Adding general difference types exacerbates this problem, since now the following difference type also is equivalent
to the above types:

int - {[minInt..-1], [6..maxInt]}

Even now the current SELF compiler does not always detect that types such as the first three types above are
equivalent.*  We chose not to worsen this situation, and consequently do not include fully general difference types in
our type algebra. Luckily, exclude types seem to be sufficient in practice, since only rarely does the compiler perform
value tests on objects whose map was already known. Nevertheless, the SELF compiler eventually should include some
generalized approach to equality and other type comparisons in the presence of union types, difference types, and
integer subrange types, perhaps by defining some canonical representation of sets of integers and translating into the
canonical form prior to comparing types.

* This inaccuracy does not lead to incorrect compilation, since erring on the side of treating two things as of different types is safe,
but it can lead to poorer generated code.

n1: v1 n1: v1

n1: v1

v1: int v1: float

v1: {int, float}
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9.2 Type Analysis

To perform optimizations like compile-time message lookup and elimination of run-time type checks, the compiler
needs to be able to determine the type associated with a name at a particular point in the program. To support this
determination, the compiler maintains a mapping from names to values and a mapping from values to types. These
mappings are propagated through the control flow graph as type analysis proceeds.

When performing type analysis, the compiler visits each node in the control flow graph in topological order. Each
control flow graph node implements its own type analysis routine.*  This routine typically examines the type mappings
propagated from the node’s predecessor(s), performs any optimizations of the node based on the type information, and
finally produces new type mappings for the node’s successor(s). The following subsections describe some node-
specific type analysis operations in more detail. Discussion of type analysis in the presence of loops will be deferred
until Chapter 11.

9.2.1 Assignment Nodes

An assignment node alters the name/value mapping of the assigned name. In the name/value mapping after the
assignment node, the value associated with the assigned name (the “left-hand side”) is the same as the value associated
with the assigned-from name (the “right-hand side”). All other bindings are unaffected.

9.2.2 Merge Nodes

A merge node combines the name/value and value/type mappings from its predecessors to form a new pair of mappings
after the merge. New union values and union types may be constructed.

9.2.3 Branch Nodes

A branch node makes two copies of the mappings, one for each successor branch, so that subsequent alterations to a
mapping along one successor branch do not affect the mapping along the other successor branch.

9.2.4 Message Send Nodes

A message send node looks up the type bound to the receiver name. If this type is a map type (or more specific than a
map type), then the compiler performs compile-time message lookup. If the lookup is successful and the compiler
elects to inline the target method, then the message send node is replaced with a control flow graph representing the
inlined target method; type analysis then begins to analyze the new inlined method. If the message is not inlined, then
a new value is created to represent the result of the message send. The name of the message result is bound to this new
value and the new value is bound to the unknown type. These altered mappings are then passed on to the message
send’s successor.

9.2.5 Primitive Operation Nodes

A primitive operation node first checks to see whether it can be inlined (whether the compiler has the implementation
of the primitive built-in). If so, then the primitive operation node is replaced with nodes that implement the primitive
in-line. The type information associated with the arguments to the primitive can be used to optimize inlined primitives,
such as by eliminating unnecessary argument type checks, overflow checks, or array bounds checks. If the primitive
is inlined, then type analysis continues with the first node of the primitive. Otherwise, a new value is created for the
primitive’s result and the primitive’s result name is bound to this new value. The result value is in turn bound to either
the unknown type or to some more precise type depending on the primitive and its argument types. The altered
mappings are then passed on to the primitive’s success to continue type analysis.

* The compiler is implemented in C++. Each control flow graph node is an instance of a class, with different classes for different
kinds of control flow graph nodes. All control flow graph nodes define a virtual function which implements the node-specific
type analysis.
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9.3 Type Casing

When the compiler can infer that the type of the receiver of a message is covered by a map type, the compiler can
perform message lookup at compile-time, statically-binding and inlining the message. However, the type of a receiver
frequently will not be a simple map type but instead will be a union of several different types. This can occur as a result
of a primitive known to the compiler to return one of several different types (such as comparison primitives returning
eithertrue or false) or after a merge in the control flow graph where a single name was associated with several
different types before the merge.

Type casing is a simple technique for optimizing message sends where the receiver is bound to a union type. For
example, theifTrue: message frequently is sent to an expression whose type is the union of thetrue constant type
and thefalse constant type:

Optimizing such messages with type casing involves testing for each element type in the union and then branching to
code specific to that type. Specifically, for each component of the union type that is covered by a map type, the compiler
inserts a run-time type test before the message that checks for that type and in the successful case branches to a copy
of the message. In theifTrue: example, the compiler would perform type casing by inserting a run-time check for
true that branched to a copy of theifTrue: message:

Each copy of the type-cased message now can be statically-bound and inlined away, since the type of the receiver is
known after a successful run-time type test. Furthermore, if all the components of the union type are covered by map
types (such as in theifTrue: example), then the last component of the union type does not need a run-time type
check, since the other failed type checks will have excluded all other possible types. If on the other hand some
components of the union type are not covered by a single map type (such as if the union type contains the unknown
type as one of its components), or if the message cannot be inlined for some map types in the union, then a final
dynamically-dispatched version of the message will be needed to handle the remaining case(s). Control flow re-merges
after the copies of the message.

Type casing is a simple technique to take advantage of union type information. It has the effect of transforming a single
polymorphic message into several monomorphic messages that can be further optimized. As such, it is an example of
the general theme in the SELF compiler of trading away space for improved run-time performance. Type casing is also
very similar to case analysis as performed in the TS compiler for Typed Smalltalk (see section 3.1.3). However, type
casing incurs run-time overhead with the extra type tests for various component types of the union. While the resulting
code is typically faster than the original message send (sometimes much faster, such as in theifTrue: example
above), it is not as fast as is frequently possible. Chapter 10 discussessplitting, a more sophisticated technique for
exploiting union type information created by merges in the control flow graph without run-time overhead. Where the
compiler cannot apply splitting, such as for unions created as the result of primitive operations, it falls back to this type
casing technique.

Type casing illustrates that a union type provides more information than just specifying the set union of the objects
specified by its component types. The divisions of the various component types is also important, since it is these

expr: {true, false}

result ← “ifTrue:”(expr, block)

expr: {true, false}

result ← “ifTrue:”(expr, block)

expr = true?

result ← “ifTrue:”(expr, block)

expr: true expr: false
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component types that drive type casing. For example, if prior to a merge node a name is bound to the integer map type
along one predecessor and to the unknown type along the other predecessor, as part of type analysis the compiler will
bind the name to the union of these two types after the merge:{integer, unknown}. A naive implementation would
“simplify” this union type by noting that the unknown type covers the integer map type, and so the integer map type
could be removed from the union without altering the set of objects specified by the type:{unknown} or simply
unknown. However, such a simplification would lose a significant amount of important information. The compiler no
longer would have the information that integers are a likely component of the type, and so the compiler no longer could
separate out the integer case via type casing. If faced with a blank unknown type, the compiler would have no
information upon which to decide that some subset of the possible types would be worth type casing for. Accordingly,
union types in the SELF compiler are never “simplified” by eliminating component types covered by another
component type, to preserve as much useful information as possible.

9.4 Type Prediction

Customization and type analysis enable the compiler to infer the representation-level types of many expressions, which
in turn enables the compiler to statically-bind and inline many messages and optimize away many run-time type
checks. However, many messages remain whose receiver types cannot be inferred using only customization and type
analysis. For example, the types of arguments are unknown (the compiler currently does not customize on the types of
arguments), as are the types of the contents of assignable data slots in the heap (e.g., instance variables), so messages
sent to these objects cannot be inlined using only customization, type analysis, and type casing.

To enable the compiler to infer even more type information, the SELF compiler performstype prediction. If the
compiler cannot infer the type of the receiver of a message using customization or type analysis, then the compiler tries
to use thename of the message as a hint about the likely type of the receiver. For example, the compiler predicts that
the receiver of a+, <, orto:Do: message is likely to be an integer, the receiver of anat: message has a good chance
of being an array, and the receiver of anifTrue: message is almost certainly eithertrue or false. These
predictions are embedded in the compiler in the form of a small fixed table mapping message names to likely receiver
types. A message whose name is not in the table is not type-predicted, and so must be implemented as a full message
send in the absence of other optimizations.

The compiler uses the predicted type(s) to transform the original receiver type into a union type, one of whose
components is the original receiver type and whose other component(s) are the predicted type(s). For example, if the
ifTrue: message is sent to an expression whose type is unknown:

then the compiler can perform type prediction and replace the receiver type with one that contains thetrue and
false constant types:

Since the original type is still part of the union type, the receiver’s type remains just as general as it was before type
prediction. However, the form of the receiver’s type is now suitable for further optimization via type casing: a run-time
type test is inserted to check for each predicted type and then branch to a separate statically-bound copy of the message
suitable for inlining; a fall-back dynamically-bound version of the message will remain in case none of the predictions

expr: unknown

result ← “ifTrue:”(expr, block)

expr: {true, false, unknown}

result ← “ifTrue:”(expr, block)
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are correct. In theifTrue: example, after type prediction the compiler would apply type casing and insert run-time
checks fortrue andfalse that each branched to a separate copy of theifTrue: message:

Two copies of theifTrue: message can be inlined away, since their receiver types are both compile-time constants;
the third copy remains dynamically-bound since its receiver type is unknown. Control flow re-merges after the type
prediction and type casing transformations.

If the rate of successful prediction is high, the performance of a predicted message can be much faster than the original
unpredicted message. The cost of a type test is less than the cost of a dynamically-dispatched procedure call, and
inlining predicted messages can lead to opportunities for additional time-saving optimizations. Of course, since the
unsuccessful branch is slowed down by an extra run-time type test, using type prediction in cases with a low success
rate can actually slow down the overall performance of the system.

In the current SELF system, type prediction has a high success rate. In the benchmarks used to measure the performance
of SELF, almost all predictions are correct. This is because the benchmarks were originally written in traditional
languages such as Pascal and BCPL, and the data types predicted using type prediction (integers, booleans, and arrays)
are those that are normally the only ones used in traditional languages; the only mispredictions occur in benchmarks
translated from Lisp which overload= to compare both integers andcons cells. However, even in large Smalltalk
systems, the receiver of a message like+ is an integer 90% to 95% of the time [Ung87], so type prediction is useful
even for programs written in a heavily object-oriented style. As reported in section 14.3, type prediction speeds SELF
programs by a factor of 3 on average, with object-oriented SELF programs benefitting almost as much as more
traditional, numeric benchmarks.

Type prediction is similar to (and was inspired by) the technique in Smalltalk-80 systems that hard-wires the
implementations of certain common messages into the compiler, as described in section 3.1.1. Both insert run-time
type tests to verify static predictions embedded in the compiler. However, unlike Smalltalk’s hard-wiring, type
prediction does not embed thedefinition of predicted messages into the compiler (since inlining is used instead), nor
does the compiler impose anyrestrictions on the use of predicted messages such asifTrue: and==. Programmers
are always free to change the definitions of predicted messages and to add new definitions that did not exist when the
compiler was implemented. Type prediction coupled with inlining enables the SELF implementation to achieve the
same run-time performance as hard-wired messages and still preserve SELF’s pure message passing model.

Type prediction as currently implemented is a static technique: the message names and predicted receiver types is fixed
in the compiler and cannot be changed by users. A better technique would bedynamic type prediction, where the
message names and predicted receiver types would automatically adapt to the SELF source code currently in use. For
example, dynamic profile data could be used to augment or replace the static table built into the compiler. We are
actively investigating techniques that would make type prediction more adapting to changing usage patterns [HCU91].

expr: {true, false, unknown}

result ← “ifTrue:”(expr, block)

expr = true?

result ← “ifTrue:”(expr, block)

expr: true

expr: false

expr: {false, not true}

expr = false?

result ← “ifTrue:”(expr, block)

expr: not true or false
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9.5 Block Analysis

Blocks are very common in SELF code, primarily because of their central role in the implementation of user-defined
control structures. In a straightforward SELF implementation, each invocation of a control structure liketo:Do:
(SELF’s version of a traditionalfor loop) would involve creating several blocks at run-time and invoking these blocks
repeatedly during the execution of the loop. This approach to compiling user-defined control structures and blocks
would never be competitive in run-time performance with traditional languages based on built-in control structures,
where the compiler can generate only a few instructions to implement a control structure. Consequently, much of the
SELF compiler’s efforts are directed towards eliminating the overhead of user-defined control structures and blocks.

9.5.1 Deferred Computations

Several important block-related optimizations have already been mentioned in section 7.1: inlining statically-bound
block value methods (and eliminating block creation operations if all uses of the block are eliminated) and
preferentially inlining methods with block arguments to increase the likelihood of the block arguments getting inlined
away. However, many blocks may have a few remaining uses that cannot be eliminated, thus requiring that the block
be created, even if those uses are only on control flow paths that are executed rarely.

For example, consider an inlined integer addition primitive operation that is passed a failure block. If the primitive
fails, then the block is sent thevalue message, and so if this message is not inlined (as it is not in the current SELF
system) one use of the block remains and the block creation code cannot be completely eliminated.

However, since most primitive invocations do not fail, the large majority of the invocations of the primitive do not use
the created block. The overhead of creating a block for every primitive invocation, especially ones as simple as integer
arithmetic, can quickly bring a system to its knees.

self int?

x int?

n2 ← add self,x

result ← “value”(n1)

no overflow?

n1 ← blockClone([. . .], thisFrame)

result ← n2
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To limit the overhead of the block creation to just those parts of the program that need the block, the compilerdefers
the creation of blocks until they are actually needed as a run-time value. Then only those paths through the control flow
graph that need the block will pay the expense of creating the block; other paths are not penalized.

The compiler needs some way to tell whether a block has been created or not at some point in the program. This
information is encoded in the type associated with the block value: a block’s type is either adeferred block type or a
created block type. In place of the original block creation code, the compiler generates an assignment node that binds
a fresh value object to the deferred form of the block type. Any later uses that require the block to be a real run-time
value, such as a non-inlined message send with the block as an argument, check whether the type of the block is
deferred and if so insert additional nodes in the control flow graph before the use to create the block object at run-time.
The block creation node rebinds the value object representing the block from the deferred block type to the
corresponding created block type; the name/value binding of the created block remains unchanged so that all names
aliased to the same block value simultaneously see that the block is now created, thus avoiding duplicate block
creations.

Deferred computations such as block creation are handled at the same time other type analysis and optimizations are
performed so that whether or not an expensive computation has been performed can influence the control flow graph
that gets built. This is especially important for optimizing block zapping code (see section 6.3.2) out of those paths of
the control flow graph where the compiler knows the block is never created. In an earlier version of the SELF compiler,
deferred computations were handled in a later pass of the compiler after the bulk of the control flow graph
transformations had been performed. This design led to poor performance, since some extra run-time tests had to be
inserted to check whether the block creation had been performed before zapping the block. For example, in the

self int?

x int?

n2 ← add self,x

result ← “value”(n1)

no overflow?

n1 ← blockClone([. . .], thisFrame)

result ← n2

n1 ← not_created
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following graph which includes the code to zap the failure block, even though the block creation is deferred to the
primitive failure branch, the block zapping code remains even for paths where the primitive succeeds.

Handling deferred computations as part of type analysis allows other techniques that cooperate with type analysis, such
as splitting (described in Chapter 10), to help optimize the treatment of blocks and block zapping so that only blocks

self int?

x int?

n2 ← add self,x

result ← “value”(n1)

no overflow?

n1 ← blockClone([. . .], thisFrame)

result ← n2

n1 ← not_created

n1 = not_created?

store 0, [n1 + scopeOffset]



85

that have been created need zapping code. This enables the block zapping code to be executed only along the branches
where the block is created.

Optimizing away block creations when unnecessary, and deferring remaining block creations until just prior to their
uses, is one of the most important optimizations performed by the SELF compiler. As reported in section 14.3, without
deferred block creation SELF would run an average of 4 times slower, and more that 10 times slower for programs rife
with user-defined control structures such asto:Do: loops.

Other computations such as arithmetic are also deferred until their first uses. All that is required of a deferred
computation is that it have no externally-visible side-effects. Opportunities for deferring computations other than block
creations occur far less often, however, and do not produce the same sorts of dramatic speed-ups as when deferring
block creations.

9.5.2 Analysis of Exposed Blocks

Blocks support lexical scoping of local variables: a nested block can contain accesses and assignments to arguments
and local variables in a lexically-enclosing scope. These accesses and assignments are calledup-level accesses andup-
level assignments. If a block’svalue method is inlined, up-level accesses and assignments in thevalue method can
be treated as local accesses and assignments, and type analysis can be used to infer the types of these variables. An
inlined blockvalue method’s non-local return can also be implemented as a direct branch to another part of the
control flow graph if the block’s outermost lexically-enclosing scope is also inlined within the same compiled method.

However, when a block cannot be optimized away and is instead passed as the receiver or argument to a non-inlined
message, the compiler must become more conservative. Since the non-inlined message might invoke the block, the
types inferred for any local variables potentially up-level assigned from within the block’svalue method must be
weakened to include the unknown type; the current SELF compiler does no interprocedural analysis to infer the types
of expressions up-level assigned from within non-inlined blocks. Also, since the non-inlined method might store the
block in a long-lived global data structure, all subsequent non-inlined messages must be assumed to invoke the block,
again requiring the types of up-level assigned variables to be weakened. We call blocks that might be invoked by other
methods at any call siteexposed blocks, since they have been exposed to the outside world and are no longer under
tight control.

self int?

x int?

n2 ← add self,x

result ← “value”(n1)

no overflow?

n1 ← blockClone([. . .], thisFrame)

result ← n2

store 0, [n1 + scopeOffset]
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Since exposed blocks dilute the type information of potentially up-level assigned local variables, the compiler works
hard to limit the number of blocks that must be treated as exposed. In addition to maintaining the name/value and value/
type bindings during type analysis, the compiler maintains the set of blocks that have been exposed. A block is added
to the current exposed blocks set if and when it is passed out at a non-inlined message send or stored into a data
structure in the heap. In addition, all blocks up-level accessible from a newly exposed block must also be added to the
exposed blocks set, since they might be accessed and invoked whenever the original block is invoked. A block is
removed from the exposed blocks set once its lexically-enclosing scope returns (since the block will be zapped and
unusable). At merge points, the compiler unions together the exposed blocks sets of the merge’s predecessors to form
the set of exposed blocks for the merge’s successor, much as the compiler forms union types at merge nodes.

An exposed block set is used at a non-inlined message send node to alter the type bindings of all potentially up-level
assigned variables of all exposed blocks in the set. When calculating the mappings for the message send’s successor,
each potentially up-level assigned name is rebound to its own new, unique value object, modelling an assignment to
the name of an unknown object from within the exposed block.

The compiler must also somehow generalize the type associated with the new value object, since if the assignment
does occur the compiler does not know what type of object will be assigned to the local variable. A simple strategy
would simply bind the new value object to the unknown type. Unfortunately, such a naive approach would sacrifice
any type information the compiler had inferred about the local variable prior to the message. The SELF compiler
therefore tries to limit the damage to type information caused by a potential up-level assignment based on two
heuristics. First, many potential up-level assignments will not actually be performed, so any information accumulated
about the contents of the local variable would still be true after the message send. Second, of those assignments that
are performed, the type of the variable after the assignment is likely to be similar to the type of the variable before the
assignment, say in the same clone family; programs do not normally assign completely unrelated objects to the same
local variable.

To exploit these trends, the SELF compiler assigns the type of a local variable after a potential up-level assignment as
the union of the unknown type (in case the assignment actually occurs) and the original type of the local variable before
the message send, generalized to the enclosing map type (in case the assignment does not occur or an assignment to a
member of the same clone family occurs). For example, if the type of a potentially up-level assigned variable were
{[0..5], float} before the message send, after the message send the type would be changed to{unknown, integer, float}.
This union type information then can be exploited using type casing (see section 9.3). If the local variable is not
assigned, or is assigned a member of the same clone family, this strategy incurs the overhead of only a type test upon
subsequent accesses to the local variable, rather than requiring a full message send as would the naive strategy.

Exposed block sets improve the quality of type analysis by limiting the damage of up-level assignments to those parts
of the control flow graph where blocks were actually created and exposed to the outside world. Since many blocks are
only created and exposed along relatively uncommon branches, such as primitive operation failure blocks, the effect
of these exposures is limited to those parts of the graph. This containment allows the common-case branches to execute
without the conservative assumption that some local variables might have been assigned. In practice, exposed block
analysis is very effective; as shown in section 14.3, with exposed block analysis SELF programs run almost 50% faster
than they would if the compiler treated all blocks as exposed.

9.6 Common Subexpression Elimination

The compiler performscommon subexpression elimination (CSE) as part of type analysis. CSE eliminates redundant
computations by detecting when a computation has already been performed and its earlier result can be reused. The
SELF compiler performs CSE on two kinds of computations: arithmetic calculations and memory references (loads
and stores).

9.6.1 Eliminating Redundant Arithmetic Calculations

The compiler discovers redundant arithmetic calculations by searching the name/value mappings for an existing value
that is the same as the result value of the potentially redundant calculation. If such a value already exists in the name/
value mapping, then the compiler replaces the arithmetic calculation with a simple assignment of a name bound to the
existing value to the name of the result of the eliminated calculation. To support equality comparisons of values, values
representing the results of arithmetic calculations are structured, containing subcomponents for the receiver and
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argument values and the kind of arithmetic calculation. Two arithmetic values are guaranteed equal if and only if they
have equal subcomponents.

For example, the followingadd control flow graph node produces a structured result value:

If some later node in the graph calculates the same value:

then the compiler can replace the second redundant calculation with a simple assignment node:

The compiler typically can avoid generating code for these assignments by arranging that all names related by simple
assignment are allocated to the same register (register allocation is described in section 12.1).

Currently the compiler detects equal calculations only if the operations are equal, the operands are equal, and the order
of operands is the same, i.e., if the operation/operand trees are isomorphic. More sophisticated value equality systems
would take into account arithmetic identities, such as the commutative property of addition and the relationships
between addition and subtraction. This weakness in the current SELF compiler’s rules actually makes a difference in
the quality of generated code, although not a large difference. Additionally, values could be extended to enable equality
testing even in the presence of conditional branches; the algorithms associated with subscripted names and SSA form,
described in section 3.4.4, support such flow-sensitive equality testing. It remains an open question, however, how
much practical benefit would be received from such additional analysis.

As reported in section 14.3, CSE of arithmetic expressions has a relatively minor effect on run-time performance,
usually less than a 5% improvement in performance. Redundant arithmetic computations probably are less common
in SELF programs than in traditional programs, in part because array accesses in SELF do not require multiplication of
the array index by a scaling factor as in other languages, since SELF’s tagged integer representation is already
appropriately scaled for indexing into SELF’s built-in one-dimensional object vectors. Also, other calculations that
could be eliminated as redundant currently are not because of limitations in the garbage collector’s treatment of derived
pointers.

9.6.2 Eliminating Redundant Memory References

Redundant memory fetches and stores are detected in a fashion similar to detecting redundant arithmetic calculations.
The compiler maintains a mapping fromcells to values that is propagated through the control flow graph as part of
type analysis. Cells are the compiler’s internal representations of memory locations in the heap, such as assignable data
slots (instance variables), array elements, and the lexically-enclosing frame pointers of blocks. The value object
associated with the cell represents the current contents of the cell. A cell is “addressed” by two component values: a

n1 ← add i, j

i: v1
j: v2

n1: arith(“+”, v1, v2)

r ← add x, y

x: v1
y: v2

r: arith(“+”, v1, v2)

n1: arith(“+”, v1, v2)

r ← n1

x: v1
y: v2

r: arith(“+”, v1, v2)

n1: arith(“+”, v1, v2)
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base value and an offset value. The base value is the value of the object being accessed by the memory reference; the
offset value is either a constant (for fixed-offset memory references such as accesses to assignable data slots and frame
pointers) or a normal computed value (for computed indexes into arrays). Two cells are guaranteed to refer to the same
physical memory location if their corresponding base values and offset values are equal. Of course, two cells with
different base and offset valuesmight still refer to the same memory location, however, since two values that are not
guaranteed to refer to the same run-time object might still do so (see section 9.1.3).

CSE of memory references works in much the same way as CSE of arithmetic calculations. Memory load instructions
construct a new value object representing the contents of the cell and a new cell object addressed by the base and offset
of the load instruction to the new contents value object. Three bindings are added to the mappings maintained by type
analysis: a mapping from the name of the result of the memory load to the new value object is added to the name/value
table, a mapping from the value to the unknown type is added to the value/type table, and a mapping from the new cell
to the new value is added to the cell/value table.

Memory store instructions similarly add a binding from a new cell object addressed by the base and offset of the store
instruction to the value bound to the name of the object stored into the addressed memory location.

If at a later memory fetch node the same cell is already in the cell/value mapping table

then the compiler can replace the redundant memory fetch node with a simple assignment node, binding the result
name of the redundant memory reference to the value associated with the existing cell.

In addition to eliminating an unnecessary memory reference, this optimization also preserves any type information the
compiler has been able to infer about the contents of the memory cell. In some cases, the benefits from preserving this
type information outweigh the benefits from merely eliminating an instruction. If CSE were performed at a later stage
in the compilation process, as is done in other compilers for traditional languages, then this ability to preserve type
information of memory cells would be lost. In effect, CSE of memory accesses supports type analysis of locations in
the heap.

n1 ← load [base + offset]

base: v1
offset: v2

cell(v1,v2): v3
n1: v3

v3: unknown

store arg, [base + offset]

base: v1
offset: v2

cell(v1,v2): v3

arg: v3

n2 ← load [p + x]

p: v1
x: v2

cell(v1,v2): v3

n2 ← v3

p: v1
x: v2

cell(v1,v2): v3

n2: v3
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The compiler can eliminate a memory store node if the cell being assigned is already in the cell/value mapping and if
the current contents value bound to the cell in the mapping is the same value as the one being stored. Otherwise, the
store cannot be eliminated, and the compiler updates the cell/value mapping after the store node to reflect the
compiler’s knowledge about the cell’s new contents. Additionally, all cells already in the mapping thatmight refer to
the same memory location as the stored cell (i.e., any potentially aliasing cells in which the base and offset valuesmight
be the same) must be removed from the cell/value mapping, since their contents are now ambiguous. Similarly, non-
inlined message sends must be assumed conservatively to assign to all global heap cells that could be assigned.
Therefore, at each non-inlined message send, all cell/value bindings for cells that could be changed by a SELF program
(including instance variables and array elements but excluding frame pointers and array sizes) must be removed from
the cell/value mapping; such cells could be called “exposed” cells in analogy with exposed blocks.

To avoid losing precious type information, such potentially modified cells are treated in much the same way as
potentially up-level assigned local variables (described in section 9.5.2). Each potentially-modified cell is given a new
unique value object and added back into the cell/value mapping; the new value object is bound to the union type
constructed by generalizing its previous inferred type to the enclosing map type and combining this type with the
unknown type. In this way, the damage to type information from assignments to potential alias cells and potential
assignments to “exposed” cells can be limited.

CSE of memory cells is used for another purpose in the SELF compiler: eliminating unnecessary array bounds checks.
At each array access the compiler checks to see whether the cell corresponding to the accessed array element is already
in the cell/value binding. If so, then the compiler omits the code that would have checked whether the array access was
in bounds. This optimization is legal because the program must have been able to access the array cell before without
error, since the cell is available; the bounds check must already have been performed as part of the previous access.
Theoretically, this optimization should be unnecessary, because the compiler should be able to eliminate the bounds
check more directly by remembering that the bounds check already had been performed for the same array index.
However, the current implementation of the SELF compiler does not record this information. Checking for CSE of
memory cells is therefore a cheap way of eliminating some redundant array bounds checks without much additional
mechanism. In the future, however, the SELF compiler should include enough information to be able to determine
when array bounds checks have already been performed (or, even better, when no array bounds checks are required at
all at run-time), and this technique will be removed as redundant.

As reported in section 14.3, common subexpression elimination of redundant memory references is more effective for
SELF than common subexpression elimination of redundant arithmetic. While the average performance improvement
from CSE of memory references is around 5%, some benchmarks speed up by more than 30% from this technique.
The effect of being able to track type information through assignments and subsequent fetches from memory cells
accounts for a sizable fraction of the total contribution of CSE of memory references; eliminating array bounds
checking using available cell information accounts for a smaller fraction.

9.6.3 Future Work: Eliminating Unnecessary Object Creations and Initializations

Ideally, the compiler could eliminate some object creations and stores if all uses of the object (such as memory fetches
out of the created object) were eliminated. As an example of a situation where such throw-away objects get created, a
quadratic formula function might return multiple roots by creating an object with a pair of assignable data slots, store
the result roots into the object, and then return the object:

quadraticFormulaA: a B: b C: c = ( | result. temp. |
temp: (b squared - (4 * a * c)) sqrt.
result: ( | r1. r2. | ) _Clone. “create an object to hold the roots”
result r1: (b negate + temp) / (2 * a).
result r2: (b negate - temp) / (2 * a).
result ).

The caller of the quadratic formula routine would extract the roots out of the result object’s data slots and then throw
the result object away:

printRootsA: a B: b C: c = ( | result |
result: quadraticFormulaA: a B: b C: c.
(result r1 printString, ’ & ’, result r2 printString) printLine.

).
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If the called routine were inlined into the calling routine, then the memory fetches that extract the data slots of the
returned object would be optimized away as redundant, since the compiler would have recorded the earlier stores to
the same memory cells. Thus, the intermediate object no longer would be useful to the execution of the program, and
we would like the compiler to eliminate the object creation and the memory stores as unnecessary.

As another example, consider the standardto:Do: looping control structure. This control structure takes two integers
and a block as arguments and iterates through all the integers between the two integer arguments, invoking the block
for each integer. Perhaps a better way of defining afor loop would apply the standarddo: control structure (which
iterates over an arbitrary collection) to an interval object (which represents the collection of all integers between its
lower and upper bounds). In SELF, an interval can be created by sending theto: message to an integer with an integer
argument, sofor loops could be written as follows:

(lowBound to: upperBound) do: [ “body of the loop” ].

Intervals are implemented as follows:

traits interval = ( |
parent* = traits collection.
...
do: aBlock = ( | i |
i: lowerBound.
[ i <= upperBound ] whileTrue: [
aBlock value: i.
i: i successor.

].
self ).

...
| ).

interval = ( |
parent* = traits interval.
lowerBound.
upperBound.

| ).

with the interval creation code defined for integers:

traits integer = ( |
...
to: upperBound = (
(interval clone lowerBound: self) upperBound: upperBound ).

...
| ).

This design would economize on the number of concepts needed for normal SELF programming;do: is a well-known
operation in SELF, and intervals are a useful data structure in their own right. Programmers would not need special
iterator methods just for integer loops.

In typical usage, this style offor loop would create a new interval object for each invocation of the loop. If
performance comparable to a traditional language’sfor loop built-in control structure is desired, the overhead of
creating this interval object must be reduced. Fortunately, the interval object is created and then almost immediately
thrown away after thedo: method for intervals extracts the lower and upper bounds of the iteration, with no remaining
run-time uses, and so we would hope that the compiler could optimize away the object creation overhead entirely.

Unfortunately, the SELF compiler currently cannot optimize away object creations and stores. Eliminating object
creates is complicated by source-level debugging. If the debugger is invoked when the object is in scope and therefore
visible on a stack dump, the compiler must provide enough information for the debugger to at least create the illusion
at debug-time that a real object was created and initialized. This problem could be avoided in some cases if the
compiler was able to determine whether the object could ever be visible at debug-time; this analysis would be much
like determining whether the created object was ever “exposed” to the outside world. The compiler could eliminate
any stores into an un-exposed object (since those stores could never be seen by other routines or the SELF programmer)
and subsequently eliminate the object creation code itself (since all uses of the created object would be gone).

With the current SELF coding style, this optimization is not crucial for good performance, although it would be helpful.
However, if the new style offor loops using intervals anddo: were to be implemented efficiently, or if other aspects
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of SELF programming style were to change, then this optimization would be needed to maintain the current high level
of run-time performance.

9.7 Summary

The SELF compiler uses type analysis to propagate information about the types of variables and expressions through
the control flow graph, to maximize the benefits received from the relatively scarce type information that the compiler
can infer. The compiler maintains several data structures as part of type analysis. The mappings from names to values
and from values to types are central, being used to determine the type of the receiver of a message (in support of
compile-time message lookup and inlining) and the type of arguments to a primitive (in support of eliminating run-
time type-checking overhead). Type testing code alters the value/type mapping, implicitly altering the induced name/
type mapping for all names aliased to the tested value, as is necessary in a system relying on aggressive inlining.

Type casing exploits the information contained in union types by inserting run-time type tests that branch to
monomorphic versions of code that are amenable to compile-time message lookup and inlining. Type prediction uses
context information in the form of the names of the message sent to an expression to make a prediction about the likely
type of the expression. This prediction is exploited by replacing the original type of the predicted expression with a
union type that contains both the predicted type(s) and the original type. Type casing then is employed to read the new
union type information and insert the appropriate run-time type tests that verify the prediction and branch to optimized
code in the case that the prediction is correct.

The compiler optimizes blocks as part of type analysis, primarily by deferring the creation of a block until its first run-
time use, if any. The compiler also calculates which blocks have been “exposed” to the outside world, and weakens
the types of only those variables that are potentially up-level assigned by exposed blocks.

The name/value mapping is also used to support common subexpression elimination of redundant arithmetic
calculations, since the result values of arithmetic calculations are structured and so can be compared for equivalence.
An additional mapping from cells to values supports common subexpression elimination of redundant memory fetches
and stores, in turn allowing type analysis to track the types of values stored into and later fetched out of assignable data
slots in the heap.
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Chapter 10   Splitting

This chapter describessplitting, a technique for transforming polymorphic code into multiple copies of monomorphic
code amenable to further optimization such as inlining. Splitting thus resembles type casing (described in section 9.3)
but introduces no additional run-time overhead for type tests. This chapter discusses splitting of straight-line code;
splitting of loops will be discussed in Chapter 11.

10.1 A Motivating Example

Splitting was originally motivated by attempting to generate good code for the following expression:

i < j ifTrue: [ do something ]

Expressions like this occur in virtually all programs, and so it is imperative to generate good code for this example. A
reasonable C compiler, when faced with the similar C code:

int i, j;
...
if (i < j) { do something; }

would produce the following control flow graph in some intermediate step:

The techniques presented so far can come close to this graph, but not quite.

do something

i < j?
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The SELF compiler would begin with the following control flow graph representation of the original conditional
expression:

To simplify the example, assume that the SELF compiler is able to infer via type analysis thati andj are integers.
Then the compiler can lookup the definition of< for an integer receiver to find the following method:

< x = ( _IntLT: x IfFail: [ handle failure ] ).

The compiler can inline expand this method in place of the< message to produce the following control flow graph:

n1 ← “<”(i, j)

n2 ← blockClone([ do something], thisFrame)

n3 ← “ifTrue:”(n1, n2)

n3 ← “ifTrue:”(n1, n2)

n4 ← blockClone([ handle failure], thisFrame)

n2 ← blockClone([ do something], thisFrame)

result 2 ← intLT(self 2, x2, n4)

x2 ← j

self 2 ← i

n1 ← result 2

i: int
j: int
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Type analysis proceeds, eventually reaching the call to theintLT primitive and expanding it in-line.

The compiler can eliminate the type checks on the arguments to theintLT primitive, since the compiler knows
through type analysis that bothself andx are integers. Subsequently, the compiler can eliminate the creation of the

n2 ← blockClone([ do something], thisFrame)

x2 ← j

self 2 ← i

result 2 ← true

i: int
j: int

self 2 < x2?

result 2 ← false

x: int

self: int

n1 ← result 2

n3 ← “ifTrue:”(n1, n2)

self 2 int?

x2 int?

n4 ← blockClone([ handle failure], thisFrame)

result 2 ← “value”(n4)

n4: [handle failure]
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[handle failure] block, since it is no longer needed as a run-time value. These optimizations produce the
following control flow graph:

n2 ← blockClone([ do something], thisFrame)

x2 ← j

self 2 ← i

result 2 ← true

i: int
j: int

self 2 < x2?

result 2 ← false

x: int

self: int

n1 ← result 2

n3 ← “ifTrue:”(n1, n2)
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Type analysis starts again, analyzing the body of theintLT primitive, and eventually reaching theifTrue: message
with the knowledge that the type of the receiver ofifTrue: is {true, false}:

n2 ← blockClone([ do something], thisFrame)

x2 ← j

self 2 ← i

result 2 ← true

i: int
j: int

self 2 < x2?

result 2 ← false

x: int

self: int

n1 ← result 2

n3 ← “ifTrue:”(n1, n2)

result2: falseresult2: true

n1: {true, false}

result2: {true, false}

n2: [do something]
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At this point, the compiler could use type-casing to insert a run-time type test to separate thetrue andfalse cases:

The compiler then can perform message lookup at compile-time for the two copies of theifTrue: message, locating
the following methods:

true = ( |
...
ifTrue: aBlock = ( block value ).
...

| ).

false = ( |
...
ifTrue: aBlock = ( nil ).
...

| ).

n2 ← blockClone([ do something], thisFrame)

x2 ← j

self 2 ← i

result 2 ← true

i: int
j: int

self 2 < x2?

result 2 ← false

x: int

self: int

n1 ← result 2

result2: falseresult2: true

n1: {true, false}

result2: {true, false}

n2: [do something]

n1 = true?

n1: true n1: false

n3 ← “ifTrue:”(n1, n2) n3 ← “ifTrue:”(n1, n2)
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The compiler would inline these methods into the control flow graph:

The compiler restarts type analysis, determines that the type ofaBlock3 is a particular cloned block literal, and inlines
the block’svalue message down to just the body of the block; the block creation code can then be eliminated since

n2 ← blockClone([ do something], thisFrame)

x2 ← j

self 2 ← i

result 2 ← true

i: int
j: int

self 2 < x2?

result 2 ← false

x: int

self: int

n1 ← result 2

result2: falseresult2: true

n1: {true, false}

result2: {true, false}

n2: [do something]

n1 = true?

n1: true n1: false

result 3 ← “value”(aBlock 3)

aBlock 3 ← n2

self 3 ← n1

n3 ← result 3

aBlock 4 ← n2

self 4 ← n1

n3 ← result 4

result 4 ← nil
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there are no remaining uses of the block. This produces the following final control flow graph (after removing the
assignment nodes which do not correspond to generated instructions):

Unfortunately, this type casing approach produces code that is less efficient than the single compare-and-branch
sequence generated by the C compiler:

do something

n1 ← true n1 ← false

n1 = true?

i < j?

do something

i < j?
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These inefficiencies stem from the control flow merging together after theintLT primitive only to be split apart again
as part of type casing before theifTrue: message. If the merge after theintLT primitive were simply postponed
until after the two versions of theifTrue: message, the inefficiencies would disappear, and the SELF compiler would
generate the same code as the C compiler. For example, if after inlining theintLT primitive to reach the following
graph:

n2 ← blockClone([ do something], thisFrame)

x2 ← j

self 2 ← i

result 2 ← true

i: int
j: int

self 2 < x2?

result 2 ← false

x: int

self: int

n1 ← result 2

n3 ← “ifTrue:”(n1, n2)
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the compiler had delayed the merge until after theifTrue: message, copying all control flow graph nodes between
the primitive result and theifTrue: message to get the following graph:

then the compiler could directly inline the twoifTrue: messages without inserting any run-time type tests, since
type analysis will infer that the type of the left-handifTrue: message istrue and the type of the right-hand message
is false. After inlining, the assignments toresult2 can be optimized away, since they are no longer needed at run-
time. This leads directly to the following control flow graph, after eliminating assignment nodes which do not generate
machine code:

This graph is the same as that produced by the C compiler. To achieve this level of performance and be competitive
with traditional languages, the SELF compiler needs some mechanism to postpone merges selectively, to avoid falling
back on run-time type casing code. In other words, the SELF compiler needs somesplitting mechanism.

We use “splitting” as a general term for techniques which lead to multiple versions being compiled of parts of the
control flow graph, each version optimized for different situations such as for different type bindings. Several kinds of
splitting have been implemented in the SELF compiler, each with a different trade-off between compilation speed and
execution speed. The main discriminating characteristics of the various splitting strategies is when they decide to
postpone a merge (and thus split nodes downstream of the postponed merge) and how they decide to stop postponing
the merge. The next few sections describe these different approaches.

n2 ← blockClone([ ...], thisFrame)

x2 ← j

self 2 ← i

result 2 ← true

i: int
j: int

self 2 < x2?

x: int

self: int

n1 ← result 2

n3 ← “ifTrue:”(n1, n2)

n2 ← blockClone([ ...], thisFrame)

n1 ← result 2

n3 ← “ifTrue:”(n1, n2)

result 2 ← false

do something

i < j?
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10.2 Reluctant Splitting

Reluctant splitting has been used in one form or another in all the implementations of the SELF compiler. In this
splitting variant, the compiler initially merges control flow together but can later reverse this decision if desired,
undoing the merge by copying parts of the control flow graph. This kind of splitting is called “reluctant” because the
compiler splits merges only on demand;lazy splitting ordemand-driven splitting would have been equally appropriate
names.

For example, consider the following generalized example:

Under reluctant splitting, when reaching a potential merge point, the compiler merges control together. The compiler
remembers the merge by forming union types for any names bound to different types before the merge. In this example,
thex name is bound to the union type{t1, t2}. If later on some control flow node could be optimized if a name bound
to a union type were instead bound to a component of the union type, the compiler will reverse its earlier decision to
merge control together by duplicating all the control flow graph nodes between the premature merge and the node that
demands the split. This duplication approximates the control flow graph that would have been generated had the
original merge never taken place. In this example, the message send node could be optimized if the receiverx were
bound to either component type rather than the joint union type, and so the message send node demands that the merge
be postponed at least until after the message send. This demand is satisfied by duplicating all the nodes between the
message send back to the original merge point. Subsequent splits may postpone the merge even farther. By copying
parts of the control flow graph for each different type, the compiler has transformed what used to be a single
polymorphic (and hence unoptimizable) message send into several independent monomorphic (and hence optimizable)
message sends, without inserting any extra run-time overhead for type tests.

