New Directions in Traffic Measurement and Accounting

Cristian Estan Computer Science and Engineering Department University of California, San Diego 9500 Gilman Drive La Jolla, CA 92093-0114 cestan@cs.ucsd.edu

ABSTRACT

Accurate network traffic measurement is required for accounting, bandwidth provisioning and detecting DoS attacks. These applications see the traffic as a collection of flows they need to measure. As link speeds and the number of flows increase, keeping a counter for each flow is too expensive (using SRAM) or slow (using DRAM). The current state-of-the-art methods (Cisco's sampled NetFlow) which log periodically sampled packets are slow, inaccurate and resource-intensive. Previous work showed that at different granularities a small number of "heavy hitters" accounts for a large share of traffic. Our paper introduces a paradigm shift for measurement by concentrating only on large flows — those above some threshold such as 0.1% of the link capacity.

We propose two novel and scalable algorithms for identifying the large flows: sample and hold and multistage fil*ters*, which take a constant number of memory references per packet and use a small amount of memory. If M is the available memory, we show analytically that the errors of our new algorithms are proportional to 1/M; by contrast, the error of an algorithm based on classical sampling is proportional to $1/\sqrt{M}$, thus providing much less accuracy for the same amount of memory. We also describe further optimizations such as early removal and conservative update that further improve the accuracy of our algorithms, as measured on real traffic traces, by an order of magnitude. Our schemes allow a new form of accounting called threshold accounting in which only flows above a threshold are charged by usage while the rest are charged a fixed fee. Threshold accounting generalizes usage-based and duration based pricing.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network Operations—traffic measurement, identifying large flows

SIGCOMM'02, August 19-23, 2002, Pittsburgh, Pennsylvania, USA.

George Varghese Computer Science and Engineering Department University of California, San Diego 9500 Gilman Drive La Jolla, CA 92093-0114 varghese@cs.ucsd.edu

General Terms

Algorithms, Measurement

Keywords

Network traffic measurement, usage based accounting, scalability, on-line algorithms, identifying large flows

1. INTRODUCTION

If we're keeping per-flow state, we have a scaling problem, and we'll be tracking millions of ants to track a few elephants. — Van Jacobson, End-to-end Research meeting, June 2000.

Measuring and monitoring network traffic is required to manage today's complex Internet backbones [9, 4]. Such measurement information is essential for short-term monitoring (e.g., detecting hot spots and denial-of-service attacks [14]), longer term traffic engineering (e.g., rerouting traffic and upgrading selected links[9]), and accounting (e.g., to support usage based pricing[5]).

The standard approach advocated by the Real-Time Flow Measurement (RTFM) [3] Working Group of the IETF is to instrument routers to add flow meters at either all or selected input links. Today's routers offer tools such as NetFlow [16] that give flow level information about traffic.

The main problem with the flow measurement approach is its lack of *scalability*. Measurements on MCI traces as early as 1997 [22] showed over 250,000 concurrent flows. More recent measurements in [8] using a variety of traces show the number of flows between end host pairs in a one hour period to be as high as 1.7 million (Fix-West) and 0.8 million (MCI). Even with aggregation, the number of flows in 1 hour in the Fix-West used by [8] was as large as 0.5 million.

It can be feasible for flow measurement devices to keep up with the increases in the number of flows (with or without aggregation) only if they use the cheapest memories: DRAMs. Updating per-packet counters in DRAM is already impossible with today's line speeds; further, the gap between DRAM speeds (improving 7-9% per year) and link speeds (improving 100% per year) is only increasing. Cisco Net-Flow [16], which keeps its flow counters in DRAM, solves this problem by sampling: only sampled packets result in updates. But NetFlow sampling has problems of its own (as we show later) since it affects measurement accuracy.

Despite the large number of flows, a common observation found in many measurement studies (e.g., [9, 8]) is that a

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

Copyright 2002 ACM 1-58113-570-X/02/0008 ...\$5.00.

small percentage of flows accounts for a large percentage of the traffic. [8] shows that 9% of the flows between AS pairs account for 90% of the byte traffic between all AS pairs.

For many applications, knowledge of these large flows is probably sufficient. [8, 17] suggest achieving scalable differentiated services by providing selective treatment only to a small number of large flows. [9] underlines the importance of knowledge of "heavy hitters" for decisions about network upgrades and peering. [5] proposes a usage sensitive billing scheme that relies on exact knowledge of the traffic of large flows but only samples of the traffic of small flows.