If the arbitrary subgraph copied as part of reluctant splitting is restricted to be empty (has no nodes that generate
instructions), then we call the splitting algorithmlocal reluctant splitting, since the splitting takes place locally in the
control flow graph. If arbitrary subgraphs are allowed, then we call the splitting algorithmglobal reluctant splitting.*

Splitting turns out to be a crucial technique for achieving good performance. As detailed in section 14.3, without any
form of splitting SELF programs would run only half as fast.

* These two cases were termedlocal message splitting andextended message splitting in [CU90].

x: t2

Before Splitting After Splitting

r ← “message”(x)

x: t2x: t1

x: {t1,t2}

arbitrary
subgraph

x: {t1,t2}

r ← “message”(x)

x: t1

x: t1

arbitrary
subgraph

x: t1

r ← “message”(x)

x: t2

x: t2

arbitrary
subgraph

x: t2

x: t1

x: {t1,t2}
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10.2.1 Splittable versus Unsplittable Union Types

The compiler detects when reluctant splitting is possible by checking whether the type of some expression is a union
type, since merges create union types of their component types and these component types may be split apart later.
However, not all union types are created by merges: some are the results of primitives known to return one of a set of
possible types. For example, the type of the result of a floating-point comparison primitive is the union of thetrue
constant type and thefalse constant type. However, the compiler does not inline this primitive, instead invoking it
by calling an external C++ function built into the SELF implementation, and so there is no merge node that can be split
apart to separate thetrue result from thefalse result. Splitting is not applicable in this case, and the compiler
should fall back on type casing (described in section 9.3) to optimize messages sent to the result of this primitive.

The compiler distinguishes between union types created as a result of merges in the control flow graph (and thus
amenable to splitting) and those created externally (and hence not amenable to splitting). The former kind are called
splittable union types while the latter are calledunsplittable union types. Merge nodes create splittable union types; a
floating-point comparison primitive returns an unsplittable union type. The compiler only attempts splitting for
splittable union types.
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10.2.2 Splitting Multiple Union Types Simultaneously

The compiler uses splitting to transform a single piece of polymorphic code into several independent pieces of
monomorphic code. Each splitting step typically operates on a single name and a single union type, such as the name
and type of the receiver of some message. After the splitting operation, the compiler can update the type of the name
along each of the split branches to the appropriate component type. These more precise types can then enable inlining
along the split branches. Thus, an important function of splitting is to break apart union types into their component
types which enables further optimizations.

This dividing of union types works fine for the single name being split upon, but does not improve the types of any
other names that might also be more precise after the split. For example, consider the following control flow graph
fragment:

After splitting the+ message for theinteger map type case ofx, the compiler can alter its type bindings forx along
the two split branches to get the following split control flow graph:

Unfortunately, using the techniques described so far the compiler would not notice that the type ofy could also be
narrowed along the two split branches. This would cause the compiler to insert an unnecessary integer type check for
they argument to theintAdd primitive that will eventually get inlined as part of the implementation of+ for integers.

r ← “+”(x, y)

x: unknownx: int

arbitrary
subgraph

x: {int, unknown}

y: int y: unknown

x: {int, unknown}
y: {int, unknown}

y: {int, unknown}

r ← “+”(x, y)

x: unknownx: int

arbitrary
subgraph

x: int

y: int y: unknown

x: int
y: {int, unknown}

y: {int, unknown}

r ← “+”(x, y)

arbitrary
subgraph

x: unknown

x: unknown
y: {int, unknown}

y: {int, unknown}
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10.2.2.1 Paths

The SELF compiler solves this problem by augmenting type information with information about which possible paths
through the control flow graph lead to various name/value and value/type bindings. These possible paths through the
control flow graph are represented internally in the compiler bypath objects. Path objects serve to link together pieces
of type information that are guaranteed to occur together, such as components of different union types.

A path object represents a possible flow of control through the control flow graph. During type analysis the compiler
keeps track of the set of path objects that represent the possible paths through the control flow graph that lead to the
node being analyzed. The initial node in the control flow graph is associated with the initial path object. For straight-
line code (i.e., basic blocks), the set of paths is propagated through from predecessor node to successor node
unchanged. At branch nodes, for each incoming path the compiler creates a new path object for each outgoing branch,
capturing the fact that two paths through the control flow graph are possible for each incoming path:

At merge nodes, the compiler forms the union of the set of paths along each incoming predecessor of the merge:

The compiler associates type information not with just a node in the control flow graph but with each path through the
node. Conceptually, the compiler records name/value and value/type mappings (plus any other kinds of type
information propagated such as cell/value mappings) for each path through the control flow graph. To compute the type
of an expression at some point in the control flow graph, the compiler forms the union of the information about the
expression associated with each path that reaches the node.

i < j?

p1

p1bp1a

p2p1

{p1, p2}
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To illustrate, the following graph fragment shows how the compiler associates type information with paths rather than
just nodes for the earlier example:

When the compiler reaches the+ message, it elects to split off the integer case. To do this it must separate those paths
wherex is bound toint, namelyp1, from the other paths, namelyp2. This leads to the following graph:

Paths elegantly solve the problem of narrowing the type ofy appropriately after the split. When the compiler splits off
one set of paths from another, in this case splitting off pathp1 from pathp2, all types associated with the split paths
get narrowed implicitly. The type ofy automatically is narrowed toint whenp1 is split off fromp2, since the type of
y is associated directly with individual paths, not just with control flow graph nodes.

Splitting is couched in terms of separating one subset of paths from the remaining paths, instead of splitting some union
type. The splitting subsystem of the compiler operates solely in terms of splitting paths apart and knows nothing about
why the split is being performed or what affect the split should have on various kinds of type information. Other parts
of the compiler are responsible for deciding when a split is in order, either to break apart a splittable union type, or to
make some expression available for common sub-expression elimination, or even some combination of these. Once
the compiler has decided to split, it calculates what path subset satisfies the desired criteria and invokes the splitting
subsystem to actually perform the split.

x: unknownx: int
y: int y: unknownp2:p1:

r ← “+”(x, y)

x: int
y: intp1:

x: unknown
y: unknownp2:

x: int
y: intp1:

x: unknown
y: unknownp2:

arbitrary
subgraph

r ← “+”(x, y) r ← “+”(x, y)

x: int
y: intp1:

x: unknown
y: unknownp2:

x: int
y: intp1:

x: unknown
y: unknownp2:

x: int
y: intp1:

x: unknown
y: unknownp2:

arbitrary
subgraph

arbitrary
subgraph

x: int
y: intp1:

x: unknown
y: unknownp2:
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This separation of concerns simplifies the organization of the compiler by narrowing the interface between the splitting
system and the rest of the compiler. It also enables certain kinds of splitting operations that otherwise would be costly
or awkward. For example, sometimes the compiler needs to split off branches in which several expressions have
particular types, instead of the normal case of splitting based on a single expression’s type. This can occur when
splitting off branches to a primitive in which all the primitive’s arguments have the right types (i.e., where the primitive
will not fail with a type error), or when connecting loop tails to loop heads as described later in section 11.4. The
compiler can perform such splits simply by calculating which paths satisfy the right requirements and then calling the
splitting subsystem with that path subset.

10.2.2.2 Splitting Merge Nodes

The splitting subsystem of the compiler performs the actual splitting operation by walking backwards through the
control flow graph, copying each control flow graph node as it is traversed. At a merge node, the compiler examines
each of the merge node’s predecessors to decide how to split them, based on the paths that come in along that
predecessor. For example, consider the following control flow graph fragment:

Say the compiler wants to split apart pathsp1 andp2 from the other paths, and that the compiler has split nodes up to
this merge node (the copied nodes are on the left):

The compiler first examines at the left-most predecessor. Since all of its paths (namelyp1) are in the set of paths being
split off (namely{p1, p2}), this predecessor is simply redirected to the copied merge node and not processed further:

A subset of the middle predecessor’s paths (i.e.,p2) should be split off, while the rest (i.e.,p3) should remain behind,
unsplit. The compiler therefore continues to split the middle predecessor branch, eventually producing the following
graph:

The compiler finally examines the right-most predecessor. Its paths (namelyp4) are not in the split half, so this
predecessor simply remains connected to the unsplit merge node.

p4p1

{p1,p2,p3,p4}

{p2,p3}

p4p1

{p3,p4}

{p2,p3}

{p1,p2}

p4p1

{p3,p4}

{p2,p3}

{p1,p2}

p4p1

{p3,p4}

p2

{p1,p2}
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10.2.2.3 Splitting Branch Nodes

Branch nodes require special treatment to ensure that a branch node and its predecessor are split at most once,
independently of whether one or both successors are split. Consider the following control flow graph fragment:

When the branch node is first split, say by splitting off thep1a path from thep2a path along the left-hand successor,
the compiler first copies the branch node.

The compiler then inserts a new merge node after the other successor branch (the one that was not split) and connects
the copied branch node’s other successor arm to this merge node:

Finally, the compiler splits the branch node’s predecessors:

If later on the branch’s other successor is split, say by splitting off thep1b path from thep2b path, then normal splitting
rules for merge nodes will break apart the freshly-inserted merge node, completely severing the link between the two
branch nodes:

The current implementation of branch splitting actually optimizes this strategy by lazily creating and inserting the extra
merge nodes. When a branch node is first split, instead of creating a merge node to join together the two unsplit
successor branches, the compiler simply marks the branch node as “partially split” and links the two branch node
copies together. If the other branch successor is split, then the appropriate control flow graph links are made, simulating
the step of breaking apart the merge node that would have been inserted. To handle the case where the other successor
to a branch node is not split, the compiler visits all “partially split” branches after the whole splitting operation is
complete and then creates and inserts the necessary merge nodes. This optimization should speed splitting, especially
if most branch nodes get split from both sides, but does introduce some complexity.
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10.2.2.4 Implementation of Paths

A direct implementation of type information and paths as described could be quite inefficient if many paths have
similar type information. Each path would have its own complete copy of the type information, with lots of duplication
among paths. To avoid this potential problem, the current SELF compiler reintroduces splittable union types and
associates each component of a splittable union type with the set of paths that generate that type. For example, the
compiler represents the type binding where a variablex is bound to a typet1 on pathsp1 andp2 and a typet2 on paths
p3 andp4 as

x: {t1=[p1,p2], t2=[p3,p4]}

instead of

p1: x: t1; p2: x:t1; p3: x:t2; p4: x:t2.

Values bound to types other than splittable union types are interpreted as being bound to the same type for all paths.
Thus, information that does not vary from path to path is stored just as concisely as it was before paths were introduced.

This representation of type information is more compact than the straightforward representation using a complete copy
of the type information for each path. It supports the same style of splitting including narrowing of all appropriate type
bindings after a split. It also supports very efficient detection of when two paths lead to different types that might be
split apart (by checking for values bound to splittable union types) and efficient calculation of which paths lead to
desired types (by examining the set of paths associated with the desired component types of splittable union types).

Unfortunately, this representation has some drawbacks over the straightforward representation. The chief drawback is
that currently not all type information is connected with paths. Only types bound to values in the value/type mapping
can depend on path information and be automatically narrowed, since only splittable union types relate to path
information; all other information, such as name/value mappings, cell/value mappings, and exposed blocks lists, are
assumed to apply to all paths. This lack of precision means that information other than the types associated with values
can be lost if paths merge together and are later split apart. For example, in the following graph, the two paths merging
together have different information:

When combining the information after the merge, the compiler creates new union values to represent the bindings for
x andy. Paths are associated with the components of these splittable union types. The compiler must treat thev1+v2
value as no longer available (since it is not available along pathp2 and the compiler cannot associate available value

p2p1

{p1,p2}

x: v3x: v1

exposed_blocks: {[...], [...]}available_value: v1+v2

v1: int
y: v2

v2: int

y: v4
v3: unknown
v4: unknown

r ← “+”(x, y)
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information with particular paths) and must consider the exposed blocks from pathp2 as exposed after the merge (since
the compiler cannot associated exposed block information with individual paths):

When reaching the+ message send, the compiler splits apart the type ofx to optimize the integer receiver case,
producing the following graph:

The compiler is able to narrow the type ofy using the path information in the splittable union types ofx andy.
Unfortunately, the compiler cannot reclaim the lost information thatv1 + v2 is an available value along pathp1 (which
if the compiler could also restore the original value bindings ofx andy would allow the compiler to eliminate as
redundant thex _IntAdd: y calculation), nor can the compiler exclude the unnecessary blocks from the exposed
blocks list along pathp1. These differences do not lead to incorrect code: it is always legal to have fewer available
values or more exposed blocks than is required. They do, however, sacrifice some information that could lead to better
code.

A better implementation of type information and paths would enable the compiler to reclaimall type information after
a split, as if no merge had ever occurred. The current SELF compiler only handles reclaiming type bindings; value
bindings, available expressions, and exposed blocks lists are not reclaimed. The type binding case is by far the most
important, since inlining a message is a much more important optimization in most cases than, for instance, common
subexpression eliminating a single instruction. Therefore, we hope that the opportunities for optimization lost by the
current imperfect implementation are relatively minor.
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10.2.3 Heuristics for Reluctant Splitting

Since splitting can lead to an increase in compiled code space and compilation time, the compiler includes heuristics
to determine when splitting should be performed and thus balance the expected improvement in run-time execution
speed against the expected costs in increased code size and compile times. In the current SELF compiler, two factors
influence the decision on whether to split part of the control flow graph: thecost of the split in terms of the number of
copied control flow graph nodes and machine instructions, and theweight of the split paths in terms of their relative
likelihood of execution. The compiler avoids splitting if the cost of the split is high or if the weight of the split paths
is low, with stricter limits for splits that enable only less important optimizations.

10.2.3.1 Costs

The cost of splitting one set of paths off from the remaining paths is calculated as the sum of the costs of the control
flow graph nodes that would be copied as part of the split. Each node in the control flow graph has an associated cost,
determined as follows:

• Many kinds of nodes have zero cost, since they do not generate machine instructions and can therefore be copied
for free. For instance, name binding (assignment) nodes typically will generate no instructions, since the register
allocator will arrange that the left- and right-hand-sides of the assignment end up in the same register.

• Other kinds of nodes will generate one or two machine instructions (such as arithmetic nodes and compare-and-
branch nodes), and are given a cost of 1 or 2 as appropriate.

• Non-inlined message send nodes are given a cost of 5 to account for the extra space required for the send’s in-line
cache and for the extra instructions that are frequently needed to move the send’s arguments into the locations
defined by the calling convention.

It is difficult to determine efficiently which control flow graph nodes would be copied as part of a split. The compiler
could determine this by simulating the split, traversing the graph in the same manner as the splitting operation would,
but this would be expensive. The current SELF compiler represents paths as connectedpath segments to enable a more
efficient computation of where paths overlap. Each straight-line sequence of code in the control flow graph (each basic
block) is associated with a single path segment object. Path objects are represented as a list of the path segments that
are traversed by the path. All paths that pass through a segment’s corresponding basic block share the single path
segment object.

For example, the following control flow graph sports 7 path segments which are linked together in 4 different paths
(path segments listed from last to first, as path segments are “consed” onto the head of a path at each branch and merge
point):

code4

code5 code6

code1

code2 code3

seg1

seg3seg2

seg5

seg4

seg6

seg7

p1: (seg7 seg5 seg4 seg2 seg1)

p2: (seg7 seg6 seg4 seg2 seg1)

p3: (seg7 seg5 seg4 seg3 seg1)

p4: (seg7 seg6 seg4 seg3 seg1)
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Path segments are concise abstractions of straight-line chunks of the control flow graph. Since straight-line chunks of
code are split as a unit, the cost of splitting the nodes in the chunk can be computed once as the nodes are type analyzed
and stored in the path segment object. Then to determine the cost of a total split, the compiler can first determine which
path segments will get copied as part of a split, and then sum the costs of those path segments.

The compiler can compute which control flow graph segments will get copied as part of a split by finding those path
segment objects that are shared between the set of paths being split off and the set of paths being left behind, up to the
point at which the split paths and the unsplit paths diverge. In the above example, if pathsp1 andp2 are to be split off
from pathsp3 andp4, the compiler calculates that segmentsseg7, seg6, seg5, andseg4 are shared between the split
and unsplit paths. Segmentsseg3 andseg2 are not shared, and so will not be copied by the split, and even thoughseg1
is shared, it lies beyond the point at which the split and unsplit paths diverge, and so it will not be copied as part of the
split.

This mechanism using path segments is more efficient than the straightforward approach of just simulating the splitting
operation because it effectively caches the results of many of the operations that the simulation would perform, such
as the costs of the nodes in each basic block. Also, the path graph is much smaller than the control flow graph, so
traversing the path graph is faster than traversing the main control flow graph. Of course, such an optimization
increases the complexity of the compiler.

10.2.3.2 Weights

The weight of a node represents the compiler’s estimate of the likelihood of that particular node being executed. A
weight is composed of two measures: a loop nesting depth and an “uncommonness” amount. The loop nesting depth
component records the number of loops that have been entered but not exited since the beginning of the method. The
initial loop nesting depth is zero.

The uncommonness component records how unlikely the compiler considers reaching that point in the control flow
graph. For example, the compiler considers having a non-integer receiver for a message like+, in the absence of other
information to the contrary, to be unlikely, and consequently increases the uncommonness component of the failure
branch downstream of a run-time type test inserted as part of type-predicting the+ message. (Type prediction was
described in section 9.4.) The compiler also considers primitive failure to be unlikely, so if, for instance, the index
argument to a_ByteAt: primitive either is not an integer or lies out of bounds, the compiler again increases the
uncommonness component of the failure branch. The initial uncommonness value is zero, with higher
uncommonnesses indicating less likely branches. A weight with an uncommonness value of zero is calledcommon
case, while weights with positive uncommonness values are calleduncommon cases.

Weights do not attempt to record expected execution frequencies at a finer grain. For example, for branch nodes that
correspond to normal comparisons in the source code, both successor branches are given equal weight, and this weight
is the same as the weight of the predecessor of the branch. A more precise weighting system could mark the
downstream branches each with half the weight of the branch predecessor. Unfortunately, this approach rapidly leads
to trouble. Consider a series of conditional branches, corresponding to a series ofif/elseif tests. By the time the

leaves of this decision tree are reached, the weight of any individual leaf will be only  of the original
weight before entering the decision tree. Since the compiler uses weight information to decide when splitting, inlining,
and other optimizations are worthwhile, with these exponentially-reducing weight calculation rules the compiler might
decide that none of the leaves of a decision tree are likely enough to merit optimization, even though for each execution
of the decision tree some leaf is always executed. Clearly this behavior of weights is undesirable.

Another problem with fined-grain weights is how to combine weights together at merge nodes. A basic principle that
the computation of weights should obey isconservation of weight: the sum of the weights leaving some arbitrary part
of a control flow graph should equal the sum of the weights entering that part of the graph; otherwise, some execution
frequency is being lost or gained. This implies that if weights are halved at branches, then weights should be summed
at merges. Unfortunately, this fine-grained approach to computing weights is difficult to implement in the presence of
loops. A loop head node merges together the loop entrance branch and any loop tail branches created by_Restart
calls.*  The weight of the loop head is therefore defined in terms of itself, since the loop tail weight depends on the loop
head weight, and so a recurrence equation must be solved to calculate the weight of the loop. A simple approach would
just increment a loop depth counter and ignore the weight of the loop tail branch. However, this approach violates

* The_Restart looping primitive was described in section 4.1.

1 2⁄ depthOfTree
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conservation of weight, since the weight of the path through the loop that eventually connects back up to the loop head
is unaccounted for and lost when summing the weights of the branches that exit the loop.

Since fine-grained weight propagation rules are difficult to support without weight loss, and since their extra precision
is frequently unneeded and sometimes even counter-productive, the current SELF compiler uses coarser-grained
weights that measure only loop depth and uncommonness. Successors to branch nodes are given equal weight with the
predecessor to a branch node, and merge nodes take the maximum weight of their predecessors rather than the sum of
their weights. These rules satisfy conservation of weight, since the weight of all loop exit branches is the same as the
weight of the loop entrance branch (ignoring the effect of failed type predictions and primitives along loop exit
branches). Also, since all leaves of a decision tree are the same weight as the entrance to the decision tree, all leaves
will be optimized as if they were executed whenever the decision tree is executed, which is usually the desired effect.

Weights are associated with both paths and with nodes. The weight of individual paths is maintained as type analysis
progresses and adjusted whenever a loop is entered, a loop is exited, or an uncommon branch is taken. Weights of paths
remain unchanged when paths flow together at merge nodes or split in two at branch nodes. The weight of a node is
the maximum of the weights of the paths reaching that node.

Since weights are associated with paths in addition to nodes, the splitting operation can easily compute the weight of
a node that might be split off as the maximum of the weights of the split paths. After splitting, a new weight can be
calculated in the same way for the branch left behind.

10.2.3.3 Cost and Weight Thresholds

Costs and weights are used to control which paths, if any, should be split when the compiler detects an opportunity for
splitting. The compiler includes three threshold values,MaxSplitCost, MaxLowSplitCost, and
MaxSplitUncommonAmount. MaxSplitCost andMaxLowSplitCost specify the largest cost of a splitting
operation, above which the compiler will decide not to perform the split.MaxSplitUncommonAmount defines a
threshold value of uncommonness that selects betweenMaxSplitCost andMaxLowSplitCost:

if splitWeight.uncommonAmount <= MaxSplitUncommonAmount then
-- this is a relatively common path; use the more generous threshold
if splitCost <= MaxSplitCost then

-- this split is relatively inexpensive; go ahead!
SPLIT

endif
else

-- this is an uncommon path; use the more stingy threshold
if splitCost <= MaxLowSplitCost then

-- this split is relatively inexpensive; go ahead!
SPLIT

endif
endif

Currently, for global reluctant splittingMaxSplitCost is set to 50,MaxLowSplitCost is 0, and
MaxSplitUncommonAmount is also 0. This means that for common-case nodes (nodes with a zero uncommonness
weight), the compiler is willing to duplicate up to 50 instructions as part of a split (this limit is rarely reached in
practice). For uncommon nodes, however, the compiler is not willing to duplicate any instructions; only splits that do
not increase the size of the compiled code are allowed along uncommon paths. Local reluctant splitting mode is
enabled simply by changingMaxSplitCost to 0, thus preventing the compiler from ever duplicating instructions as
part of a split.
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10.2.4 Future Work

The current SELF compiler’s heuristics for deciding when to perform reluctant splitting are fairly crude. They only
weigh the expected cost of a split in terms of additional machine instructions generated and the likelihood of the split
branch being executed and so benefitting from the split. Many other pieces of information could be used to improve
the results of splitting. For example, the current heuristics take into account the expected increase in compilation time
from a split only indirectly, through the dependence on the expected number of duplicated machine instructions. Also,
these heuristics do not include any measures of the expected improvement in run-time performance caused by the split,
other than the weight of the split paths. A better set of heuristics would differentiate various splitting opportunities with
some characterization of the expected pay-off, for example by giving a high pay-off value for splitting that enables
inlining of a message and a relatively low pay-off value for splitting that allows only constant folding or common
subexpression elimination to be performed. Profile information gathered from previous executions of the program
might also be employed to direct the compiler’s attention to the most important parts of the program.

A more serious problem with the current heuristics is that they only examine local information. For example, when
deciding whether or not to split a message, the compiler only looks at the costs and benefits for that single message. A
better approach would take into account any future messages to or operations on the receiver. If many operations are
going to be performed on some expression, then the compiler should be more willing to split the first operation, since
the cost of the split can be amortized over all the subsequent uses of the split. Similarly, if the compiler has already
duplicated many nodes as part of earlier splits, it should become more reluctant to split future messages, to avoid
spending too much compile time and compiled code space on splitting. The current localized view influences other
aspects of the compiler as well, such as deciding whether or not to type-predict or type-case a message. A more global
perspective throughout the compiler could lead to significantly better trade-offs between compiled code space,
compilation time, and run-time performance.

10.2.5 Related Work

Reluctant splitting is similar to redirecting predecessors in the TS compiler for Typed Smalltalk (described in section
3.1.3). Both approaches can duplicate a node after a merge, postponing the merge until after the duplicated node, to
take advantage of extra information available prior to the merge. There are several differences, however. Reluctant
splitting is performed using type information as part of type analysis, while redirecting predecessors is performed later
in the compilation process using lower-level conditional branch information. By being performed as part of type
analysis and inlining, splitting considerations can influence how the control flow graph gets constructed, and
information other than conditional expressions can be split upon. Also, global reluctant splitting in the SELF compiler
can split arbitrary amounts of code, while redirecting predecessors only splits nodes immediately after a merge.

Reluctant splitting has many similarities to Wegman’s node distinction (described in section 3.4.5). Both approaches
copy control flow graph nodes when they lead to different properties that some later code wants to optimize
independently. However, node distinction is primarily a theoretical framework for explaining a variety of code motion
and other optimizations, both traditional ones and novel ones, but not a practical mechanism for type-based splitting.
The main disadvantage of node distinction as currently formulated is that the distinguishing criteria along which to
duplicate nodes must be known in advance, before any duplication takes place. In other words, the compiler must know
if it will be splitting before it merges any information together. In practice, however, the compiler does not know which
merges will be split apart later and so should be postponed, and which merges should merge normally. This information
only becomes available to the compiler when it reaches a message send node that wants the merge to be split apart,
well after it has already made the decision of whether or not to split the merge. Reluctant splitting has the practical
advantage that it operates on demand, first merging branches together and later splitting only if the information needs
to be split apart and it is cost-effective to do so. One potential avenue for future work would combine the two
approaches to produce a more theoretical framework for demand-driven splitting algorithms.
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10.3 Eager Splitting

The SELF compiler supports an alternate splitting strategy that is almost diametrically opposed in philosophy to
reluctant splitting. Where reluctant splitting initially merges branches together until they demand to be separated,
eager splitting initially separates branches that would merge together in the source code. Each possible path through
the control flow graph leads to its own sequence of control flow graph nodes; the control flow graph becomes a tree
with no merge points.

For example, when compiling the

i < j ifTrue: [ “do something” ]

example, the compiler reaches the following control flow graph after inlining theintLT primitive:

n2 ← blockClone([ do something], thisFrame)

x2 ← j

self 2 ← i

result 2 ← true

i: int
j: int

self 2 < x2?

result 2 ← false

x: int

self: int

n1 ← result 2

n3 ← “ifTrue:”(n1, n2)
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When the compiler reaches the merge node, under eager splitting the compiler does not merge control together but
instead pursues each branch independently by duplicating the rest of the control flow graph for each predecessor of the
merge:

After processing these two branches independently, the compiler reaches the following final control flow graph:

n2 ← blockClone([ ...], thisFrame)

x2 ← j

self 2 ← i

result 2 ← true

i: int
j: int

self 2 < x2?

x: int

self: int

n1 ← result 2

n3 ← “ifTrue:”(n1, n2)

n2 ← blockClone([ ...], thisFrame)

n1 ← result 2

n3 ← “ifTrue:”(n1, n2)

result 2 ← false

do something

i < j?
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In general, eager splitting transforms control flow graphs like the following:

into tree-shaped control flow graphs like the following:
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Eager splitting has a number of advantages. Since there is no backtracking in the compilation and type analysis process
(the compiler never changes its mind about whether two paths should be split apart), the compiler can generate the best
possible code with a relatively simple type analysis system. No path data structures are required, since the control flow
graph itself becomes isomorphic to the path data structure. Since the graph never merges, paths and splittable union
types are not needed. Consequently, no inaccuracies or approximations induced by the representation of path-based
type information can occur.

Also, the parts of the compiler that make use of the type information, such as the message inliner and the primitive
operation inliner, need not constantly concern themselves with path-dependent type information and whether or not to
split to get more specific information. This makes the rest of the compiler much simpler. In the reluctant splitting world,
the complexity of testing for splittable union types and electing to perform a split is spread out through the parts of the
compiler that exploit the type information. In eager splitting, the rest of the compiler is isolated from splitting issues,
since a centralized system is making the splitting decisions (namely, to split always).

However, eager splitting has a number of serious drawbacks. The most obvious is the potential exponential code
explosion as each path of control flow in the source code in turned into a separate physical branch through the control
flow graph. As a first cut at reducing this space problem, the SELF compiler only performs eager splitting among
common-case control flow graph branches; uncommon branches use an alternate splitting technique such as reluctant
splitting. This heuristic attempts to balance better the benefits and costs of splitting by paying a high code space price
only where it is likely to pay off (the common-case paths), and paying a much-reduced price where it is less likely to
pay off (the uncommon case paths).

A problem still remains for control flow graphs containing loops: if the graph can never merge, then loop tails cannot
merge with their loop heads, and programs containing loops suddenly have infinite tree-shaped expanded control flow
graphs after eager splitting. The solution in the current SELF compiler’s implementation of eager splitting is to treat
loop heads differently from other merge nodes and allow loop tails to be connected to loop heads to form merges.

Even with these two modifications to the pure eager splitting model, however, the compiler still is likely to duplicate
far too much code. For example, if two common-case branches merge together in the original unsplit graph, eager
splitting will compile two completely independent copies of the rest of the control flow graph for those two branches.
If those two branches have the same type information before the merge, then the two copies of the rest of the control
flow graph will becompletely identical! Performance measurements reported in section B.4.4 of Appendix B show
that the SELF compiler takes about an order of magnitude more compiled code space and compile time with this
version of eager splitting than it does using reluctant splitting.

This observation suggests an approach for reducing the code explosion further:tail merging. In general, if two terminal
branches in the control flow graph are the same, then they can be combined to save code by introducing a merge to
connect the two branches together. Of course, to save compilation time as well the compiler would like to be able to
detect when two terminal branches are going to be identical without actually compiling both branches and then
comparing them. This approach is called tail merging after the similar traditional optimization that combines the ends
of the two arms of a conditional statement if they are the same.

An easy way of detecting that two branches will generate the same code is to check whether the type information is
the same at the beginning of the two branches. If they are the same, then the two branches must generate the same code
and can be merged together. This prevents unnecessary duplication for “diamonds” in the control flow graph (i.e.,
conditional branches following by corresponding merges) where neither of the two arms of the conditional (“sides of
the diamond”) affect the type information entering the diamond, and so the type information exiting the diamond at
the merge is the same along both branches.

Unfortunately, this simple approach is overly conservative and consequently does not save as much compiled code
space or compilation time as would be desired: compilation speed and compiled code density improve by a factor of
two over eager splitting without tail merging, according to measurements reported in section B.4.4 of Appendix B, but
still fall well short of the performance of reluctant splitting. This form of tail merging misses cases in which two
branches start out with different type information but still end up producing identical control flow graphs because the
rest of the control flow graph does not depend on all of the available type information.
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To enable more merging in the control flow graph than is enabled by the simple form of tail merging, the SELF compiler
includes a technique we callreverse requirements analysis that identifies the subset of the available type information
that actually is used when compiling a terminal branch of the control flow graph. The compiler allows tail merging
whenever two branches have the samerequiredtype information, ignoring any unused type information.

Integrating forward type analysis, splitting, and tail merging decisions with backwards requirements analysis is
somewhat tricky. The compiler type-analyzes the control flow graph in depth-first manner. Once a tip of the control
flow graph is reached (i.e., some sort of return node in the graph with no successors), the compiler scans backwards
through the graph to a branch point with a successor that has not been forward-analyzed yet.

As part of this backwards traversal, the compiler accumulates the assumptions (the requirements) that generated nodes
make on the type information. In this way, the compiler determines the subset of type information that was used during
the forwards compilation of a branch of the control flow graph. Later, when determining whether a to-be-generated
branch can be merged with a previously-compiled branch, the compiler checks to see if the type information available
at the to-be-generated branch is compatible with that required by the previously-compiled branch, as computed by
reverse requirements analysis. If compatible, then the compiler merges the two branches together. Otherwise, the
compiler continues generating the to-be-compiled branch separately, checking for potential merges at later points in
the compilation process.

Loops complicate reverse requirements analysis much as they complicate forward data flow analysis in traditional
compilers. The requirements of a loop head are computed from the requirements imposed by the loop body (and all
branches downstream of the loop body), which in turn depend on the requirements of the loop head, since the
requirements imposed by the loop tail depends on the requirements imposed by the loop head. Tail merging within loop
bodies is even more complicated, since merging depends on requirements analysis that can only be performed after the
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loop has been completely constructed. The current implementation of requirements analysis side-steps these problems
by assuming conservatively that the body of the loop depends onall the type information available at the loop head.
This eliminates the problem of iteratively computing requirements but sacrifices some opportunities for tail merging.
We do not know how important this sacrifice is, however.

Unfortunately, even with tail merging based on requirements analysis, eager splitting still takes too much compile time:
according to the results reported in section B.4.4 of Appendix B, this most sophisticated form of eager splitting
consumes twice as much compile time and compiled code space as local reluctant splitting. Ultimately, eager splitting
may be deemed unusable because it is inherently inflexible relative to other strategies such as reluctant splitting. With
reluctant splitting, the compiler writer can trade-off compilation speed and execution speed by varying the cost and
weight splitting threshold values. With eager splitting, however, it is very difficult to “reign in” the compiler to generate
less optimized code and so speed compilation. Once the eager-splitting compiler has assumed a certain piece of type
information when generating code for a control flow graph node, this decision cannot be easily changed if the cost of
such a decision later is deemed too great.

Consider an example where the compiler pursues a branch of the control flow graph, and in the last node assumes that
the value of some variable is the constant0. Then a second branch is generated, and it is identical to the first branch
except that the last node assumes that the value of the variable is the constant1. The cost of depending on the value
of this constant may be very high, if the two branches are long and would otherwise be identical. But the compiler
would have a very hard time detecting that the cost of this particular use of this particular constant type will be high
without actually generating the two branches to completion. Reluctant splitting does not have this problem, since the
compiler can decide at the point it is compiling the last node whether or not to split earlier branches apart. Eager
splitting errs on the side of splitting branches apart, while reluctant splitting errs on the side of keeping branches
merged together. The behavior of reluctant splitting probably is preferable to that of eager splitting.
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10.4 Divided Splitting

Divided splitting is a practical compromise between reluctant splitting and eager splitting. Its description is simple: the
compiler eagerly separates the common-case paths from the uncommon-case paths, but only reluctantly separates
individual common-case paths from each other. In general, divided splitting transforms control flow graphs like the
following:

into control flow graphs like the following, with the common-case paths completely separated from the uncommon-
case paths, but with each half split apart only when desirable:
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Divided splitting should at most double the size of the control flow graph over straight reluctant splitting instead of
exponentially growing the size of the control flow graph as is characteristic of pure eager splitting.

Divided splitting is an engineering compromise motivated by practical concerns and empirical observations of
programs. In most cases, the compiler will want to split common-case paths apart from uncommon-case paths. The
common-case paths usually have many more sends inlined away, leading to more precise type information, more
values available for common subexpression elimination, and fewer exposed blocks. Divided splitting therefore always
splits apart the common-case and the uncommon-case paths. Since splitting apart various common-case paths one from
another is not nearly as cut-and-dried, the more conservative reluctant splitting algorithm is used in those cases.

Divided splitting improves over the current path-based reluctant splitting algorithm by effectively placing afirewall
between the type information along common-case paths and the type information along uncommon paths; the two sets
of type information never mix across this firewall. This prevents the uncommon-case type information from diluting
the common-case type information. If reluctant splitting were perfect, in that there was no loss or degradation of type
information if a decision to merge branches together were later changed and no opportunities for optimizations were
missed in the process, then divided splitting would not be very interesting. In reality, however, reluctant splitting isnot
perfect, especially as currently implemented with path objects used only for the value/type bindings. If common-case
and uncommon-case paths continually merged together only to be split apart later, as is typically the case with pure
reluctant splitting, then any loss of type information caused by imprecision in the implementation of reluctant splitting
will take its toll over and over again. This typically would mean that the type information would not contain any
available values or heap cell information, since the uncommon-case type information would not normally have them
and the current reluctant splitting implementation does not parameterize this information by path. In contrast, with
divided splitting, the common-case type information is never mixed with the uncommon-case information, and so
uncommon-case paths do not cause type information along common-case paths to be lost. Since in many cases there
is only one common case path, divided reluctant splitting should approach the code quality of pure eager splitting with
only the compile time costs of pure reluctant splitting. According to results reported in section B.4.5 of Appendix B,
divided splitting speeds SELF programs by up to 20% over the base local reluctant splitting algorithm, with no
additional compile time or compiled code space costs. Divided splitting allows the SELF implementation to use an
imperfect, faster implementation of reluctant splitting without sacrificing too much code quality.

10.5 Lazy Compilation of Uncommon Branches

Many of the techniques in the SELF compiler distinguish between the common-case parts of the control flow graph
and the uncommon-case parts. Some techniques such as divided splitting are designed specifically to separate the
common-case paths from the uncommon-case paths. The burden of compiling the uncommon-case paths is fairly high:
these parts of the control flow graph can be quite large, handling all the unusual events that might happen. Furthermore,
uncommon branches are frequent in the compiled code. For example, most primitive operations such as arithmetic can
fail in one way or another, leading to an uncommon-case branch that needs to be compiled. To add insult to injury,
uncommon cases are expected to be uncommon, occurring rarely; most possible uncommon events never occur in
practice. Thus, much of the compiler’s effort is wasted.

The SELF compiler takes advantage of this skewed distribution of execution frequency for different parts of the control
flow graph by only compiling the uncommon parts of methods when the uncommon events actually occur; we call this
techniquelazy compilation of uncommon branches.*  When the compiler is compiling a method for the first time, it
only pursues the common-case paths of the control flow graph. At the entrances to all uncommon-case paths (for
instance after a failed type prediction conditional branch or after a branch-on-overflow conditional branch) the

* Lazy compilation of uncommon branches was first suggested to us in 1989 by John Maloney, then a graduate student at the
University of Washington.
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compiler generates code to call a routine in the run-time system. Thus for a simple integer addition primitive, instead
of generating the following graph:

the compiler will generate this graph:

result ← “value”(n1)

n1 ← blockClone([failure block], thisFrame)

result ← add self, arg

self int?

arg int?

no overflow?

self: int

arg: int

arg: unknown
self: unknown

self: unknown - int

arg: unknown - int

result: int

result: unknown

self: {int, unknown - int}
arg: {int, unknown - int}

result: {int, unknown}

uncommonBranch()

result ← add self, arg
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arg int?

no overflow?

self: int

arg: int
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arg: unknown - int
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Lazy compilation has a number of advantages. Foremost, it dramatically reduces both compile time and compiled code
space by not compiling uncommon branches unless actually used in practice. The uncommon branches are typically
much larger than the normal common-case code since the uncommon branch code has far more run-time type tests and
space-consuming message sends than the common case branches. These expectations are borne out in practice:
measurements reported in section 14.3 show that lazy compilation of uncommon branches speeds compilation by
between a factor of 2 and a factor of 5; compiled code space costs fall by the same amount.

Lazy compilation has several other more subtle advantages. For one, lazy compilation automatically provides the
advantages of divided splitting. Uncommon branches effectively are split off eagerly from the common-case paths, just
as in divided splitting, by not compiling them at all. By providing the advantages of divided splitting as a fringe benefit,
lazy compilation presents the rest of the type analysis and splitting system with a much simpler control flow graph,
frequently one with onlyone remaining path. This allows the compiler to rely on a simpler, less accurate type analysis
and splitting implementation without sacrificing much in performance and without actually needing to implement
divided splitting.

Another subtle advantage of lazy compilation is that it eases the problem of good register allocation. As described in
section 12.1, the SELF compiler performs global register allocation that allocates each name to a single location for its
entire lifetime. Names that must survive across calls cannot be allocated to certain locations, such as caller-save
registers. Since uncommon-case branches contain far more calls than common-case branches, eliminating the
uncommon-case branches eliminates many register allocation restrictions and allows the SELF compiler’s simple
allocation strategy to produce a reasonable allocation. Together with improved type analysis, lazy compilation
improves the execution speed of SELF programs by up to 30%, according to the results in section 14.3.

If theuncommonBranch procedure is called, the compiler starts up and compiles an additional chunk of code, called
an uncommon branch extension method, to handle the control flow graph from the point of failure that led to the
uncommon branch to the end of the original method. In the current implementation, an uncommon branch extension
method takes over the original common-case method’s run-time stack frame and returns to the original common-case
method’s caller, thus completing the original method’s charter.*  Since the uncommon branch extension method does
not return to the middle of the common-case version, the common-case version is freed from handling uncommon
cases merging back into the main common-case flow of control. This allows the compiler to generate excellent code
for the common cases, at the cost of somewhat larger compiled code space usage. Analogously to in-line caching
(described in section 8.5.1), the compiler backpatches the call to theuncommonBranch routine, replacing it with a
call to the newly-compiled uncommon branch extension code. Since the compiler’s beliefs about what is uncommon
have already proved incorrect, the compiler does not distinguish common from uncommon branches in an uncommon
branch extension. The compiler applies a conservative splitting strategy (currently local reluctant splitting) when
compiling an uncommon branch extension, and the compiler does not perform lazy compilation within an uncommon
branch extension method. This strategy limits the amount of compile time and compiled code space spent on
uncommon branches.

The current implementation for compiling uncommon branches treats the extensions as new methods that are in some
ways subroutines called by the common-case version of the method. An alternative strategy would recompile the
original method when an uncommon branch was taken, this time with all uncommon branches compiled in-line (i.e.,
without any stub routines), replace the old common-case-only code with the more general all-cases code, modify the
existing stack frame accordingly, and then restart the new method at the point of the entrance to the uncommon branch.
The current strategy is significantly simpler to implement than this alternative strategy but may take up more compiled
code space and compile time in cases where several different uncommon-branch entrances are taken on different
invocations of the original method. With the current strategy each separate uncommon branch entry point will lead to
a separate uncommon-branch extension method, while with the alternative strategy the original common-case-only
method will be generalized to handle all future uncommon branches in one step. Fortunately, we have not observed
many multiple uncommon branch extensions for the same common-case method, and so we are content to remain with
the simpler strategy.