We conclude that it is infeasible to accurately measure all flows on high speed links, but many applications can benefit from accurately measuring only the few large flows. One can easily keep counters for a few large flows using a small amount of fast memory (SRAM). However, how does the device know which flows to track? If one keeps state for *all* flows to identify the *few* large flows, our purpose is defeated.

Thus a reasonable goal is to devise an algorithm that identifies large flows using memory that is only a small constant larger than is needed to describe the large flows in the first place. This is the central question addressed by this paper. We present two algorithms that provably identify large flows using such a small amount of state. Further, our algorithms use only a few memory references, making them suitable for use in high speed routers.

1.1 Problem definition

A flow is generically defined by an optional *pattern* (which defines which packets we will focus on) and an *identifier* (values for a set of specified header fields). We can also generalize by allowing the identifier to be a *function* of the header field values (e.g., using prefixes instead of addresses based on a mapping using route tables). Flow definitions vary with applications: for example for a traffic matrix one could use a wildcard pattern and identifiers defined by distinct source and destination network numbers. On the other hand, for identifying TCP denial of service attacks one could use a pattern that focuses on TCP packets and use the destination IP address as a flow identifier.

Large flows are defined as those that send more than a given threshold (say 0.1% of the link capacity) during a given measurement interval (1 second, 1 minute or even 1 hour). The technical report [6] gives alternative definitions and algorithms based on defining large flows via leaky bucket descriptors.

An ideal algorithm reports, at the end of the measurement interval, the flow IDs and sizes of all flows that exceeded the threshold. A less ideal algorithm can fail in three ways: it can omit some large flows, it can wrongly add some small flows to the report, and can give an inaccurate estimate of the traffic of some large flows. We call the large flows that evade detection *false negatives*, and the small flows that are wrongly included *false positives*.

The minimum amount of memory required by an ideal algorithm is the inverse of the threshold; for example, there can be at most 1000 flows that use more than 0.1% of the link. We will measure the performance of an algorithm by four metrics: first, its memory compared to that of an ideal algorithm; second, the algorithm's probability of false negatives; third, the algorithm's probability of false positives; and fourth, the expected error in traffic estimates.

1.2 Motivation

Our algorithms for identifying large flows can potentially be used to solve many problems. Since different applications define flows by different header fields, we need a separate instance of our algorithms for each of them. Applications we envisage include:

- Scalable Threshold Accounting: The two poles of pricing for network traffic are usage based (e.g., a price per byte for each flow) or duration based (e.g., a fixed price based on duration). While usage-based pricing [13, 20] has been shown to improve overall utility, usage based pricing in its most complete form is not scalable because we cannot track all flows at high speeds. We suggest, instead, a scheme where we measure all aggregates that are above z% of the link; such traffic is subject to usage based pricing, while the remaining traffic is subject to duration based pricing. By varying z from 0 to 100, we can move from usage based pricing to duration based pricing. More importantly, for reasonably small values of z (say 1%) threshold accounting may offer a compromise between that is scalable and yet offers almost the same utility as usage based pricing. [1] offers experimental evidence based on the INDEX experiment that such threshold pricing could be attractive to both users and ISPs.¹.
- Real-time Traffic Monitoring: Many ISPs monitor backbones for hot-spots in order to identify large traffic aggregates that can be rerouted (using MPLS tunnels or routes through optical switches) to reduce congestion. Also, ISPs may consider sudden increases in the traffic sent to certain destinations (the victims) to indicate an ongoing attack. [14] proposes a mechanism that reacts as soon as attacks are detected, but does not give a mechanism to detect ongoing attacks. For both traffic monitoring and attack detection, it may suffice to focus on large flows.
- Scalable Queue Management: At a smaller time scale, scheduling mechanisms seeking to approximate max-min fairness need to detect and penalize flows sending above their fair rate. Keeping per flow state only for these flows [10, 17] can improve fairness with small memory. We do not address this application further, except to note that our techniques may be useful for such problems. For example, [17] uses classical sampling techniques to estimate the sending rates of large flows. Given that our algorithms have better accuracy than classical sampling, it may be possible to provide increased fairness for the same amount of memory by applying our algorithms.

The rest of the paper is organized as follows. We describe related work in Section 2, describe our main ideas in Section 3, and provide a theoretical analysis in Section 4. We theoretically compare our algorithms with NetFlow in Section 5. After showing how to dimension our algorithms in Section 6, we describe experimental evaluation on traces in Section 7. We end with implementation issues in Section 8 and conclusions in Section 9.

¹Besides [1], a brief reference to a similar idea can be found in [20]. However, neither paper proposes a fast mechanism to implement the idea.

2. RELATED WORK

The primary tool used for flow level measurement by IP backbone operators is Cisco NetFlow [16]. NetFlow keeps per flow state in a large, slow DRAM. Basic NetFlow has two problems: i) Processing Overhead: updating the DRAM slows down the forwarding rate; ii) Collection Overhead: the amount of data generated by NetFlow can overwhelm the collection server or its network connection. For example [9] reports loss rates of up to 90% using basic NetFlow.

The processing overhead can be alleviated using sampling: per-flow counters are incremented *only* for sampled packets. We show later that sampling introduces considerable inaccuracy in the estimate; this is not a problem for measurements over long periods (errors average out) and if applications do not need exact data. However, we will show that sampling does not work well for applications that require true lower bounds on customer traffic (e.g., it may be infeasible to charge customers based on estimates that are *larger* than actual usage) and for applications that require accurate data at small time scales (e.g., billing systems that charge higher during congested periods).

The data collection overhead can be alleviated by having the router aggregate flows (e.g., by source and destination AS numbers) as directed by a manager. However, [8] shows that even the number of aggregated flows is very large. For example, collecting packet headers for Code Red traffic on a class A network [15] produced 0.5 Gbytes per hour of compressed NetFlow data and aggregation reduced this data only by a factor of 4. Techniques described in [5] can be used to reduce the collection overhead at the cost of further errors. However, it can considerably *simplify* router processing to only keep track of heavy-hitters (as in our paper) if that is what the application needs.

Many papers address the problem of mapping the traffic of large IP networks. [9] deals with correlating measurements taken at various points to find spatial traffic distributions; the techniques in our paper can be used to complement their methods. [4] describes a mechanism for identifying packet trajectories in the backbone, that is not focused towards estimating the traffic between various networks.

Bloom filters [2] and stochastic fair blue [10] use similar but different techniques to our parallel multistage filters to compute very different metrics (set membership and drop probability). Gibbons and Matias [11] consider synopsis data structures that use small amounts of memory to approximately summarize large databases. They define counting samples that are similar to our sample and hold algorithm. However, we compute a different metric, need to take into account packet lengths and have to size memory in a different way. In [7], Fang et al look at efficient ways of answering *iceberg queries*, or counting the number of appearances of popular items in a database. Their multi-stage algorithm is similar to multistage filters that we propose. However, they use sampling as a front end before the filter and use multiple passes. Thus their final algorithms and analyses are very different from ours. For instance, their analysis is limited to Zipf distributions while our analysis holds for all traffic distributions.

3. OUR SOLUTION

Because our algorithms use an amount of memory that is a constant factor larger than the (relatively small) number of large flows, our algorithms can be implemented using onchip or off-chip SRAM to store flow state. We assume that at each packet arrival we can afford to look up a flow ID in the SRAM, update the counter(s) in the entry or allocate a new entry if there is no entry associated with the current packet.

The biggest problem is to identify the large flows. Two approaches suggest themselves. First, when a packet arrives with a flow ID not in the flow memory, we could make place for the new flow by evicting the flow with the smallest measured traffic (i.e., smallest counter). While this works well on traces, it is possible to provide counter examples where a large flow is not measured because it keeps being expelled from the flow memory before its counter becomes large enough, even using an LRU replacement policy as in [21].

A second approach is to use classical random sampling. Random sampling (similar to sampled NetFlow except using a smaller amount of SRAM) provably identifies large flows. We show, however, in Table 1 that random sampling introduces a very high relative error in the measurement estimate that is proportional to $1/\sqrt{M}$, where M is the amount of SRAM used by the device. Thus one needs very high amounts of memory to reduce the inaccuracy to acceptable levels.

The two most important contributions of this paper are two new algorithms for identifying large flows: Sample and Hold (Section 3.1) and Multistage Filters (Section 3.2). Their performance is very similar, the main advantage of sample and hold being implementation simplicity, and the main advantage of multistage filters being higher accuracy. In contrast to random sampling, the relative errors of our two new algorithms scale with 1/M, where M is the amount of SRAM. This allows our algorithms to provide much more accurate estimates than random sampling using the same amount of memory. In Section 3.3 we present improvements that further increase the accuracy of these algorithms on traces (Section 7). We start by describing the main ideas behind these schemes.