* The first operations performed by the uncommon branch extension adjust the stack frame size and execute any register moves
required to shift from the common-case method’s register allocation to the uncommon extension’s register allocation.
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10.6 Summary

The SELF compiler uses splitting to transform a single polymorphic piece of code into multiple monomorphic versions
that can be further optimized independently, thus trading away some compiled code space for significantly improved
execution speed. Reluctant splitting records enough information at merge points so that the merge can be reversed later
if the more specific type information available before the merge would be helpful; the merge is simply postponed until
after the point which desires the more specific information. Path objects enable the compiler to narrow multiple union
types after a split, thus keeping type information fairly accurate in the face of repeated merging and splitting. The
compiler includes heuristics based on the estimated space cost of the split and the estimated execution frequency of
the split nodes to decide when the benefits of a potential split outweigh the costs. The demand-driven nature of
reluctant splitting works well in practice, balancing compilation time against the quality of the generated code by
exploiting most splitting opportunities with only a single forward pass over the control flow graph.

Eager splitting is an alternative splitting strategy that initially always splits merges apart, assuming that most such
merges will be split apart anyway. Eager splitting offers a simpler, possibly faster implementation of splitting with no
backtracking and no loss of type information from merges that are later split apart. Unfortunately, pure eager splitting
leads to an exponential increase in the size of the control flow graph and hence in compilation time. To avoid
unnecessary code duplication, eager splitting can be augmented with tail merging, a technique that merges two
branches together if the second branch would generate the same control flow graph as was generated for the first
branch. The compiler implements two forms of tail merging, one based on forward-computed available type
information and the other based on more precise reverse-computed required type information. These tail merging
extensions reduce compilation time for eager splitting somewhat, but in the end compilation time is still too long for
eager splitting as currently implemented to be a practical splitting alternative.

Divided splitting is a hybrid approach that strives to provide the precision of eager splitting with the costs of reluctant
splitting. With divided splitting, the compiler eagerly splits apart common-case paths from uncommon-case paths, but
uses reluctant splitting to split apart common-case paths from one another. Divided splitting overcomes some of the
weaknesses in the current implementation of reluctant splitting by placing a firewall between the relatively precise type
information available for the common-case paths and the relatively imprecise type information for the uncommon-case
paths. The compilation speed of divided splitting is roughly the same as the compilation speed of pure reluctant
splitting, with significantly better code quality.

The SELF compiler saves a great deal of compilation time and compiled code space and even improves execution
performance by compiling uncommon branches lazily. When a method is first compiled, only the common-case paths
are compiled; stubs are generated for all branches into uncommon-case paths that simply call a routine in the run-time
system. Only if one of these uncommon branches is taken does the compiler actually generate code for the uncommon
branches. This division automatically provides the effect of divided splitting with no additional effort over that for lazy
compilation.

Lazy compilation enables the SELF implementation to “have its cake and eat it, too.” Since the common-case paths
typically correspond to those paths that are the only ones supported by the semantics of traditional languages such as
C, the compile-time and run-time speed of SELF is close to that for traditional languages (both systems end up
generating much the same code), but SELF also supports the extra power of, for example, generic arithmetic; the
programmer pays for these advanced features only when they are used.
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Chapter 11   Type Analysis and Splitting of Loops

Loops pose special problems for type analysis. The basic problem is that the loop head is a kind of merge node, but
the type information for some of the predecessors of the loop head (namely, the loop tail backwards branch) depends
on the type information of the loop head, creating a circularity in the type analysis.

This chapter describes type analysis in the presence of loops and discusses synergistic interactions between loop type
analysis and splitting.

11.1 Pessimistic Type Analysis

One approach to breaking the circularity would assume the most general possible value (the unknown value) and type
(the unknown type) at the head of the loop for all names potentially assigned within the loop. These bindings would
be guaranteed to be compatible with whatever bindings are subsequently computed for the loop tail, and so the type
analysis would remain conservative and always produce legal control flow graphs. For example, in the following
graph, the type ofx would be automatically generalized to the unknown type at the loop head since there is an
assignment tox within the loop:

Unfortunately, this approach, which we callpessimistic type analysis, would sacrifice type information at precisely
those places in the program that need the information the most to generate the best possible code: the inner loops of
programs.
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11.2 Traditional Iterative Data Flow Analysis

Traditional compilers resolve similar circularities in data flow analysis algorithms by performing the analysis
iteratively. Iterative data flow analysis begins by assuming some data flow information for the loop head (usually just
the information computed for the loop entry branch), analyzes the loop body, and then recomputes the data flow
information at the loop head, this time including the results for the loop tail. If the information is unchanged (thefixed
point in the analysis has been reached), then the analysis is done. If the information for the loop head has changed, then
the previous analysis results are incorrect and the compiler must reanalyze the loop body with the new loop head
information. This iteration will eventually terminate with a final least fixed point if the domain of the computed
information is a finite lattice (a partial ordering with unique least and greatest elements representing the best and worst
possible fixed points) and if the data flow propagation functions are monotonically increasing.

As traditionally applied, iterative data flow analysis operates on a fixed control flow graph. The compiler constructs a
control flow graph, performs iterative flow analysis to compute some property of interest for all nodes in the graph,
and then performs some optimization or transformation of the graph based on the computed information. If other
optimizations need to be applied to the modified control flow graph, then most data flow analysis frameworks require
recomputing all interesting information from scratch based on the new control flow graph. Incrementally updating data
flow information after some modification to the control flow graph is an open research problem.

If the SELF compiler computed type information within loops by naively applying an iterative flow analyzer to the
control flow graph prior to using the type information to perform optimizations such as inlining and splitting, then the
computed type information would be very poor, virtually as bad as that computed using pessimistic type analysis. This
surprising result is a consequence of SELF’s use of messages for all computation, even computation as simple as
arithmetic and instance variable accesses. If no messages within the loop are inlined, and an iterative flow analyzer is
applied to compute the types of variables accessed within the loop, then any variables assigned the results of messages
(including messages like+) must conservatively be assumed to be of unknown type, since the compiler would not
know the type of the result of the non-inlined message. For example, naive iterative flow analysis would also compute
that the type ofx in the following graph must be unknown, since the type of the result of the non-inlined+ message
would be unknown:

11.3 Iterative Type Analysis

The SELF compiler uses a technique we calliterative type analysis to compute precise types for variables modified in
loops. Iterative type analysis is an extension of traditional iterative data flow analysis designed to cope with changing
control flow graphs. As in iterative data flow analysis, the SELF compiler begins compiling a loop by assuming a
certain set of types at the loop head. Unlike traditional flow analysis, however, the SELF compiler goes ahead and
compiles the loop based on the initial assumed types. The SELF compiler’s analysis may change the body of the loop
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as part of the analysis, such as by inlining messages or splitting apart sections of the loop body. Once the loop tail is
reached, the types computed by the analysis for the loop tail are compared to the types assumed at the loop head. If
they are compatible, then the loop tail is connected up to the loop head, and the compiler is done. Otherwise, the
analysis must iterate, compiling a new version of the loop for the more general types.

For example, when faced with the same control flow graph as before:

with iterative type analysis the compiler will first assume a set of types for the loop head derived from the loop entry
types, in this case thatx is an integer:

The compiler will then compile the body of the loop under these assumed types. When the compiler reaches the+
message, its receiver,x, will be determined to be an integer (assuming no other assignments tox within the loop), and
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the compiler will inline the+ message and the containedintAdd primitive to the followingadd machine instruction
and overflow check:

After analyzing the rest of the control flow graph,x will be determined to be an integer at the loop tail, which is
compatible with the types assumed at the loop head, and so the compiler is done:

The type information computed with this iterative type analysis is much better than the type information computed
with either pessimistic type analysis or naive iterative data flow analysis. The+ message has been inlined away with
no extra overhead since iterative type analysis can compute that the type ofx remains an integer throughout the loop.
The other two approaches compute that the type ofx is unknown at the top of the loop, and so at best a run-time type
test would need to be inserted to check for an integer receiver of+. For other messages that are not be optimized using
type prediction, the compiler would be prevented from inlining them at all without iterative type analysis.
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The earlier description of the iterative type analysis algorithm purposely was vague on three points:

• What type information is assumed for the loop head initially?

• When is the type information computed for the loop tail compatible with the type information assumed at the loop
head, allowing the loop tail to be connected with the loop head?

• How exactly does the analysis iterate if the loop tail type information is not compatible with the loop head type
information?

Each of these questions has more than one reasonable answer, and different combinations of answers will result in
different trade-offs among execution speed, compilation speed, and compiler simplicity. Iterative type analysis is thus
revealed as aframework for a family of algorithms. The next three subsections provide the current SELF compiler’s
answers to these questions as well as some different answers from earlier SELF compilers. The question of
compatibility will be taken up first, since the answer to this question impacts the answers for the other questions.

11.3.1 Compatibility

One central question is when the types computed at the loop tail are considered compatible with the types assumed at
the loop head. One extreme approach would consider a loop tail type compatible with a loop head type if the loop head
typecontains the loop tail type (treating types as sets of values as described in section 9.1.4). This approach would
make loop tails compatible with loop heads as often as possible, thus helping iterative analysis reach the fixed point
quickly and saving compile time. Unfortunately, the approach also could sacrifice much of the type information
available at the loop tail in the form of precise types by connecting a loop tail to a loop head compiled assuming much
less specific type information. For example, if a variable were bound to the unknown type at the loop head and to the
integer map type at a loop tail, then this compatibility rule would consider these two bindings compatible and allow
the loop tail to be connected to the loop head. While this is legal, it would sacrifice type information available at the
loop tail that could lead to better generated code if the loop tail were not connected to the loop head. We want a type
compatibility rule that will not sacrifice this much of the compiler’s hard-won type information.

The opposite extreme position on compatibility would only consider two types compatible if they are exactly the same.
This position would avoid any loss of type information, since the loop tail must have exactly the same type information
as a loop head to connect to it, but it could easily lead to many iterations as part of iterative type analysis. For example,

there are  different types relating only to integers (the power set of the  different integer constants, less
the empty set), and type analysis could iterate this many times with such a definition of compatibility. Thus it is
impractical to define type compatibility this narrowly.

The current SELF compiler uses a type compatibility rule midway between these two extreme positions. A type at a
loop tail is considered compatible with a type at a loop head if the loop head type contains the loop tail type, and the
loop head type does not lose any map-level type information. If the loop tail type is a constant type or an integer
subrange type, then the loop head type can be no more general than the enclosing map type to be compatible. If the
loop tail type is a union type whose components have different maps, then the loop head type can be no more general
than the union of the corresponding map types. This compatibility rule implements the heuristic that map-level type
information is the most important kind of type information and provides the lion’s share of optimization opportunities,
since map-level type information is the most general kind that still supports static binding and inlining of messages.
Also, since in practice the compiler does not encounter more than a few different map types for a single variable,*  the
fixed point in the iterative type analysis is reached fairly quickly.

This strategy is amended in situations in which both common-case and uncommon-case branches exist, such as in
uncommon branch extension methods (described in section 10.5) or when simulating a version of the system without
lazy compilation of uncommon branches. Since the compiler is much more conservative when compiling uncommon
branches, connecting a common-case loop tail to an uncommon-case loop head would also sacrifice the performance
of that common-case path. Therefore, the compiler considers a loop tail compatible with a loop head only when the
weight of the loop head is at least as great as the weight of the loop tail. Additionally, to minimize compilation time
spent on uncommon branches, the compiler uses the most conservative strategy for type compatibility, considering an

* This is true mainly because currently there are only a few ways that the compiler can infer map-level type information. This
characteristic may not be true in the future with the introduction of adaptive recompilation using polymorphic in-line caches
[HCU91], and so this type compatibility rule may need to be revised to keep down the number of iterations needed to reach the
fixed point.
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uncommon-case loop tail compatible with an uncommon-case loop head if the types at the loop head merely contain
the types at the loop tail. Along uncommon branches, conserving compilation time and space is more important than
preserving map-level type information.

11.3.2 Initial Loop Head Type Information

Another question to be answered is exactly what types are assumed initially at the loop head. An obvious strategy
would assume that the loop head’s type information was the same as the loop entry’s type information. This approach
is simple and precise: beginning with the loop entry’s type information would enable the compiler to compute the most
precise fixed points. Unfortunately, this approach frequently would cause the algorithm to iterate at least once, since
in most cases at least one name would be assigned a type in the body of the loop different from that initially assumed
at the entrance to the loop. For example, the following loop is typical of a standardfor loop written in SELF, with a
loop counter initialized to zero and incremented at the end of the body of the loop:

If the loop head types were assumed to be the same as the loop entry types, then after one iteration (and inlining the+
message and constant-folding theintAdd primitive) the compiler would produce this graph:

The type ofcounter computed at the loop tail would not be compatible with the type assumed at the loop head, since
the type assumed at the loop head would not contain the corresponding type at the loop tail. Consequently, the analysis
would be required to iterate with some more general type than the0 constant type. Since most loops modify some loop
counter from its initial constant value, this initial throw-away iteration would be expected for most loop structures.
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Assignable local variables are likely to be assigned within the body of the loop a value different from the initial value
computed at the entrance to the loop. To avoid an extra iteration, the current SELF compilergeneralizes the types of
assignable names at the loop head over the corresponding types at the loop entrance. To preserve map-level type
information, this generalization is only to the enclosing map type (or union of map types if the loop entrance type is a
union type). In the abovefor loop example, the compiler will generalize the initial type of the loop counter to the
integer map type:

Then after compiling the loop body the compiler will reach the following graph:

The type at the loop tail is now compatible with the type at the loop head on the first iteration; no additional iterations
are needed.
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This generalization heuristic works well in the cases in which the assignments to local variables are of the same map
as the initial value, such as is the case with integer loop counters. It also usually saves an iteration in iterative type
analysis over the version of iterative type analysis in the earlier compiler. However, there are some situations in which
this generalization of all assignable names is overly pessimistic. Some variables may be assignable but not actually
assigned within the loop being analyzed; generalizing their types may lose type information. For example, in a doubly-
nested loop, both loop counters are assignable, but the outer loop counter is not assigned within the inner loop. At the
inner loop head the current SELF compiler will generalize the type of the outer loop counter from some integer
subrange type (computed after the initial comparison against the outer loop’s upper bound) to the more general integer
map type. This unnecessary generalization can sacrifice possibilities for optimization, such as applying integer
subrange analysis to eliminate unneeded array bounds checks or arithmetic overflow checks involving the outer loop
counter. A better approach that would not lose this kind of type information would determine which variables might
be assigned within a particular loop and only generalize those variables. This analysis is complicated by the fact that
most of these assignments occur within blocks making up the body of the loop control structure, and accurately
determining which variables might be assigned within some loop would require computing some sort of transitive
closure of all blocks that could be invoked by messages sent within the loop. If implemented, this approach would
solve the doubly-nested loop problem.

To minimize compilation time for uncommon-case loops, the SELF compiler generalizes the types of assignable
variables all the way to the unknown type at uncommon-case loop heads, instead of just the enclosing map type as with
common-case loop heads. In conjunction with the lenient rules for type compatibility of uncommon-case loop tails,
this generalization ensures that an uncommon-case loop tail always connects to an uncommon-case loop head on the
first pass; no iterations are needed for uncommon-case loops.

11.3.3 Iterating the Analysis

The final question remaining to be answered to complete the description of iterative type analysis is what happens
when the loop tail is not compatible with a loop head, forcing the analysis to iterate. In traditional iterative data flow
analysis, the information previously computed about the nodes in the loop is thrown away, new information is
computed for the loop head by combining the information assumed at the previous iteration with the information
computed at the loop tail, and finally the information for the body of the loop is recomputed based on the new, more
general loop head information. This approach cannot be directly applied to iterative type analysis, since as part of
analyzing the body of the loop the control flow graph is optimized based on the information. If the type information
assumed at the loop head is determined to be overly optimistic, the optimizations performed based on that information
are no longer valid. Backing out of optimizations like inlining and splitting would be very difficult.
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The approach taken in the SELF compiler’s iterative type analysis is to create a fresh new copy of the part of the control
flow graph representing the loop body, and reapply type analysis to this fresh unoptimized copy. The fresh loop head
is simply connected downstream of the previous iteration’s incompatible loop tail, in effectunrolling the loop for the
new type information. For example, if after reaching the loop tail on the first iteration it proves incompatible with the
loop head:

the compiler will simply create a new copy of the loop and connect the previous copy’s loop tail to it:

Unrolling loop bodies this way has important fringe benefits. Type tests and other code can get “hoisted” out of the
normal loop body into earlier versions. For example, if the type of some variable is unknown at the top of the initial
loop body, then the first loop head will assume the type of the variable is unknown. If the variable is treated like an
integer inside the loop, such as by sending it+ messages, then the compiler will use type prediction to insert a run-time
type test and use splitting to compile a separate path through the loop body where the variable is known to be bound
to an integer. When the loop tail is reached, the integer type will not be compatible with the unknown type at the loop
head type, and so a separate version of the loop body will be compiled just for when the variable is bound to an integer.
This second version of the loop will contain no type tests, since through the loop body the variable will be bound to an
integer. If this turns out to be the common case (as is expected), then control will pass through the initial version of the
loop once and thereafter remain in the faster integer-specific version of the loop.

This unrolling approach is quite simple to implement. However, this strategy may waste some compiled code space
(and hence compile time) if the unrolled copies are very similar. Some compiled code space is reclaimed by
generalizing the types of assignable names before the first iteration, as described in section 11.3.2, thus usually saving
an iteration and correspondingly a whole copy of the loop body. An alternative approach would replace the original
overly optimized loop body with the fresh new loop body, redirecting the predecessors of the original loop head to flow
instead into the fresh new loop head. This would allow the compiler to conserve compiled code space and compile time
by sharing similar parts of the loop body across what would have been separate copies. Unfortunately, this alternative
approach would be more complex to implement and would require some mechanism to ensure that the new loop head
starts out with more general type information that just what its predecessors indicate. Path-based type information
exacerbates both of these problems. Future research could explore designs for iterating the type analysis that conserve
compiled code space and compile time, work with path-based type information, and minimize compiler complexity.
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11.4 Iterative Type Analysis and Splitting

Iterative type analysis of loops and splitting have been carefully crafted to enable the SELF compiler to compile
multiple versions of a loop, each version optimized for different combinations of run-time types. The inner loops of
programs are the most important to optimize well, and by compiling separate versions of loops for different run-time
types the SELF compiler is able to generate very good code for these loops.

Since loop heads are just a special kind of merge node, they can be split apart just like merge nodes. For example, if
two branches merge together at a loop head, and along one branch a variable has type integer, and along the other
branch the variable has type floating point number:

the compiler can split apart the loop head merge node if the variable is sent a message within the loop:

This splitting can create multiple loop heads for a single loop, each loop head for different types. The current SELF
compiler’s unrolling approach to iteration also creates multiple loop heads each with different types. Consequently, a
loop tail may have several loop heads from which to choose when trying to connect to a type-compatible loop head.
The compiler tries to find the highest-weight loop head with the most compatible types to connect a loop tail to. If no
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loop head is compatible, then the compiler tries to split the loop tail to match some loop head. For example, after
inlining away each of the+ messages and then compiling the rest of the loop the compiler reaches the following graph:

The loop tail type{int, float} does not directly match either of the loop head types. So the compiler tries to find a subset
of the paths through the loop tail that can be split off and connected to a loop head. The compiler determines that the
left-hand path producing the integer type binding would be compatible with the left-hand loop head if split off, so the
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compiler splits the loop tail accordingly (assuming that the cost of splitting is low enough) and connects the split loop
tail to get the following graph:

After splitting a loop tail and connecting one of the copies, the compiler turns its attention to the remaining loop tail
copy. This loop tail is itself checked against the available loop heads, and possibly split again if it cannot be connected
directly to a loop head. This process continues until either the loop tail is successfully connected to a loop head, in
which case the compiler has finished compiling the loop, or the loop tail cannot be either split or connected to a loop
head, in which case the compiler falls back on its unrolling strategy, creating a fresh copy of the loop (and a new loop
head) for the loop tail’s combination of types. This process of splitting loop tails to match loop heads is guaranteed to
terminate with either a successful connection or by unrolling the loop since at each split the number of paths in the
leftover loop tail decreases.
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In the case of the example loop, the compiler determines that the leftover loop tail is compatible with the right-hand
loop head and connects it up to get this control flow graph:

This effect of splitting loop heads and subsequently splitting loop tails often leads the compiler to generate multiple
versions of a single source loop, each compiled version for different type bindings. In the above example, the compiler
has produced two completely independent compiled versions of the original source loop, with one version for the case
wherex is an integer and a separate version for the case wherex is a floating point number. Each version of the loop
is optimized for a particular combination of types, and so can be much faster than a single general version of the loop
could be. In the above example, if the compiler were constrained to generate only a single version of the loop, then the
compiler would be forced to use type casing to optimize the+ message for the integer and floating point cases,
introducing extra run-time overhead for the type test. This extra overhead can become significant as the number of
operations in the loop that could be split apart increases.

This splitting of loops for different types enables the SELF compiler to compete with optimizing compilers for
traditional languages in execution performance without sacrificing the extra power available to SELF programmers,
such as pure message passing and generic arithmetic support. Typically, one version (or sometimes a few versions) of
a loop will be split off and optimized for the common-case types; these types include those that would be used in the
equivalent program in a traditional language, such as integers and fixed-length arrays. This common-case version of
the loop can achieve quite good performance, since the compiler is compiling a version of the loop specific to those
common-case types. The SELF compiler gets nearly the same information that is available to the compiler for the
traditional language and hence can generate code that runs nearly as fast as that generated by the compiler for the
traditional language. The SELF compiler will also generate an extra version of the loop to handle any other types or
situations that might arise that do not fall into the category of common-case types or situations; this extra version of
the loop implements the additional semantics available in SELF in the form of pure message passing and generic
arithmetic. With lazy compilation, this extra version will be in the uncommon branch extension method and usually is
never actually compiled at all. The separation of the common-case version(s) from the uncommon-case version(s) is
the primary mechanism used by the SELF compiler to rival the performance of traditional languages.
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11.5 Summary

The SELF compiler uses iterative type analysis to infer relatively precise types in the presence of loops. This algorithm
performs optimizations such as inlining and splitting on the body of the loop as part of each iteration in the analysis.
As a result, the compiler computes much more precise type information than would be possible with a standard data
flow analysis algorithm. The SELF compiler uses various heuristics to reach the fixed point as quickly as possible
without sacrificing a significant amount of type information. These heuristics include automatically generalizing the
types of assignable names to the enclosing map type at loop heads and connecting loop tails to loop heads as long as
the loop head does not sacrifice map-level type information. When a loop tail does not match any available loop head,
the loop is unrolled by appending a fresh copy of the loop body to the loop tail and continuing the analysis.

The SELF compiler treats loop heads like merge nodes and will split a loop head apart if a node downstream of the
loop head wants some type information that was diluted by either the loop head merge node or by a merge node before
the loop head. This splitting creates multiple loop heads from which to choose when connecting a loop tail to a loop
head. Unrolling a loop when a loop tail is not compatible with any available loop head also creates several loop heads
from which a loop tail can choose. A loop tail itself can be split apart when it does not directly match any loop head,
but a subset of the paths that reach the loop tail do match a loop head. With both loop heads and loop tails being split
apart, the SELF compiler frequently ends up creating several completely independent versions of a loop, with each loop
head leading to a matching loop tail. Each of these versions can be much faster than could a single general version of
the loop, and consequently generating multiple versions of loops each for different run-time types is one of the key
sources of SELF’s execution speed. When combined with lazy compilation of uncommon branches, the SELF compiler
frequently compiles one or two common-case versions of a loop to handle the standard situations, with an additional
general version of the loop compiled only if and when needed.
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Chapter 12   Back-End of the Compiler

Type analysis, inlining, and splitting are performed simultaneously as the first pass of the SELF compiler. This chapter
describes the remaining passes of the SELF compiler, describing those optimizations included to be competitive with
traditional optimizing compilers.

12.1 Global Register Allocation

In many ways, good register allocation is the most important “optimization” in traditional compilers. The effect of
register allocation is felt through all compiled code, unlike most other optimizations, and a poor allocator can hurt
performance so much that any improvements caused by other optimizations are inconsequential. However, register
allocation historically has been much less important in implementations of pure object-oriented languages (and many
other kinds of high-level languages), primarily because these high-level languages contained so many procedure calls
that register allocation became of secondary importance. Register allocation algorithms must flush caller-save registers
to their home stack locations across procedure calls, and in language implementations with many procedure calls there
is not enough straight-line code between calls to justify any but the simplest of allocators. In contrast, the SELF
compiler is designed to eliminate most procedure calls and frequently compiles whole versions of loops with no
internal calls. Global register allocation thus again becomes important, especially in light of our goal to rival the
performance of traditional optimizing compilers.

A straightforward register allocator would assign each variable in the source program to a register or stack location,
such that two simultaneously live variables are not assigned the same register or stack location. This naive approach
would work poorly in an environment like SELF where method inlining is commonplace, since a formal variable name
of an inlined method will be simultaneously live with the corresponding actual parameter, and consequently the two
variables will be allocated separate locations, even though both variables will always contain the same value. With
many layers of inlined methods this duplication of what conceptually should require only a single location can
introduce a huge overhead of register copying as layers of inlined methods are entered and exited.

A better system could perform copy propagation prior to register allocation, replacing uses of each of the formal
variables in inlined routines with uses of the corresponding actuals. Unfortunately, straightforward application of copy
propagation could make supporting complete source-level debugging more difficult, since a given variable name might
be replaced by several different variable names at different points during its lifetime.

The SELF compiler incorporates an alternative strategy, introducing a new abstraction between a name and its assigned
location called avariable. Names that are alwaysaliases of one another (such as actuals and formals) are mapped to
the same variable object, and each variable object either is assigned a single run-time location (i.e., a register or a stack
location) or is marked as a compile-time constant (and so does not need a run-time location). By assigning locations
to variables rather than names, the SELF compiler eliminates the impact of artificial name distinctions caused by
inlining and reduces the SELF register allocation problem to one similar to that faced by traditional optimizing
compilers with built-in control structures and limited inlining.

An earlier version of the SELF compiler included a much more ambitious register allocator. Instead of allocating
locations to names or even to variables, the earlier compiler allocated locations to values. This makes perfect sense,
since values are precisely those run-time “bit patterns” that are manipulated by the program; names are merely
convenient handles by which programmers and the compiler refer to values. The earlier compiler went to the extreme
of allowing each use of a value and each straight-line inter-use segment of a value’s lifetime to be independently
allocated, either in a location or marked as a compile-time constant with no run-time existence. This design provided
the allocator with a lot of freedom to implement various parts of a value’s lifetime in different ways. Unfortunately,
this earlier register allocation design had three main drawbacks:

• The earlier allocator was very slow. This was primarily caused by the extremely fine granularity of allocation (a
single use or lifetime segment). The current implementation, like most other register allocators, allocates whole
lifetimes in a single step and so runs much faster.

• The earlier allocator had to work hard to make sure that long sequences of lifetime segments and uses of a single
value were all allocated to the same location, since otherwise register moves might be inserted in the middle of a
value’s lifetime unnecessarily. Additionally, a name that is bound to several variables over its lifetime, such as a
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counter that gets incremented each time through a loop, should get all its values allocated to the same location so
that unnecessary register moves are not inserted at assignments to the name. Naturally the allocator was imperfect,
sometimes introducing register moves in awkward places in the generated code, and consequently the earlier SELF
compiler did not achieve the same level of code quality as that in a traditional register allocator (traditional register
allocators have a much easier job since usually they support neither complete source-level debugging nor massive
inlining of user-defined control structures). The current SELF compiler’s register allocator overcompensates by
requiring that a name is bound to a single variable for its entire lifetime, and a variable be allocated to a single
location for all its lifetime.

• The earlier register allocator never supported the source-level debugger. The intention was for the compiler to
generate tables describing the mappings from names to values and values to registers as part of the information
generated for use by the debugger. (The current version of this debugging information will be described in detail
in section 13.1.) These mappings would be indexed with the hardware program counter, since the mappings
depended on where in the compiled code the program was stopped. Unfortunately, the design of a space- and time-
efficient representation of these mappings proved difficult and was never completed. The current SELF compiler
avoids the complexity of time-varying allocations by restricting the mappings to be position-independent.

Compared to the earlier more ambitious register allocation strategy, the current strategy is simple, fast, and reasonably
effective.

12.1.1 Assigning Variables to Names

The compiler constructs the name/variable mapping as part of type analysis. In the compiler’s internal representation,
each name object refers to its corresponding variable object, and each variable keeps track of which names refer to
itself, called the variable’salias set. When a name is first assigned an initial value, the name is simply added to the
alias set of the variable associated with the right-hand-side of the assignment. If the name is subsequently assigned a
new value, it can no longer be considered an alias of the initializing expression, and consequently the name is removed
from its old alias set and allocated its own fresh variable object. Once type analysis completes, each name will be
associated with a single variable that represents the name’s alias set: those names that always contain the same value
and hence can be allocated the same location.

Also during type analysis, the compiler records extra information with names for each occurrence of the name as an
operand of a run-time expression. This per-use information records the preferred location (such as the particular
register or stack location required as part of parameter passing) or kind of location (such as any address register on the
68000 architecture) for that use, plus the weight of the control flow graph node containing the use (weights are
described in section 10.2.3.2). This extra information helps the register allocator to avoid unnecessary register
movement and to concentrate its efforts on the most frequently executed parts of the control flow graph.

12.1.2 Live Variable Analysis

After eliminating redundant constants (described later in section 12.2) and unneeded computations (described in
section 12.3), the compiler begins the actual register allocation phase. As with most global register allocators, the SELF
compiler computes theregister interference graph to determine when the lifetimes of two names overlap. The nodes
in the interference graph are variable objects rather than name objects.

To compute the register interference graph, the compiler makes a backwards pass over the control flow graph. As the
compiler passes over the graph, it maintains a set oflive variables, computed as the set of variables that have been used
downstream in the control flow graph but have not yet had their initial definitions. When the compiler reaches a
variable’s initial definition, the compiler removes the variable from the live variable set. When the compiler reaches a
use of a variable not already in the live variable set, i.e., the last use of some variable, the compiler adds the newly-live
variable to the live variable set and adds interference links between the newly-live variable and the other variables
already in the live variable set. By scanning backwards through the control flow graph, the compiler can detect the end
of a variable’s lifetime when it encounters its last use (which will be the first occurrence of the variable in the
backwards pass). The beginning of a variable’s lifetime can be detected without a corresponding forward scan since
the initial assignment to any name is known statically and is represented by a different kind of control flow graph node
when the control flow graph is constructed.

Merges, branches, and loops complicate this backwards traversal. When the compiler reaches a merge node in the
backwards traversal, it places all the merge’s predecessors but the first on a special stack of<control flow graph node,
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live variable set> pairs representing work pending, and then the compiler processes the merge’s first predecessor. When
the compiler reaches a particular branch node for the first time during the live variable analysis, the compiler must stop
processing this path and wait for the other branch successor to be analyzed before the compiler can process the branch’s
predecessors. The compiler records the current live variable set with the branch node, pops a<node, live variable set>
pair off the pending nodes stack, and resumes processing this other node with the corresponding live variable set. Once
the branch node is reached for the second time from the other successor branch, the branch’s predecessor can be
processed; the live variable set for the branch’s predecessor is the union of the current live variable set and the live
variable set recorded as part of the earlier visit to the branch node. In the absence of loops, this search pattern
guarantees that a node is processed after all of its successors have been processed (i.e., traverses the graph in reverse
topological order), ensuring correctness of the computed live variable sets.

Unfortunately, in the presence of loops, not all nodes can be processed before their successors, and some sort of
iterative algorithm is needed to compute the fixed point of the live variable sets. Whenever the compiler runs out of
pending<node, live variable set> pairs to process, but there remains at least one branch node whose predecessor is not
processed yet (e.g., because its other successor eventually leads to a_Restart backward branch to an earlier loop
head), the compiler simply forces the branch node to process its predecessor early. The compiler initially assumes that
the live variables from the unprocessed successor are a subset of the live variables from the processed successor. Once
the other branch node’s successor is finally processed, the compiler can verify whether this assumption was correct. If
it was, then the compiler is done with this branch node, and can find other nodes to process. If, however, the second
successor had some live variables that are not in the first successor’s live variable set, then the earlier analysis of the
branch node’s predecessor was inadequate, and the live variable analysis must iterate by reprocessing the branch
node’s predecessor with a larger live variable set.

Instead of completely repeating the analysis as would be the case with a normal iterative data flow algorithm, the SELF
compiler uses a special mode of live variable analysis to update the earlier results incrementally. In this mode, the
compiler propagates thedifference between the previous live variable set and the new live variable set. This
incremental live variable set is initialized as the set difference between the live variable sets of the second predecessor
and the first predecessor. Incremental analysis differs from normal non-incremental analysis in that no variable ever
needs to be added to the incremental live variable set, since the variable would have been present in the previous
normal live variable set and so is not present in the difference between the previous and new live variable sets.
Variables still are removed from the incremental live variable set as their initial definitions are reached, since they no
longer appear in the new live variable set. Once the incremental live variable set becomes empty, the previous and new
live variable sets are the same, and incremental analysis of the path can stop. Incremental re-analysis is faster than non-
incremental re-analysis since the incremental live variable sets are smaller and it is faster to check whether the
incremental live variable set is empty than to check whether the previous and current live variable sets are the same.

The compiler represents both live variable sets and the per-variable sets of interfering variables with a dual bit-vector/
linked-list data structure. This representation of sets supports both constant-time set member testing via bit vectors
(each variable is allocated a unique integer index used as its position in the bit vectors) and linear-time (in the size of
the set) iteration through the elements of the set via linked lists. Execution profiling of the SELF compiler shows that
neither the extra space cost for two representations of the same set nor the extra compilation time cost to copy two
representations of the same set at merge nodes is significant. Therefore, this dual representation supports set operations
better than either traditional representation.

12.1.3 Register Selection

After the register interference graph is built, the compiler visits each variable and allocates it a location. The compiler
uses the weights of the uses of the names associated with the variables to determine the order in which to allocate
variables to registers, with the highest weight variables allocated first. If the variable has no run-time uses and either
the variable is a compile-time constant or the variable is not a source-level variable and so not visible to the outside
world, then it is not allocated a run-time location. Otherwise, the preferences specified with the uses of the names
associated with the variable are used to pick a register or stack location that is different from any already chosen for
an interfering variable.

This allocation strategy is simple and fast. However, it is limited by only allocating a single location or compile-time
constant to each variable. Since each name is associated with a single variable, completely disjoint portions of a name’s
lifetime, sometimes created by splitting, cannot be allocated to different registers or more importantly cannot be
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associated with different compile-time constants. This is especially common for names bound to either thetrue
constant or thefalse constant, such as the results of comparison operations. If the contents of this name might be
visible from the debugger, then with the current register allocation limitation the name must be allocated a run-time
location and this location must be initialized at run-time with eithertrue or false. This is true even though the
program itself will have no need for the run-time value, since after splitting the value will be encoded in the position
in the program (just as traditional compilers encode the result of boolean tests withinif statements by positions in the
compiled code).

Fortunately, in most common circumstances this particular problem can be side-stepped by creating new names for
formals of inlined methods (rather than reusing the names of the actuals as would be more natural and concise) and
specially handling the debugger’s view of expressions used as arguments to inlined methods. For example, if the
ifTrue: message is sent to the result of a comparison, then typically twoifTrue: methods will get inlined, one
for receivers of typetrue and another for receivers of typefalse. If name of a formal were the same as the name of the
corresponding actual, then in this case the single name which is bound to the result of the comparison would be reused
as the names of the receiver formals in both inlined versions ofifTrue:. If this formal is visible to the debugger,
then this approach would cause the register allocator to allocate a run-time location to hold the value of the result of
the comparison. Instead, the current compiler creates new names for formals, and assigns the actuals to the formals.
Then the receivers of the twoifTrue: methods have their own names, which can correctly be allocated to compile-
time constants. The original comparison result name is no longer used by the debugger, and so can be left unallocated.
Thus for this common case the compiler will not introduce extra run-time overhead.

However, in general, the limitation of a single compile-time constant or location for each name is still a problem. The
earlier register allocator was able to solve this problem by allowing the allocation to be different for different parts of
the control flow graph, but proved too inefficient for practical use. Register allocators for other compilers frequently
allocate disjoint subregions of a variable’s lifetime to different registers, and sometimes can even split a variable’s
lifetime into separately-allocatable regions [CH84, CH90], but these systems do not simultaneously support complete
source-level debugging. We continue to search for some “happy medium” register allocator that combines some form
of flexible position-dependent allocation with high allocation speed and compact debugging information.

12.1.4 Inserting Register Moves

After allocation, a pass through the control flow graph inserts register move control flow graph nodes where needed.
Places where the compiler inserts register moves include before assignments nodes whose left- and right-hand-sides
are allocated to different registers and before message send nodes to move arguments into the locations required by
the calling convention.

12.1.5 Future Work

The compiler’s computation of variables as the set of aliased names is not always as large as possible. For example,
consider the following simple sequence appearing in most looping control structures:

i: i + 1.

After executing the+ message but before executing thei: message, both the original value ofi and the result of+
are simultaneously live and holding different values. Consequently, the compiler assigns the two expressions different
variables. However, if the compiler knows thati is an integer and inlines the+ and then theintAdd primitive call
down to a simpleadd instruction (ignoring the overflow check for the moment):

i ← add i, 1

the original value ofi is never used after theadd instruction. Thus the actual run-time lifetimes ofi and the result of
the+ message donot overlap, and they could (and usually should) be allocated to the same register.

We say that two different variables areadjacent if their lifetimes do not overlap and one variable is assigned to the
other. Adjacent variables usually should be allocated to the same location to minimize register moves when one
variable is assigned to the other. One way of achieving this would be to combine the two variables into a single larger
variable; this transformation is calledsubsumption. Unfortunately, this combining cannot be performed as part of
forwards type analysis, since when the second variable’s lifetime begins (such as after the+ message above) the
compiler does not yet know that there will be no additional uses of the first variable. However, it may be possible to
augment the live variable analysis pass to detect adjacent variables, mark them as such, and extend the register



145

allocator to allocate adjacent variables to the same location. An alternative approach would compute variables in a
separate backwards pass after type analysis, thereby providing last-use information to the analysis and implicitly
coalescing together what would have been different but adjacent variables.

12.2 Common Subexpression Elimination of Constants

After type analysis, the compiler performs a pass over the control flow graph to eliminate redundant loads of constants.
This pass creates extra names to represent available constants and replaces subsequent redundant loads of constants
with simple assignments to these new names.

Unfortunately, this technique does not interact well with the current register allocation strategy. New variable objects
are created during this phase for the newly created names of constants. Since distinct variables are allocated
independently and hence frequently to different registers (as described in section 12.1.3), extra register moves may be
inserted at both the point of the initial constant load instruction (if the register for the new variable is different from
the register for the result of the load instruction) and at each eliminated use of the constant (if the new variable is
allocated to a register different from the original variable for the use). These extra register moves diminish the benefits
of common subexpression elimination of constants. Some of these problems could be avoided by performing common
subexpression elimination of constants in the same pass as type analysis and name/variable mapping construction, thus
eliminating the extra register move when using a saved constant; unfortunately, subtle interactions with other parts of
the compiler complicate this approach. Also, the techniques for allocating adjacent variables to the same location as
described in section 12.1.5 might help.

However, even ignoring these problems, common subexpression elimination of constants (and in fact common
subexpression elimination of any relatively cheap computation such as an arithmetic operation) can stillslow programs
down, if the variable for the constant is allocated to a stack location rather than a register. Storing and subsequently
fetching a constant from a stack location is significantly costlier than redundantly loading a 32-bit constant value into
a register. Common subexpression elimination and register allocation should to work together to avoid these sorts of
inadvertent pessimizations. Unfortunately this kind of inter-pass cooperation is notoriously difficult to manage.

In practice, common subexpression elimination of constants has a mixed effect. According to the results shown in
section B.3.10 of Appendix B, some benchmarks speed up with this optimization, while others slow down. Clearly this
technique should be redesigned and reimplemented to improve its effectiveness.

12.3 Eliminating Unneeded Computations

In a third phase the SELF compiler scans all names to find those whose value is computed but never used. If such a
computation exists that has no side-effects, such as a simple assignment, a load-constant instruction, a memory fetch
instruction, an arithmetic instruction, an object clone primitive call, or a call to any other side-effect-free primitive,
then the compiler simply splices the unnecessary operation out of the control flow graph.

This optimization improves the performance of SELF programs by a few percent on average, according to the
measurements shown in section 14.3.

12.4 Filling Delay Slots

After register allocation, the SPARC version of the SELF compiler attempts to fill branch and call delay slots. In the
SPARC architecture, branch instructions have a one-instruction delay slot that either is always executed or is executed
only if the branch is taken (anannulled branch). The SELF compiler attempts to fill these delay slots with useful
instructions, preferably from before the branch instruction, otherwise from the most likely successor, and finally from
the remaining branch successor. Call and jump/return instructions similarly have one-instruction delay slots that the
SELF compiler attempts to fill from before the instruction.

Many nodes in the control flow graph do not generate machine instructions, such as assignment nodes and other
bookkeeping nodes, and therefore this searching for an instruction to move to a delay slot may scan several control
flow graph nodes before either locating a node that generates a single instruction or finding a node that cannot fit into
a delay slot (such as a message send node). If a node is found to put in the delay slot, then all the nodes between the
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branch or call and the target node are spliced out of the control flow graph (adjusting the predecessor or successor links
of the branch or call appropriately) and the removed chain of nodes is stored in the branch or call node for later code
generation.