3.1 Sample and hold

Base Idea: The simplest way to identify large flows is through sampling but with the following twist. As with ordinary sampling, we sample each packet with a probability. If a packet is sampled and the flow it belongs to has no entry in the flow memory, a new entry is created. However, after an entry is created for a flow, unlike in sampled NetFlow, we update the entry for **every** subsequent packet belonging to the flow as shown in Figure 1.

Thus once a flow is *sampled a corresponding counter is* held in a hash table in flow memory till the end of the measurement interval. While this clearly requires processing (looking up the flow entry and updating a counter) for every packet (unlike Sampled NetFlow), we will show that the reduced memory requirements allow the flow memory to be in SRAM instead of DRAM. This in turn allows the perpacket processing to scale with line speeds.

Let p be the probability with which we sample a byte. Thus the sampling probability for a packet of size s is $p_s = 1 - (1-p)^s$. This can be looked up in a precomputed table or approximated by $p_s = p * s$. Choosing a high enough value for p guarantees that flows above the threshold are very likely to be detected. Increasing p unduly can cause too many false positives (small flows filling up the flow memory). The

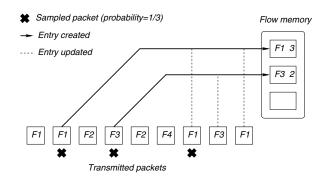


Figure 1: The leftmost packet with flow label F1 arrives first at the router. After an entry is created for a flow (solid line) the counter is updated for all its packets (dotted lines)

advantage of this scheme is that it is easy to implement and yet gives accurate measurements with very high probability.

Preliminary Analysis: The following example illustrates the method and analysis. Suppose we wish to measure the traffic sent by flows that take over 1% of the link capacity in a measurement interval. There are at most 100 such flows. Instead of making our flow memory have just 100 locations, we will allow oversampling by a factor of 100 and keep 10,000 locations. We wish to sample each byte with probability p such that the average number of samples is 10,000. Thus if C bytes can be transmitted in the measurement interval, p = 10,000/C.

For the error analysis, consider a flow F that takes 1% of the traffic. Thus F sends more than C/100 bytes. Since we are randomly sampling each byte with probability 10,000/C, the probability that F will not be in the flow memory at the end of the measurement interval (false negative) is $(1 - 10000/C)^{C/100}$ which is very close to e^{-100} . Notice that the factor of 100 in the exponent is the oversampling factor. Better still, the probability that flow F is in the flow memory after sending 5% of its traffic is, similarly, $1 - e^{-5}$ which is greater than 99% probability. Thus with 99% probability the reported traffic for flow F will be at most 5% below the actual amount sent by F.

The analysis can be generalized to arbitrary threshold values; the memory needs scale inversely with the threshold percentage and directly with the oversampling factor. Notice also that the analysis assumes that there is always space to place a sample flow not already in the memory. Setting p = 10,000/C ensures only that the *average* number of flows sampled is no more than 10,000. However, the distribution of the number of samples is binomial with a small standard deviation (square root of the mean). Thus, adding a few standard deviations to the memory estimate (e.g., a total memory size of 10,300) makes it extremely unlikely that the flow memory will ever overflow.

Compared to Sampled NetFlow our idea has three significant differences shown in Figure 2. Most importantly, we sample only to decide whether to add a flow to the memory; from that point on, we update the flow memory with every byte the flow sends. As shown in section 5 this will make our results much more accurate. Second, our sampling

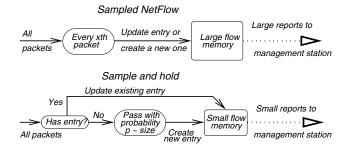


Figure 2: Sampled NetFlow counts only sampled packets, sample and hold counts all after entry created

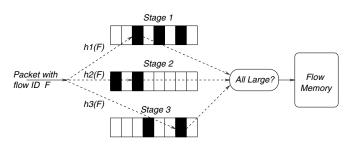


Figure 3: In a parallel multistage filter, a packet with a flow ID F is hashed using hash function h1 into a Stage 1 table, h2 into a Stage 2 table, etc. Each table entry contains a counter that is incremented by the packet size. If *all* the hashed counters are above the threshold (shown bolded), F is passed to the flow memory for individual observation.

technique avoids packet size biases unlike NetFlow which samples every x packets. Third, our technique reduces the extra resource overhead (router processing, router memory, network bandwidth) for sending large reports with many records to a management station.

3.2 Multistage filters

Base Idea: The basic multistage filter is shown in Figure 3. The building blocks are hash stages that operate in parallel. First, consider how the filter operates with only one stage. A stage is a table of counters which is indexed by a hash function computed on a packet flow ID; all counters in the table are initialized to 0 at the start of a measurement interval. When a packet comes in, a hash on its flow ID is computed and the size of the packet is added to the corresponding counter. Since all packets belonging to the same flow hash to the same counter, if a flow F sends more than threshold T, F's counter will exceed the threshold. If we add to the flow memory all packets that hash to counters of T or more, we are guaranteed to identify all the large flows (no false negatives).

Unfortunately, since the number of counters we can afford is significantly smaller than the number of flows, many flows will map to the same counter. This can cause false positives in two ways: first, small flows can map to counters that hold large flows and get added to flow memory; second, several small flows can hash to the same counter and add up to a number larger than the threshold.

To reduce this large number of false positives, we use multiple stages. Each stage (Figure 3) uses an *independent* hash function. Only the packets that map to counters of T or more at *all* stages get added to the flow memory. For example, in Figure 3, if a packet with a flow ID F arrives that hashes to counters 3,1, and 7 respectively at the three stages, F will pass the filter (counters that are over the threshold are shown darkened). On the other hand, a flow G that hashes to counters 7, 5, and 4 will not pass the filter because the second stage counter is not over the threshold. Effectively, the multiple stages attenuate the probability of false positives exponentially in the number of stages. This is shown by the following simple analysis.

Preliminary Analysis: Assume a 100 Mbytes/s link², with 100,000 flows and we want to identify the flows above 1% of the link during a one second measurement interval. Assume each stage has 1,000 buckets and a threshold of 1 Mbyte. Let's see what the probability is for a flow sending 100 Kbytes to pass the filter. For this flow to pass one stage, the other flows need to add up to 1 Mbyte - 100Kbytes = 900 Kbytes. There are at most 99,900/900=111 such buckets out of the 1,000 at each stage. Therefore, the probability of passing one stage is at most 11.1%. With 4 independent stages, the probability that a certain flow no larger than 100 Kbytes passes all 4 stages is the *product* of the individual stage probabilities which is at most $1.52 * 10^{-4}$.

Based on this analysis, we can dimension the flow memory so that it is large enough to accommodate all flows that pass the filter. The expected number of flows below 100Kbytes passing the filter is at most $100,000*15.2*10^{-4} < 16$. There can be at most 999 flows above 100Kbytes, so the number of entries we expect to accommodate all flows is at most 1,015. Section 4 has a rigorous theorem that proves a stronger bound (for this example 122 entries) that holds for any distribution of flow sizes. Note the potential scalability of the scheme. If the number of flows increases to 1 million, we simply add a fifth hash stage to get the same effect. Thus to handle 100,000 flows, requires roughly 4000 counters and a flow memory of approximately 100 memory locations, while to handle 1 million flows requires roughly 5000 counters and the same size of flow memory. This is logarithmic scaling.

The number of memory accesses per packet for a multistage filter is one read and one write per stage. If the number of stages is small, this is feasible even at high speeds by doing parallel memory accesses to each stage in a chip implementation.³ While multistage filters are more complex than sample-and-hold, they have a two important advantages. They reduce the probability of false negatives to 0 and decrease the probability of false positives, thereby reducing the size of the required flow memory.

3.2.1 The serial multistage filter

We briefly present a variant of the multistage filter called a serial multistage filter. Instead of using multiple stages in parallel, we can place them serially after each other, each stage seeing only the packets that passed the previous stage. Let d be the number of stages (the depth of the serial filter). We set a threshold of T/d for all the stages. Thus for a flow that sends T bytes, by the time the last packet is sent, the counters the flow hashes to at all d stages reach T/d, so the packet will pass to the flow memory. As with parallel filters, we have no false negatives. As with parallel filters, small flows can pass the filter only if they keep hashing to counters made large by other flows.

The analytical evaluation of serial filters is more complicated than for parallel filters. On one hand the early stages shield later stages from much of the traffic, and this contributes to stronger filtering. On the other hand the threshold used by stages is smaller (by a factor of d) and this contributes to weaker filtering. Since, as shown in Section 7, parallel filters perform better than serial filters on traces of actual traffic, the main focus in this paper will be on parallel filters.