If when searching for an instruction after a branch node the compiler encounters a merge node, the compiler attempts
to locate a candidate instruction from after the merge node. If it finds one, then the compiler duplicates the control flow
graph between the merge and the located node, delaying the merge until after the located node. Then the normal
mechanism of splicing out the nodes between the branch and the target node applies; the branch target is automatically
adjusted to jump to the instruction after the original merge point as part of the splicing operation. This “splitting” of
merges when filling delay slots is important to fill as many delay slots as possible. No additional code space is needed
for this kind of splitting, since at most one real instruction is copied and inserted into a delay slot that would be wasted
otherwise.

Filling delay slots is important for good performance. According to the results shown in section 14.3, delay slot filling
improves performance by more than 10% for many benchmarks, and reduces compiled code space consumption by
more than 10% on average.

Other code generators for RISC machines perform additional kinds of scheduling of instructions, such as reordering
memory loads to minimize stalls caused by waiting for the result of a load. The current SELF compiler currently does
no such instruction scheduling.

12.5 Code Generation

The final pass of the compiler traverses the control flow graph and generates native machine code. Instruction selection
is nearly trivial in the SELF compiler, since the compiler is designed primarily for modern RISC machines with simple,
regular instruction sets. No peephole-style optimizations are performed, since (in most cases) none are needed. The
compiler also generates debugging information (described in section 13.1) in this pass. Once generation is complete,
the compiler passes the buffers used to hold the instructions and debugging information to the compiled code cache
manager, which creates a new compiled method and adds it to the cache (possibly throwing out other old methods or
compacting the cache to make room for the new method). The compiler then returns the starting address of the
compiled code to the run-time message lookup routine which invoked the compiler. This lookup routine then
completes the message send by jumping into the newly generated machine code.

12.6 Portability Issues

The SELF compiler has not been designed specifically to be retargetable to a new machine architecture without
programming changes, but it has been designed and implemented to make porting the compiler to a related architecture
relatively straightforward. For example, the compiler describes the set of registers on the target machine and other
register- and stack-related calling conventions through a table of compile-time constants that can be easily changed for
an architecture with a similar system of registers. Other parts of the compiler use a minimal number of#ifdef’s to
isolate machine dependencies. Most control flow graph nodes are intended to map to a single target machine instruction
(to allow as much low-level optimization such as delay slot filling as possible), and so there is some dependence on
the kind of instructions provided by the target architecture in the kinds of control flow graph nodes. This approach
works best for RISC-style architectures (the SELF compiler’s primary intended target) and less well for CISC or other
machine styles; some sort of peephole optimizer or generalized instruction selector would be needed to support these
other kinds of architectures effectively. The largest machine dependency in the compiler is on instruction formats; this
dependency is isolated in a per-machine subsystem of the compiler that is responsible for producing machine-specific
instruction formats for higher-level control flow graph nodes such asadd andbranch. Some control flow graph
nodes are only used for some architectures (such as thesethi control flow graph node on the SPARC), and some
phases such as delay slot filling are executed only on architectures that need them. The difference between machines
with three-operand instructions and machines with only two-operand instructions is handled in the register allocator
by constraining the destination register to be the same as one of the sources for two-operand machines.

We expect that the SELF compiler could be ported to a new RISC architecture and generate reasonably good code in
a week; other parts of the SELF implementation such as the memory system or some of the low-level assembly code
support might take longer to port. CISC machines could also be supported in the same amount of time, but without a
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peephole optimizer or instruction selector run-time performance may not be as good as other compilers for the same
machine. Just like other compilers, the SELF compiler could benefit from current work in table-driven compiler
compilers to improve portability.

12.7 Summary

After the type analysis/inlining/splitting phase, the compiler executes several additional phases on the way to
generating machine code:

• The compiler eliminates redundant loads of constants. This currently does not interact well with register allocation
and variable assignment, and so much of the benefit is wasted in unnecessary register traffic.

• The compiler eliminates unneeded computations such as arithmetic and memory loads.

• The compiler performs live variable analysis, allocates registers to variables, and inserts any needed register
moves. The compiler uses variables to represent sets of aliased names in response to the heavy use of inlining in
the SELF compiler. The register allocator should be extended to avoid inserting register moves for adjacent
variables and to support finer grained position-dependent allocation.

• The compiler fills delay slots of branches and calls. This could be extended to schedule load delays as well.

• The compiler generates native machine instructions and debugging information, and adds the new compiled
method to the compiled method cache.

Porting the SELF compiler to a new architecture would likely be neither overly difficult nor trivial.
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Chapter 13   Programming Environment Support

The SELF system is designed to be an interactive exploratory programming environment, and so the SELF
implementation must support both rapid turn-around for programming changes and complete source-level debugging.
These features are fairly easy to support in an interpretive environment but are much more difficult to achieve in a high-
performance optimizing compiler environment, particularly one based on aggressive inlining. Other researchers have
investigated the problem of enabling compilation and optimization to coexist gracefully with the programming
environment [Hen82, Zel84, CMR88, ZJ91]. This chapter describes the techniques used in the SELF implementation
to support the programming environment, focusing on the support provided by the compiler.

A compiled method contains more than just instructions. First, it includes a list of the offsets within the instructions of
embedded object references, used by the garbage collector to modify the compiled code if a referenced object is
moved. Second, a compiled method includes descriptions of the inlined methods, which are used to find the values of
local slots of the method and to display source-level call stacks. Third, a compiled method contains a bidirectional
mapping between source-level byte codes and actual program counter values. These two kinds of debugger-related
information are described in section 13.1. Finally, a compiled method includes dependency links to support selective
invalidation of methods after programming changes; these are described in detail in section 13.2.
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13.1 Support for Source-Level Debugging

A good programming environment must include a source-level debugger. The SELF debugger presents the program
execution state in terms of the programmer’s execution model: the state of the source code interpreter, withno
optimizations. This requires that the debugger be able to examine the state of the compiled, optimized SELF program
and construct a view of that state (thevirtual state) in terms of the byte-coded execution model. Examining the
execution state is complicated by having activation records in thevirtual call stackactually be inlined within other
activation records in thephysical call stack, and by allocating the slots of virtual methods to registers and/or stack
locations in the compiled methods.

13.1.1 Compiler-Generated Debugging Information

To allow the debugger to reconstruct the virtual call stack from the physical call stack, the SELF compiler appends
debugging information to each compiled method.

• For each scope compiled (the initial method plus any methods or block methods inlined within it), the compiler
outputs information describing that scope’s place in the virtual call tree within the compiled method’s single
physical stack frame.

• For each argument and local slot in the scope, the compiler outputs either the value of the slot (if it is a constant
known at compile-time, as many slots are) or the register or stack location allocated to hold the value of the slot
at run-time.

• For each subexpression within the compiled method, the compiler describes either the compile-time constant
value of the subexpression or the register or stack location allocated for the subexpression. This information is
used to reconstruct the stack of evaluated expressions that are waiting to be consumed by later message sends.

For example, consider a simple method to compute the minimum of two values:

min: arg = (
< arg ifTrue: [self] False: [arg] ).

If min: is sent to an integer, the compiler will generate a compiled version of themin: source method customized
for integers. (Customization was the subject of Chapter 8.) The< method for integers will be looked up at compile-
time, locating the following method:

< x = ( _IntLT: x IfFail: [...] ).
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This method and the contained call to theintLT primitive will be inlined. The result of the< message will be either
the true object or thefalse object (in the common case), leading the compiler to split the succeeding
ifTrue:False: message along these two possible outcomes. (Splitting was the subject of Chapter 10.). The
compiler looks up the definition ofifTrue:False: for true:

ifTrue: trueBlk False: falseBlk = ( trueBlk value ).

and forfalse:

ifTrue: trueBlk False: falseBlk = ( falseBlk value ).

These two methods will be inlined, as will the nestedvalue messages within each method. When generating code
for this compiler method, the compiler outputs debugging information to represent this tree of inlined methods:

Each scope description refers to its calling scope description (black arrows in the diagram); a block scope also
references its lexically-enclosing scope description (gray arrows in the diagram). For each slot within a scope, the
debugging information identifies either the slot’s compile-time value or its run-time location. For themin: example,
only the initial arguments have run-time locations (registersr1 andr2 in this case); all other slot contents are known
statically at compile-time. The expression stack debugging information is omitted from this illustration.

This additional debugging information is fairly space-consuming. As described in section B.6 of Appendix B, scope
descriptions take up between 1.5 and 5 times as much space as do the compiled machine instructions, depending on
the degree of inlining performed when compiling the routine. Fortunately, this information can be paged out when the
associated routine is not being debugged. Also, it might be possible to avoid storing the debugging information, instead
regenerating the debugging information upon demand by re-executing the compiler.

13.1.2 Virtual/Physical Program Counter Translation

The SELF compiler also outputs debugging information to support translation between the source-levelvirtual
program counter within a virtual stack frame (the pair of a scope description and a byte code index within the scope
description) and the machine-levelphysical program counter within a physical stack frame. This information is used
to translate a hardware physical return address of a stack frame into a byte code index within a virtual stack frame of
the physical frame, such as when displaying the current virtual execution stack. The mapping also is used to locate the
physical program counter corresponding to a particular virtual program counter, such as when setting breakpoints at
particular source positions.

The p.c./byte code mapping is not one-to-one but instead is many-to-many. Several virtual program counter addresses
can map to the same physical program counter address: a sequence of source-level messages can get inlined and
optimized away completely (such as most of the messages sent during the execution of a user-defined control
structure), generating no machine code for any of the eliminated messages, and so each of the messages will end up
mapping to the same physical machine address. Additionally, several physical program counter addresses may map to
the same virtual program counter address: a single source-level message can get split and compiled in more than one
place, thus leading several physical program counter addresses to map to the same source-level message.
Consequently, the compiler treats this mapping as a simple relation and generates a long list of three-word tuples, each

<
self : r1
x: r2

min:
self : r1
arg: r2

value
block : [arg]

ifTrue:

self :        true
trueBlk:  [self]
falseBlk: [arg]

False:
ifTrue:

self :        false
trueBlk:  [self]
falseBlk: [arg]

False:

value
block : [self]
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tuple consisting of a physical program counter address (the physical view) and the pair of a pointer to a virtual scope
description and a byte code index within the scope (the virtual source-level view).

As reported in section B.6 of Appendix B, the p.c./byte code mapping is fairly concise, only requiring space that is
about 25% of that taken up by compiled instructions. One reason for its comparatively small size is that the compiler
only generates tuples that correspond to call sites in the compiled code, since those are the only places that the system
might suspend the method and examine its p.c./byte code mapping.

13.1.3 Current Debugging Primitives

The current SELF implementation includes partial support for interactive debugging. The system supports displaying
the virtual execution call stack, complete with the current values of all local variables of all virtual activation records;
all optimizations including inlining are completely invisible. The system also supports manipulating individual
activation records directly as SELF objects, querying the contents of their local slots, examining their expression stack,
and navigating around the dynamic and static call chains. The current implementation does not yet support modifying
the contents of local variables in activation records, but we do not think that adding this facility would be too difficult.
The system supports breakpoints and single-stepping through process control primitives. The programmer can set a
breakpoint by editing in a call to user-defined SELF code which eventually invokes the process suspend primitive. A
suspended process can be single-stepped by invoking other process control primitives.*

13.1.4 Interactions between Debugging and Optimization

Most optimizing compilers do not support complete source-level debugging because the optimizations they perform
prevent the virtual source-level state from being completely reconstructed. For example, tail call optimizations prevent
the programmer from examining the elided stack frames, and dead variable elimination and dead assignment
elimination prevent the programmer from examining the contents of a variable that is in scope but no longer needed
by the compiled code. The SELF compiler performs no optimization that would prevent the debugger from completely
reconstructing the virtual source-level execution state as if no optimizations had been performed. Even so, the SELF
compiler still can perform many effective optimizations including inlining, splitting, and common subexpression
elimination, since these optimizations can be “undone” at debug-time given the appropriate debugging information.

The SELF compiler’s job of balancing debugging support against various optimizations is eased by only requiring
debugger support at those places in which a debugging primitive might be invoked, such as message sends and
_Restart loop tails.**  The compiler is not required to support debugging at arbitrary instruction boundaries (as
would be required if an interrupt could occur at any point in the program) or even at source-level byte code boundaries
(as would be required if the user could single-step through optimized code; single stepping is implemented by
recompiling methods with no optimization and then stopping at every call site). Since the debugger can be invoked
only at well-defined locations in the compiled code, the compiler can perform optimizations between these potential
interruption points that would be difficult or impossible to perform if instruction-level or byte-code-level debugging
information were required. For example, the compiler can reuse the register of a dead variable as long as there are no
subsequent call sites or interruption points in which the variable is still in scope.

Unfortunately, the current representation of debugging information places restrictions on the compiler that can hurt
performance. As mentioned in section 12.1, the current SELF register allocator either can allocate a particular name to
a single location for its entire lifetime or can mark the name as bound to a particular compile-time constant for its entire
lifetime. The restriction that the allocation be constant over the name’s entire lifetime primarily is caused by the limited
abilities of the debugging information to describe the allocation; there is no easy way to have different allocations for
different subranges of the name’s lifetime. The system might be able to get added flexibility within the constraints of
the current representation by making copies of virtual scope descriptions whenever a name had different allocations
for different parts of its lifetime, and using the physical/virtual program counter mapping to select the appropriate
virtual scope description for the physical program counter. This approach would support some form of position-
varying allocation, but could lead to a lot of duplicated debugging information. A better approach would be to redesign
the debugging information representation from scratch to efficiently support names with position-varying allocations.

* Urs Hölzle implemented most of the process control and activation record manipulating primitives, and Bay-Wei Chang
integrated these primitives into the graphical user interface.

** The debugger might run at_Restart points since these points check for interrupts (as described in section 6.3.1), and the user-
defined interrupt handler might call the debugger.
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13.2 Support for Programming Changes

As described in section 7.1, the SELF compiler assumes that certain hard-to-change parts of objects will remain
constant, and the compiler performs optimizations based on these assumptions. For example, the compiler assumes
that the set of slots of a particular object, such as an integer or thetrue object, will remain the same, and this allows
the compiler to perform message lookup at compile-time. Similarly, the compiler assumes that the contents of a non-
assignable data slot will never change and that the offset of an assignable data slot will never change. These
assumptions enable the compiler to inline the bodies of methods and replace data slot access methods with load and
store instructions, thereby generating much faster code.

These assumptions will always be correct if the only object mutations available to programs and programmers are
normal assignments to assignable data slots (the compiler explicitly avoids depending on the contents of an assignable
slot). However, additional operations are available in a programming environment to mutate objects in other ways,
such as adding and removing slots or changing the contents of non-assignable data slots. These modifications may
invalidate the assumptions made by the compiler when compiling and optimizing methods. If executed, such out-of-
date compiled code can lead to incorrect behavior or even system crashes.

13.2.1 Ways of Supporting Programming Changes

Traditional batch compiling systems support programming changes by requiring the programmer to recompile
manually those files that are out-of-date, relink the program, and restart the application. At best, some of this process
can be automated by using utilities to determine which files need to be recompiled after a set of programming changes.
Turn-around time for a single programming change can be quite long, at least tens of seconds and more typically
minutes or tens of minutes. Programmer productivity suffers greatly with turn-around times of this length for simple
programming changes.

Interactive systems are designed to support rapid programming turn-around times, on the order of a few seconds or
less. They usually achieve this level of interactive performance by limiting the dependencies among components of a
system, so individual components can be replaced as simply and easily as possible without requiring complex time-
consuming system relinking or recompilation of other components not directly altered by a programming change.
However, execution performance tends to be much lower than in the traditional optimizing environment, since inter-
component information is not used for optimizations. The SELF compiler clearly violates the basic assumptions of this
style of system, since the SELF compiler delights in performing optimizations such as inlining that create many inter-
component dependencies.

SELF’s run-time compilation architecture offers one possible solution to this dilemma. After a programming change
that might have invalidated the assumptions used to compile some method, the system could simplyflush all the
compiled code from the compiled code cache. New code will be compiled as needed from the (possibly changed)
source methods, using the new correct assumptions about the relatively unchanging parts of the object structure. Since
compiled code cache flushing is fast, this would seem to solve the programming turn-around time problem.

Unfortunately, this approach simply shifts the cost of the programming change from the flushing operation to
immediately after the flushing. Since after the flush no methods are compiled, nearly every message send will require
new compiled code to be generated, leading to a long sequence of compiler pauses immediately after the flush. While
these compiler pauses will be spread out somewhat over the next chunk of program execution, and SELF’s compiler
architecture will allow code to be generated and “relinked” much faster than a traditional file-based environment, turn-
around time usually will still be much longer than the second or two supported by the unoptimizing interactive system.

To avoid these lengthy recompilation pauses, the SELF system maintains enough inter-component dependency
information toselectively invalidate only those compiled methods that are affected by a programming change. If this
set is small, then the number of pauses to recompile invalidated methods can be kept small and the overall perceived
turn-around time can be kept short. In these situations, selective invalidation enables our SELF system to support both
fast turn-around on programming changes and fast run-time execution between changes.

Selective invalidation is not a cure-all, however. If some extremely common method that is inlined in many places is
changed, such as the definition of+ for integers, then the selective invalidation approach reduces to the expensive total
flush approach, producing the same lengthy compilation pauses as the whole system gets recompiled with the new
definition. Fortunately, this has not been a problem in practice, since the common methods used throughout the system
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are changed very rarely; in other systems such sweeping changes could not be made at all. The current trade-off
between run-time performance and programming turn-around time favors run-time performance over turn-around time
for these kinds of short, commonly-used “system” methods.

13.2.2 Dependency Links

To support selective invalidation, the compiler maintains two-waychange dependency links between each compiled
method in the cache and the information that the compiler assumed would remain constant. This information used to
compile code—the set of slots in objects, the offsets of assignable data slots, and the contents of non-assignable slots—
is precisely the information stored in maps. (Maps were described in section 6.1.1 and in Appendix A.) Therefore, the
system only needs to maintain dependency links between maps and compiled methods. Since many compiled methods
may depend on a particular map, and each compiled method may depend on many maps, these dependency links must
support a many-to-many mapping between maps and compiled methods.

Dependency links are created as a result of message lookup to record those aspects of objects traversed during lookup
that if they were modified potentially could change the result of the lookup and consequently the correctness of the
compiled code. Clearly the compiled code depends on the result of the message lookup, and so the system leaves
behind a dependency link between the matching slot found at the end of the lookup and the method being compiled.
If the matching slot is later changed (either by changing the contents of a constant slot such as a method or parent slot
or by changing the offset in the object of the contents of an assignable data slot) or removed altogether, all linked
compiled methods are flushed from the compiled code cache.

The lookup system scans other parts of objects which affect the outcome of the lookup and so need dependencies. The
message lookup system fetches the contents of a parent slot when searching an object’s parents. If the parent slot is
later changed or removed, the outcome of the message send could change. To record this fact, the system creates a
dependency link between the parent slot and the compiled code for the method eventually found as the result of the
lookup. Then if the parent slot is modified or removed, all linked compiled methods will be flushed appropriately.

A more subtle kind of link handles the problem that a slot may be added to an object that affects the outcome of a
message send. The message lookup system frequently searches an object for a matching slot and is unsuccessful; the
object’s parents are searched in turn for a matching slot. If either a matching slot or a parent slot that inherits a matching
slot is later added to the object, then the results of the earlier message would likely be changed, possibly invalidating
some compiled code. To handle this problem, the compiler creates a specialadd dependency link between compiled
code and the maps of objects unsuccessfully searched for a particular slot; this dependency is not associated with any
slot in the map but instead with the map as a whole. If a slot is ever added to the map, then all compiled methods linked
by the add dependency are flushed, since the added slot might affect their lookup results.

Unlike slot-specific dependency links, add dependency links are imprecise. Since they do not record exactly which
message names were unsuccessfully scanned previously, methods may be flushed that do not need to be flushed. This
could significantly reduce the selectiveness of the flushing, possibly leading to long compile pauses after a
programming change in which slots were added. On the other hand, recording exactly which message names have been
searched unsuccessfully for each map would consume a lot of space, and many maps would have similar long lists of
unsuccessful matches. We are currently exploring alternative mechanisms that would support selective invalidation
even for slot additions.
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The following diagram illustrates the dependency links that are created when compiling themin: method described
earlier in this chapter. The gray line represents eight separate dependency links, each link connecting a slot in a map
(or the map as a whole in the case of the add dependency links) to the compiled code formin:.

13.2.3 Invalidation

After a programming change, the compiler traverses dependency links to invalidate compiled methods linked to the
updated information. Invalidation is normally quite straightforward, simply requiring the invalid compiled method to
be thrown out of the compiled code cache. However, if a compiled method is currently running (i.e., if there is a stack
frame suspended within the compiled method), then this invalidation becomes complicated. These compiled methods
cannot just be flushed, because they are still executing and will be returned to. Nor can they remain untouched, since
they have been optimized based on information that is no longer correct. The approach taken in the SELF system is to
recompile the out-of-date compiled method and rebuild its stack frame based on the data stored in the old stack frame.*

The SELF system performs this conversionlazily to make this recompilation easier and less intrusive [HCU92]. When
a compiled method suspended on the stack is first invalidated as part of the execution of some programming primitive,
the system marks the method as invalid and removes it from the lookup cache (so that future message sends will not
be bound to the invalid compiled method), but the system does not yet flush the compiled method from the compiled
code cache. Instead the system adjusts the return address of the stack frame that would have returned to the invalid

* The data in the stack frame is still valid. Only the compiled code of the invalidated method is suspect.
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method’s stack frame to instead “return” to a special support routine in the run-time system. The system then returns
control to the programming primitive which will eventually return to the SELF process that invoked it.

Eventually the stack frame below the one for the invalid compiled method will “return,” calling the special run-time
support routine. This routine recompiles the invalid compiled method and builds new stack frames that represent the
same abstract state as did the invalidated compiled method’s stack frame, which because of the lazy recompilation is
now on the bottom of the stack of SELF activation records. To make it easy to fill in the state for the new stack frame
and to keep recompilation pauses short, the new method is compiled without optimization. Since the invalidated
compiled method was probably compiled with optimization, including inlining, the system may need to compile
several unoptimized methods to represent the same abstract state as the invalidated compiled method, one unoptimized
method and physical stack frame for each virtual stack frame inlined into the single physical stack frame of the
invalidated compiled method at the point of call.

To complete the conversion process, the recompiling routine returns into the appropriate point in the new compiled
method for the topmost stack frame. The invalidated compiled method can be flushed from the compiled code cache
if the old invalid stack frame is the last activation of this method.*

Lazy conversion spreads the load of recompilation out across a longer period of time, reducing the perceived pauses
after a programming change. If several programming changes occur before returning to an invalid method, then less
overall work may be performed since the method will not be recompiled after each programming change. Lazy

* Urs Hölzle implemented the mechanisms to lazily recompile invalid methods on the stack.
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conversion also simplifies and speeds the conversion process by limiting recompilation and stack frame creation to the
top of the stack. This eliminates the need to copy whole stacks and adjust interior addresses when recompiling and
rebuilding some stack frame buried in the middle of the stack.

13.3 Summary

The SELF compiler is designed to coexist with an interactive exploratory programming environment. This kind of
environment requires complete source-level debugging to be available at all times and “down time” caused by
programming changes to be limited to a few seconds at most. The SELF compiler supports complete source-level
debugging in the face of optimizations such as inlining and splitting by generating additional information that allows
the debugger to view a single physical stack frame as several source-level virtual stack frames. Fast turn-around time
for programming changes is supported by a selective invalidation mechanism based on dependency links that flushes
out-of-date compiled methods from the compiled code cache. This invalidation is performed lazily for compiled
methods currently executing on the stack.
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Chapter 14   Performance Evaluation

We illustrated the new techniques described in this dissertation on small examples in previous chapters, and in that
context they appeared to be quite effective. In this chapter we explore the effectiveness of our implementation of these
techniques on actual SELF programs by measuring the execution speed, compilation time, and compiled code space
consumption of a suite of SELF programs ranging in size from a few lines to a thousand lines. We will evaluate our
work from three perspectives:

• How effectively does the combination of these new techniques narrow the gap in performance between pure
object-oriented languages such as SELF and traditional languages such as optimized C or optimized Lisp?

• Which of the new techniques are most effective? Which are most costly?

• What are promising areas for future work?

Our answers to these questions are presented in sections 14.2, 14.3, and 14.4, respectively. The next section prefaces
these results with a description of our measurement methodology.

14.1 Methodology

14.1.1 The Benchmarks

We analyzed the performance of the SELF implementation using a selection of benchmark programs. These
benchmarks include several “micro-benchmarks” gathered from various sources, the Stanford integer benchmark suite
[Hen88], the Richards benchmark [Deu88], and several SELF programs originally written without benchmarking in
mind. Source code for all these benchmarks is available from the author upon request.

The eleven micro-benchmarks are very short and typically stress only a few aspects of the implementation, such as the
speed of integer calculations or the speed of procedure calls. The Stanford integer benchmark suite is composed of the
perm, towers, queens, intmm, quick, bubble, tree, andpuzzle benchmarks, originally collected by John
Hennessy and Peter Nye to help design and measure RISC microprocessors and compilers. The Stanford integer
benchmarks are larger than the micro-benchmarks, and all exercise integer calculations, generic arithmetic, and user-
defined control structures (particularlyfor-style loops); all buttree also stress array accessing. For SELF and
Smalltalk, all the Stanford integer benchmarks other thanpuzzle were written in two versions: one as similar to the
C version as possible, and one taking advantage of the message passing features of SELF and Smalltalk by associating
the core of the benchmark code with the data structures manipulated by the code. Both versions of each benchmark
perform the same algorithm, with no source-level optimizations made in either version, but the object-oriented version
sends more messages toself and fewer messages to other objects than the procedure-oriented version. Results for
the versions of the benchmarks in the more object-oriented style are identified by theoo- prefix in the benchmark
names. Section B.1 of Appendix B describes the individual micro-benchmarks and Stanford integer benchmarks in
more detail.

None of the micro-benchmarks or Stanford integer benchmarks is particularly object-oriented. This is to be expected,
since we translated them into SELF from traditional non-object-oriented languages such as C. This lack of object-
orientation implies that any conclusions that may be drawn from measurements of these benchmarks must be limited
to the effectiveness of the SELF implementation at running smaller, more traditional programs. Any conclusions about
the performance of SELF on more object-oriented programs based on the performance of these benchmarks must be
more tentative and speculative. However, most object-oriented programs contain more traditional portions that must
scan through an array or perform simple arithmetic calculations; these small non-object-oriented sections in fact may
comprise much of the running time of an application. Therefore, an improvement in performance for non-object-
oriented code is likely to improve overall system performance.

The richards benchmark is a 400-line operating system simulation benchmark originally written by Martin
Richards to test BCPL compilers. This benchmark maintains a queue of tasks and spends its time primarily removing
the first task from the queue, processing it, and usually appending it to the end of a different queue for further
processing; the benchmark begins by initializing the queue with a few tasks and ends when the main task queue is
empty. Therichards benchmark is different from the previous ones in that it is large enough not to overly stress
any particular operations and has no tight loops or recursions. Instead therichards benchmark manipulates data
structures and therefore is perhaps more representative of typical object-oriented programs than the previous
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benchmarks. Therichards benchmark is also unusual in including a message send that actually invokes different
methods for different calls: therunTask message which is sent to each task after it is removed from the head of the
queue and is defined differently for different kinds of tasks.

To measure the effectiveness of the new techniques on truly object-oriented programs, we also measured several SELF
programs originally written to be useful in their own right and not as benchmarks. ThepathCache andprimMaker
programs are in active use today.

• pathCache computes a mapping from objects to names inferred from the object structure, used as part of the
SELF user interface.pathCache is 140 lines long, excluding the code for other supporting data structures such
as dictionaries (SELF’s key-value mapping data structure).

• primMaker generates SELF and C++ wrapper functions for user-defined primitives from a textual description
of the primitives. The benchmark was run on a test file that exercises all the different possible descriptions and so
ends up being dominated by compile time.primMaker is 1000 lines long.

• parser parses an earlier version of SELF. The benchmark was run on four relatively short expressions.parser
is 400 lines long.

These benchmarks use features of SELF such as prototype-based design and dynamic inheritance that are not available
in any of the other languages, and so versions of these benchmarks exist only for SELF. These benchmarks cannot be
used to compare the performance of SELF to other languages and systems, but they can be used to measure the
effectiveness of the various techniques developed for SELF by comparing one configuration of the SELF system against
another.

The following table summarizes the benchmarks we measured:

Section B.2 of Appendix B describes our measurement procedures in detail. Appendix C contains the raw data for all
the measurements.

14.1.2 The Hardware

We did all our measurements on a Sun-4/260 workstation configured with 48MB of main memory. The Sun-4/260
workstation is based on the SPARC, a RISC-style microprocessor with hardware register windows and delayed
branches and calls [HP90]. The implementation of the SPARC on the Sun-4/260 has a 62ns cycle time, 8 register
windows, two-cycle loads (if the target register is not used in the following instruction, three cycles otherwise), and
three-cycle stores, assuming cache hits. The SPARC also provides limited hardware support for tagged arithmetic,
although none of the systems measured, including the SELF system, currently exploit this hardware.

14.1.3 Charting Technique

In all charts, bigger bars are better in the sense that they correspond to a more efficient implementation. Execution and
compilation performance is reported in terms of speed, with taller bars corresponding to faster systems. Compiled code
space costs are reported in terms of density (the inverse of space usage), with taller bars corresponding to more space-
efficient systems (systems requiring less space for compiled code). Compiled code space numbers include only space
for machine instructions and exclude space costs for debugging information and the like. Section B.6 of Appendix B
reports measurements of these additional space costs for the SELF system.

small eleven micro-benchmarks (1 to 10 lines long)

stanford seven Stanford integer benchmarks, written in a traditional procedure-oriented style
(20 to 60 lines long)

oo-stanford seven Stanford integer benchmarks, written in a more object-oriented style
(different fromstanford only for SELF and Smalltalk)

puzzle the largest Stanford integer benchmark, written in a traditional procedure-oriented style
(170 lines long)

richards a medium-sized operating system simulation benchmark (400 lines long)

pathCache a short SELF program in frequent use today (140 lines long)

primMaker a larger SELF program in occasional use today (1000 lines long)

parser a medium-sized SELF program originally written as a programming exercise (400 lines long)
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14.2 Performance versus Other Languages

To determine the overall effectiveness of the new techniques described in this dissertation, we compared the
performance of the SELF implementation to implementations of several other languages.

• We want to compare our SELF implementation to that of a traditional optimized language implementation. This
comparison will tell us how well our techniques do in narrowing the gap in performance that previously existed
between pure object-oriented languages and traditional optimized languages. Also, the performance of a
traditional optimized language places something of an upper bound on the performance we can reasonably expect
from our SELF implementation. We measured the optimizing C compiler provided standard with SunOS 4.0.3
UNIX , invoked with the-O2 flag. The C version of therichards benchmark really is written in C++ (version
1.2 of AT&T’scfront C++-to-C translator) so that therunTask message can be implemented by a C++ virtual
function call.

• We also want to compare our SELF implementation to the performance of the best existing implementation of a
pure object-oriented language, to compare the effectiveness of our techniques to previous techniques for
implementing pure object-oriented languages. We measured the performance of ParcPlace Smalltalk-80, version
V2.4 β2, the fastest commercial implementation of Smalltalk. ParcPlace’s Smalltalk-80 implementation includes
the Deutsch-Schiffman techniques for constructing a fast Smalltalk implementation, described in section 3.1.2.
Unfortunately, only execution speed results are available for Smalltalk; neither compilation speed nor compiled
code space usage could be measured.

• Finally, we also are interested in the relative performance of our SELF system and some sort of Lisp-based system.
Lisps provide many of the same features as does SELF, such as support for generic arithmetic, closures, and
dynamic type-checking. Unlike SELF, however, Lisps also provide direct procedure calls, direct variable accesses,
and built-in control structures. Comparing SELF to a Lisp system can help determine how well SELF handles
generic arithmetic compared to existing techniques in Lisp systems and how well SELF optimizes away the extra
overhead of message passing and completely user-defined control structures. We measured the ORBIT compiler
(version 3.1) for T, a dialect of Scheme, described in section 3.3.2. This system is widely regarded as a high-
quality Lisp implementation that supposedly competes well against traditional language implementations.

Many Lisps include special low-level primitive operations that avoid the overhead of the corresponding general,
safe primitive operations. For example, T includes thefx+ operation which assumes its arguments arefixnums
(Lisp jargon for fixed-precision integers that fit in a machine word, equivalent toSmallInteger objects in
Smalltalk andint in C).fx+ is more efficient than the generic+ operation sincefx+ assumes its arguments are
fixnums and can be compiled down to a single machineadd instruction, much like the+ operator in C. However,
fx+ doesnot verify the assumption that its arguments are in fact fixnums before it adds them, nor does it check
for overflows after the addition; consequently,fx+ is unsafe. This distinction between slow, safe operations and
fast, unsafe operations forces programmers to choose explicitly where to use normal generic arithmetic (and be
willing to pay the cost of the better semantics) and where to use the fasterfx+-style arithmetic (and be willing to
take responsibility for the unverified assumptions).

Lisps also typically include directives that allow the programmer to invoke additional optimizations such as
inlining. T includes adefine-integrable form that works just likedefine (i.e., binding a name to a value
or function) except that the compiler will inline the bound value or function whenever the name is evaluated. In
T, inlining is an optimization that must be invoked explicitly by programmers.

We expect that most T programmers normally would use+ anddefine. Sometimes, however, T programmers
may feel the need to use unsafe operations and explicit directives to get better performance. In fact, nearly all
benchmark performance results for Lisps are reported after such hand optimizations, with+ replaced withfx+
where possible and withdefine-integrable sprinkled in where desired. To capture these two styles of
usage, we wrotetwo T versions of each benchmark: one as we would expect a normal programmer to have written
the benchmark (and thus measuring the expected performance of T for the average programmer), and another
hand-optimized version of the benchmark usingfx+ anddefine-integrable more like what a benchmarker
would measure (and thus measuring the best possible performance of T as seen by the expert).

The two versions of therichards benchmark use T’s structure facility to implement task objects, and declare
runTask as a T operation, with different methods invoked for different types of task objects.
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The following table summarizes the language implementations we measured:

The charts on the next page compare the execution speed, compilation speed, and compiled code space efficiency of
these systems on the benchmarks (compilation speed and compiled code space efficiency results are unavailable for
Smalltalk-80). All results are reported as a percentage of the results for optimized C.

These SELF benchmark suites and programs run between 22% and 65% of the speed of optimized C. This level of
performance is about 5 times better than the performance of ParcPlace Smalltalk-80, despite the fact that SELF actually
is harder to compile efficiently than Smalltalk (primarily because SELF accesses variables via messages while
Smalltalk accesses them directly). Perhaps surprisingly, SELF runs between 1.4 and 4 times faster than T compiled by
the ORBIT compiler, when running “normal” T programs, even though the T benchmarks use only direct procedure
calls (excluding the one operation invocation site inrichards) and only built-in control structures. SELF
outperforms T in most cases even when comparing against fixnum-specific hand-optimized T programs. These
comparisons provide evidence that the SELF compiler is doing an excellent job of eliminating the run-time overhead
associated with message passing, user-defined control structures, and generic arithmetic.

The compilation speed of the SELF implementation is quite reasonable when compared to other optimizing language
implementations. SELF’s compilation speed is better than optimized C’s for all cases exceptpuzzle; SELF compiles
richards 3 times faster than C++. SELF compiles faster than the ORBIT compiler on the “normal” T benchmarks;
ORBIT usually compiles the integer-specific version of the T benchmarks faster than the SELF compiler. We could not
measure the compilation speed for ParcPlace Smalltalk-80, but we believe that it is significantly faster than any of the
other implementations, principally because the Smalltalk-80 compiler does virtually no optimization during
compilation. Unfortunately, the performance of the SELF compiler is still too slow to go unnoticed by the SELF
programmer, as was one of our original goals for the project. Speeding the compiler further without sacrificing
execution performance continues to be an active area of research.

SELF is not as space-efficient as optimized C. SELF uses about 6 times as much space as C for the micro-benchmarks
and about 3 times as much space for thepuzzle benchmark. However, for the Stanford integer benchmarks, SELF
incurs a space overhead of less than 20% compared to C, and forrichards (the largest, most data-structure-oriented
of these benchmarks), SELF consumes only twice as much space as optimized C++. These relatively low space
overheads for the majority of the benchmarks are remarkable, considering that many of the SELF compiler’s techniques
such as splitting trade away compiled code space to get faster execution times. Given the falling costs of memory, the
SELF system’s extra space requirements seem quite reasonable. SELF uses less compiled code space than normal T
programs compiled by the ORBIT compiler, and not much more space than integer-specific T programs. These results
confirm the practicality of our compilation techniques in terms of space costs.

C SunOS 4.0.3 standard optimizing C compiler (-O2)

Smalltalk-80 ParcPlace Systems Smalltalk-80 V2.4β2, the fastest commercial Smalltalk implementation

T (normal) ORBIT compiler for T (version 3.1), “normal” coding style

T (int only) ORBIT compiler for T (version 3.1), integer-specific hand-optimized coding style

SELF SELF implementation
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Language implementations typically trade off execution speed and compilation speed against one another: the
compiler usually has to work harder to produce code that runs faster. The practicality of a particular language depends
in large part on how well its implementation balances these two competing goals. The chart below summarizes the
performance of the language implementations by scatter-plotting the execution and compilation speed results for each
system, averaging together all the benchmarks. We assigned the Smalltalk-80 implementation a compilation speed 4
times faster than the optimizing C compiler. This figure is only a guess, intended to roughly illustrate the Smalltalk-80
implementation’s position in the chart; the execution speed figure is accurate, however.

SELF performs better in execution speed than either version of the T/ORBIT system, and compiles faster than ORBIT
on the normal version of the T benchmarks. SELF runs these benchmarks at an average of 50% the speed of optimized
C and with faster compilation speed than the optimizing C compiler.

paste chart-page-164.ps here
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14.3 Relative Effectiveness of the Techniques

Now that we understand the overall effect of the new techniques, we can explore in more detail the relative
effectiveness, and accompanying costs, of each of the new techniques developed as part of the SELF compiler. The
results will help identify those techniques that are worth including in any future implementation of a language like
SELF.

We calculate the benefits and costs of each technique by comparing the performance of the standard SELF
configuration to the performance of a configuration with the technique disabled. In the charts, the effect of an
optimization is shown by reporting the performance of the normal SELF system including the optimization relative to
the performance of the SELF system with the optimization disabled; this approach remains consistent with our general
visual theme of bigger bars indicating better results, in this case bigger bars indicating a more important or effective
optimization.

The charts on the following page summarize the effect on performance of the various optimizations implemented in
the SELF compiler. Detailed information for each optimization may be found in sections B.3 and B.4 of Appendix B.

Four optimizations are clear winners: inlining, deferred block creations, type prediction, and customization. Type
analysis presumably is also a winner, but its impact could not be directly measured. Value-based type analysis, exposed
block analysis, lazy compilation, local reluctant splitting, and delay slot filling also make significant contributions; lazy
compilation in particular makes a huge improvement in compilation speed and compiled code space utilization. Of
course, register allocation is also very important, but the impact of the particular details of the SELF register allocator,
such as allocating variables instead of names, were not measured.

Common subexpression elimination, eliminating unneeded computations, range analysis, in-line caching, and caching
compile-time lookups do not appear particularly important. Range analysis improves compilation speed and compiled
code space density, therefore redeeming its rather slim execution speed improvement. As described in section B.3.4,
in-line caching would appear more effective for the larger, more object-oriented benchmarks if not for a performance
bug in the run-time system that halves the performance of thepathCache benchmark. Common subexpression
elimination provides significant improvements for some benchmarks such asoo-bubble (see Appendix C), but
overall performance improves by less than 5%.

In nearly all cases, the optimizations made a bigger difference for the smaller, more numeric benchmarks than for the
larger, more object-oriented benchmarks. Part of this disparity probably stems from our concentration on the smaller
benchmarks as the SELF compiler was being designed and implemented. Had we concentrated more on the object-
oriented benchmarks, the trend might have been the reverse. Since both styles of program are important, we view this
difference in effectiveness as an opportunity for future work.
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14.4 Some Remaining Sources of Overhead

The SELF system does not (yet) run as fast as a traditional language implementation such as optimized C. We would
like to know the sources of this remaining gap in performance, to guide future work. In this section, we examine many
of the sources of overhead that traditionally have slowed down pure object-oriented languages, such as extra run-time
type tests, overflow checks, and array bounds checks. We can use the results to see how well the new techniques
applied to SELF reduce these traditional sources of overhead, and we can direct future research towards reducing the
cost of any overhead that remains significant.

We measure the cost of a particular source of overhead by constructing a version of the system without the source of
overhead and comparing the speed of this version to the standard version of the system. Frequently, this new version
of the system is not a legal SELF implementation in that not all SELF programs will run correctly on it, but for the
benchmarks we measure, the altered system runs correctly. Unfortunately, not every possible source of overhead could
be measured this way. For several key sources of overhead, it was too difficult to produce configurations that would
simulate their absence. For example, the overhead of message passing, inheritance, dynamic typing, and user-defined
control structures is nearly impossible to remove and measure directly; too much of the system internals and the
benchmark source code relies on these features being present. Also, any overhead introduced as a result of deficiencies
in the implementation of the SELF compiler cannot be measured in this way.