3.3 Improvements to the basic algorithms

The improvements to our algorithms presented in this section further increase the accuracy of the measurements and reduce the memory requirements. Some of the improvements apply to both algorithms, some apply only to one of them.

3.3.1 Basic optimizations

There are a number of basic optimizations that exploit the fact that large flows often last for more than one measurement interval.

Preserving entries: Erasing the flow memory after each interval, implies that the bytes of a large flow that were sent before the flow was allocated an entry are not counted. By preserving entries of large flows across measurement intervals and only reinitializing stage counters, all long lived large flows are measured nearly exactly. To distinguish between a large flow that was identified late and a small flow that was identified by error, a conservative solution is to preserve the entries of not only the flows for which we count at least T bytes in the current interval, but also all the flows who were added in the current interval (since they may be large flows that entered late).

Early removal: Sample and hold has a larger rate of false positives than multistage filters. If we keep for one more interval all the flows that obtained a new entry, many small flows will keep their entries for two intervals. We can improve the situation by selectively removing some of the flow entries created in the current interval. The new rule for preserving entries is as follows. We define an early removal threshold R that is less then the threshold T. At the end of the measurement interval, we keep all entries whose counter is at least T and all entries that have been added during the current interval and whose counter is at least R.

Shielding: Consider large, long lived flows that go through the filter each measurement interval. Each measurement interval, the counters they hash to exceed the threshold. With shielding, traffic belonging to flows that have an entry in flow memory no longer passes through the filter (the counters in the filter are not incremented for packets with an entry), thereby reducing false positives. If we shield the filter from a large flow, many of the counters it hashes to will not reach the threshold after the first interval. This reduces the probability that a random small flow will pass the filter by hashing to counters that are large because of other flows.

 $^{^{2}}$ To simplify computation, in our examples we assume that 1Mbyte=1,000,000 bytes and 1Kbyte=1,000 bytes.

³We describe details of a preliminary OC-192 chip implementation of multistage filters in Section 8.

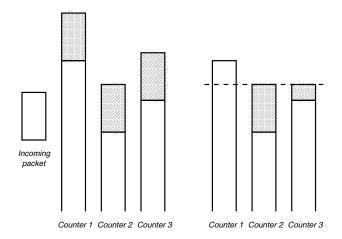


Figure 4: Conservative update: without conservative update (left) all counters are increased by the size of the incoming packet, with conservative update (right) no counter is increased to more than the size of the smallest counter plus the size of the packet

3.3.2 Conservative update of counters

We now describe an important optimization for multistage filters that improves performance by an order of magnitude. *Conservative update* reduces the number of false positives of multistage filters by two subtle changes to the rules for updating counters. In essence, we endeavour to increment counters as little as possible (thereby reducing false positives by preventing small flows from passing the filter) while still avoiding false negatives (i.e., we need to ensure that all flows that reach the threshold still pass the filter.)

The first change (Figure 4) applies only to parallel filters and only for packets that don't pass the filter. As usual, an arriving flow F is hashed to a counter at each stage. We update the smallest of the counters normally (by adding the size of the packet). However, the other counters are set to the maximum of their old value and the new value of the smallest counter. Since the amount of traffic sent by the current flow is at most the new value of the smallest counter, this change cannot introduce a false negative for the flow the packet belongs to. Since we never decrement counters, other large flows that might hash to the same counters are not prevented from passing the filter.

The second change is very simple and applies to both parallel and serial filters. When a packet passes the filter and it obtains an entry in the flow memory, no counters should be updated. This will leave the counters below the threshold. Other flows with smaller packets that hash to these counters will get less "help" in passing the filter.

4. ANALYTICAL EVALUATION OF OUR AL-GORITHMS

In this section we analytically evaluate our algorithms. We focus on two important questions:

• *How good are the results?* We use two distinct measures of the quality of the results: how many of the large flows are identified, and how accurately is their traffic estimated?

• What are the resources required by the algorithm? The key resource measure is the size of flow memory needed. A second resource measure is the number of memory references required.

In Section 4.1 we analyze our sample and hold algorithm, and in Section 4.2 we analyze multistage filters. We first analyze the basic algorithms and then examine the effect of some of the improvements presented in Section 3.3. In the next section (Section 5) we use the results of this section to analytically compare our algorithms with sampled NetFlow.