In the charts on the next page, we summarize the cost of those sources of overhead we were able to measure by
displaying the performance of a configuration with the source of overhead removed relative to the performance of the
standard SELF system; bigger bars mean that the overhead is more costly given SELF’s current implementation
technology. We also report the performance of two additional configurations:

• feasible excludes those sources of overhead that might be avoided by implementing parts of the system
differently: block zapping, interrupt checking via polling, and LRU compiled method reclamation support.

• none excludes all language and implementation overhead we measured, to try to produce a system that is as fast
as possible.

We also report the execution speed of optimized C for comparison. More detailed analysis of each of the sources of
overhead may be found in section B.5 of Appendix B.

Surprisingly, no single traditional source of overhead that we could measure imposes a significant execution speed
cost. Array bounds checking, type testing, overflow checking, interrupt checking, and LRU compiled method
reclamation support are the only measured sources of overhead with a non-trivial execution time cost, and none incurs
more than 10% cost. This low cost reinforces the earlier overall performance measurements in illustrating how well
the techniques implemented in the SELF compiler work at reducing or eliminating the sources of overhead that
historically have plagued implementations of pure object-oriented languages.

There is still a fairly sizable gap in performance between the fastest version of SELF and optimized C that remains
unaccounted for. Unless this gap stems solely from poorer implementation in the SELF compiler of traditional
optimizations such as global register allocation or loop-invariant code motion, further improvements in the speed of
pure object-oriented languages await additional insight.

Compilation time costs and compiled code space costs for the sources of overhead we can measure are fairly small.
Polling-style interrupt checking and block zapping are the most compile-time- and compiled-code-space-consuming
features to support. Interestingly, these worst offenders are all related to the particular system architecture of the SELF
implementation rather than to any required language or environment features, so there is hope that this overhead could
be reduced by redesigning various parts of the implementation.
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14.5 Summary

By and large, the new techniques we developed for efficiently implementing SELF work well: SELF runs about half as
fast as optimized C for the benchmarks we measured, a five-fold improvement over the best previous implementation
of a similar pure object-oriented language (ParcPlace Smalltalk-80). SELF’s performance is more than double the
speed of a well-respected implementation of a similarly dynamically-typed language supporting generic arithmetic but
also direct procedure calls and built-in control structures (the ORBIT compiler for T). Compile time and compiled code
space costs are comparable to these other language implementations, with the exception of ParcPlace Smalltalk-80
which we believe compiles much faster than the other language implementations.

The bulk of the SELF compiler’s good performance can be attributed to a few optimizations. Certain techniques simply
must be applied to have any hope of decent performance, including inlining and deferred block creations. Type
prediction and customization each improve execution performance by about a factor of four or five. Value-based type
analysis, exposed block analysis, splitting, lazy compilation of uncommon branches, and delay slot filling also make
significant contributions to run-time performance. Other optimizations have more modest benefits; common
subexpression elimination and integer subrange analysis in particular were fairly complex to implement and were
expected to have greater pay-offs. Some important techniques could not be measured, such as the effectiveness of type
analysis or the space costs of customization, since these techniques were too integral to the system to disable.

Measurements of the remaining cost of some traditional sources of overhead in implementations of pure object-
oriented languages indicate that none of the traditional bottlenecks continues to incur a significant cost. This result
confirms the effectiveness of the new techniques, but unfortunately does not provide much help in guiding future
research down profitable avenues.
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Chapter 15   Conclusions

15.1 Results of this Work

With this work we have striven to demonstrate that pure object-oriented languages can be efficient on stock hardware,
given suitable implementation techniques. To achieve high efficiency, we had to design and implement several new
implementation techniques, includingcustomization, type prediction, iterative type analysis, and splitting.
Customization and type prediction extract representation-level type information from untyped source programs, and
type analysis and splitting preserve this valuable information as long as possible. The accumulated type information
then is used to statically-bind and inline away messages, especially those involved in user-defined control structures
and generic arithmetic, leading to dramatic performance improvements.

By lazily compiling uncommon cases such as arithmetic overflows and primitive failures, the compiler can concentrate
its efforts on the common-case parts of a program while still supporting the uncommon events if they should occur.
This strategy resolves the tension between fast execution and powerful language features by providing the best of both
worlds: good execution and compilation speed for common cases and support for more powerful but less common
cases.

With these techniques the current SELF implementation runs small- to medium-sized benchmarks at about half the
speed of optimized C, with compile times that are comparable to the optimizing C compiler and compiled code space
usage that is less than double that of the optimizing C compiler. This new-found execution speed is more than five
times faster than the fastest previous implementation of a similar language, ParcPlace Smalltalk-80.

Several general themes underlie this work. Our techniques frequently trade away space for speed, compiling multiple
specialized versions of a single piece of source code; customization and splitting exemplify this approach. To minimize
the compile time and compiled code space costs of this approach, many of our techniques are appliedlazily. Methods
are compiled and specialized lazily, only when first invoked; uncommon parts of the control flow graph are compiled
lazily, only when first taken. Lazy compilation appears to be the saving grace which makes specialization practical.

15.2 Applicability of the Techniques

The techniques developed for SELF optimize programs that make heavy use of message passing. These techniques also
apply to other languages that share these properties. Clearly, other pure, dynamically-typed object-oriented languages
such as Smalltalk-80 could benefit directly from these techniques. As discussed in section 5.2.2, our techniques also
apply to relatively pure, statically-typed object-oriented languages such as Trellis/Owl and Eiffel. Hybrid languages
such as C++ and many object-oriented Lisps have less need for our techniques, since performance-critical parts of
programs can be written in the lower-level non-object-oriented subset of the language. However, our techniques would
still be useful to the extent that implementations wish to support and encourage the use of the object-oriented features
of their languages. One researcher already has proposed extending C++ to support a form of customization [Lea90].

Our techniques also could improve the performance of many languages that do not claim to be object-oriented. These
languages include powerful features in which several different representations of objects can be used interchangeably
within programs. This ability is essentially the same as message passing, except that the set of possible representations
usually is not user-extensible, and so we argue that these languages contain object-oriented subsets. Our techniques
would be useful in improving performance of these languages to the extent that these “object-oriented” features are
used by programs. For example, non-object-oriented languages supporting generic arithmetic, such as most Lisps and
Icon, could significantly benefit from the inclusion of type analysis, type prediction, splitting, and lazy compilation of
uncommon cases to extract and preserve representation-level information for optimization. To illustrate, our SELF
implementation generates code for benchmarks using generic arithmetic that runs more than twice as fast as the code
generated by the ORBIT compiler for the T dialect of Scheme, even though the T benchmarks use no message passing
or user-defined control structures. Even when the T version of the benchmarks is rewritten to use unsafe integer-
specific arithmetic (giving up the semantics of generic arithmetic), SELF still runs faster. Based on this result, we argue
that language designers, implementors, and users should abandon unsafe integer-specific arithmetic in favor of safe,
expressive generic arithmetic combined with optimization techniques like ours.
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Language features other than generic arithmetic might benefit from our techniques. APL allows programs to
manipulate scalars, arrays, and matrices of arbitrary dimension interchangeably, and our techniques might be used to
lazily compile dimension-specific code to speed APL programs. Implementations of logic programming languages
such as Prolog might benefit from knowing that along certain branches some logic variable is guaranteed to be
instantiated; this knowledge could come from techniques related to type analysis and splitting. Similarly,
implementations of programming languages supportingfutures such as Multilisp [Hal85] and Mul-T [KHM89] could
distinguish between known and unknown futures, compiling specialized code for each case (or perhaps just for the
common case of known futures). Thus, our techniques may be more broadly applicable to a variety of modern
programming languages beyond only pure object-oriented languages.

15.3 Future Work

While significant progress has been made in moving SELF and other pure object-oriented programming languages into
the realm of practicality, more work remains to complete the task. Some applications require the maximum in
efficiency, such as scientific and numerical applications like those traditionally written in Fortran. SELF as currently
implemented is probably not efficient enough for such demanding users. One avenue of future research therefore
would push the upper limits of performance towards that achieved for traditional languages and to extend the current
implementation techniques to handle floating point representations as efficiently as integer representations are
currently handled in the SELF implementation.

A related direction would attempt to validate that these techniques scale to much larger systems than have been
measured so far. Several of our techniques rely on trading away compiled code space for run-time speed. For the
systems measured, in the 100- to 1000-line program range, this potential space explosion has not been a problem in
practice, but for larger programs, on the order of 10,000 or 100,000 lines, the concern still remains. More research
could be done to ensure that the techniques are robust in the face of such large systems.

A third direction would focus on further improving the performance of object-oriented programs. Only a few of the
benchmarks measured so far make significant use of the extra power of the SELF language beyond what is available
in traditional languages. The question remains of how well our techniques will fare for programs that make heavy use
of the advanced features of the language. Ideally, object-oriented programs would be written much faster and would
be easier to change and extend than equivalent non-object-oriented programs, and would run just as fast as the non-
object-oriented versions. This goal is not yet met by the current SELF implementation, which for therichards
benchmark runs about a third the speed of the optimized C version. Some initial work has already begun in this
direction [HCU91].

A final direction would address more of the programming environment issues. While the current SELF compiler
compiles as fast as the optimizing C compiler on small- and medium-sized benchmarks (and compiles more than twice
as fast as an optimizing C++ compiler), the fact that compilation takes place at run-time for SELF holds our system up
to a higher standard. Users tend to become distracted by pauses of more than a fraction of a second, either from garbage
collection or from run-time compilation, and their productivity drops correspondingly. Pauses of more than a dozen
seconds or so bring about an even more severe distraction and decline in productivity. The current SELF
implementation might meet the second level of performance but unfortunately is still not at the level of fraction-of-a-
second compile pauses. To maintain a high-productivity environment, more research is needed to reconcile
unnoticeable compiler pauses with good run-time performance. Fortunately, this problem also is being actively
pursued [HCU91] and early results are quite promising.

15.4 Conclusion

We believe that this work has demonstrated the feasibility of the new techniques and consequently the practicality of
pure object-oriented languages for a wide range of applications. We hope that this demonstration will convince future
language designers to avoid compromises in their designs motivated solely by concerns over the efficiency of a pure
message passing model. We also hope that language users will begin to demand such simple, flexible languages.
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Appendix A  Object Formats

This appendix details the representation of objects used in the SELF memory system. Section 6.1 presents an overview
of the SELF memory system.

A.1 Tag Formats

A SELF memory space is organized as a linear array of aligned 32-bit words. Each word contains a low-order 2-bit tag
field used to interpret the remaining 30 bits of information. A reference to an integer or floating point number encodes
the number directly in the reference itself. References to other SELF objects and references to map objects embed the
address of the object in the reference (there is no object table). The remaining tag format is used to mark the first header
word of each object, as required by the scanning scheme discussed in section 6.1.2. Pointers to virtual machine
functions and other objects not in the SELF heap are represented using raw machine addresses; since their addresses
are at least 16-bit half-word aligned the scavenger will interpret them as immediates (either integers or floats) and so
will not try to relocate them.

These tag formats were chosen to speed common operations on references. Tagged integers may be added, subtracted,
or compared directly, as if the integers weren’t tagged at all (since the tag field is zero for integers). Overflow checking
is also free of additional overhead since the tag bits are low-order and overflows on the tagged format are detected by
the hardware just as would be overflows on normal untagged integers. Integer multiplies and divides require an extra
shift instruction prior to invoking the corresponding untagged operation. Other conversions between tagged and
untagged integers require only an arithmetic shift instruction. Another nice benefit of this integer tag format is that
object array accesses may use the tagged index directly to access the elements of the array; no extra multiplies or shifts
are required to convert the index into an offset as would be required for untagged integers in a traditional language.

The tag format for references to heap objects is also relatively free of overhead. Since SELF objects always begin on
word boundaries, on byte-addressed architectures the 2-bit low-order tag format does not reduce the available address
space (the01 tag is simply replaced with a00 tag to turn a tagged reference into a raw word-aligned address).
Additionally, on machines with a register-offset addressing mode, the tag can be stripped off automatically when
accessing a field within the referenced object at a constant offset by folding the decrement into the offset in the
instruction. For example, to access thenth word in an object (origin 0), wheren is a compile-time constant, the compiler
can simply generate (in SPARC assembly syntax)

ld [%object + (n*bytes_per_word - 01)], %t

where the offset in the load instruction is a compile-time constant.

0231

0030-bit signed integer

integer immediate (or virtual machine address)

0231

01top 30 bits of word-aligned address

reference to S ELF heap object

0231

1030 bits of IEEE floating point number

floating point immediate (or virtual machine address)

0231

11scavenging fields and hash field

mark header word (begins S ELF heap object)
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Testing whether a reference is an integer immediate requires a simple

andcc %object, #3, %g0
bz _integer

sequence to check the two low-order bits for a00 tag. Testing for a heap object reference also only requires a

andcc %object, #1, %g0
bnz _heap

sequence to test whether the low-order bit is non-zero; this sequence assumes that the reference cannot be a mark word,
which is the case for all object references manipulated by user programs. Testing for a floating point immediate
similarly only requires a

andcc %object, #2, %g0
bnz _float

sequence to test the second-to-lowest-order bit (again, assuming the reference cannot be a mark word).

A.2 Object Layout

Each heap object begins with two header words. The first word is the mark word, identifying the beginning of the
object. The mark word contains several bitfields used by the scavenger and a bitfield used by the SELF
_IdentityHash primitive. The second word of an object is a tagged reference to the object’s map. A SELF object
with assignable slots contains additional words to represent their contents. Array objects include their length (tagged
as a SELF integer to prevent interactions with scavenging and scanning) before any assignable slot contents. Object
arrays include their elements (tagged object references) after any assignable slot contents (afterwards so that assignable
slot contents have constant offsets within a given clone family), while byte arrays include an untagged pointer to a
word-aligned sequence of 8-bit bytes before any assignable slot contents (segregation of packed bytes parts is
described in section 6.1.2).

bytes
bytes

bytes

plain object object array byte array

map
mark

map
mark

map
mark

array length array length

element
element

element

bytes pointer

(segregated

slot contents

slot contents

slot contents
slot contents

slot contents

slot contents

slot contents

slot contents

slot contents

 bytes part)
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Like other objects, map objects begin with mark and map words. All map objects share the same map, called themap
map; the map map is its own map. All maps in new-space are linked together by their third words; after a scavenge the
system traverses this list to perform specialfinalization of inaccessible maps. The fourth word of a map contains the
virtual machine address of an array of function pointers; these functions perform type-dependent operations on objects
or their maps.*

For maps of objects with slots, the fifth word specifies the size of the object in words. The sixth word indicates the
number of slots in the object and the number of slot descriptions in the map. The next two words contain the change
dependency link for the map, as described in section 13.2.2. These four words are tagged as integers. If the map is for
a method, the ninth word references the byte code object representing the method’s source code (byte code objects are
described in section 6.2).

Finally, the map includes a five-word description for each of the object’s slots. The first word points to a SELF string
object representing the name of the slot. The next word describes both the type of the slot (either constant data slot,
assignable data slot, or assignment slot) and whether the slot is a parent slot.**  The third word of a slot description
contains either the contents of the slot (if the slot is a constant slot), the offset within the object of the contents of the
slot (if the slot is an assignable data slot), or the index of the corresponding data slot description (if the slot is an
assignment slot). The last two words of each slot contain the change dependency link for that slot, as described in
section 13.2.2.

The representations of a pair of cartesian points and their map are displayed on the next page.

* This function pointer array is the virtual function array generated by the C++ compiler.
** In SELF parents are prioritized; the priority of a parent slot is also stored in the second word of the slot description.

map for map for
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Appendix B  Detailed Performance Evaluation

The first two sections of this appendix contain additional information about the benchmarks and the measurement
procedures. This appendix also includes detailed analyses of the effectiveness of the various techniques included in the
SELF implementation (in sections B.3 and B.4) and of some of the remaining sources of overhead that slow SELF down
compared to optimized C (in section B.5). Finally, section B.6 discusses the space costs of the extra information
generated by the SELF compiler beyond just native machine instructions.

B.1 Detailed Description of the Benchmarks

We measured the following micro-benchmarks:

• recur is a tiny recursive benchmark that stresses method call and integer comparison and subtraction, adapted
from thetestActivationReturn Smalltalk-80 micro-benchmark [Kra83].

• sumTo adds up all the numbers from its receiver (1) to its argument (10000), 100 times over.fastSumTo is the
same assumTo, except that the body ofsumTo is inlined into the outer loop (manually in the C, Smalltalk, and
T versions, automatically in the SELF version).sumFromTo is similar tosumTo, except that it adds up all the
numbers from its first argument (1) to its second (10000), initializing the accumulator to its receiver (0). These
benchmarks stress generic arithmetic applied to integers and user-defined control structures.sumFromTo is a
benchmark used to measure the TS Typed Smalltalk compiler (described in section 3.1.3).

• nestedLoop increments a counter inside a doubly-nestedfor-style loop, each loop iterating 100 times; this
test is itself run 100 times. This test also stresses generic arithmetic applied to integers and user-defined control
structures, and is another benchmark used to measure the TS Typed Smalltalk compiler.

• atAllPut stores an integer (7) into all elements of a 100,000-element-long vector, and so stresses iterating
through and storing into arrays. It was originally suggested to us by Peter Deutsch as an interesting micro-
benchmark [Deu89].

• sumAll adds up all the elements of a 100,000-element-long vector. This test stresses iterating through arrays and
generic arithmetic of integers, and is another benchmark used on the TS Typed Smalltalk compiler.

• incrementAll increments all the elements of a 100,000-element-long vector, stressing iterating through
arrays, storing into arrays, and generic arithmetic on integers. This benchmark is another TS Typed Smalltalk
benchmark.

• sieve finds all the primes between 1 and 8190 using Eratosthenes’ sieve algorithm and stresses integer
calculations, integer comparisons, and accessing arrays of booleans.

• tak executes the recursive Tak benchmark from the Gabriel Lisp benchmarks [Gab85], which stresses method
calling and integer arithmetic.takl performs the same algorithm, but uses lists of cons-cells to represent integers,
and so additionally stresses list traversals and memory allocation.

Most of these micro-benchmarks are 1 to 3 lines long.sieve is 8 lines long,tak is 6 lines long, andtakl is 10 lines
long.

We measured the following Stanford integer benchmarks, each of which exercises integer calculations, generic
arithmetic, array accessing, and user-defined control structures (particularlyfor-style loops):

• perm andoo-perm are recursive permutation programs (25 lines long each).

• towers andoo-towers recursively solve the Towers of Hanoi problem for 14 disks (60 lines long each).

• queens andoo-queens solve the eight-queens placement problem 50 times (35 lines long each).

• intmm andoo-intmm multiply two 40-by-40 matrices of random integers. Since two-dimensional matrices are
not supported directly by SELF, Smalltalk, or T, in these languages a matrix is represented by an array of arrays,
in contrast to the contiguous representation used in the C version. These benchmarks are each 30 lines long.

• quick andoo-quick sort an array of 5000 random integers using the quicksort algorithm (35 lines long each).

• bubble andoo-bubble sort an array of 500 random integers using the bubblesort algorithm (20 lines long
each).
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• tree andoo-tree sort 5000 random integers using insertion into a sorted binary tree data structure (25 lines
long each). These benchmarks stress memory allocation and data structure manipulation instead of array
accessing.

• puzzle solves a time-consuming placement problem (170 lines long). This benchmark is unusual in that its
source code size is dominated by code to initialize the puzzle data structures, and so demands good compiler speed
more than the other benchmarks.

Source code for all benchmarks is available from the author upon request.

B.2 Measurement Procedures

We measured the speed of the SELF, C, and T implementations in milliseconds of CPU time (user plus system time),
as reported by the UNIX getrusage system call for SELF and C and thetime function for T. The Smalltalk-80
implementation only reports elapsed real time, so all measurements of the performance of Smalltalk programs are in
milliseconds of real time rather than CPU time. Since the Smalltalk-80 real-time numbers did not fluctuate significantly
from run to run (indicating that any extra overhead included in real time for Smalltalk-80 was relatively constant), and
the real-time measurements for SELF and for C were about the same as the corresponding CPU-time measurements
(indicating that any extra overhead included in real time for SELF and C was small), we believe that the CPU time for
Smalltalk-80 is likely to be close to the real-time measurements. Therefore, we feel that comparisons among Smalltalk-
80’s real-time measurements and the other language’s CPU-time measurements are reasonably valid.

We measured the run time of each benchmark by executing the benchmark in a loop of 10 iterations, reading the
elapsed time before and after the loop, and dividing the resulting difference by 10. This measurement of 10 iterations
helps to increase the effective resolution of the hardware clock (which is only to the nearest 10ms on a Sun-4/260) and
smooth over any variations from run to run.

The compile times for the C version of each benchmark were calculated by using the UNIX time command around
the compilation and optimization of a source file containing only the benchmark being measured. Thus, compilation
time for C includes the time for reading and writing files but not the time for linking the output object file into an
executable program. The compile times for the ORBIT compiler were computed similarly by using T’stime function
around the invocation of theorbit function on the name of the file containing the benchmark. Thus, T’s compile time
includes the time to read and write files but not the time to load the resulting output file into the running T system.

Separating compile time from run time in SELF and Smalltalk is complicated by dynamic compilation. The first
execution of a piece of code includes both execution time and compilation time. Our technique for calculating
compilation and execution time for a SELF benchmark is first to flush the compiled code cache (to make sure none of
the code the benchmark will use is already compiled in the cache). Then the benchmark is run once; this first run
includes both compilation time and run time. Then the benchmark is run 10 more times; these runs include only
execution, since the compiled code is already in the compiled code cache thanks to the first run. The final execution
time is calculated as the time of the last 10 runs divided by 10 (just as for C and T), and the compilation time is
calculated as the time for the first run minus the average execution time for the last 10 runs. This approach assumes
that the execution time of the first run of the benchmark is equal to the average subsequent execution, which may not
be completely accurate (e.g., because of hardware caching and paging effects), but is probably close enough to use the
calculated compile times as a rough measure of the actual compile-time overhead of our implementation.
Unfortunately, the Smalltalk-80 system does not provide a mechanism to flush the compiled code cache, so
compilation speed numbers are unreliable. Consequently, the same process for measuring SELF is performed for
Smalltalk (ignoring the cache flush step), but only the average execution time numbers are retained. Compiled code
space figures also are available for Smalltalk.

Frequently, to reduce the number of data points displayed in the charts, the results of individual benchmarks have been
combined together to form a result for a suite of similar benchmarks. The average result for a benchmark suite was
calculated by taking each individual benchmark’s result, normalizing it to some reference result (typically either the
performance of optimized C or the performance of the standard SELF configuration), and then taking the geometric
mean of the normalized results for the benchmarks in the suite. Appendix C contains the original raw data for all the
measurements.
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B.3 Relative Effectiveness of the Techniques

This section explores the effectiveness of individual optimizations in detail, with the exception of splitting strategies
which are the subject of the next section. These techniques will be covered in the order in which they were described
in this dissertation. Summary information may be found in section 14.3.

B.3.1 Inlining

The SELF compiler relies on aggressive inlining to achieve good performance, as described in Chapter 7. To verify that
the SELF system would be intolerably slow without inlining, we measured a version of SELF in which inlining of both
messages and calls to primitives was disabled. The results are displayed in the following charts.

Inlining makes a huge difference in performance. The smaller numeric benchmarks run about two orders of magnitude
faster with inlining, and even the larger non-numeric benchmarks run between 4 and 55 times faster with inlining.
These results support our contention that aggressive inlining is the key to achieving good performance in pure object-
oriented languages.

Surprisingly, inlining frequently speeds compilation and almost always saves compiled code space! This counter-
intuitive result illustrates the difference between inlining in a traditional language and inlining in the SELF system. In
SELF, the compiler uses inlining mostly for optimizing user-defined control structures and variable accesses, where the
resulting inlined control flow graph is usually much smaller than the original un-inlined graph. These sorts of inlined
constructs are already “inlined” in the traditional language environment. Inlining of larger “user-level” methods or
procedures does usually increase compile time and compiled code space as has been observed in traditional
environments; the SELF compiler simply spends much more of its time inlining things that shrink the control flow
graph than things that expand it. Of course, a system never designed to perform inlining in the first place could compile
faster than a compiler that could perform inlining but did not, so these results probably overstate the benefits of inlining
for compilation speed.
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B.3.2 Caching Compile-Time Message Lookups

The SELF compiler includes a message lookup cache to speed compile-time message lookups, as described in section
7.1.3. The following chart reports the effectiveness of this cache in speeding compilation.

The compile-time message lookup cache speeds compilation by only a few percent. This poor showing is the result of
being able to use the cache only within a single compilation and not across calls to the compiler. We are investigating
system designs that would support a longer-lived compile-time message lookup cache which we believe could save a
significant amount of compile time.

B.3.3 Customization

The SELF compiler uses customization to provide extra type information aboutself that enables much more inlining,
as described in Chapter 8. Much of the implementation of the SELF system assumes that compiled methods are
customized, so it is difficult to completely disable customization in order to measure its impact on the performance of
the system. Fortunately, one aspect of customization can be disabled relatively easily: its contribution of the type of
self. After the method prologue, the disabled compiler “forgets” the type ofself by rebinding it to the unknown
type. The run-time performance of this configuration should closely approximate the run-time performance of a
version of the system with no customization at all, since the dominating effect of customization is this extra type
information, not the duplication of methods and in-line caches. However, the compilation speed and compiled code
space efficiency of the disabled configuration probably would be worse than a version of the system that did not
customize at all, since the disabled configuration still can compile multiple versions of source methods, and so we
cannot report accurate compile time costs and compiled code space costs for customization with this configuration.
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The following chart presents customization’s impact on run-time execution performance.

Customization improves performance significantly, enabling these SELF benchmarks to run between 1.4 and 9 times
faster. The extra type information provided by customization has been put to good use by the compiler in speeding run-
time performance.

B.3.4 In-Line Caching

In-line caching speeds message sends that are neither inlined nor statically bound, as described in section 8.5. Since
the SELF compiler is so effective at inlining messages, some question might remain as to whether in-line caching is
still important for good performance. The following chart reports the impact of in-line caching on the execution
performance of the SELF system; in-line caching affects neither compilation speed nor compiled code density.

In-line caching makes little impact on the smaller benchmarks, since most sends are inlined in these benchmarks and
those that remain are frequently statically-bound to a single target method and so require no in-line caching. The
primMaker and theparser benchmarks benefit more from in-line caching, but not by more than 20%. This result
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is rather surprising, given in-line caching’s importance in the Deutsch-Schiffman Smalltalk-80 system, and it serves
as confirmation of the effectiveness of inlining and static binding.

Amazingly, thepathCache benchmark runs more than twice asslowly with in-line caching! This unexpected result
is caused by a performance bug in the run-time system (not the compiler) which slows down messages with more than
9 different receiver types. Since these measurements were made and the problem discovered, the implementation of
in-line caches with many receiver types has been improved, and now in-line cached sends reportedly are almost always
faster than uncached sends [Höl91].

B.3.5 Type Analysis

The SELF compiler relies on type analysis to propagate type information through the control flow graph and thus inline
away more messages and avoid unnecessary type tests. Type analysis was the subject of Chapter 9 and much of Chapter
11. Like customization, type analysis is difficult to disable in the SELF compiler, since type analysis permeates the
compiler’s entire design. Therefore, we could not directly measure the effectiveness of type analysis using a version
of SELF that performs no type analysis.

B.3.6 Value-Based Type Analysis

Fortunately, we can measure the effect of some parts of type analysis, such as the SELF compiler’s use of value objects
to link names to types and so improve the effectiveness of optimizations such as type prediction, as described in section
9.1.3. We can approximate a version of SELF without values by creating a new dummy value object whenever a name
is assigned. Consequently, no two names will ever share the same value. Execution speed and compiled code space
efficiency of this hobbled configuration should be close to a version of SELF without values; compilation speed would
not since a compiler written without values should run faster than one written with values that have been rendered
useless. The following charts report the impact of value-based type analysis on execution speed and compiled code
space density.
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These results show that value-based type analysis makes a significant improvement in execution performance. The
smaller benchmark suites run more than twice as fast with value-based type analysis. The use of values improves the
smaller, numerical benchmarks more than the larger benchmarks for two reasons. First, the numerical benchmarks rely
more on type prediction for good performance (corroborated by the results in section B.3.8), and values improve the
effectiveness of type prediction. Second, the smaller benchmarks send more messages to a single expression, for
example an accumulator which receives a+ message every time through a loop, and values allow the type information
propagated from one name to another to be exploited when optimizing these sequences of messages. Value-based type
analysis also improves the density of the compiled code by eliminating the need for repeated, redundant type tests
which would take up additional compiled code space.

B.3.7 Integer Subrange Analysis

Integer subrange types support optimizations that depend on range analysis, such as eliminating unnecessary overflow
checks and array bounds checks, as described in section 9.1.4.3. The effect of integer subrange types can be determined
easily by using the more general integer map type wherever an integer subrange type would have been introduced. The
charts below report the effectiveness of integer subrange analysis.

Integer subrange analysis seems to have little effect on execution performance, improving the speed of the benchmarks
less than 5%. Range analysis’ impact would be greater if not for two limiting factors. First, the current register allocator
does not ensure that adjacent variables get allocated to the same location (as described in section 12.1.5), and so
frequently a register move instruction remains after integer subrange analysis eliminates an overflow check. Second,
range analysis currently is limited by requiring integer constants as upper and lower bounds. Allowing some form of
symbolic bounds or constraints on unknown values might improve the effectiveness of range analysis, especially at
eliminating array bounds checks for iteration over arrays of unknown size.
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Integer subrange analysis frequently makes a large improvement in both compilation speed and compiled code space
costs. Optimizing away possible uncommon branches via integer subrange analysis makes a big improvement in
compilation speed, if not execution speed, and saves a lot of compiled code space.

B.3.8 Type Prediction

The SELF compiler uses type prediction (described in section 9.4) to increase the amount of type information available
to the compiler for certain common message sends. The effectiveness of this technique can be easily measured by
simply not performing type prediction. The following charts report type prediction’s contribution to execution
performance and its effect on compilation speed and compiled code density.

With type prediction SELF programs run much faster, between 1.5 and 17.5 times faster. Type prediction is at least as
important as customization in achieving good performance on these benchmarks. Type prediction has a mixed effect
on compilation speed, sometimes speeding and sometimes slowing compilation. The compiler sometimes can compile
faster with type prediction because with lazy compilation of uncommon branches the common-case type-predicted
version of a message send can be simpler and thus faster to compile than the original unpredicted message send. Type
prediction reduces compiled code space costs for most benchmarks for much the same reason.
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B.3.9 Block Analysis

Since blocks are such a key part of the SELF system, used by virtually all control structures, the SELF compiler
incorporates several optimizations designed to reduce the cost of blocks. These optimizations were described in section
9.5.2.

B.3.9.1 Deferring Block Creations

The SELF compiler defers creating a block until it is first needed as a real run-time value, if at all. Disabling this
optimization is easy. The charts below report the effect of deferring block creations.

Delaying and eliminating unneeded block creations clearly boosts execution speed, frequently more than either
customization or type prediction. Of course, this effect is attributable primarily to eliminating unneeded block
creations entirely than simply to delaying some block creations until the latest possible moment. In any case, these
measurements dramatically display the importance of optimizing block creation to get good performance in a language
that relies on user-defined control structures.

Eliminating block creations saves a significant amount of compile time, speeding the compiler by more than 50% for
the smaller benchmarks. Not surprisingly, eliminating the code that would have created the unnecessary blocks
significantly improves compiled code space density, by more than a factor of 2.5 for the smaller benchmarks.
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B.3.9.2 Exposed Block Analysis

The SELF compiler tracks which blocks have been created and passed out as run-time arguments to other methods, to
reduce the number of local variables and arguments which must be considered up-level accessible. This analysis can
be disabled by treating all blocks as exposed. Unfortunately, this simulation strategy does not reclaim the compile time
for manipulating lists of exposed blocks, so the impact of exposed block analysis on compilation time cannot be
determined. The following charts report the impact of exposed block analysis on execution speed and compiled code
space efficiency.

Analyzing which blocks are exposed significantly speeds SELF programs, making some benchmarks run almost twice
as fast. Exposed block analysis greatly reduces the number of local variables and arguments that must be considered
visible at send points,_Restart points, and uncommon branch entry points, which in turn eliminates many
unnecessary register moves. Exposed block analysis can save a lot of compiled code space, by about a factor of 3 for
the smaller numerical benchmark suites. This savings comes from the extra register moves and stack accesses that
exposed block analysis proves may be eliminated.

B.3.10 Common Subexpression Elimination

The SELF compiler performs common subexpression elimination, as described in sections 9.6 and 12.2. Three distinct
kinds of calculations can be eliminated as redundant by the SELF compiler:

• loads and stores,

• arithmetic operations, and

• constants.

Three aspects of common subexpression elimination in the SELF compiler can improve performance. One is simply
that computations are not repeated; this is the traditional benefit of common subexpression elimination. Another
benefit, unique to the SELF compiler, is that any additional type information associated with the result of the original
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computation can be propagated to the result of the redundant computation, as described in section 9.6.2. For example,
if the compiler eliminates a load instruction as redundant, then any type information known about the contents of the
loaded memory cell can be propagated to the result of the eliminated load instruction. A third benefit, also unique to
the SELF compiler, is that the corresponding array bounds check may be eliminated if a load or store to an array
element may be eliminated. As described in section 9.6.2, this benefit exists primarily because symbolic range analysis
is not implemented in the SELF compiler.

The charts on the following page display the impact of common subexpression elimination. It is easy to disable all
three effects at once by simply not recording or checking for available values; results for this configuration are shown
in columns labelledCSE. The individual contributions of the effects may also be measured by recording and checking
for available values, but not taking advantage of a particular aspect of the information. The columns labelledCSE of
Constants, CSE of Arithmetic Operations, andCSE of Memory References report the incremental effect of common
subexpression elimination of only constants, arithmetic instructions, and load and store instructions, respectively. (The
sum of the incremental effects of these three columns ideally should equal the incremental effect of CSE as a whole,
shown in the first column.)CSE of Memory References includes the impact of three effects: eliminating memory
reference instructions, propagating information about the types of the contents of memory cells, and eliminating some
redundant bounds checks. The effects of these last two components are shown in columns labelledCSE of Memory
Cell Type Information andCSE of Memory Cell Array Bounds Checking, respectively. (The difference between these
last two columns and theCSE of Memory References column should be the incremental effect of just eliminating the
memory reference instructions.) Propagated type information is ignored by introducing a new value where a memory
load is replaced with an assignment node, with this value initially bound to the unknown type.

Common subexpression elimination has a relatively small effect on execution speed: less than a 15% performance
improvement and occasionally a performance degradation. One cause of this poor performance is that common
subexpression elimination of redundant constants is not implemented well in the current SELF system, as described in
section 12.2; elimination of constants frequently replaces a two-instruction sequence (on the SPARC) that loads a 32-
bit constant into a register with a one-instruction register move, instead of eliminating the loading of the constant
entirely. In some cases, where the saved constant is allocated to a stack location instead of a register, performance can
even slow down in the presence of common subexpression elimination of constants. Common subexpression
elimination of arithmetic operations helps the Stanford integer benchmarks an average of 5%. Common subexpression
elimination of memory loads and stores provides some of the best improvements, boosting the performance of the
object-oriented versions of the Stanford integer benchmarks by nearly 15%.

Common subexpression elimination usually imposes a small penalty in compilation speed. The bulk of this extra cost
in compilation time comes from common subexpression elimination of memory loads and stores, partially because of
the extra work required to propagate the mapping from available memory cells to their contained values during type
analysis and partially because of the additional inlining and other work enabled by the extra type information.
Fortunately, where compilation speed drops, execution speed rises, so common subexpression elimination tends to pay
for its cost in compile time with savings in execution time.

Common subexpression elimination usually saves a small amount of compiled code space, as would be expected. For
theparser benchmark, however, the presence of common subexpression eliminationincreases the amount of code
generated. This increase may be attributed to the extra inlining enabled by the type information available from common
subexpression elimination of memory references.

B.3.11 Register Allocation

The SELF compiler maps names that are always aliases to variables, and then allocates run-time locations to these
variables. This register allocation design was described in section 12.1. Unfortunately, we did not measure the
effectiveness of this register allocation strategy.
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B.3.12 Eliminating Unneeded Computations

The SELF compiler performs an additional pass over the control flow graph to eliminate unneeded computations, such
as memory references and arithmetic operations whose results are never used, as described in section 12.3. Disabling
this optimization would be easy except for two complications. Some of this pass is required for other parts of the SELF
compiler to run correctly, such as eliminating unnecessary assignment nodes prior to constructing the variable lifetime
conflict graph as part of register allocation. Also, other parts of the compiler expect some of this pass to be executed
to get any sort of reasonable performance. For example, the initial type analysis phase expects that unnecessary loads
of constants will be removed in this pass, and so the compiler feels free to insert such loads prior to message sends for
variables that may later turn out to be the same constant at all sends. Since many variables are such constants, many
loads are eliminated using this technique; without it some other technique would be used to eliminate these
unnecessary loads.

Therefore, to avoid exaggerating the importance of eliminating unneeded computations, a version of the SELF system
was constructed that still eliminated assignments and loading of constants but did not eliminate unused arithmetic
operations and memory loads. Compilation speed is relatively unaffected by this change, since the compiler still makes
the pass to eliminate unnecessary constant loads and assignments. The following charts display the impact of
eliminating unneeded arithmetic and memory loads on execution speed and compiled code space density.

Eliminating the unnecessary arithmetic and memory load instructions saves only a few percent of execution time. If
eliminating unnecessary loading of constants were also disabled, the difference in execution speed would be much
greater. Virtually no compiled code space is saved by this optimization, indicating that very few arithmetic or memory
reference instructions were eliminated in these benchmarks.
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B.3.13 Filling Delay Slots

As described in section 12.4, the SELF compiler fills delay slots on the SPARC to speed the generated code. The effect
of delay slot filling on the performance of the system can be computed by constructing a version of the system than
does not fill any delay slots, instead leaving anop instruction in each delay slot. The following charts display the effect
of delay slot filling.

Filling delay slots on the SPARC speeds up the benchmarks by between 5% and 35%, costs little in compile time, and
reduces compiled code space requirements by almost 15%.*  Given these execution speed and compiled code space
benefits, delay slot filling seems to be worth its nominal compile time expense.

B.3.14 Summary of Effectiveness of the Techniques

Several techniques stand out as crucial to achieving good performance for SELF and similar languages. Inlining,
deferred block creations, type prediction, and customization provide major improvements in performance. Value-based
type analysis, exposed block analysis, splitting, lazy compilation of uncommon branches, and delay slot filling also
make significant contributions to run-time performance. Other optimizations have more modest benefits.

* This number can be used to place an upper bound on the average size of a basic block in the SELF system. Assuming a 15%
reduction in space, one out of every 7 instructions is a delay slot that can be filled. This gives an average basic block size for SELF
of at most 6 instructions (after filling delay slots).
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B.4 Splitting Strategies

Splitting is one of the most important techniques used in the SELF compiler, as well as one of the most complex to
implement. Several different splitting strategies were devised and implemented in the SELF compiler. In this section
we explore the effectiveness of these techniques.

Splitting strategies can be broken down into three main approaches: no splitting, reluctant splitting (described in
section 10.2), and eager splitting (described in section 10.3). Reluctant splitting itself can be divided into local reluctant
splitting and global reluctant splitting, depending on how much code the compiler is willing to duplicate for a split.
Eager splitting can be combined with one of three tail merging strategies: no tail merging, tail merging based on
forward-computed type information, and tail merging based on reverse-computed requirements. Each of these six base
splitting strategies can be combined with divided splitting (described in section 10.4) and/or lazy compilation of
uncommon branches (described in section 10.5). The next few subsections explore the effectiveness of these various
combinations. All measurements are reported relative to the performance of the standard SELF splitting configuration:
local reluctant splitting with lazy compilation of uncommon branches but without divided splitting.

B.4.1 Reluctant Splitting Strategies

The charts on the following page illustrate the effectiveness of local reluctant splitting and global reluctant splitting in
comparison to a configuration that did no splitting. These results include the effect of lazy compilation of uncommon
branches. All results are relative to the performance of the standard configuration: local reluctant splitting with lazy
compilation of uncommon branches.

Local reluctant splitting is clearly the best overall strategy, performing well in execution speed, compilation speed, and
compiled code density. Performing no splitting at all sometimes saves some compile-time but usually incurs a
significant run-time speed penalty and consumes additional compiled code space. Local reluctant splitting compares
favorably to no splitting in compilation speed and code density because many of the splits performed as part of local
reluctant splitting separatetrue results fromfalse results after comparisons and in control structures, and
performing this kind of splitting significantlysimplifies the control flow graph (as illustrated in section 10.1), thus
paying for itself through later savings in compile time and compiled code space.

Global reluctant splitting does not compensate for its larger compile time and compiled code space costs with
significantly improved execution speed. In these benchmarks (and perhaps in most programs), there typically is either
just a single common-case path, in which case global reluctant splitting is not needed, or a pair of common-case paths,
one for atrue result and one for afalse result. For thetrue andfalse cases, the result of the comparison or
boolean function that produced the two paths is usually consumed by the immediately following message, such as an
ifTrue: message, and so local reluctant splitting is adequate to handle this kind of situation. Thus, for these
benchmarks, global reluctant splitting provides unneeded extra power. As we will argue in the next subsection, global
reluctant splitting would be more important if lazy compilation of uncommon branches had not been devised; lazy
compilation splits off the uncommon-case paths that would have been split off, albeit less effectively, by global
reluctant splitting. Even though global reluctant splitting does not seem useful in today’s system with local reluctant
splitting and lazy compilation, in the future multiple common-case paths may be more frequent as other
implementation techniques are incorporated [HCU91], and global reluctant splitting may then begin to show
significant improvement over local reluctant splitting.
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B.4.2 Lazy Compilation of Uncommon Branches

The charts on the following page report the performance of various reluctant splitting strategies both with and without
lazy compilation of uncommon branches. All results are relative to the performance of the standard configuration: local
reluctant splitting with lazy compilation of uncommon branches.

Lazy compilation of uncommon cases improves execution performance for almost all splitting configurations and
benchmarks, as can be seen by comparing the results for each... (Not Lazy) column to the results for the corresponding
... (Lazy) column. This speed-up may be attributed to two major factors: providing the effect of divided splitting and
simplifying the register allocation problem. The largest effects occur for no splitting and local reluctant splitting; these
two strategies benefit the most from the additional divided splitting effect. All strategies benefit from better register
allocation enabled by lazy compilation.

The largest impact on execution speed occurs for the more numerically-oriented benchmarks. This is as expected, since
in these benchmarks many messages get inlined down to primitives that introduce primitive failure uncommon
branches (such as+ messages getting inlined down to_IntAdd: primitive calls, each of which may fail with an
overflow error), and many type prediction type tests get inserted (such as integer type tests before+ messages) that
each create an uncommon branch. The larger number of uncommon branch entries in these benchmarks provides more
opportunities for lazy compilation.

Lazy compilation makes a dramatic improvement in both compilation speed and compiled code space efficiency,
across the board for all base splitting strategies and benchmarks. As expected, lazy compilation improves performance
most for the smaller, more numerical benchmarks.

Lazy compilation of uncommon cases obviates much of the need for more sophisticated base splitting techniques such
as global reluctant splitting. If neither lazy compilation nor divided splitting were implemented, then global reluctant
splitting would offer performance improvements over local reluctant splitting, as can be seen by comparing theLocal
Reluctant Splitting (Not Lazy) results to theGlobal Reluctant Splitting (Not Lazy) results. However, since in the present
system only one common case path normally is generated, global reluctant splitting does not provide much additional
functionality.

B.4.3 Vector Type Prediction

When configuring the SELF system, one choice that must be made (today at least) is the set of message names and
corresponding receiver types that are to be type-predicted. For most messages, the choice is fairly obvious: predict
true or false for the receiver ofifTrue: and predict integer for the receiver of+, for instance. Unfortunately,
some choices are not so clear-cut. For example, what should the compiler predict for the= message? Currently, the
compiler predicts that the receiver often is an integer (and consequently inserts a type-test for an integer receiver), but
since many kinds of objects other than integers are compared for equality, the non-integer branch is not treated as
uncommon but instead gives rise to a second common-case path.

The compiler faces a similar problem for messages likeat: andat:Put:. For example, the compiler could predict
that the receiver of these messages is likely to be the built-in fixed-length vector type. All the arrays manipulated by
the micro-benchmarks and the Stanford integer benchmarks are of this type, so this prediction should improve the
performance of these benchmarks. However, in other parts of the system, the receivers ofat: andat:Put: are more
likely to be dictionaries or other kinds of keyed collections, not simple fixed-length vectors. The current standard SELF
configuration does no type prediction forat: andat:Put:, in consideration of the more object-oriented programs
currently being run in the SELF system, but other kinds of programs (including the benchmarks) might benefit from
type predicting fixed-length vector receivers forat: andat:Put:.

To determine the improvement that could be gained from vector type prediction, we measured the performance of three
additional configurations. We extended the standard configuration based on local reluctant splitting to additionally
type-predict for vectors; one version treats non-vector cases as uncommon, while another treats non-vector cases as
giving rise to a second common-case path. Since global reluctant splitting should shine in the presence of multiple
common-case paths, we also measured a configuration based on global reluctant splitting which type-predicts for
vectors and treats non-vector cases as additional common-case paths. The charts on page 195 report the performance
of these three vector type prediction configurations relative to that of the standard configuration based on local
reluctant splitting and no vector type prediction.
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Type prediction for vectors improves performance for some of the benchmarks. Most individual benchmarks are
unchanged, but a few benchmarks such asintmm, oo-intmm, andpuzzle improve by between 20% and 30% (raw
data may be found in Appendix C). Treating non-vector cases as uncommon only makes a difference on theoo-
intmm benchmark, boosting its performance another 10%. Global reluctant splitting is just as effective as treating
non-vectors as uncommon, verifying that global reluctant splitting can provide improved performance in the presence
of multiple common-case paths.

Unfortunately, type predicting for vectors slows down the larger, more object-oriented benchmarks in which the
predictions are always wrong. When non-vector receivers are considered uncommon, mispredicting forces the
compiler to generate less optimized uncommon branch extensions, further slowing down execution performance; the
parser benchmark runs 15% slower in this mode than in the normal configuration. Since we expect most SELF
programs to be more likeparser thanpuzzle, the normal SELF system does not type-predict for vectors. However,
in environments or applications where vector receivers were more common, vector type prediction could significantly
improve performance. Developing a system in which some parts type-predict for vectors while others do not is an
active area of current research [HCU91].

Type predicting for vectors uniformly slows down compilation. Usually this slow-down is less than 20%, but when
mispredictions force the compiler to generate uncommon branch extension methods (when non-vector cases are
considered uncommon), compile times can be twice as long as with the normal configuration. In fact, these potentially
lengthy compile pauses are the primary reason we currently do not type-predict vector receivers.

Not surprisingly, vector type prediction takes up more compiled code space, but usually not more than 10% over the
non-predicting configuration. When mispredictions and lazy compilation cause uncommon branch extensions to be
created, however, code space consumption can double.

B.4.4 Eager Splitting Strategies

The charts on the following page report execution performance for the various eager splitting configurations relative
to that of the standard configuration, local reluctant splitting with lazy compilation of uncommon branches.

The various tail merging strategies are designed to save compile time and compiled code space while producing the
same execution speed. These expectations are borne out by the results. Different tail merging strategies achieve
roughly the same execution speeds, but requirements-analysis-based tail merging, the most sophisticated tail merging
technique, achieves much better compilation speeds and compiled code densities than the simpler techniques; the extra
reverse pass over the control flow graph that is part of requirements analysis easily pays for itself in reduced overall
compile time.

Lazy compilation slightly improves the execution performance of eager splitting. Since eager splitting already
incorporates divided splitting, this potential benefit of lazy compilation is unneeded. Compilation speed improves
more dramatically with lazy compilation of uncommon cases. This speed-up becomes more pronounced as the tail
merging strategy becomes more sophisticated. Lazy compilation makes less of an impact for the simpler tail merging
strategies since those strategies spend more of their compile time compiling common-case parts of the control flow
graph, and so there is less compile time spent on uncommon branches to be eliminated. Similarly, lazy compilation
dramatically improves compiled code space efficiency, especially for eager splitting with requirements-based tail
merging.

Unfortunately, overall eager splitting provides no execution speed benefits compared to reluctant splitting and at best
more than doubles the compilation time costs; in some cases the benchmarks could not even be compiled using eager
splitting because they would have needed too much compiler temporary data space. Clearly, eager splitting is not
practical as currently implemented.
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B.4.5 Divided Splitting

The charts on the following page report the performance of various reluctant splitting strategies both with and without
divided splitting. All results are relative to the performance of the standard configuration: local reluctant splitting with
lazy compilation of uncommon branches and without divided splitting.

Divided splitting makes no difference when used in conjunction with lazy compilation of uncommon branches, as can
be seen by comparing the results for columns labelled... (Lazy) to the results for columns labelledDivided ... (Lazy).
This is as expected, since lazy compilation achieves the same beneficial effect on type analysis as does divided splitting
but in a more efficient manner. For the strategies without lazy compilation, divided splitting speeds execution
significantly, as can be seen by comparing the results for columns labelled... (Not Lazy) to the results for columns
labelledDivided ... (Not Lazy). The advantages provided by divided splitting decrease with the sophistication of the
base splitting technique. Divided splitting usually slows compilation and consumes more compiled code space, as
expected.

Based on these results, divided splitting provided no additional benefits over lazy compilation of uncommon cases.
However, in environments where lazy compilation of uncommon cases was impossible, divided splitting can offer
improved performance.

B.4.6 Summary of Splitting Strategies

Local reluctant splitting combined with lazy compilation of uncommon cases is the most effective splitting strategy,
optimizing all of execution speed, compilation speed, and compiled code space efficiency. Lazy compilation provides
dramatic, near order-of-magnitude improvements in compilation speed and code density, and even boosts execution
speed and obviates the need for divided splitting. Global reluctant splitting provides slight improvements in
performance for these benchmarks but at a noticeable decrease in compilation speed. Eager splitting as presently
implemented provides no significant performance improvements and sacrifices at least half of the compilation speed
of local reluctant splitting. Vector type prediction can improve performance for some benchmarks but slows down
other benchmarks.

In the chart on page 200, we summarize the effectiveness of various splitting strategies and their trade-offs between
execution speed and compilation speed by plotting the execution speed and compilation speed of several splitting
strategies on a two-dimensional scatter chart; relative compiled code space efficiency is very nearly directly
proportional to relative compilation speed so a third dimension is not necessary. To make the chart more readable, only
selected configurations are included.

The cluster of strategies in the upper-right corner of the chart (in the “good” region) all use reluctant splitting and lazy
compilation of uncommon branches. The other strategies produce no better execution speeds with poor compilation
speeds.



199

No
Splitting

(Not
Lazy)

Divided
No

Splitting
(Not
Lazy)

No
Splitting
(Lazy)

Divided
No

Splitting
(Lazy)

Local
Reluctant
 Splitting

(Not
Lazy)

Divided
Local

Reluctant
 Splitting

(Not
Lazy)

Local
Reluctant
 Splitting
(Lazy)

Divided
Local

Reluctant
 Splitting
(Lazy)

Global
Reluctant
Splitting

(Not
Lazy)

Divided
Global

Reluctant
Splitting

(Not
Lazy)

Global
Reluctant
Splitting
(Lazy)

Divided
Global

Reluctant
Splitting
(Lazy)

0

20

40

60

80

100

120

R
un

 S
pe

ed
 (

%
 o

f N
or

m
al

 S
el

f)

0

20

40

60

80

100

120

C
om

pi
le

 S
pe

ed
 (

%
 o

f N
or

m
al

 S
el

f)

0

20

40

60

80

100

120

S
pa

ce
 D

en
si

ty
 (

%
 o

f N
or

m
al

 S
el

f)

sm
al

l
st

an
fo

rd
oo

-s
ta

nf
or

d
pu

zz
le

ric
ha

rd
s

pa
rs

er
pr

im
M

ak
er

pa
th

C
ac

he



200

paste chart-page-200.ps here
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B.5 Some Remaining Sources of Overhead

This section explores in detail each of the remaining sources of overhead that we were able to measure in the SELF
system that are not present in a traditional optimized language implementation. These results were summarized in
section 14.4.

B.5.1 Type Tests

The SELF compiler inserts extra run-time type tests that are not present in the output of the optimizing C compiler.
These tests are inserted as part of type prediction for messages like+ andifTrue: and as part of type-checking of
arguments to primitives. Language features like message passing, dynamic typing, generic arithmetic, and safe
primitives, present in SELF but not in C, incur this extra overhead.

We can measure the cost of these run-time type tests by constructing a version of SELF that does not generate any type
checks but instead assumes that the type tests would always succeed. This configuration obviously is unsafe, but none
of the benchmarks happen to fail any type tests and so do not break under this configuration. The charts below report
the costs in execution speed, compilation speed, and compiled code space for run-time type tests and checks; we report
the costs of integer type tests and boolean type tests individually.

Type tests increase execution time by no more than 10% for these benchmarks, take up little extra compile time, and
add no more than 10% additional compiled code space. Type analysis, splitting, and lazy compilation of uncommon
cases are largely responsible for the relatively low number of type tests that remain in compiled SELF code.
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B.5.2 Overflow Checking

The SELF compiler sometimes generates an overflow check after an integer arithmetic instruction to check for
primitive failure of the corresponding integer arithmetic primitives. By handling this primitive failure, SELF programs
can (and do) support generic arithmetic. Generic arithmetic traditionally has been an expensive language feature;
section 14.2 showed that the performance of T programs that use generic arithmetic can be half that of T programs that
avoid generic arithmetic. Much of the added cost of generic arithmetic involves the extra type tests associated with
checking for integer arguments to generic arithmetic operations; this overhead was measured in the previous section.
The remaining cost of generic arithmetic is incurred by the extra overflow checks which are not generated by the
integer-specific arithmetic supported by traditional languages.

We can measure the cost of overflow checking in SELF simply by not checking for overflows. Again, this configuration
is unsafe, but none of the benchmarks overflow any arithmetic operations. The charts below report the cost of overflow
checking.

Overflow checking slows execution by less than 5% for all but the smallest benchmarks. However, since the register
allocator frequently leaves an extra register move behind even when overflow checks are removed, the cost of overflow
checking may be understated by these results by up to a factor of two. Overflow checking imposes negligible compile-
time cost and a small space cost.
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B.5.3 Array Bounds Checking

SELF array accessing primitives always verify that accesses lie within the bounds of the array. We can measure the cost
of array bounds checking in SELF by not checking for access out-of-bounds in the generated code. The following charts
display the cost of array bounds checking.

Array bounds checking imposes a modest run-time performance cost, between 5% and 10% overhead for those
benchmarks manipulating arrays. We think that much of this overhead could be eliminated by applying more
sophisticated integer subrange analysis using symbolic bounds, but the complexity of this technique may not be worth
the apparently modest improvement in execution time. Very little compile time is used for generating code to check
for out-of-bounds array accesses. Some compiled code space is required to support array bounds checking in the SELF
implementation, but this space overhead is less than 10%. The cost would be much higher if the compiler did not
compile uncommon cases lazily.

B.5.4 Block Zapping

The current SELF implementation does not allow a block to be invoked after its lexically-enclosing activation record
has returned. To enforce this restriction, the compiler generates extra code that “zaps” blocks once they become
uninvokable, as described in section 6.3.2. This zapping cost could become fairly expensive. Block zapping involves
both extra run-time code needed to zero the frame pointer of any block that might have been created and extra registers
or stack locations to hold the blocks until they are used by the zap code. Since blockvalue methods themselves do
not require explicit run-time code to test for a zero frame pointer, instead relying on the machine’s addressing and
protection hardware to trap references to illegal addresses, this zapping architecture imposes no run-time overhead on
block invocation.
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To gauge the cost of this design, we measured three configurations of the SELF system, each with a different rule for
zapping blocks:

• no zapping,

• early zapping (block lifetimes extend to the end of the message in which they are initially an argument), and

• late zapping (block lifetimes extend to the end of the scope in which they are created); this is the standard
configuration.

Early zapping was proposed as an alternative to late zapping that might be less expensive, particularly in terms of
register usage. The following charts report the performance of no zapping and early zapping relative to late zapping,
the standard configuration.

Surprisingly, block zapping has a negligible impact on execution speed of these benchmarks. The slight slow-downs
for some of the benchmarks may be caused by unlucky interactions with other parts of the system; performance should
only improve with these alternative zapping implementations. As expected, the SELF compiler is faster when it does
not bother generating any zap code. Early zapping slows down the compiler relative to late zapping; the data structures
and algorithms used by the compiler to generate the early zapping code are more complex than those for late zapping.
Both no zapping and early zapping have slightly better compiled code space efficiencies than late zapping, but by a
few percent at most. Based on these results, the safety and greater flexibility of late zapping make it the preferable
block zapping strategy. Some future implementation of SELF might support true non-LIFO blocks (fully upward
closures) and dispense entirely with the need for block zapping, simplifying this part of the compiler’s implementation
in the process.
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B.5.5 Primitive Failure Checking

If the SELF compiler implements a primitive by calling a routine in the virtual machine (rather than generating special
inlined code for the primitive), the compiler generates code after the primitive call that checks for the primitive’s
failure by testing for a special return value. This run-time overhead could be avoided by an alternate calling convention
for such primitives that used different return offsets for successful returns and failing returns. To determine whether
this change would be useful, we need to know the cost of the current design. We can compute this cost simply by not
checking for primitive failures, assuming that all such primitives succeed. The following charts report the cost of
external primitive failure checking as currently implemented.

Primitive failure checking for non-inlined primitives has no effect on execution performance for these benchmarks.
The slight slow-down for theoo-stanford andprimMaker benchmarks may be unfortunate interactions with the
register allocator, since removing the run-time check should only improve performance. Primitive failure checking
imposes a slight cost in compile time and increases space costs by up to 10%. These costs do not seem significant
enough to justify optimizing the return sequence of external primitives.
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B.5.6 Debugger-Visible Names

In section 5.1 we argued that a language implementation should support debugging of the entire program at the level
of the source code, with all optimizations and other implementation artifacts hidden from the programmer. This
requirement restricts the kinds of optimizations that can be performed, thus possibly degrading performance over a
system that did not support source-level debugging.

Some of these costs cannot be measured easily in our system, such as the cost of not performing tail call elimination
or of not reordering code. Fortunately, at least one of the costs attributable to the need for debugging can be measured.
In the SELF system, the programmer can get a complete view of the state of a suspended process, including the values
of all data slots in activation records (i.e., the contents of local variables and arguments of source-level stack frames),
as described in section 13.1. This requires that the compiler ensure that the contents of a variable is always up-to-date
and available as long as the debugger might access it, even if the compiled code has no more need of the variable. This
imposes a cost in terms of registers that are used and cannot be reallocated to other expressions, possibly causing some
expressions to be spilled out to the stack. We measured the cost of this variable lifetime extension by configuring the
compiler to ignore the effect of the debugger when computing the lifetime of variables, freeing up registers as soon as
the compiled code has no more use of the variable, and report the effects in the charts below.

Supporting the debugger’s ability to view all source-level visible names whether or not the executing code requires a
name imposes no execution-time cost for these benchmarks. This is partially attributable to the presence of hardware
register windows on the SPARC (since leaving an unused variable in a register is free while saving and restoring an
unused variable across calls is not), partially attributable to the presence of interruption points and uncommon branch
entry points that force many names to be maintained anyway, and partially attributable to the infrequency of variable
names becoming unused well prior to the end of their scope, perhaps because methods in SELF are typically much
shorter than procedures in a traditional language. Ensuring that names stay live throughout their visible lifetimes takes
a negligible amount of extra compile time and a negligible amount of compiled code space. Clearly, this aspect of the
programming environment can be supported at no cost.
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B.5.7 Interrupt Checking and Stack Overflow Checking

The SELF run-time system handles interrupts via polling, with the compiler generating code at method entry and
_Restart points (loop tails) to check for interrupts, as described in section 6.3. The cost associated with these checks
might be avoided by an alternative interrupt architecture that does no polling but instead backpatches instructions
ahead of the current program counter to call the interrupt handler at exactly the same point that the polling code would
have detected the interrupt. Also, since the interrupt check at each method entry doubles as a check for stack overflow,
this use of polling would need to be eliminated by read-protecting the page after the maximum stack size and using the
page protection hardware to detect stack overflow.

Since the costs current associated with interrupt polling could probably be avoided by a more sophisticated run-time
system design, it is important to determine how costly is the polling overhead in the current SELF implementation. We
can measure the cost of polling simply by not generating any polling code and ignoring interrupts. The following charts
report the costs for the two sources of polling overhead.

Interrupt checking imposes a moderate cost in execution time for most benchmarks. The more numerical benchmarks
slow down by between 4% and 13% from interrupt checking at_Restart’s and a few percent from interrupt
checking at method entries, while the larger, more object-oriented benchmarks slow down by a few percent from
interrupt checking at method entries and virtually none from interrupt checking at_Restart’s. This difference
reflects the fact that the smaller benchmarks contain more tight loops while the larger benchmarks contain more calls.

Generating code to handle interrupts imposes a fairly substantial compile-time cost, at least when compared to the
other measured sources of overhead. Interrupt checking at_Restart’s is more costly than at calls, since it involves
ensuring that all debugger-visible names are properly set up so that the debugger could display the virtual source-level
call stack if invoked at the interrupt point. Supporting interrupts via polling imposes fairly significant compiled code
space costs, with up to 35% extra compiled code generated for the smaller benchmarks. Again, interrupt checking at
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_Restart’s is more expensive than at calls since it may require extra code to support the debugger. It is unlikely,
however, than either of these compile-time costs could be avoided by an alternative run-time mechanism for handling
interrupts.

B.5.8 LRU Compiled Method Reclamation Support

Compiled methods are stored in a fixed-sized cache. Some compiled methods must be flushed from the cache to make
room for new compiled methods when the cache is full. The system attempts to flush compiled methods that are
unlikely to be used soon afterwards by keeping track of which compiled methods have been invoked recently, and
flushing those compiled methods which have been used least recently. The compiler supports thisleast-recently-used
(LRU) replacement strategy by generating extra code in the compiled method prologue to mark the compiled method
as recently used, as described in section 8.2.3. This overhead would not exist in an implementation that either never
threw away compiled code or replaced compiled methods in a different way (such as usingfirst-in first-out (FIFO)
replacement or LRU replacement with usage information computed via periodic interrupts). We measured the
overhead for the current LRU implementation by disabling the marking code in the method prologue. The following
charts display the costs of the current LRU compiled method reclamation support.

LRU support imposes a run-time cost of up to 8% over a system without this support. This cost is directly proportional
to the call frequency of the program being measured. LRU reclamation support takes little additional compile time and
little additional compiled code space.

B.5.9 Summary of Remaining Sources of Overhead

Of the remaining sources of overhead we were able to measure, no single source of overhead imposes a significant
execution speed cost. Only array bounds checking, type testing, overflow checking, interrupt checking, and LRU
compiled method reclamation have a non-trivial execution time cost, and none incurs more than 10% overhead. Much
of the remaining gap in performance between SELF and optimized C remains unaccounted for, however.
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B.6 Additional Space Costs

The previous compiled code space efficiency measurements compared the number of machine instructions generated
by the SELF compiler to the number of machine instructions generated by other configurations of SELF or by other
language implementations. The SELF compiler generates additional information with compiled methods that takes up
more space. These additional pieces of information include descriptions of inlined scopes and tables mapping between
physical program counters and source-level byte code position. This information is used to reconstruct the virtual call
stack from the physical call stack during debugging (as described in section 13.1), to support lazy compilation of
uncommon branches, and to compile block methods that perform up-level accesses to lexically-enclosing stack frames.
The compiler also generates dependency links, used for selective invalidation of compiled methods after programming
changes (as described in section 13.2). Finally, the compiler generates information identifying the locations of all
tagged object references embedded in compiled code and scope debugging information, to enable the system to update
these pointers after a scavenge or garbage collection.

The following chart breaks down the space consumed by the output of the SELF compiler into the above categories of
information, under the standard configuration.

This chart illustrates that machine instructions take only a relatively small fraction of the space consumed by compiler-
generated data, around 10% of the space for the more numerical benchmarks and 20% of the space for the larger object-
oriented programs. Scope debugging information and dependency links take up the lion’s share of the space used by
generated information, between 60% and 80% of the total generated space. Relocation information requires a roughly
constant 10% of the total space. Program counter/byte code mappings are relatively concise, taking up less than 5% of
the total space used.

Fortunately, not all of this information needs to remain in main memory at all times. Much of it can be paged out to
virtual memory and brought into main memory only when needed. Compiled instructions need to be in main memory
(for those methods in active use). Location information needs to be in main memory, since it will be accessed relatively
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frequently during scavenges.*  Scope and p.c./byte code debugging information is needed only when compiling nested
blocks and uncommon branch extensions and when debugging, so for methods not being debugged the scope
information can be paged out relatively quickly after “warming up” the compiled code cache. Dependencies are only
needed when programming and flushing invalid methods, so this space can be paged out when not in program
development mode. Thus, for working, debugged programs most of the extra data generated by the compiler can be
paged out of main memory, minimizing real memory requirements. Ultimately only the machine instructions and
locations need be in main memory (and the latter only for garbage collections), thus keeping real memory space costs
down to a fraction of the total virtual memory space costs.

* If all tagged object pointers embedded in a compiled method refer to tenured objects in old-space (objects not scanned as part of
scavenging), this location information will only be needed during a full garbage collection and so normally can be paged out. As
an optimization, the system could automatically tenure all objects reachable from compiled methods to allow the location
information to be paged out immediately and to speed scavenges.
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Appendix C  Raw Benchmark Data

This appendix includes the raw data for all the performance measurements reported in Chapter 14 and Appendix B.
For each row, from left to right, the tables report the running time for the benchmark (in seconds), the compile time
for the benchmark (in seconds), and the size in bytes of the compiled instructions generated by the compiler for the
benchmark. Smalltalk-80 compile time and compiled code space measurements are unavailable. Other blank rows
correspond to configurations where the compiler consumed too much internal memory (over 30MB) when compiling
the benchmark. Note that theLocal Reluctant Splitting (Lazy) andLate Block Zapping configurations are identical to the
Normal SELF configuration.
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C.1 recur
language/configuration run compile space
Optimized C 0.293 1.1 88
Smalltalk-80 1.459
T (normal) 3.316 0.73 1400
T (integer only) 0.55 0.35 404
Normal SELF 0.495 0.485 616
No Splitting (Not Lazy) 0.715 2.745 6840
No Splitting (Lazy) 0.666 0.484 792
Local Reluctant Splitting (Not Lazy) 0.495 0.475 616
Local Reluctant Splitting (Lazy) 0.495 0.485 616
Global Reluctant Splitting (Not Lazy) 0.496 0.464 616
Global Reluctant Splitting (Lazy) 0.495 0.475 616
Divided No Splitting (Not Lazy) 0.697 1.583 3920
Divided No Splitting (Lazy) 0.666 0.474 792
Divided Local Reluctant Splitting (Not Lazy)

0.496 0.474 616
Divided Local Reluctant Splitting (Lazy) 0.495 0.475 616
Divided Global Reluctant Splitting (Not Lazy)

0.496 0.474 616
Divided Global Reluctant Splitting (Lazy) 0.496 0.484 616
Eager Splitting (Not Lazy) 0.496 0.844 1000
Eager Splitting (Lazy) 0.495 0.845 1000
Eager Splitting and Tail Merging (Not Lazy)

0.496 0.484 628
Eager Splitting and Tail Merging (Lazy) 0.495 0.495 628
Eager Splitting and Requirements Analysis (Not Lazy)

0.496 0.724 616
Eager Splitting and Requirements Analysis (Lazy)

0.496 0.724 616
Type Predict for Vectors (with Local Splitting)

0.497 0.473 616
Type Predict for Vectors (with Global Splitting)

0.497 0.473 616
Vectors Are More Common (with Local Splitting)

0.496 0.464 616
Without Inlining 22.513 2.137 616
Without In-Line Caching 0.495 0.475 616
Without Compile-Time Lookup Caching 0.495 0.465 724
Without Customization 0.535 0.875 616
Without Value-Based Type Analysis 0.768 0.512 6552
Without Range Analysis 0.516 0.614 616
Without Type Prediction 0.497 0.463 616
Without Deferred Block Creation 4.997 3.833 616
Without Exposed Block Analysis 0.498 0.912 976
Without CSE 0.506 0.464 1636
Without CSE of Constants 0.496 0.474 1364
Without CSE of Arithmetic Operations 0.507 0.473 832
Without CSE of Memory References 0.495 0.465 624
Without CSE of Memory Cell Type Information

0.496 0.474 616
Without CSE of Memory Cell Array Bounds Checking

0.497 0.473 624
Without Eliminating Unneeded Computations

0.504 0.486 616
Without Delay Slot Filling 0.607 0.443 616
No Integer Type Tests 0.496 0.464 616
No Boolean Type Tests 0.497 0.463 616
No Overflow Checking 0.496 0.474 720
No Array Bounds Checking 0.496 0.474 616
No Block Zapping 0.497 0.463 592
Early Block Zapping 0.497 0.483 616
Late Block Zapping 0.495 0.485 616
No Primitive Failure Checking 0.497 0.473 520
No Debugger-Visible Names 0.497 0.463 584
No Interrupt Checking at Calls 0.457 0.443 616
No Interrupt Checking at _Restarts 0.496 0.454 616
No LRU Compiled Method Reclamation Support

0.416 0.474 616
Fast 0.415 0.435 616
Fastest 0.416 0.414 616

C.2 sumTo
language/configuration run compile space
Optimized C 0.245 1.1 96
Smalltalk-80 2.366
T (normal) 4.682 0.81 1440
T (integer only) 0.303 0.4 348
Normal SELF 0.67 0.65 632
No Splitting (Not Lazy) 2.013 4.167 8512
No Splitting (Lazy) 1.099 0.631 760
Local Reluctant Splitting (Not Lazy) 1.586 2.944 5104
Local Reluctant Splitting (Lazy) 0.67 0.65 632
Global Reluctant Splitting (Not Lazy) 0.915 10.385 19524
Global Reluctant Splitting (Lazy) 0.671 0.649 632
Divided No Splitting (Not Lazy) 1.221 3.199 6500
Divided No Splitting (Lazy) 1.099 0.641 760
Divided Local Reluctant Splitting (Not Lazy)

0.854 2.696 4788
Divided Local Reluctant Splitting (Lazy) 0.671 0.659 632
Divided Global Reluctant Splitting (Not Lazy)

0.854 3.136 4900
Divided Global Reluctant Splitting (Lazy) 0.671 0.649 632
Eager Splitting (Not Lazy) 0.733 6.107 9356
Eager Splitting (Lazy) 0.732 1.368 1120
Eager Splitting and Tail Merging (Not Lazy)

0.732 3.008 4788
Eager Splitting and Tail Merging (Lazy) 0.732 0.748 660
Eager Splitting and Requirements Analysis (Not Lazy)

0.978 3.652 4864
Eager Splitting and Requirements Analysis (Lazy)

0.672 1.228 632
Type Predict for Vectors (with Local Splitting)

0.671 0.649 632
Type Predict for Vectors (with Global Splitting)

0.672 0.648 632
Vectors Are More Common (with Local Splitting)

0.671 0.649 632
Without Inlining 254.721 1.519 632
Without In-Line Caching 0.671 0.639 632
Without Compile-Time Lookup Caching 0.672 0.648 720
Without Customization 0.672 1.038 632
Without Value-Based Type Analysis 2.627 0.733 5380
Without Range Analysis 0.671 0.789 632
Without Type Prediction 0.673 0.647 632
Without Deferred Block Creation 18.107 1.943 632
Without Exposed Block Analysis 2.02 2.32 1044
Without CSE 0.671 0.639 1996
Without CSE of Constants 0.672 0.648 3928
Without CSE of Arithmetic Operations 0.671 0.639 812
Without CSE of Memory References 0.671 0.639 632
Without CSE of Memory Cell Type Information

0.671 0.649 632
Without CSE of Memory Cell Array Bounds Checking

0.671 0.649 632
Without Eliminating Unneeded Computations

0.694 0.626 632
Without Delay Slot Filling 1.099 0.601 632
No Integer Type Tests 0.671 0.639 632
No Boolean Type Tests 0.672 0.648 632
No Overflow Checking 0.55 0.62 716
No Array Bounds Checking 0.672 0.648 608
No Block Zapping 0.672 0.648 616
Early Block Zapping 0.672 0.678 632
Late Block Zapping 0.67 0.65 632
No Primitive Failure Checking 0.671 0.649 568
No Debugger-Visible Names 0.672 0.638 488
No Interrupt Checking at Calls 0.671 0.619 632
No Interrupt Checking at _Restarts 0.489 0.571 552
No LRU Compiled Method Reclamation Support

0.672 0.648 632
Fast 0.488 0.542 632
Fastest 0.427 0.493 632
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C.3 sumFromTo
language/configuration run compile space
Optimized C 0.245 1.1 96
Smalltalk-80 2.364
T (normal) 4.627 0.81 1432
T (integer only) 0.305 0.37 344
Normal SELF 0.672 0.648 664
No Splitting (Not Lazy) 2.013 4.277 8720
No Splitting (Lazy) 1.098 0.642 792
Local Reluctant Splitting (Not Lazy) 1.585 3.075 5256
Local Reluctant Splitting (Lazy) 0.672 0.648 664
Global Reluctant Splitting (Not Lazy) 0.916 9.084 19656
Global Reluctant Splitting (Lazy) 0.671 0.649 664
Divided No Splitting (Not Lazy) 1.221 3.289 6704
Divided No Splitting (Lazy) 1.099 0.641 792
Divided Local Reluctant Splitting (Not Lazy)

0.854 2.806 4956
Divided Local Reluctant Splitting (Lazy) 0.672 0.648 664
Divided Global Reluctant Splitting (Not Lazy)

0.855 3.045 5068
Divided Global Reluctant Splitting (Lazy) 0.671 0.649 664
Eager Splitting (Not Lazy) 0.733 5.667 9632
Eager Splitting (Lazy) 0.732 1.368 1184
Eager Splitting and Tail Merging (Not Lazy)

0.733 2.907 4940
Eager Splitting and Tail Merging (Lazy) 0.733 0.747 700
Eager Splitting and Requirements Analysis (Not Lazy)

0.978 3.432 5072
Eager Splitting and Requirements Analysis (Lazy)

0.671 1.229 672
Type Predict for Vectors (with Local Splitting)

0.671 0.649 664
Type Predict for Vectors (with Global Splitting)

0.672 0.648 664
Vectors Are More Common (with Local Splitting)

0.672 0.648 664
Without Inlining 254.801 1.509 664
Without In-Line Caching 0.672 0.648 664
Without Compile-Time Lookup Caching 0.672 0.648 748
Without Customization 0.672 1.058 664
Without Value-Based Type Analysis 2.75 0.58 5516
Without Range Analysis 0.671 0.779 1172
Without Type Prediction 46.915 1.465 664
Without Deferred Block Creation 18.11 1.98 664
Without Exposed Block Analysis 2.021 2.349 836
Without CSE 0.672 0.628 2036
Without CSE of Constants 0.671 0.639 4016
Without CSE of Arithmetic Operations 0.671 0.629 852
Without CSE of Memory References 0.672 0.638 664
Without CSE of Memory Cell Type Information

0.672 0.648 664
Without CSE of Memory Cell Array Bounds Checking

0.672 0.638 664
Without Eliminating Unneeded Computations

0.674 0.666 664
Without Delay Slot Filling 1.099 0.611 664
No Integer Type Tests 0.671 0.639 664
No Boolean Type Tests 0.672 0.648 664
No Overflow Checking 0.549 0.631 752
No Array Bounds Checking 0.672 0.638 616
No Block Zapping 0.671 0.649 648
Early Block Zapping 0.672 0.678 664
Late Block Zapping 0.672 0.648 664
No Primitive Failure Checking 0.672 0.648 600
No Debugger-Visible Names 0.671 0.639 520
No Interrupt Checking at Calls 0.671 0.639 664
No Interrupt Checking at _Restarts 0.488 0.572 584
No LRU Compiled Method Reclamation Support

0.672 0.638 664
Fast 0.488 0.542 664
Fastest 0.428 0.502 664

C.4 fastSumTo
language/configuration run compile space
Optimized C 0.245 1.1 80
Smalltalk-80 2.368
T (normal) 4.194 0.76 1344
T (integer only) 0.432 0.34 260
Normal SELF 0.732 0.528 368
No Splitting (Not Lazy) 2.012 20.508 28024
No Splitting (Lazy) 1.219 0.531 460
Local Reluctant Splitting (Not Lazy) 0.975 9.455 11552
Local Reluctant Splitting (Lazy) 0.732 0.528 368
Global Reluctant Splitting (Not Lazy) 0.854 2.256 3148
Global Reluctant Splitting (Lazy) 0.732 0.538 368
Divided No Splitting (Not Lazy) 1.28 2.75 4188
Divided No Splitting (Lazy) 1.22 0.53 460
Divided Local Reluctant Splitting (Not Lazy)

0.915 2.485 3348
Divided Local Reluctant Splitting (Lazy) 0.731 0.529 368
Divided Global Reluctant Splitting (Not Lazy)

0.854 2.466 3376
Divided Global Reluctant Splitting (Lazy) 0.732 0.538 368
Eager Splitting (Not Lazy) 0.793 26.337 30636
Eager Splitting (Lazy) 0.731 23.289 26268
Eager Splitting and Tail Merging (Not Lazy)

0.793 13.037 15368
Eager Splitting and Tail Merging (Lazy) 0.732 11.398 13184
Eager Splitting and Requirements Analysis (Not Lazy)

1.038 3.182 3392
Eager Splitting and Requirements Analysis (Lazy)

0.732 1.348 368
Type Predict for Vectors (with Local Splitting)

0.732 0.538 368
Type Predict for Vectors (with Global Splitting)

0.732 0.538 368
Vectors Are More Common (with Local Splitting)

0.732 0.538 368
Without Inlining 254.883 1.487 368
Without In-Line Caching 0.733 0.527 368
Without Compile-Time Lookup Caching 0.732 0.528 380
Without Customization 0.732 0.908 368
Without Value-Based Type Analysis 2.075 0.575 5332
Without Range Analysis 0.793 1.257 368
Without Type Prediction 0.733 0.527 368
Without Deferred Block Creation 18.211 1.669 368
Without Exposed Block Analysis 0.796 4.774 556
Without CSE 0.732 0.518 1636
Without CSE of Constants 0.732 0.538 5232
Without CSE of Arithmetic Operations 0.732 0.528 864
Without CSE of Memory References 0.732 0.528 368
Without CSE of Memory Cell Type Information

0.732 0.538 368
Without CSE of Memory Cell Array Bounds Checking

0.731 0.539 368
Without Eliminating Unneeded Computations

0.817 0.443 368
Without Delay Slot Filling 1.098 0.502 368
No Integer Type Tests 0.732 0.528 368
No Boolean Type Tests 0.732 0.528 368
No Overflow Checking 0.671 0.509 420
No Array Bounds Checking 0.732 0.538 368
No Block Zapping 0.732 0.538 360
Early Block Zapping 0.732 0.548 368
Late Block Zapping 0.732 0.528 368
No Primitive Failure Checking 0.732 0.528 336
No Debugger-Visible Names 0.732 0.538 200
No Interrupt Checking at Calls 0.732 0.528 368
No Interrupt Checking at _Restarts 0.61 0.39 328
No LRU Compiled Method Reclamation Support

0.732 0.538 368
Fast 0.609 0.381 368
Fastest 0.549 0.351 368
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C.5 nestedLoop
language/configuration run compile space
Optimized C 0.25 1.1 88
Smalltalk-80 2.027
T (normal) 4.469 1.02 1796
T (integer only) 1.285 0.49 492
Normal SELF 0.618 0.762 604
No Splitting (Not Lazy) 1.794 16.846 26756
No Splitting (Lazy) 1.115 0.755 752
Local Reluctant Splitting (Not Lazy) 0.869 6.151 8092
Local Reluctant Splitting (Lazy) 0.618 0.762 604
Global Reluctant Splitting (Not Lazy) 0.741 2.619 3536
Global Reluctant Splitting (Lazy) 0.618 0.762 604
Divided No Splitting (Not Lazy) 1.242 3.548 6016
Divided No Splitting (Lazy) 1.116 0.764 752
Divided Local Reluctant Splitting (Not Lazy)

0.805 2.665 3644
Divided Local Reluctant Splitting (Lazy) 0.618 0.762 604
Divided Global Reluctant Splitting (Not Lazy)

0.804 2.716 3720
Divided Global Reluctant Splitting (Lazy) 0.619 0.781 604
Eager Splitting (Not Lazy) 0.682 18.218 24736
Eager Splitting (Lazy) 0.679 15.131 20344
Eager Splitting and Tail Merging (Not Lazy)

0.682 9.148 12524
Eager Splitting and Tail Merging (Lazy) 0.679 7.631 10328
Eager Splitting and Requirements Analysis (Not Lazy)

0.928 3.452 3680
Eager Splitting and Requirements Analysis (Lazy)

0.618 1.572 604
Type Predict for Vectors (with Local Splitting)

0.619 0.761 604
Type Predict for Vectors (with Global Splitting)

0.619 0.771 604
Vectors Are More Common (with Local Splitting)

0.619 0.761 604
Without Inlining 310.865 1.965 604
Without In-Line Caching 0.619 0.761 604
Without Compile-Time Lookup Caching 0.619 0.771 664
Without Customization 0.618 1.162 604
Without Value-Based Type Analysis 1.856 0.814 5988
Without Range Analysis 0.68 1.59 604
Without Type Prediction 0.62 0.76 604
Without Deferred Block Creation 18.87 2.44 604
Without Exposed Block Analysis 3.252 5.998 884
Without CSE 0.619 0.741 2440
Without CSE of Constants 0.619 0.761 8136
Without CSE of Arithmetic Operations 0.619 0.751 1240
Without CSE of Memory References 0.618 0.762 604
Without CSE of Memory Cell Type Information

0.618 0.752 604
Without CSE of Memory Cell Array Bounds Checking

0.618 0.762 604
Without Eliminating Unneeded Computations

0.622 0.778 604
Without Delay Slot Filling 0.989 0.721 604
No Integer Type Tests 0.619 0.771 604
No Boolean Type Tests 0.619 0.771 604
No Overflow Checking 0.557 0.753 696
No Array Bounds Checking 0.619 0.761 604
No Block Zapping 0.619 0.741 588
Early Block Zapping 0.619 0.791 604
Late Block Zapping 0.618 0.762 604
No Primitive Failure Checking 0.618 0.762 540
No Debugger-Visible Names 0.619 0.761 404
No Interrupt Checking at Calls 0.618 0.752 604
No Interrupt Checking at _Restarts 0.494 0.616 564
No LRU Compiled Method Reclamation Support

0.619 0.771 604
Fast 0.494 0.576 604
Fastest 0.434 0.546 604

C.6 atAllPut
language/configuration run compile space
Optimized C 0.065 1.1 88
Smalltalk-80 1.046
T (normal) 0.322 0.53 992
T (integer only) 0.095 0.36 368
Normal SELF 0.13 0.29 404
No Splitting (Not Lazy) 0.266 2.204 4644
No Splitting (Lazy) 0.173 0.287 440
Local Reluctant Splitting (Not Lazy) 0.143 0.367 532
Local Reluctant Splitting (Lazy) 0.13 0.29 404
Global Reluctant Splitting (Not Lazy) 0.112 0.698 1040
Global Reluctant Splitting (Lazy) 0.099 0.511 636
Divided No Splitting (Not Lazy) 0.186 0.654 1300
Divided No Splitting (Lazy) 0.173 0.287 440
Divided Local Reluctant Splitting (Not Lazy)