Example: We will use the following running example to give numeric instances. Assume a 100 Mbyte/s link with 100,000 flows. We want to measure all flows whose traffic is more than 1% (1 Mbyte) of link capacity in a one second measurement interval.

4.1 Sample and hold

We first define some notation we use in this section.

- *p* the probability for sampling a byte;
- s the size of a flow (in bytes);
- T the threshold for large flows;
- C the capacity of the link the number of bytes that can be sent during the *entire* measurement interval;
- O the oversampling factor defined by $p = O \cdot 1/T$;
- c the number of bytes actually counted for a flow.

4.1.1 The quality of results for sample and hold

The first measure of the quality of the results is the probability that a flow at the threshold is not identified. As presented in Section 3.1 the probability that a flow of size T is not identified is $(1-p)^T \approx e^{-O}$. An oversampling factor of 20 results in a probability of missing flows at the threshold of $2 * 10^{-9}$.

Example: For our example, p must be 1 in 50,000 bytes for an oversampling of 20. With an average packet size of 500 bytes this is roughly 1 in 100 packets.

The second measure of the quality of the results is the difference between the size of a flow s and our estimate. The number of bytes that go by before the first one gets sampled has a geometric probability distribution⁴: it is x with a probability⁵ $(1-p)^{x}p$.

Therefore E[s-c] = 1/p and $SD[s-c] = \sqrt{1-p}/p$. The best estimate for s is c + 1/p and its standard deviation is $\sqrt{1-p}/p$. If we choose to use c as an estimate for s then the error will be larger, but we never overestimate the size of the flow. In this case, the deviation from the actual value of s is $\sqrt{E[(s-c)^2]} = \sqrt{2-p}/p$. Based on this value we can also compute the relative error of a flow of size T which is $T\sqrt{2-p}/p = \sqrt{2-p}/O$.

Example: For our example, with an oversampling factor O of 20, the relative error for a flow at the threshold is 7%.

⁴We ignore for simplicity that the bytes before the first sampled byte that are in the same packet with it are also counted. Therefore the actual algorithm will be more accurate than our model.

⁵Since we focus on large flows, we ignore for simplicity the correction factor we need to apply to account for the case when the flow goes undetected (i.e. x is actually bound by the size of the flow s, but we ignore this).

4.1.2 The memory requirements for sample and hold

The size of the flow memory is determined by the number of flows identified. The actual number of sampled packets is an upper bound on the number of entries needed in the flow memory because new entries are created only for sampled packets. Assuming that the link is constantly busy, by the linearity of expectation, the expected number of sampled bytes is $p \cdot C = O \cdot C/T$.

Example: Using an oversampling of 20 requires 2,000 entries on average.

The number of sampled bytes can exceed this value. Since the number of sampled bytes has a binomial distribution, we can use the normal curve to bound with high probability the number of bytes sampled during the measurement interval. Therefore with probability 99% the actual number will be at most 2.33 standard deviations above the expected value; similarly, with probability 99.9% it will be at most 3.08 standard deviations above the expected value. The standard deviation of the number of sampled packets is $\sqrt{Cp(1-p)}$.

Example: For an oversampling of 20 and an overflow probability of 0.1% we need at most 2,147 entries.

4.1.3 The effect of preserving entries

We preserve entries across measurement intervals to improve accuracy. The probability of missing a large flow decreases because we cannot miss it if we keep its entry from the prior interval. Accuracy increases because we know the exact size of the flows whose entries we keep. To quantify these improvements we need to know the ratio of long lived flows among the large ones.

The cost of this improvement in accuracy is an increase in the size of the flow memory. We need enough memory to hold the samples from both measurement intervals⁶. Therefore the expected number of entries is bounded by $20 \cdot C/T$.

To bound with high probability the number of entries we use the normal curve and the standard deviation of the the number of sampled packets during the 2 intervals which is $\sqrt{2Cp(1-p)}$.

Example: For an oversampling of 20 and acceptable probability of overflow equal to 0.1%, the flow memory has to have at most 4,207 entries to preserve entries.

4.1.4 The effect of early removal

The effect of early removal on the proportion of false negatives depends on whether or not the entries removed early are reported. Since we believe it is more realistic that implementations will not report these entries, we will use this assumption in our analysis. Let R < T be the early removal threshold. A flow at the threshold is not reported unless one of its first T - R bytes is sampled. Therefore the probability of missing the flow is approximately $e^{-O(T-R)/T}$. If we use an early removal threshold of R = 0.2 * T, this increases the probability of missing a large flow from $2 * 10^{-9}$ to $1.1 * 10^{-7}$ with an oversampling of 20.