0.143 0.727 1264
Divided Local Reluctant Splitting (Lazy) 0.131 0.289 404
Divided Global Reluctant Splitting (Not Lazy)

0.112 1.088 1748
Divided Global Reluctant Splitting (Lazy) 0.1 0.51 636
Eager Splitting (Not Lazy) 0.118 2.552 3660
Eager Splitting (Lazy) 0.106 1.314 1148
Eager Splitting and Tail Merging (Not Lazy)

0.111 1.309 1924
Eager Splitting and Tail Merging (Lazy) 0.099 0.711 680
Eager Splitting and Requirements Analysis (Not Lazy)

0.136 1.814 2020
Eager Splitting and Requirements Analysis (Lazy)

0.1 1.2 656
Type Predict for Vectors (with Local Splitting)

0.13 0.29 404
Type Predict for Vectors (with Global Splitting)

0.1 0.52 636
Vectors Are More Common (with Local Splitting)

0.13 0.29 404
Without Inlining 27.572 1.168 636
Without In-Line Caching 0.131 0.289 404
Without Compile-Time Lookup Caching 0.13 0.29 1024
Without Customization 1.381 0.849 404
Without Value-Based Type Analysis 0.396 0.334 5312
Without Range Analysis 0.136 0.424 404
Without Type Prediction 0.131 0.299 404
Without Deferred Block Creation 2.365 0.505 404
Without Exposed Block Analysis 0.13 0.71 608
Without CSE 0.148 0.282 1076
Without CSE of Constants 0.13 0.29 1008
Without CSE of Arithmetic Operations 0.13 0.29 564
Without CSE of Memory References 0.149 0.281 408
Without CSE of Memory Cell Type Information

0.13 0.29 404
Without CSE of Memory Cell Array Bounds Checking

0.131 0.289 404
Without Eliminating Unneeded Computations

0.13 0.29 408
Without Delay Slot Filling 0.167 0.283 404
No Integer Type Tests 0.13 0.29 404
No Boolean Type Tests 0.131 0.289 404
No Overflow Checking 0.131 0.299 464
No Array Bounds Checking 0.118 0.282 404
No Block Zapping 0.13 0.29 388
Early Block Zapping 0.13 0.3 404
Late Block Zapping 0.13 0.29 404
No Primitive Failure Checking 0.131 0.289 340
No Debugger-Visible Names 0.13 0.3 328
No Interrupt Checking at Calls 0.13 0.28 404
No Interrupt Checking at _Restarts 0.118 0.252 404
No LRU Compiled Method Reclamation Support

0.131 0.289 380
Fast 0.117 0.233 404
Fastest 0.106 0.224 404
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C.7 sumAll
language/configuration run compile space
Optimized C 0.055 1.1 88
Smalltalk-80 0.698
T (normal) 0.505 0.71 1196
T (integer only) 0.098 0.33 372
Normal SELF 0.13 0.49 580
No Splitting (Not Lazy) 0.269 4.921 9448
No Splitting (Lazy) 0.172 0.498 652
Local Reluctant Splitting (Not Lazy) 0.16 2.29 3512
Local Reluctant Splitting (Lazy) 0.13 0.49 580
Global Reluctant Splitting (Not Lazy) 0.147 2.403 3756
Global Reluctant Splitting (Lazy) 0.129 0.501 580
Divided No Splitting (Not Lazy) 0.184 2.516 4688
Divided No Splitting (Lazy) 0.172 0.488 652
Divided Local Reluctant Splitting (Not Lazy)

0.147 2.693 4492
Divided Local Reluctant Splitting (Lazy) 0.129 0.501 580
Divided Global Reluctant Splitting (Not Lazy)

0.147 2.703 4504
Divided Global Reluctant Splitting (Lazy) 0.129 0.501 580
Eager Splitting (Not Lazy) 0.134 5.466 8752
Eager Splitting (Lazy) 0.129 1.101 1020
Eager Splitting and Tail Merging (Not Lazy)

0.135 2.755 4504
Eager Splitting and Tail Merging (Lazy) 0.129 0.591 620
Eager Splitting and Requirements Analysis (Not Lazy)

0.16 3.29 4588
Eager Splitting and Requirements Analysis (Lazy)

0.129 1.021 580
Type Predict for Vectors (with Local Splitting)

0.129 0.491 580
Type Predict for Vectors (with Global Splitting)

0.128 0.492 580
Vectors Are More Common (with Local Splitting)

0.129 0.491 580
Without Inlining 36.196 1.274 580
Without In-Line Caching 0.13 0.5 580
Without Compile-Time Lookup Caching 0.129 0.511 1860
Without Customization 10.94 1.11 580
Without Value-Based Type Analysis 0.453 0.587 5928
Without Range Analysis 0.135 0.505 580
Without Type Prediction 0.129 0.491 580
Without Deferred Block Creation 2.762 0.888 580
Without Exposed Block Analysis 0.283 2.157 1012
Without CSE 0.147 0.473 1600
Without CSE of Constants 0.128 0.502 3660
Without CSE of Arithmetic Operations 0.129 0.491 644
Without CSE of Memory References 0.147 0.483 588
Without CSE of Memory Cell Type Information

0.13 0.5 580
Without CSE of Memory Cell Array Bounds Checking

0.129 0.491 580
Without Eliminating Unneeded Computations

0.129 0.501 588
Without Delay Slot Filling 0.177 0.473 580
No Integer Type Tests 0.117 0.483 580
No Boolean Type Tests 0.129 0.491 580
No Overflow Checking 0.122 0.488 668
No Array Bounds Checking 0.117 0.473 532
No Block Zapping 0.129 0.501 564
Early Block Zapping 0.129 0.521 580
Late Block Zapping 0.13 0.49 580
No Primitive Failure Checking 0.129 0.491 516
No Debugger-Visible Names 0.129 0.491 472
No Interrupt Checking at Calls 0.129 0.491 580
No Interrupt Checking at _Restarts 0.117 0.423 540
No LRU Compiled Method Reclamation Support

0.129 0.491 532
Fast 0.117 0.423 580
Fastest 0.086 0.354 580

C.8 incrementAll
language/configuration run compile space
Optimized C 0.113 1.1 96
Smalltalk-80 1.754
T (normal) 0.538 0.7 1188
T (integer only) 0.152 0.32 376
Normal SELF 0.173 0.347 440
No Splitting (Not Lazy) 0.369 4.061 8220
No Splitting (Lazy) 0.216 0.334 476
Local Reluctant Splitting (Not Lazy) 0.218 0.912 1428
Local Reluctant Splitting (Lazy) 0.173 0.347 440
Global Reluctant Splitting (Not Lazy) 0.218 0.932 1464
Global Reluctant Splitting (Lazy) 0.172 0.348 440
Divided No Splitting (Not Lazy) 0.228 4.132 8412
Divided No Splitting (Lazy) 0.216 0.334 476
Divided Local Reluctant Splitting (Not Lazy)

0.191 0.949 1504
Divided Local Reluctant Splitting (Lazy) 0.173 0.347 440
Divided Global Reluctant Splitting (Not Lazy)

0.192 0.958 1500
Divided Global Reluctant Splitting (Lazy) 0.172 0.348 440
Eager Splitting (Not Lazy) 0.179 1.841 2752
Eager Splitting (Lazy) 0.173 0.697 712
Eager Splitting and Tail Merging (Not Lazy)

0.18 0.97 1484
Eager Splitting and Tail Merging (Lazy) 0.173 0.387 464
Eager Splitting and Requirements Analysis (Not Lazy)

0.203 5.327 8700
Eager Splitting and Requirements Analysis (Lazy)

0.173 0.657 440
Type Predict for Vectors (with Local Splitting)

0.173 0.347 440
Type Predict for Vectors (with Global Splitting)

0.173 0.347 440
Vectors Are More Common (with Local Splitting)

0.173 0.347 440
Without Inlining 34.257 1.463 440
Without In-Line Caching 0.173 0.347 440
Without Compile-Time Lookup Caching 0.173 0.347 2048
Without Customization 8.968 1.202 440
Without Value-Based Type Analysis 0.588 0.402 6148
Without Range Analysis 0.18 0.52 604
Without Type Prediction 0.306 0.394 440
Without Deferred Block Creation 3.6 0.72 440
Without Exposed Block Analysis 0.173 0.837 736
Without CSE 0.215 0.345 1268
Without CSE of Constants 0.173 0.347 1116
Without CSE of Arithmetic Operations 0.173 0.347 644
Without CSE of Memory References 0.216 0.344 472
Without CSE of Memory Cell Type Information

0.173 0.347 440
Without CSE of Memory Cell Array Bounds Checking

0.182 0.358 440
Without Eliminating Unneeded Computations

0.173 0.337 472
Without Delay Slot Filling 0.22 0.33 440
No Integer Type Tests 0.164 0.336 464
No Boolean Type Tests 0.172 0.348 440
No Overflow Checking 0.168 0.332 508
No Array Bounds Checking 0.161 0.339 416
No Block Zapping 0.173 0.347 424
Early Block Zapping 0.173 0.367 440
Late Block Zapping 0.173 0.347 440
No Primitive Failure Checking 0.173 0.347 376
No Debugger-Visible Names 0.173 0.347 364
No Interrupt Checking at Calls 0.172 0.338 440
No Interrupt Checking at _Restarts 0.16 0.31 420
No LRU Compiled Method Reclamation Support

0.173 0.337 416
Fast 0.16 0.28 440
Fastest 0.133 0.257 440
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C.9 tak
language/configuration run compile space
Optimized C 0.065 1.1 152
Smalltalk-80 0.309
T (normal) 0.55 0.88 1592
T (integer only) 0.133 0.43 532
Normal SELF 0.146 0.234 700
No Splitting (Not Lazy) 0.238 1.062 3576
No Splitting (Lazy) 0.176 0.234 772
Local Reluctant Splitting (Not Lazy) 0.166 1.194 3428
Local Reluctant Splitting (Lazy) 0.146 0.234 700
Global Reluctant Splitting (Not Lazy) 0.162 1.498 4364
Global Reluctant Splitting (Lazy) 0.147 0.233 700
Divided No Splitting (Not Lazy) 0.189 2.021 6644
Divided No Splitting (Lazy) 0.177 0.233 772
Divided Local Reluctant Splitting (Not Lazy)

0.162 2.188 6332
Divided Local Reluctant Splitting (Lazy) 0.147 0.233 700
Divided Global Reluctant Splitting (Not Lazy)

0.163 2.037 5820
Divided Global Reluctant Splitting (Lazy) 0.147 0.233 700
Eager Splitting (Not Lazy) 0.154 3.346 9600
Eager Splitting (Lazy) 0.146 0.484 1280
Eager Splitting and Tail Merging (Not Lazy)

0.154 2.216 6324
Eager Splitting and Tail Merging (Lazy) 0.146 0.294 712
Eager Splitting and Requirements Analysis (Not Lazy)

0.171 2.349 6432
Eager Splitting and Requirements Analysis (Lazy)

0.146 0.384 700
Type Predict for Vectors (with Local Splitting)

0.146 0.234 700
Type Predict for Vectors (with Global Splitting)

0.146 0.244 700
Vectors Are More Common (with Local Splitting)

0.146 0.234 700
Without Inlining 7.079 1.001 700
Without In-Line Caching 0.147 0.243 700
Without Compile-Time Lookup Caching 0.147 0.243 712
Without Customization 0.147 0.613 700
Without Value-Based Type Analysis 0.2 0.28 2600
Without Range Analysis 0.146 0.244 1864
Without Type Prediction 5.771 0.419 700
Without Deferred Block Creation 1.233 0.317 700
Without Exposed Block Analysis 0.146 0.244 928
Without CSE 0.147 0.223 1088
Without CSE of Constants 0.146 0.234 700
Without CSE of Arithmetic Operations 0.146 0.234 700
Without CSE of Memory References 0.147 0.233 700
Without CSE of Memory Cell Type Information

0.146 0.234 700
Without CSE of Memory Cell Array Bounds Checking

0.146 0.234 700
Without Eliminating Unneeded Computations

0.147 0.233 700
Without Delay Slot Filling 0.176 0.224 700
No Integer Type Tests 0.129 0.231 700
No Boolean Type Tests 0.146 0.244 700
No Overflow Checking 0.143 0.237 816
No Array Bounds Checking 0.146 0.234 604
No Block Zapping 0.147 0.243 684
Early Block Zapping 0.146 0.244 700
Late Block Zapping 0.146 0.234 700
No Primitive Failure Checking 0.146 0.234 636
No Debugger-Visible Names 0.146 0.234 700
No Interrupt Checking at Calls 0.139 0.221 700
No Interrupt Checking at _Restarts 0.146 0.234 640
No LRU Compiled Method Reclamation Support

0.13 0.23 700
Fast 0.131 0.239 700
Fastest 0.11 0.2 700

C.10 takl
language/configuration run compile space
Optimized C 2.66 1.7 448
Smalltalk-80 8.279
T (normal) 0.782 0.97 1584
T (integer only) 0.776 0.65 1044
Normal SELF 4.239 0.741 2872
No Splitting (Not Lazy) 4.776 1.064 4292
No Splitting (Lazy) 4.744 0.686 2996
Local Reluctant Splitting (Not Lazy) 4.248 1.162 4160
Local Reluctant Splitting (Lazy) 4.239 0.741 2872
Global Reluctant Splitting (Not Lazy) 4.418 1.122 4612
Global Reluctant Splitting (Lazy) 4.238 0.812 3220
Divided No Splitting (Not Lazy) 4.752 1.168 4772
Divided No Splitting (Lazy) 4.745 0.695 2996
Divided Local Reluctant Splitting (Not Lazy)

4.248 1.252 4612
Divided Local Reluctant Splitting (Lazy) 4.238 0.722 2872
Divided Global Reluctant Splitting (Not Lazy)

4.291 1.309 5064
Divided Global Reluctant Splitting (Lazy) 4.239 0.811 3220
Eager Splitting (Not Lazy) 4.135 2.475 9104
Eager Splitting (Lazy) 4.177 1.403 5932
Eager Splitting and Tail Merging (Not Lazy)

4.162 1.418 5284
Eager Splitting and Tail Merging (Lazy) 4.212 0.788 3376
Eager Splitting and Requirements Analysis (Not Lazy)

4.134 1.796 5484
Eager Splitting and Requirements Analysis (Lazy)

4.123 1.287 3276
Type Predict for Vectors (with Local Splitting)

4.239 0.731 2872
Type Predict for Vectors (with Global Splitting)

4.242 0.818 3220
Vectors Are More Common (with Local Splitting)

4.241 0.729 2872
Without Inlining 82.578 2.612 3220
Without In-Line Caching 4.248 0.722 2872
Without Compile-Time Lookup Caching 4.248 0.722 4212
Without Customization 8.346 1.294 2872
Without Value-Based Type Analysis 4.828 0.792 6996
Without Range Analysis 4.241 0.729 3416
Without Type Prediction 9.352 0.678 2872
Without Deferred Block Creation 9.873 1.087 2872
Without Exposed Block Analysis 4.26 0.73 3344
Without CSE 4.104 0.686 3324
Without CSE of Constants 4.104 0.716 2872
Without CSE of Arithmetic Operations 4.243 0.727 2872
Without CSE of Memory References 4.241 0.709 2868
Without CSE of Memory Cell Type Information

4.238 0.742 2868
Without CSE of Memory Cell Array Bounds Checking

4.242 0.728 2872
Without Eliminating Unneeded Computations

4.338 0.662 2872
Without Delay Slot Filling 4.447 0.703 2872
No Integer Type Tests 4.25 0.71 2872
No Boolean Type Tests 4.235 0.725 2872
No Overflow Checking 4.24 0.72 3376
No Array Bounds Checking 4.242 0.738 2720
No Block Zapping 4.242 0.748 2808
Early Block Zapping 4.242 0.768 2872
Late Block Zapping 4.239 0.741 2872
No Primitive Failure Checking 4.24 0.72 2632
No Debugger-Visible Names 4.243 0.727 2888
No Interrupt Checking at Calls 4.177 0.693 2836
No Interrupt Checking at _Restarts 4.242 0.738 2852
No LRU Compiled Method Reclamation Support

4.11 0.73 2872
Fast 4.107 0.693 2868
Fastest 4.107 0.813 2872
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C.11 sieve
language/configuration run compile space
Optimized C 0.165 1.5 224
Smalltalk-80 2.953
T (normal) 1.146 1.63 2756
T (integer only) 0.423 0.67 668
Normal SELF 0.49 0.97 856
No Splitting (Not Lazy) 1.03 20.79 41440
No Splitting (Lazy) 0.722 0.988 1128
Local Reluctant Splitting (Not Lazy) 0.742 18.218 26684
Local Reluctant Splitting (Lazy) 0.49 0.97 856
Global Reluctant Splitting (Not Lazy) 0.524 2.576 3908
Global Reluctant Splitting (Lazy) 0.489 0.961 856
Divided No Splitting (Not Lazy) 0.807 3.773 7300
Divided No Splitting (Lazy) 0.727 1.003 1128
Divided Local Reluctant Splitting (Not Lazy)

0.576 2.754 4140
Divided Local Reluctant Splitting (Lazy) 0.489 0.971 856
Divided Global Reluctant Splitting (Not Lazy)

0.575 2.795 4208
Divided Global Reluctant Splitting (Lazy) 0.489 0.981 856
Eager Splitting (Not Lazy) 0.532 51.768 72776
Eager Splitting (Lazy) 0.525 48.445 68312
Eager Splitting and Tail Merging (Not Lazy)

0.532 33.078 47328
Eager Splitting and Tail Merging (Lazy) 0.525 31.585 45096
Eager Splitting and Requirements Analysis (Not Lazy)

0.539 8.241 9696
Eager Splitting and Requirements Analysis (Lazy)

0.503 3.467 1588
Type Predict for Vectors (with Local Splitting)

0.489 0.961 856
Type Predict for Vectors (with Global Splitting)

0.49 0.97 856
Vectors Are More Common (with Local Splitting)

0.49 0.97 856
Without Inlining 83.298 2.342 856
Without In-Line Caching 0.487 0.983 856
Without Compile-Time Lookup Caching 0.486 0.984 3152
Without Customization 4.428 2.672 856
Without Value-Based Type Analysis 1.002 1.108 9248
Without Range Analysis 0.601 1.719 2476
Without Type Prediction 3.381 1.359 856
Without Deferred Block Creation 9.089 2.901 856
Without Exposed Block Analysis 0.824 3.966 1524
Without CSE 0.484 0.936 3376
Without CSE of Constants 0.485 0.965 5864
Without CSE of Arithmetic Operations 0.49 0.96 1984
Without CSE of Memory References 0.49 0.96 852
Without CSE of Memory Cell Type Information

0.489 0.971 852
Without CSE of Memory Cell Array Bounds Checking

0.49 0.96 856
Without Eliminating Unneeded Computations

0.492 0.988 856
Without Delay Slot Filling 0.605 0.925 856
No Integer Type Tests 0.487 0.973 856
No Boolean Type Tests 0.473 0.977 856
No Overflow Checking 0.475 0.965 964
No Array Bounds Checking 0.49 0.97 856
No Block Zapping 0.49 0.95 840
Early Block Zapping 0.49 1.0 856
Late Block Zapping 0.49 0.97 856
No Primitive Failure Checking 0.489 0.961 792
No Debugger-Visible Names 0.489 0.961 592
No Interrupt Checking at Calls 0.49 0.96 828
No Interrupt Checking at _Restarts 0.438 0.792 816
No LRU Compiled Method Reclamation Support

0.49 0.98 856
Fast 0.438 0.752 856
Fastest 0.422 0.718 856

C.12 perm
language/configuration run compile space
Optimized C 0.11 2.8 2400
Smalltalk-80 1.456
T (normal) 1.16 2.1 3600
T (integer only) 0.28 1 1300
Normal SELF 0.203 1.207 1320
No Splitting (Not Lazy) 0.44 22.8 39876
No Splitting (Lazy) 0.243 1.467 1884
Local Reluctant Splitting (Not Lazy) 0.288 4.642 7332
Local Reluctant Splitting (Lazy) 0.203 1.207 1320
Global Reluctant Splitting (Not Lazy) 0.211 3.459 5448
Global Reluctant Splitting (Lazy) 0.178 1.272 1368
Divided No Splitting (Not Lazy) 0.278 9.662 20312
Divided No Splitting (Lazy) 0.244 1.496 1884
Divided Local Reluctant Splitting (Not Lazy)

0.234 7.276 13672
Divided Local Reluctant Splitting (Lazy) 0.203 1.217 1320
Divided Global Reluctant Splitting (Not Lazy)

0.21 14.0 21952
Divided Global Reluctant Splitting (Lazy) 0.178 1.272 1368
Eager Splitting (Not Lazy) 0.203 27.787 39232
Eager Splitting (Lazy) 0.179 20.801 25156
Eager Splitting and Tail Merging (Not Lazy)

0.204 15.126 22704
Eager Splitting and Tail Merging (Lazy) 0.311 9.759 12016
Eager Splitting and Requirements Analysis (Not Lazy)

0.224 9.076 14684
Eager Splitting and Requirements Analysis (Lazy)

0.178 2.582 1372
Type Predict for Vectors (with Local Splitting)

0.203 1.217 1320
Type Predict for Vectors (with Global Splitting)

0.178 1.282 1368
Vectors Are More Common (with Local Splitting)

0.204 1.206 1320
Without Inlining 22.427 2.523 1368
Without In-Line Caching 0.204 1.216 1320
Without Compile-Time Lookup Caching 0.204 1.226 3504
Without Customization 2.911 2.059 1320
Without Value-Based Type Analysis 0.562 1.468 11440
Without Range Analysis 0.215 2.075 2784
Without Type Prediction 3.795 1.535 1320
Without Deferred Block Creation 4.252 3.198 1320
Without Exposed Block Analysis 0.625 6.195 2356
Without CSE 0.221 1.129 5368
Without CSE of Constants 0.219 1.201 6580
Without CSE of Arithmetic Operations 0.206 1.204 2104
Without CSE of Memory References 0.203 1.127 1176
Without CSE of Memory Cell Type Information

0.203 1.207 1360
Without CSE of Memory Cell Array Bounds Checking

0.204 1.206 1328
Without Eliminating Unneeded Computations

0.205 1.385 1128
Without Delay Slot Filling 0.237 1.153 1320
No Integer Type Tests 0.194 1.216 1320
No Boolean Type Tests 0.204 1.216 1320
No Overflow Checking 0.2 1.21 1492
No Array Bounds Checking 0.197 1.193 1272
No Block Zapping 0.203 1.187 1304
Early Block Zapping 0.203 1.257 1268
Late Block Zapping 0.203 1.207 1320
No Primitive Failure Checking 0.203 1.207 1264
No Debugger-Visible Names 0.203 1.207 1212
No Interrupt Checking at Calls 0.198 1.202 1320
No Interrupt Checking at _Restarts 0.201 1.089 1280
No LRU Compiled Method Reclamation Support

0.193 1.217 1264
Fast 0.19 1.03 1316
Fastest 0.17 0.97 1320
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C.13 towers
language/configuration run compile space
Optimized C 0.191 3.7 3100
Smalltalk-80 1.927
T (normal) 0.73 3.4 6500
T (integer only) 0.36 2.3 5900
Normal SELF 0.399 2.061 4024
No Splitting (Not Lazy) 0.583 11.507 30260
No Splitting (Lazy) 0.426 2.084 4440
Local Reluctant Splitting (Not Lazy) 0.565 5.915 16124
Local Reluctant Splitting (Lazy) 0.399 2.061 4024
Global Reluctant Splitting (Not Lazy) 0.484 18.016 34256
Global Reluctant Splitting (Lazy) 0.382 2.178 4176
Divided No Splitting (Not Lazy) 0.449 10.541 31008
Divided No Splitting (Lazy) 0.43 2.08 4440
Divided Local Reluctant Splitting (Not Lazy)

0.436 9.474 25760
Divided Local Reluctant Splitting (Lazy) 0.399 2.061 4024
Divided Global Reluctant Splitting (Not Lazy)

0.415 16.615 37748
Divided Global Reluctant Splitting (Lazy) 0.382 2.178 4176
Eager Splitting (Not Lazy) 0.394 20.786 50072
Eager Splitting (Lazy) 0.38 8.86 15128
Eager Splitting and Tail Merging (Not Lazy)

0.396 13.834 33236
Eager Splitting and Tail Merging (Lazy) 0.381 5.929 9996
Eager Splitting and Requirements Analysis (Not Lazy)

0.417 15.883 31456
Eager Splitting and Requirements Analysis (Lazy)

0.42 7.35 6224
Type Predict for Vectors (with Local Splitting)

0.4 2.06 4024
Type Predict for Vectors (with Global Splitting)

0.382 2.168 4176
Vectors Are More Common (with Local Splitting)

0.399 2.061 4024
Without Inlining 9.633 3.397 4176
Without In-Line Caching 0.399 2.061 4024
Without Compile-Time Lookup Caching 0.399 2.111 7280
Without Customization 4.163 3.037 4024
Without Value-Based Type Analysis 0.635 2.385 16032
Without Range Analysis 0.403 2.537 5788
Without Type Prediction 5.188 2.222 4024
Without Deferred Block Creation 3.998 4.092 4024
Without Exposed Block Analysis 0.399 3.391 6016
Without CSE 0.426 1.844 8548
Without CSE of Constants 0.407 2.023 6492
Without CSE of Arithmetic Operations 0.4 2.05 4816
Without CSE of Memory References 0.418 1.892 3984
Without CSE of Memory Cell Type Information

0.405 2.065 4080
Without CSE of Memory Cell Array Bounds Checking

0.399 2.051 4048
Without Eliminating Unneeded Computations

0.404 2.076 3904
Without Delay Slot Filling 0.454 1.966 4128
No Integer Type Tests 0.374 2.016 4024
No Boolean Type Tests 0.399 2.071 4032
No Overflow Checking 0.396 2.044 4596
No Array Bounds Checking 0.386 2.034 3560
No Block Zapping 0.399 2.021 3992
Early Block Zapping 0.399 2.101 3628
Late Block Zapping 0.399 2.061 4024
No Primitive Failure Checking 0.402 1.998 3912
No Debugger-Visible Names 0.399 2.041 3908
No Interrupt Checking at Calls 0.393 2.037 4024
No Interrupt Checking at _Restarts 0.399 1.971 3904
No LRU Compiled Method Reclamation Support

0.388 2.062 3796
Fast 0.387 1.863 4020
Fastest 0.344 1.696 4024

C.14 queens
language/configuration run compile space
Optimized C 0.092 3.1 2500
Smalltalk-80 0.8219
T (normal) 0.64 3.4 5200
T (integer only) 0.24 1.6 1700
Normal SELF 0.174 3.116 4860
No Splitting (Not Lazy) 0.41 32.38 78500
No Splitting (Lazy) 0.229 2.941 5092
Local Reluctant Splitting (Not Lazy) 0.294 31.956 63244
Local Reluctant Splitting (Lazy) 0.174 3.116 4860
Global Reluctant Splitting (Not Lazy)
Global Reluctant Splitting (Lazy) 0.171 2.289 3576
Divided No Splitting (Not Lazy) 0.273 45.077 96248
Divided No Splitting (Lazy) 0.23 2.96 5092
Divided Local Reluctant Splitting (Not Lazy)

0.214 48.726 90740
Divided Local Reluctant Splitting (Lazy) 0.174 3.126 4860
Divided Global Reluctant Splitting (Not Lazy)

0.209 41.031 71936
Divided Global Reluctant Splitting (Lazy) 0.172 2.298 3576
Eager Splitting (Not Lazy)
Eager Splitting (Lazy) 0.16 10.11 13160
Eager Splitting and Tail Merging (Not Lazy)

0.198 47.982 92256
Eager Splitting and Tail Merging (Lazy) 0.159 5.321 6932
Eager Splitting and Requirements Analysis (Not Lazy)

Eager Splitting and Requirements Analysis (Lazy)

Type Predict for Vectors (with Local Splitting)
0.173 3.137 4860

Type Predict for Vectors (with Global Splitting)
0.172 2.298 3576

Vectors Are More Common (with Local Splitting)
0.174 3.126 4860

Without Inlining 19.996 3.594 3576
Without In-Line Caching 0.175 3.125 4860
Without Compile-Time Lookup Caching 0.174 3.276 10780
Without Customization 1.628 4.992 4860
Without Value-Based Type Analysis 0.49 4.17 16060
Without Range Analysis 0.174 3.256 8572
Without Type Prediction 4.307 3.483 4860
Without Deferred Block Creation 3.212 5.808 4860
Without Exposed Block Analysis 0.291 6.879 8672
Without CSE 0.179 2.841 11344
Without CSE of Constants 0.178 3.022 13184
Without CSE of Arithmetic Operations 0.177 3.113 5268
Without CSE of Memory References 0.173 3.017 5120
Without CSE of Memory Cell Type Information

0.174 3.126 5180
Without CSE of Memory Cell Array Bounds Checking

0.174 3.116 5076
Without Eliminating Unneeded Computations

0.174 3.466 4748
Without Delay Slot Filling 0.213 3.027 4860
No Integer Type Tests 0.174 3.076 4748
No Boolean Type Tests 0.167 3.043 4860
No Overflow Checking 0.168 3.022 5388
No Array Bounds Checking 0.164 3.016 4660
No Block Zapping 0.173 3.107 4836
Early Block Zapping 0.174 3.206 4808
Late Block Zapping 0.174 3.116 4860
No Primitive Failure Checking 0.175 3.105 4764
No Debugger-Visible Names 0.174 3.096 2788
No Interrupt Checking at Calls 0.173 3.117 4464
No Interrupt Checking at _Restarts 0.163 2.027 4364
No LRU Compiled Method Reclamation Support

0.173 3.127 4260
Fast 0.162 1.918 4860
Fastest 0.137 1.743 4860
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C.15 intmm
language/configuration run compile space
Optimized C 0.278 2.9 2500
Smalltalk-80 2.788
T (normal) 2.5 3 5400
T (integer only) 0.9 1.5 2100
Normal SELF 0.723 1.987 2496
No Splitting (Not Lazy) 0.94 52.76 85436
No Splitting (Lazy) 0.77 1.99 2824
Local Reluctant Splitting (Not Lazy) 0.788 18.732 29640
Local Reluctant Splitting (Lazy) 0.723 1.987 2496
Global Reluctant Splitting (Not Lazy) 0.752 14.328 32248
Global Reluctant Splitting (Lazy) 0.725 1.995 2508
Divided No Splitting (Not Lazy) 0.795 42.055 72972
Divided No Splitting (Lazy) 0.786 1.984 2824
Divided Local Reluctant Splitting (Not Lazy)

0.746 31.034 48436
Divided Local Reluctant Splitting (Lazy) 0.724 1.966 2496
Divided Global Reluctant Splitting (Not Lazy)

0.749 28.351 46752
Divided Global Reluctant Splitting (Lazy) 0.724 1.996 2508
Eager Splitting (Not Lazy) 0.738 72.432 108444
Eager Splitting (Lazy) 0.73 45.75 62632
Eager Splitting and Tail Merging (Not Lazy)

0.744 35.706 54696
Eager Splitting and Tail Merging (Lazy) 0.728 22.732 31548
Eager Splitting and Requirements Analysis (Not Lazy)

0.757 45.983 60576
Eager Splitting and Requirements Analysis (Lazy)

0.724 4.096 2516
Type Predict for Vectors (with Local Splitting)

0.582 3.928 4444
Type Predict for Vectors (with Global Splitting)

0.571 4.679 6372
Vectors Are More Common (with Local Splitting)

0.582 4.648 4996
Without Inlining 25.486 2.064 6372
Without In-Line Caching 0.725 1.985 4996
Without Compile-Time Lookup Caching 0.724 2.016 6620
Without Customization 3.578 5.502 4444
Without Value-Based Type Analysis 1.131 2.259 9360
Without Range Analysis 0.762 4.158 3436
Without Type Prediction 0.864 2.106 2496
Without Deferred Block Creation 4.866 4.024 2496
Without Exposed Block Analysis 0.934 8.926 3588
Without CSE 0.725 1.925 6608
Without CSE of Constants 0.725 1.975 12500
Without CSE of Arithmetic Operations 0.724 1.956 4856
Without CSE of Memory References 0.724 1.946 2508
Without CSE of Memory Cell Type Information

0.724 1.986 2496
Without CSE of Memory Cell Array Bounds Checking

0.724 1.966 2496
Without Eliminating Unneeded Computations

0.729 2.001 2504
Without Delay Slot Filling 0.819 1.901 2496
No Integer Type Tests 0.699 1.951 2496
No Boolean Type Tests 0.725 1.995 2496
No Overflow Checking 0.72 1.93 2876
No Array Bounds Checking 0.682 1.968 2328
No Block Zapping 0.724 2.006 2448
Early Block Zapping 0.725 2.085 2356
Late Block Zapping 0.723 1.987 2496
No Primitive Failure Checking 0.711 1.929 2304
No Debugger-Visible Names 0.725 1.955 2292
No Interrupt Checking at Calls 0.707 1.943 2496
No Interrupt Checking at _Restarts 0.716 1.814 2356
No LRU Compiled Method Reclamation Support

0.69 1.98 2416
Fast 0.681 1.719 2496
Fastest 0.596 1.564 2496

C.16 quick
language/configuration run compile space
Optimized C 0.13 3 2800
Smalltalk-80 1.276
T (normal) 1.545 3.4 5800
T (integer only) 0.65 1.7 2700
Normal SELF 0.289 2.371 3604
No Splitting (Not Lazy) 0.568 20.922 48408
No Splitting (Lazy) 0.356 2.184 3980
Local Reluctant Splitting (Not Lazy) 0.428 15.962 33740
Local Reluctant Splitting (Lazy) 0.289 2.371 3604
Global Reluctant Splitting (Not Lazy)
Global Reluctant Splitting (Lazy) 0.283 2.917 3796
Divided No Splitting (Not Lazy) 0.462 40.998 91292
Divided No Splitting (Lazy) 0.357 2.193 3980
Divided Local Reluctant Splitting (Not Lazy)

0.365 38.435 75676
Divided Local Reluctant Splitting (Lazy) 0.29 2.37 3604
Divided Global Reluctant Splitting (Not Lazy)

Divided Global Reluctant Splitting (Lazy) 0.282 2.778 3796
Eager Splitting (Not Lazy)
Eager Splitting (Lazy)
Eager Splitting and Tail Merging (Not Lazy)

Eager Splitting and Tail Merging (Lazy)
Eager Splitting and Requirements Analysis (Not Lazy)

Eager Splitting and Requirements Analysis (Lazy)

Type Predict for Vectors (with Local Splitting)
0.29 2.36 3604

Type Predict for Vectors (with Global Splitting)
0.282 2.768 3796

Vectors Are More Common (with Local Splitting)
0.29 2.37 3604

Without Inlining 29.753 3.797 3796
Without In-Line Caching 0.294 2.376 3604
Without Compile-Time Lookup Caching 0.294 2.486 9280
Without Customization 2.506 4.284 3604
Without Value-Based Type Analysis 0.657 3.463 17148
Without Range Analysis 0.304 2.736 8716
Without Type Prediction 4.006 3.404 3604
Without Deferred Block Creation 4.449 4.551 3608
Without Exposed Block Analysis 0.449 5.261 7692
Without CSE 0.281 2.199 8888
Without CSE of Constants 0.276 2.304 9808
Without CSE of Arithmetic Operations 0.29 2.34 4400
Without CSE of Memory References 0.294 2.316 3640
Without CSE of Memory Cell Type Information

0.291 2.389 3476
Without CSE of Memory Cell Array Bounds Checking

0.291 2.369 3604
Without Eliminating Unneeded Computations

0.296 2.394 3748
Without Delay Slot Filling 0.341 2.269 3676
No Integer Type Tests 0.279 2.311 3604
No Boolean Type Tests 0.294 2.376 3624
No Overflow Checking 0.289 2.331 4032
No Array Bounds Checking 0.262 2.318 3212
No Block Zapping 0.29 2.31 3576
Early Block Zapping 0.29 2.41 3428
Late Block Zapping 0.289 2.371 3604
No Primitive Failure Checking 0.287 2.333 3496
No Debugger-Visible Names 0.29 2.38 2948
No Interrupt Checking at Calls 0.289 2.351 3604
No Interrupt Checking at _Restarts 0.262 2.088 3508
No LRU Compiled Method Reclamation Support

0.288 2.362 3312
Fast 0.259 1.961 3556
Fastest 0.218 1.782 3568
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C.17 bubble
language/configuration run compile space
Optimized C 0.195 2.9 2700
Smalltalk-80 2.83
T (normal) 1 2.7 4700
T (integer only) 0.34 1.3 1900
Normal SELF 0.271 1.669 2428
No Splitting (Not Lazy) 0.849 49.191 113356
No Splitting (Lazy) 0.375 1.615 2752
Local Reluctant Splitting (Not Lazy) 0.486 5.364 10780
Local Reluctant Splitting (Lazy) 0.271 1.669 2428
Global Reluctant Splitting (Not Lazy) 0.439 6.651 12952
Global Reluctant Splitting (Lazy) 0.272 1.808 2572
Divided No Splitting (Not Lazy) 0.407 44.173 105364
Divided No Splitting (Lazy) 0.375 1.615 2752
Divided Local Reluctant Splitting (Not Lazy)

0.325 8.025 15544
Divided Local Reluctant Splitting (Lazy) 0.272 1.668 2428
Divided Global Reluctant Splitting (Not Lazy)

0.325 9.595 18012
Divided Global Reluctant Splitting (Lazy) 0.272 1.818 2572
Eager Splitting (Not Lazy) 0.291 19.319 38568
Eager Splitting (Lazy) 0.268 6.222 9616
Eager Splitting and Tail Merging (Not Lazy)

0.292 10.088 19984
Eager Splitting and Tail Merging (Lazy) 0.268 3.602 5400
Eager Splitting and Requirements Analysis (Not Lazy)

0.357 61.083 114656
Eager Splitting and Requirements Analysis (Lazy)

0.275 3.835 2852
Type Predict for Vectors (with Local Splitting)

0.271 1.669 2428
Type Predict for Vectors (with Global Splitting)

0.272 1.808 2572
Vectors Are More Common (with Local Splitting)

0.272 1.668 2428
Without Inlining 37.954 3.416 2572
Without In-Line Caching 0.272 1.678 2428
Without Compile-Time Lookup Caching 0.272 1.748 6836
Without Customization 6.37 3.69 2428
Without Value-Based Type Analysis 0.865 2.095 14764
Without Range Analysis 0.28 2.67 5376
Without Type Prediction 5.832 2.128 2428
Without Deferred Block Creation 8.735 4.985 2428
Without Exposed Block Analysis 0.404 4.296 4384
Without CSE 0.409 1.621 6496
Without CSE of Constants 0.279 1.651 7060
Without CSE of Arithmetic Operations 0.338 1.692 3648
Without CSE of Memory References 0.366 1.664 2856
Without CSE of Memory Cell Type Information

0.319 1.711 2444
Without CSE of Memory Cell Array Bounds Checking

0.28 1.69 2564
Without Eliminating Unneeded Computations

0.282 1.688 2748
Without Delay Slot Filling 0.353 1.597 2576
No Integer Type Tests 0.249 1.621 2476
No Boolean Type Tests 0.272 1.688 2464
No Overflow Checking 0.271 1.659 2716
No Array Bounds Checking 0.229 1.641 2188
No Block Zapping 0.273 1.607 2404
Early Block Zapping 0.271 1.709 2292
Late Block Zapping 0.271 1.669 2428
No Primitive Failure Checking 0.272 1.638 2348
No Debugger-Visible Names 0.272 1.668 2144
No Interrupt Checking at Calls 0.272 1.658 2428
No Interrupt Checking at _Restarts 0.257 1.543 2368
No LRU Compiled Method Reclamation Support

0.272 1.678 2276
Fast 0.256 1.444 2380
Fastest 0.191 1.289 2388

C.18 tree
language/configuration run compile space
Optimized C 0.869 3.9 3300
Smalltalk-80 1.658
T (normal) 1.25 3.5 5800
T (integer only) 0.96 2.4 3600
Normal SELF 1.114 1.566 3260
No Splitting (Not Lazy) 1.333 13.057 29736
No Splitting (Lazy) 1.205 1.555 3672
Local Reluctant Splitting (Not Lazy) 1.164 4.676 10624
Local Reluctant Splitting (Lazy) 1.114 1.566 3260
Global Reluctant Splitting (Not Lazy) 1.232 5.618 12792
Global Reluctant Splitting (Lazy) 1.116 1.604 3272
Divided No Splitting (Not Lazy) 1.274 14.456 33260
Divided No Splitting (Lazy) 1.233 1.557 3672
Divided Local Reluctant Splitting (Not Lazy)

1.16 7.4 16184
Divided Local Reluctant Splitting (Lazy) 1.114 1.576 3260
Divided Global Reluctant Splitting (Not Lazy)

1.242 8.438 18344
Divided Global Reluctant Splitting (Lazy) 1.114 1.606 3272
Eager Splitting (Not Lazy) 1.231 17.169 37792
Eager Splitting (Lazy) 1.199 5.131 10092
Eager Splitting and Tail Merging (Not Lazy)

1.215 8.385 18148
Eager Splitting and Tail Merging (Lazy) 1.117 2.593 4436
Eager Splitting and Requirements Analysis (Not Lazy)

1.231 23.489 41184
Eager Splitting and Requirements Analysis (Lazy)

1.196 4.024 4328
Type Predict for Vectors (with Local Splitting)

1.114 1.576 3260
Type Predict for Vectors (with Global Splitting)

1.116 1.594 3272
Vectors Are More Common (with Local Splitting)

1.115 1.575 3260
Without Inlining 22.771 2.529 3272
Without In-Line Caching 1.124 1.576 3260
Without Compile-Time Lookup Caching 1.127 1.603 8024
Without Customization 2.004 3.096 3260
Without Value-Based Type Analysis 1.324 1.846 16632
Without Range Analysis 1.12 2.18 7548
Without Type Prediction 12.748 1.762 3260
Without Deferred Block Creation 6.801 1.399 3260
Without Exposed Block Analysis 1.213 2.767 4628
Without CSE 1.12 1.52 6512
Without CSE of Constants 1.116 1.544 5408
Without CSE of Arithmetic Operations 1.115 1.575 4116
Without CSE of Memory References 1.119 1.561 3524
Without CSE of Memory Cell Type Information

1.116 1.594 3344
Without CSE of Memory Cell Array Bounds Checking

1.115 1.575 3260
Without Eliminating Unneeded Computations

1.137 1.583 3412
Without Delay Slot Filling 1.197 1.513 3344
No Integer Type Tests 1.092 1.538 3260
No Boolean Type Tests 1.124 1.566 3280
No Overflow Checking 1.115 1.545 3768
No Array Bounds Checking 1.114 1.576 2988
No Block Zapping 1.116 1.584 3220
Early Block Zapping 1.115 1.645 3176
Late Block Zapping 1.114 1.566 3260
No Primitive Failure Checking 1.113 1.547 3124
No Debugger-Visible Names 1.116 1.564 3212
No Interrupt Checking at Calls 1.106 1.544 3160
No Interrupt Checking at _Restarts 1.115 1.525 3200
No LRU Compiled Method Reclamation Support

1.095 1.555 3260
Fast 1.094 1.456 3260
Fastest 1.142 1.268 3260
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C.19 oo-perm
language/configuration run compile space
Optimized C 0.11 2.8 2400
Smalltalk-80 1.381
T (normal) 1.16 2.1 3600
T (integer only) 0.28 1 1300
Normal SELF 0.2 1.82 2040
No Splitting (Not Lazy) 0.419 30.081 54536
No Splitting (Lazy) 0.24 2.44 3168
Local Reluctant Splitting (Not Lazy) 0.285 6.365 10400
Local Reluctant Splitting (Lazy) 0.2 1.82 2040
Global Reluctant Splitting (Not Lazy) 0.217 5.483 8280
Global Reluctant Splitting (Lazy) 0.182 1.948 2136
Divided No Splitting (Not Lazy) 0.279 18.181 37672
Divided No Splitting (Lazy) 0.241 2.459 3168
Divided Local Reluctant Splitting (Not Lazy)

0.235 13.495 24372
Divided Local Reluctant Splitting (Lazy) 0.201 1.829 2040
Divided Global Reluctant Splitting (Not Lazy)

0.216 23.724 39156
Divided Global Reluctant Splitting (Lazy) 0.182 1.958 2136
Eager Splitting (Not Lazy) 0.21 41.19 60072
Eager Splitting (Lazy) 0.185 25.415 29152
Eager Splitting and Tail Merging (Not Lazy)

0.331 21.779 33284
Eager Splitting and Tail Merging (Lazy) 0.184 10.936 13024
Eager Splitting and Requirements Analysis (Not Lazy)

0.241 16.519 26340
Eager Splitting and Requirements Analysis (Lazy)

0.183 4.067 2132
Type Predict for Vectors (with Local Splitting)

0.201 1.809 2040
Type Predict for Vectors (with Global Splitting)

0.183 1.947 2136
Vectors Are More Common (with Local Splitting)

0.201 1.819 2040
Without Inlining 22.891 2.929 2136
Without In-Line Caching 0.201 1.829 2040
Without Compile-Time Lookup Caching 0.201 1.849 4236
Without Customization 2.891 2.409 2040
Without Value-Based Type Analysis 0.729 2.461 12664
Without Range Analysis 0.204 2.676 3924
Without Type Prediction 3.769 1.961 2040
Without Deferred Block Creation 4.256 5.334 2040
Without Exposed Block Analysis 0.625 7.605 4308
Without CSE 0.248 1.732 8908
Without CSE of Constants 0.322 1.818 8344
Without CSE of Arithmetic Operations 0.203 1.807 2828
Without CSE of Memory References 0.243 1.767 2064
Without CSE of Memory Cell Type Information

0.201 1.819 2040
Without CSE of Memory Cell Array Bounds Checking

0.21 1.87 2056
Without Eliminating Unneeded Computations

0.21 2.38 2048
Without Delay Slot Filling 0.239 1.751 2040
No Integer Type Tests 0.192 1.808 2184
No Boolean Type Tests 0.202 1.818 2040
No Overflow Checking 0.198 1.812 2304
No Array Bounds Checking 0.181 1.739 1944
No Block Zapping 0.201 1.819 2016
Early Block Zapping 0.201 1.899 1988
Late Block Zapping 0.2 1.82 2040
No Primitive Failure Checking 0.201 1.819 1952
No Debugger-Visible Names 0.201 1.819 1892
No Interrupt Checking at Calls 0.196 1.804 2040
No Interrupt Checking at _Restarts 0.197 1.663 1980
No LRU Compiled Method Reclamation Support

0.19 1.82 1760
Fast 0.187 1.573 2036
Fastest 0.154 1.456 2040

C.20 oo-towers
language/configuration run compile space
Optimized C 0.191 3.7 3100
Smalltalk-80 1.032
T (normal) 0.73 3.4 6500
T (integer only) 0.36 2.3 5900
Normal SELF 0.223 1.077 2588
No Splitting (Not Lazy) 0.325 5.135 14612
No Splitting (Lazy) 0.247 1.173 2952
Local Reluctant Splitting (Not Lazy) 0.269 3.811 10624
Local Reluctant Splitting (Lazy) 0.223 1.077 2588
Global Reluctant Splitting (Not Lazy) 0.263 6.837 16204
Global Reluctant Splitting (Lazy) 0.231 1.089 2612
Divided No Splitting (Not Lazy) 0.258 6.322 19244
Divided No Splitting (Lazy) 0.246 1.194 2952
Divided Local Reluctant Splitting (Not Lazy)

0.24 5.8 16420
Divided Local Reluctant Splitting (Lazy) 0.223 1.087 2588
Divided Global Reluctant Splitting (Not Lazy)

0.249 6.521 17064
Divided Global Reluctant Splitting (Lazy) 0.231 1.089 2612
Eager Splitting (Not Lazy) 0.244 9.816 26940
Eager Splitting (Lazy) 0.236 2.434 5484
Eager Splitting and Tail Merging (Not Lazy)

0.24 6.18 17180
Eager Splitting and Tail Merging (Lazy) 0.25 1.44 3240
Eager Splitting and Requirements Analysis (Not Lazy)

0.258 7.192 18456
Eager Splitting and Requirements Analysis (Lazy)

0.23 1.72 2660
Type Predict for Vectors (with Local Splitting)

0.223 1.077 2588
Type Predict for Vectors (with Global Splitting)

0.231 1.089 2612
Vectors Are More Common (with Local Splitting)

0.223 1.067 2588
Without Inlining 3.578 2.472 2612
Without In-Line Caching 0.223 1.077 2588
Without Compile-Time Lookup Caching 0.224 1.076 4500
Without Customization 1.52 1.55 2588
Without Value-Based Type Analysis 0.324 1.316 10780
Without Range Analysis 0.223 1.237 3812
Without Type Prediction 1.943 1.227 2588
Without Deferred Block Creation 1.625 1.685 2588
Without Exposed Block Analysis 0.224 1.536 3536
Without CSE 0.231 0.979 4656
Without CSE of Constants 0.225 1.055 3416
Without CSE of Arithmetic Operations 0.224 1.076 2872
Without CSE of Memory References 0.227 1.003 2464
Without CSE of Memory Cell Type Information

0.223 1.067 2624
Without CSE of Memory Cell Array Bounds Checking

0.223 1.077 2612
Without Eliminating Unneeded Computations

0.225 1.085 2400
Without Delay Slot Filling 0.253 1.027 2588
No Integer Type Tests 0.209 1.051 2588
No Boolean Type Tests 0.224 1.076 2592
No Overflow Checking 0.221 1.049 3000
No Array Bounds Checking 0.218 1.072 2340
No Block Zapping 0.223 1.077 2556
Early Block Zapping 0.223 1.107 2352
Late Block Zapping 0.223 1.077 2588
No Primitive Failure Checking 0.263 1.027 2476
No Debugger-Visible Names 0.223 1.067 2572
No Interrupt Checking at Calls 0.217 1.053 2588
No Interrupt Checking at _Restarts 0.223 1.047 2476
No LRU Compiled Method Reclamation Support

0.211 1.069 2524
Fast 0.211 0.999 2584
Fastest 0.191 0.889 2588
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C.21 oo-queens
language/configuration run compile space
Optimized C 0.092 3.1 2500
Smalltalk-80 0.72
T (normal) 0.64 3.4 5200
T (integer only) 0.24 1.6 1700
Normal SELF 0.147 3.973 4524
No Splitting (Not Lazy) 0.316 38.254 71652
No Splitting (Lazy) 0.187 3.803 4896
Local Reluctant Splitting (Not Lazy) 0.179 16.311 25100
Local Reluctant Splitting (Lazy) 0.147 3.973 4524
Global Reluctant Splitting (Not Lazy)
Global Reluctant Splitting (Lazy) 0.141 3.119 3696
Divided No Splitting (Not Lazy) 0.204 50.326 86244
Divided No Splitting (Lazy) 0.186 3.814 4896
Divided Local Reluctant Splitting (Not Lazy)

0.168 52.092 78468
Divided Local Reluctant Splitting (Lazy) 0.147 4.003 4524
Divided Global Reluctant Splitting (Not Lazy)

0.164 37.206 57100
Divided Global Reluctant Splitting (Lazy) 0.141 3.159 3696
Eager Splitting (Not Lazy)
Eager Splitting (Lazy) 0.132 13.338 13312
Eager Splitting and Tail Merging (Not Lazy)

0.172 53.808 78940
Eager Splitting and Tail Merging (Lazy) 0.133 8.097 8572
Eager Splitting and Requirements Analysis (Not Lazy)

Eager Splitting and Requirements Analysis (Lazy)

Type Predict for Vectors (with Local Splitting)
0.147 3.973 4524

Type Predict for Vectors (with Global Splitting)
0.141 3.109 3696

Vectors Are More Common (with Local Splitting)
0.147 3.973 4524

Without Inlining 21.28 2.67 3696
Without In-Line Caching 0.147 3.993 4524
Without Compile-Time Lookup Caching 0.147 4.213 9244
Without Customization 1.529 5.271 4524
Without Value-Based Type Analysis 0.314 2.396 11964
Without Range Analysis 0.156 4.664 3500
Without Type Prediction 3.418 2.152 4524
Without Deferred Block Creation 3.153 7.427 4524
Without Exposed Block Analysis 0.345 8.135 3496
Without CSE 0.144 3.646 13136
Without CSE of Constants 0.145 3.935 11964
Without CSE of Arithmetic Operations 0.151 3.999 5484
Without CSE of Memory References 0.145 3.765 4496
Without CSE of Memory Cell Type Information

0.147 3.973 4668
Without CSE of Memory Cell Array Bounds Checking

0.145 3.865 4692
Without Eliminating Unneeded Computations

0.148 4.572 4232
Without Delay Slot Filling 0.18 3.83 4524
No Integer Type Tests 0.147 3.923 4232
No Boolean Type Tests 0.137 3.873 4524
No Overflow Checking 0.143 3.837 5108
No Array Bounds Checking 0.142 3.838 4356
No Block Zapping 0.147 4.013 4500
Early Block Zapping 0.147 4.263 4472
Late Block Zapping 0.147 3.973 4524
No Primitive Failure Checking 0.147 3.983 4428
No Debugger-Visible Names 0.148 3.952 4176
No Interrupt Checking at Calls 0.146 3.944 4148
No Interrupt Checking at _Restarts 0.141 3.889 4100
No LRU Compiled Method Reclamation Support

0.145 3.975 4164
Fast 0.139 3.681 4524
Fastest 0.12 3.21 4524

C.22 oo-intmm
language/configuration run compile space
Optimized C 0.278 2.9 2500
Smalltalk-80 4.638
T (normal) 2.5 3 5400
T (integer only) 0.9 1.5 2100
Normal SELF 0.691 2.239 2728
No Splitting (Not Lazy) 0.878 56.312 85744
No Splitting (Lazy) 0.72 2.83 3680
Local Reluctant Splitting (Not Lazy) 0.752 20.318 29908
Local Reluctant Splitting (Lazy) 0.691 2.239 2728
Global Reluctant Splitting (Not Lazy) 0.729 11.801 20104
Global Reluctant Splitting (Lazy) 0.69 2.25 2740
Divided No Splitting (Not Lazy) 0.746 53.534 83716
Divided No Splitting (Lazy) 0.729 2.851 3680
Divided Local Reluctant Splitting (Not Lazy)

0.902 35.178 51796
Divided Local Reluctant Splitting (Lazy) 0.69 2.23 2728
Divided Global Reluctant Splitting (Not Lazy)

0.717 35.473 56084
Divided Global Reluctant Splitting (Lazy) 0.69 2.24 2740
Eager Splitting (Not Lazy) 0.716 80.774 113524
Eager Splitting (Lazy) 0.695 49.565 63048
Eager Splitting and Tail Merging (Not Lazy)

0.71 39.82 57368
Eager Splitting and Tail Merging (Lazy) 0.696 24.614 31852
Eager Splitting and Requirements Analysis (Not Lazy)

0.738 47.472 64480
Eager Splitting and Requirements Analysis (Lazy)

0.694 4.936 2748
Type Predict for Vectors (with Local Splitting)

0.577 4.223 4380
Type Predict for Vectors (with Global Splitting)

0.518 4.862 6268
Vectors Are More Common (with Local Splitting)

0.508 4.672 4608
Without Inlining 27.52 2.34 6268
Without In-Line Caching 0.691 2.239 4608
Without Compile-Time Lookup Caching 0.691 2.259 5724
Without Customization 6.772 2.218 4380
Without Value-Based Type Analysis 1.203 2.517 10840
Without Range Analysis 0.702 4.638 3524
Without Type Prediction 0.798 2.352 2728
Without Deferred Block Creation 4.252 5.128 2728
Without Exposed Block Analysis 1.185 9.775 3864
Without CSE 0.704 2.126 8224
Without CSE of Constants 0.69 2.23 12884
Without CSE of Arithmetic Operations 0.69 2.21 5024
Without CSE of Memory References 0.703 2.167 2748
Without CSE of Memory Cell Type Information

0.689 2.231 2728
Without CSE of Memory Cell Array Bounds Checking

0.691 2.219 2728
Without Eliminating Unneeded Computations

0.697 2.253 2744
Without Delay Slot Filling 0.785 2.135 2728
No Integer Type Tests 0.665 2.205 2728
No Boolean Type Tests 0.691 2.239 2728
No Overflow Checking 0.687 2.183 3164
No Array Bounds Checking 0.64 2.18 2584
No Block Zapping 0.69 2.27 2672
Early Block Zapping 0.691 2.349 2588
Late Block Zapping 0.691 2.239 2728
No Primitive Failure Checking 0.677 2.173 2504
No Debugger-Visible Names 0.692 2.198 2524
No Interrupt Checking at Calls 0.679 2.171 2728
No Interrupt Checking at _Restarts 0.691 2.039 2588
No LRU Compiled Method Reclamation Support

0.656 2.214 2568
Fast 0.648 1.942 2728
Fastest 0.555 1.775 2728
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C.23 oo-quick
language/configuration run compile space
Optimized C 0.13 3 2800
Smalltalk-80 2.705
T (normal) 1.545 3.4 5800
T (integer only) 0.65 1.7 2700
Normal SELF 0.257 2.933 3964
No Splitting (Not Lazy) 0.53 21.77 48916
No Splitting (Lazy) 0.318 2.712 4312
Local Reluctant Splitting (Not Lazy) 0.429 19.131 38632
Local Reluctant Splitting (Lazy) 0.257 2.933 3964
Global Reluctant Splitting (Not Lazy)
Global Reluctant Splitting (Lazy) 0.252 3.328 4556
Divided No Splitting (Not Lazy) 0.373 46.837 100160
Divided No Splitting (Lazy) 0.316 2.734 4312
Divided Local Reluctant Splitting (Not Lazy)

0.324 52.336 98508
Divided Local Reluctant Splitting (Lazy) 0.257 2.923 3964
Divided Global Reluctant Splitting (Not Lazy)

Divided Global Reluctant Splitting (Lazy) 0.252 3.328 4556
Eager Splitting (Not Lazy)
Eager Splitting (Lazy)
Eager Splitting and Tail Merging (Not Lazy)

Eager Splitting and Tail Merging (Lazy)
Eager Splitting and Requirements Analysis (Not Lazy)

Eager Splitting and Requirements Analysis (Lazy)

Type Predict for Vectors (with Local Splitting)
0.257 2.933 3964

Type Predict for Vectors (with Global Splitting)
0.251 3.339 4556

Vectors Are More Common (with Local Splitting)
0.258 2.942 3964

Without Inlining 30.654 3.906 4556
Without In-Line Caching 0.271 2.919 3964
Without Compile-Time Lookup Caching 0.27 3.09 8756
Without Customization 2.448 4.032 3964
Without Value-Based Type Analysis 0.734 4.326 17436
Without Range Analysis 0.262 2.838 9332
Without Type Prediction 3.884 3.986 3964
Without Deferred Block Creation 4.439 5.671 3964
Without Exposed Block Analysis 0.36 5.45 9036
Without CSE 0.289 3.381 10396
Without CSE of Constants 0.248 2.872 9632
Without CSE of Arithmetic Operations 0.257 2.883 4156
Without CSE of Memory References 0.297 3.473 5228
Without CSE of Memory Cell Type Information

0.26 3.46 3868
Without CSE of Memory Cell Array Bounds Checking

0.26 3.02 3964
Without Eliminating Unneeded Computations

0.28 2.96 5300
Without Delay Slot Filling 0.32 2.81 4656
No Integer Type Tests 0.244 2.876 4252
No Boolean Type Tests 0.277 2.933 4004
No Overflow Checking 0.255 2.895 4476
No Array Bounds Checking 0.24 2.83 3612
No Block Zapping 0.257 2.883 3932
Early Block Zapping 0.257 3.013 3736
Late Block Zapping 0.257 2.933 3964
No Primitive Failure Checking 0.254 2.866 3852
No Debugger-Visible Names 0.257 2.923 3300
No Interrupt Checking at Calls 0.256 2.914 3964
No Interrupt Checking at _Restarts 0.237 2.653 3836
No LRU Compiled Method Reclamation Support

0.255 2.925 3568
Fast 0.234 2.516 3916
Fastest 0.199 2.261 3924

C.24 oo-bubble
language/configuration run compile space
Optimized C 0.195 2.9 2700
Smalltalk-80 2.587
T (normal) 1 2.7 4700
T (integer only) 0.34 1.3 1900
Normal SELF 0.235 2.195 2644
No Splitting (Not Lazy) 0.773 63.097 98548
No Splitting (Lazy) 0.331 2.119 2924
Local Reluctant Splitting (Not Lazy) 0.435 8.785 14836
Local Reluctant Splitting (Lazy) 0.235 2.195 2644
Global Reluctant Splitting (Not Lazy) 0.394 58.526 104520
Global Reluctant Splitting (Lazy) 0.235 2.475 3188
Divided No Splitting (Not Lazy) 0.368 57.582 96232
Divided No Splitting (Lazy) 0.332 2.128 2924
Divided Local Reluctant Splitting (Not Lazy)

0.289 21.091 35112
Divided Local Reluctant Splitting (Lazy) 0.235 2.195 2644
Divided Global Reluctant Splitting (Not Lazy)

Divided Global Reluctant Splitting (Lazy) 0.235 2.475 3188
Eager Splitting (Not Lazy)
Eager Splitting (Lazy) 0.258 7.832 7816
Eager Splitting and Tail Merging (Not Lazy)

0.258 28.252 44788
Eager Splitting and Tail Merging (Lazy) 0.231 4.449 4108
Eager Splitting and Requirements Analysis (Not Lazy)

Eager Splitting and Requirements Analysis (Lazy)
0.238 6.842 3452

Type Predict for Vectors (with Local Splitting)
0.235 2.185 2644

Type Predict for Vectors (with Global Splitting)
0.234 2.466 3188

Vectors Are More Common (with Local Splitting)
0.235 2.205 2644

Without Inlining 48.937 4.183 3188
Without In-Line Caching 0.235 2.195 2644
Without Compile-Time Lookup Caching 0.235 2.275 5816
Without Customization 5.831 3.259 2644
Without Value-Based Type Analysis 1.162 3.018 15400
Without Range Analysis 0.243 2.617 5556
Without Type Prediction 5.71 2.6 2644
Without Deferred Block Creation 9.001 6.209 2644
Without Exposed Block Analysis 0.501 6.759 5312
Without CSE 0.444 2.736 7540
Without CSE of Constants 0.235 2.165 8528
Without CSE of Arithmetic Operations 0.293 2.177 3084
Without CSE of Memory References 0.424 2.786 4060
Without CSE of Memory Cell Type Information

0.275 2.735 2640
Without CSE of Memory Cell Array Bounds Checking

0.259 2.311 2704
Without Eliminating Unneeded Computations

0.245 2.215 4032
Without Delay Slot Filling 0.319 2.101 3360
No Integer Type Tests 0.211 2.149 2964
No Boolean Type Tests 0.235 2.195 2692
No Overflow Checking 0.234 2.166 2980
No Array Bounds Checking 0.197 2.143 2476
No Block Zapping 0.235 2.155 2612
Early Block Zapping 0.234 2.276 2452
Late Block Zapping 0.235 2.195 2644
No Primitive Failure Checking 0.235 2.145 2532
No Debugger-Visible Names 0.235 2.185 2404
No Interrupt Checking at Calls 0.234 2.166 2644
No Interrupt Checking at _Restarts 0.219 2.011 2544
No LRU Compiled Method Reclamation Support

0.235 2.205 2524
Fast 0.219 1.881 2596
Fastest 0.157 1.693 2604
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C.25 oo-tree
language/configuration run compile space
Optimized C 0.869 3.9 3300
Smalltalk-80 1.101
T (normal) 1.25 3.5 5800
T (integer only) 0.96 2.4 3600
Normal SELF 0.874 2.476 4016
No Splitting (Not Lazy) 1.143 15.377 32460
No Splitting (Lazy) 0.984 2.406 4696
Local Reluctant Splitting (Not Lazy) 0.95 9.01 17260
Local Reluctant Splitting (Lazy) 0.874 2.476 4016
Global Reluctant Splitting (Not Lazy) 1.03 51.22 106636
Global Reluctant Splitting (Lazy) 0.876 2.754 4428
Divided No Splitting (Not Lazy) 1.041 21.419 45016
Divided No Splitting (Lazy) 0.984 2.406 4696
Divided Local Reluctant Splitting (Not Lazy)

0.937 21.693 38604
Divided Local Reluctant Splitting (Lazy) 0.875 2.485 4016
Divided Global Reluctant Splitting (Not Lazy)

Divided Global Reluctant Splitting (Lazy) 0.875 2.745 4428
Eager Splitting (Not Lazy)
Eager Splitting (Lazy) 0.951 8.459 10776
Eager Splitting and Tail Merging (Not Lazy)

0.977 29.053 48396
Eager Splitting and Tail Merging (Lazy) 0.883 4.887 5984
Eager Splitting and Requirements Analysis (Not Lazy)

0.983 35.827 55792
Eager Splitting and Requirements Analysis (Lazy)

1.0 7.18 5304
Type Predict for Vectors (with Local Splitting)

0.874 2.496 4016
Type Predict for Vectors (with Global Splitting)

0.876 2.754 4428
Vectors Are More Common (with Local Splitting)

0.875 2.485 4016
Without Inlining 26.367 3.253 4428
Without In-Line Caching 0.877 2.493 4016
Without Compile-Time Lookup Caching 0.876 2.554 9676
Without Customization 2.263 3.307 4016
Without Value-Based Type Analysis 1.181 3.159 19936
Without Range Analysis 0.878 2.642 8200
Without Type Prediction 8.63 2.71 4016
Without Deferred Block Creation 7.612 2.598 4016
Without Exposed Block Analysis 2.255 3.445 6940
Without CSE 0.903 2.907 9148
Without CSE of Constants 0.875 2.435 6368
Without CSE of Arithmetic Operations 0.875 2.475 4372
Without CSE of Memory References 0.903 3.007 5312
Without CSE of Memory Cell Type Information

0.88 3.03 4024
Without CSE of Memory Cell Array Bounds Checking

0.878 2.552 4016
Without Eliminating Unneeded Computations

0.883 2.517 5288
Without Delay Slot Filling 0.939 2.391 4708
No Integer Type Tests 0.862 2.438 4256
No Boolean Type Tests 0.877 2.503 4056
No Overflow Checking 0.873 2.467 4616
No Array Bounds Checking 0.885 2.475 3656
No Block Zapping 0.875 2.465 3960
Early Block Zapping 0.875 2.585 3876
Late Block Zapping 0.874 2.476 4016
No Primitive Failure Checking 0.871 2.459 3848
No Debugger-Visible Names 0.876 2.484 3956
No Interrupt Checking at Calls 0.866 2.454 3980
No Interrupt Checking at _Restarts 0.875 2.425 3916
No LRU Compiled Method Reclamation Support

0.856 2.494 3968
Fast 0.853 2.287 4000
Fastest 0.905 2.045 4016

C.26 puzzle
language/configuration run compile space
Optimized C 0.69 9.1 5000
Smalltalk-80 16.058
T (normal) 4.5 24 32000
T (integer only) 3.1 9.1 9900
Normal SELF 3.107 19.293 16688
No Splitting (Not Lazy)
No Splitting (Lazy) 3.538 19.392 19348
Local Reluctant Splitting (Not Lazy)
Local Reluctant Splitting (Lazy) 3.107 19.293 16688
Global Reluctant Splitting (Not Lazy)
Global Reluctant Splitting (Lazy) 3.115 19.785 17788
Divided No Splitting (Not Lazy)
Divided No Splitting (Lazy) 3.535 19.465 19348
Divided Local Reluctant Splitting (Not Lazy)

Divided Local Reluctant Splitting (Lazy) 3.11 19.3 16688
Divided Global Reluctant Splitting (Not Lazy)

Divided Global Reluctant Splitting (Lazy) 3.116 19.784 17788
Eager Splitting (Not Lazy)
Eager Splitting (Lazy)
Eager Splitting and Tail Merging (Not Lazy)

Eager Splitting and Tail Merging (Lazy)
Eager Splitting and Requirements Analysis (Not Lazy)

Eager Splitting and Requirements Analysis (Lazy)

Type Predict for Vectors (with Local Splitting)
2.394 21.566 19232

Type Predict for Vectors (with Global Splitting)
2.398 23.522 22144

Vectors Are More Common (with Local Splitting)
2.431 19.889 17532

Without Inlining 506.631 14.849 22144
Without In-Line Caching 3.102 19.438 17532
Without Compile-Time Lookup Caching 3.099 19.911 33832
Without Customization 21.77 25.59 19232
Without Value-Based Type Analysis 5.139 19.541 46652
Without Range Analysis 3.111 71.609 19688
Without Type Prediction 21.622 18.878 16688
Without Deferred Block Creation 39.234 29.576 16688
Without Exposed Block Analysis 4.453 256.907 20968
Without CSE 3.029 18.681 61728
Without CSE of Constants 3.026 19.334 299328
Without CSE of Arithmetic Operations 3.111 19.069 55240
Without CSE of Memory References 3.107 18.983 16536
Without CSE of Memory Cell Type Information

3.105 19.335 16616
Without CSE of Memory Cell Array Bounds Checking

3.104 19.236 16688
Without Eliminating Unneeded Computations

3.228 20.162 16616
Without Delay Slot Filling 3.773 18.587 16688
No Integer Type Tests 2.995 19.345 16688
No Boolean Type Tests 2.917 19.363 16696
No Overflow Checking 3.066 18.844 19308
No Array Bounds Checking 2.851 19.189 16088
No Block Zapping 3.11 19.3 16512
Early Block Zapping 3.108 20.242 16520
Late Block Zapping 3.107 19.293 16688
No Primitive Failure Checking 3.11 19.3 16000
No Debugger-Visible Names 3.107 19.203 14460
No Interrupt Checking at Calls 3.009 19.161 16144
No Interrupt Checking at _Restarts 2.989 17.341 15428
No LRU Compiled Method Reclamation Support

2.917 19.363 16084
Fast 2.767 16.433 16664
Fastest 2.21 15.41 16688
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C.27 richards
language/configuration run compile space
Optimized C 0.73 13.4 6100
Smalltalk-80 7.74
T (normal) 9.8 11.5 18000
T (integer only) 8.1 13.7 18000
Normal SELF 2.27 4.39 11592
No Splitting (Not Lazy) 2.86 14.52 36996
No Splitting (Lazy) 2.536 4.274 12724
Local Reluctant Splitting (Not Lazy) 2.462 9.658 24872
Local Reluctant Splitting (Lazy) 2.27 4.39 11592
Global Reluctant Splitting (Not Lazy) 2.652 14.268 35980
Global Reluctant Splitting (Lazy) 2.292 5.388 11992
Divided No Splitting (Not Lazy) 2.692 18.538 46820
Divided No Splitting (Lazy) 2.521 4.369 12724
Divided Local Reluctant Splitting (Not Lazy)

2.306 13.664 33996
Divided Local Reluctant Splitting (Lazy) 2.282 4.368 11592
Divided Global Reluctant Splitting (Not Lazy)

2.348 16.872 37908
Divided Global Reluctant Splitting (Lazy) 2.269 5.411 11992
Eager Splitting (Not Lazy) 2.551 135.679 266876
Eager Splitting (Lazy) 2.311 84.189 166132
Eager Splitting and Tail Merging (Not Lazy)

2.504 89.966 80984
Eager Splitting and Tail Merging (Lazy) 2.446 75.254 45056
Eager Splitting and Requirements Analysis (Not Lazy)

2.465 26.685 53748
Eager Splitting and Requirements Analysis (Lazy)

2.544 8.846 15288
Type Predict for Vectors (with Local Splitting)

2.156 4.914 12452
Type Predict for Vectors (with Global Splitting)

2.308 6.122 13240
Vectors Are More Common (with Local Splitting)

2.204 4.886 12168
Without Inlining 127.488 10.342 13240
Without In-Line Caching 2.182 4.438 12168
Without Compile-Time Lookup Caching 2.185 4.465 25100
Without Customization 5.829 6.521 12452
Without Value-Based Type Analysis 2.747 4.953 41052
Without Range Analysis 2.286 4.934 16236
Without Type Prediction 39.554 6.846 11592
Without Deferred Block Creation 11.461 9.039 11592
Without Exposed Block Analysis 2.625 5.925 14680
Without CSE 2.372 3.948 17228
Without CSE of Constants 2.403 4.187 14176
Without CSE of Arithmetic Operations 2.284 4.366 12436
Without CSE of Memory References 2.34 4.14 11896
Without CSE of Memory Cell Type Information

2.235 4.395 11848
Without CSE of Memory Cell Array Bounds Checking

2.285 4.345 11592
Without Eliminating Unneeded Computations

2.365 4.965 11640
Without Delay Slot Filling 2.59 4.27 11688
No Integer Type Tests 2.209 4.371 11592
No Boolean Type Tests 2.184 4.396 11592
No Overflow Checking 2.209 4.341 13440
No Array Bounds Checking 2.185 4.385 11136
No Block Zapping 2.301 4.419 11408
Early Block Zapping 2.325 4.495 11536
Late Block Zapping 2.27 4.39 11592
No Primitive Failure Checking 2.269 4.361 10984
No Debugger-Visible Names 2.27 4.34 11520
No Interrupt Checking at Calls 2.135 4.275 11340
No Interrupt Checking at _Restarts 2.313 4.307 11400
No LRU Compiled Method Reclamation Support

2.11 4.34 11536
Fast 2.178 4.162 11592
Fastest 1.914 3.946 11592

C.28 parser
language/configuration run compile space
Optimized C
Smalltalk-80
T (normal)
T (integer only)
Normal SELF 0.076 55.714 128960
No Splitting (Not Lazy) 0.106 150.324 332840
No Splitting (Lazy) 0.077 51.763 133016
Local Reluctant Splitting (Not Lazy) 0.089 107.941 242624
Local Reluctant Splitting (Lazy) 0.076 55.714 128960
Global Reluctant Splitting (Not Lazy)
Global Reluctant Splitting (Lazy) 0.083 82.177 192784
Divided No Splitting (Not Lazy)
Divided No Splitting (Lazy) 0.078 51.962 133016
Divided Local Reluctant Splitting (Not Lazy)

Divided Local Reluctant Splitting (Lazy) 0.076 55.714 128960
Divided Global Reluctant Splitting (Not Lazy)

Divided Global Reluctant Splitting (Lazy) 0.084 81.996 192784
Eager Splitting (Not Lazy)
Eager Splitting (Lazy)
Eager Splitting and Tail Merging (Not Lazy)

Eager Splitting and Tail Merging (Lazy)
Eager Splitting and Requirements Analysis (Not Lazy)

Eager Splitting and Requirements Analysis (Lazy)

Type Predict for Vectors (with Local Splitting)
0.079 62.851 137436

Type Predict for Vectors (with Global Splitting)
0.081 101.259 218952

Vectors Are More Common (with Local Splitting)
0.089 105.881 232424

Without Inlining 0.939 18.481 218952
Without In-Line Caching 0.08 56.02 232424
Without Compile-Time Lookup Caching 0.076 57.674 107380
Without Customization 0.241 33.849 137436
Without Value-Based Type Analysis 0.113 51.217 100620
Without Range Analysis 0.077 59.213 118016
Without Type Prediction 0.198 36.722 128960
Without Deferred Block Creation 0.193 61.817 128960
Without Exposed Block Analysis 0.102 78.208 134760
Without CSE 0.082 45.728 174484
Without CSE of Constants 0.076 54.094 163308
Without CSE of Arithmetic Operations 0.075 55.475 134556
Without CSE of Memory References 0.078 47.242 120152
Without CSE of Memory Cell Type Information

0.079 49.511 131584
Without CSE of Memory Cell Array Bounds Checking

0.076 55.264 128960
Without Eliminating Unneeded Computations

0.077 58.933 118072
Without Delay Slot Filling 0.082 53.788 116248
No Integer Type Tests 0.075 55.215 128960
No Boolean Type Tests 0.075 55.665 128960
No Overflow Checking 0.076 55.384 147852
No Array Bounds Checking 0.076 55.654 124832
No Block Zapping 0.078 51.082 127328
Early Block Zapping 0.078 54.942 128176
Late Block Zapping 0.076 55.714 128960
No Primitive Failure Checking 0.076 55.554 125396
No Debugger-Visible Names 0.076 54.914 129752
No Interrupt Checking at Calls 0.073 54.687 126504
No Interrupt Checking at _Restarts 0.075 54.565 127564
No LRU Compiled Method Reclamation Support

0.073 55.497 128612
Fast 0.074 49.256 120748
Fastest 0.073 46.267 124492
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C.29 primMaker
language/configuration run compile space
Optimized C
Smalltalk-80
T (normal)
T (integer only)
Normal SELF 1.18 147.89 432396
No Splitting (Not Lazy) 1.373 411.817 1023888
No Splitting (Lazy) 1.288 142.932 444412
Local Reluctant Splitting (Not Lazy) 1.394 294.986 762780
Local Reluctant Splitting (Lazy) 1.18 147.89 432396
Global Reluctant Splitting (Not Lazy)
Global Reluctant Splitting (Lazy) 1.208 156.972 450364
Divided No Splitting (Not Lazy) 1.248 320.122 889716
Divided No Splitting (Lazy) 1.242 143.498 444412
Divided Local Reluctant Splitting (Not Lazy)

1.225 326.075 843484
Divided Local Reluctant Splitting (Lazy) 1.197 148.073 432396
Divided Global Reluctant Splitting (Not Lazy)

Divided Global Reluctant Splitting (Lazy)
1.213 157.357 450364

Eager Splitting (Not Lazy)
Eager Splitting (Lazy)
Eager Splitting and Tail Merging (Not Lazy)

Eager Splitting and Tail Merging (Lazy)
Eager Splitting and Requirements Analysis (Not Lazy)

Eager Splitting and Requirements Analysis (Lazy)

Type Predict for Vectors (with Local Splitting)
1.22 154.14 439524

Type Predict for Vectors (with Global Splitting)
1.219 217.421 488652

Vectors Are More Common (with Local Splitting)
1.244 171.226 476800

Without Inlining 11.686 79.764 488652
Without In-Line Caching 1.378 148.582 476800
Without Compile-Time Lookup Caching 1.159 153.041 470020
Without Customization 3.612 144.428 439524
Without Value-Based Type Analysis 1.355 163.325 438896
Without Range Analysis 1.216 157.014 494596
Without Type Prediction 3.402 150.098 432396
Without Deferred Block Creation 4.381 177.569 432396
Without Exposed Block Analysis 2.265 208.335 504336
Without CSE 1.198 134.562 603940
Without CSE of Constants 1.199 143.081 515156
Without CSE of Arithmetic Operations 1.198 147.322 446040
Without CSE of Memory References 1.192 140.118 437744
Without CSE of Memory Cell Type Information

1.214 152.256 437336
Without CSE of Memory Cell Array Bounds Checking

1.198 145.322 432308
Without Eliminating Unneeded Computations

1.18 153.59 432812
Without Delay Slot Filling 1.261 142.329 436124
No Integer Type Tests 1.173 147.827 432444
No Boolean Type Tests 1.138 147.342 432396
No Overflow Checking 1.18 147.51 499932
No Array Bounds Checking 1.197 146.793 428012
No Block Zapping 1.197 138.643 426060
Early Block Zapping 1.193 142.917 431108
Late Block Zapping 1.18 147.89 432396
No Primitive Failure Checking 1.213 147.727 409012
No Debugger-Visible Names 1.182 145.728 428872
No Interrupt Checking at Calls 1.153 143.857 423536
No Interrupt Checking at _Restarts 1.199 145.241 430732
No LRU Compiled Method Reclamation Support

1.175 146.835 429084
Fast 1.163 134.767 424096
Fastest 1.125 127.905 426700

C.30 pathCache
language/configuration run compile space
Optimized C
Smalltalk-80
T (normal)
T (integer only)
Normal SELF 23.587 6.173 17644
No Splitting (Not Lazy) 24.04 18.33 47688
No Splitting (Lazy) 23.958 5.942 18372
Local Reluctant Splitting (Not Lazy) 23.218 15.332 37936
Local Reluctant Splitting (Lazy) 23.587 6.173 17644
Global Reluctant Splitting (Not Lazy) 23.139 47.361 81280
Global Reluctant Splitting (Lazy) 23.233 6.687 19408
Divided No Splitting (Not Lazy) 23.335 15.125 43460
Divided No Splitting (Lazy) 23.636 5.944 18372
Divided Local Reluctant Splitting (Not Lazy)

23.158 15.382 40320
Divided Local Reluctant Splitting (Lazy) 23.687 6.163 17644
Divided Global Reluctant Splitting (Not Lazy)

23.587 23.183 49076
Divided Global Reluctant Splitting (Lazy)

23.021 6.679 19408
Eager Splitting (Not Lazy) 26.783 47.807 101272
Eager Splitting (Lazy) 25.493 29.667 58940
Eager Splitting and Tail Merging (Not Lazy)

23.291 23.749 54044
Eager Splitting and Tail Merging (Lazy) 23.104 15.606 33796
Eager Splitting and Requirements Analysis (Not Lazy)

23.101 23.399 47320
Eager Splitting and Requirements Analysis (Lazy)

24.058 12.482 21116
Type Predict for Vectors (with Local Splitting)

23.449 6.501 18296
Type Predict for Vectors (with Global Splitting)

23.705 7.335 20468
Vectors Are More Common (with Local Splitting)

23.358 6.272 17704
Without Inlining 96.002 7.498 20468
Without In-Line Caching 11.488 6.002 17704
Without Compile-Time Lookup Caching 24.051 6.099 27196
Without Customization 32.775 7.785 18296
Without Value-Based Type Analysis 25.653 6.607 37576
Without Range Analysis 23.133 6.717 20132
Without Type Prediction 35.611 6.079 17644
Without Deferred Block Creation 40.83 7.49 17644
Without Exposed Block Analysis 24.604 9.396 20932
Without CSE 23.364 5.706 23300
Without CSE of Constants 23.855 6.045 24624
Without CSE of Arithmetic Operations 23.699 6.141 18376
Without CSE of Memory References 23.897 5.863 17984
Without CSE of Memory Cell Type Information

23.776 6.174 17740
Without CSE of Memory Cell Array Bounds Checking

23.701 6.109 17644
Without Eliminating Unneeded Computations

24.474 6.796 17884
Without Delay Slot Filling 24.296 5.794 17684
No Integer Type Tests 23.434 5.966 17644
No Boolean Type Tests 23.721 5.999 17644
No Overflow Checking 23.368 6.112 20524
No Array Bounds Checking 23.116 6.124 17228
No Block Zapping 23.227 6.063 17060
Early Block Zapping 23.576 6.244 15952
Late Block Zapping 23.587 6.173 17644
No Primitive Failure Checking 23.676 5.914 15452
No Debugger-Visible Names 23.314 6.106 17448
No Interrupt Checking at Calls 23.126 5.784 17528
No Interrupt Checking at _Restarts 23.618 5.972 17432
No LRU Compiled Method Reclamation Support

23.912 6.058 17516
Fast 23.468 5.662 17476
Fastest
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