Early removal reduces the size of the memory required by limiting the number of entries that are preserved from the previous measurement interval. Since there can be at most C/R flows sending R bytes, the number of entries that we keep is at most C/R which can be smaller than OC/T, the bound on the expected number of sampled packets. The expected number of entries we need is C/R + OC/T.

To bound with high probability the number of entries we use the normal curve. If $R \ge T/O$ the standard deviation is given only by the randomness of the packets sampled in one interval and is $\sqrt{Cp(1-p)}$.

Example: An oversampling of 20 and R = 0.2T with overflow probability 0.1% requires 2,647 memory entries.

4.2 Multistage filters

In this section, we analyze parallel multistage filters. We only present the main results. The proofs and supporting lemmas are in [6]. We first define some new notation:

- *b* the number of buckets in a stage;
- *d* the depth of the filter (the number of stages);
- *n* the number of active flows;
- k the stage strength is the ratio of the threshold and the average size of a counter. $k = \frac{T b}{C}$, where C denotes the channel capacity as before. Intuitively, this is the factor we inflate each stage memory beyond the minimum of C/T

Example: To illustrate our results numerically, we will assume that we solve the measurement example described in Section 4 with a 4 stage filter, with 1000 buckets at each stage. The stage strength k is 10 because each stage memory has 10 times more buckets than the maximum number of flows (i.e., 100) that can cross the specified threshold of 1%.

4.2.1 The quality of results for multistage filters

As discussed in Section 3.2, multistage filters have no false negatives. The error of the traffic estimates for large flows is bounded by the threshold T since no flow can send T by tes without being entered into the flow memory. The stronger the filter, the less likely it is that the flow will be entered into the flow memory much before it reaches T. We first state an upper bound for the probability of a small flow passing the filter described in Section 3.2.

LEMMA 1. Assuming the hash functions used by different stages are independent, the probability of a flow of size s < T(1-1/k) passing a parallel multistage filter is at most $p_s \leq \left(\frac{1}{k}\frac{T}{T-s}\right)^d$.

The proof of this bound formalizes the preliminary analysis of multistage filters from Section 3.2. Note that the bound makes no assumption about the distribution of flow sizes, and thus applies for all flow distributions. The bound is tight in the sense that it is almost exact for a distribution that has $\lfloor (C-s)/(T-s) \rfloor$ flows of size (T-s) that send all their packets before the flow of size s. However, for realistic traffic mixes (e.g., if flow sizes follow a Zipf distribution), this is a very conservative bound.

Based on this lemma we obtain a lower bound for the expected error for a large flow.

THEOREM 2. The expected number of bytes of a large flow undetected by a multistage filter is bound from below by

$$E[s-c] \ge T\left(1 - \frac{d}{k(d-1)}\right) - y_{max} \tag{1}$$

where y_{max} is the maximum size of a packet.

⁶We actually also keep the older entries that are above the threshold. Since we are performing a worst case analysis we assume that there is no flow above the threshold, because if there were, many of its packets would be sampled, decreasing the number of entries required.

This bound suggests that we can significantly improve the accuracy of the estimates by adding a correction factor to the bytes actually counted. The down side to adding a correction factor is that we can overestimate some flow sizes; this may be a problem for accounting applications.

4.2.2 The memory requirements for multistage filters

We can dimension the flow memory based on bounds on the number of flows that pass the filter. Based on Lemma 1 we can compute a bound on the total number of flows expected to pass the filter.

THEOREM 3. The expected number of flows passing a parallel multistage filter is bound by

$$E[n_{pass}] \le max \left(\frac{b}{k-1}, n\left(\frac{n}{kn-b}\right)^d\right) + n\left(\frac{n}{kn-b}\right)^d$$
(2)

Example: Theorem 3 gives a bound of 121.2 flows. Using 3 stages would have resulted in a bound of 200.6 and using 5 would give 112.1. Note that when the first term dominates the max, there is not much gain in adding more stages.

In [6] we have also derived a high probability bound on the number of flows passing the filter.

Example: The probability that more than 185 flows pass the filter is at most 0.1%. Thus by increasing the flow memory from the expected size of 122 to 185 we can make overflow of the flow memory extremely improbable.

4.2.3 The effect of preserving entries and shielding

Preserving entries affects the accuracy of the results the same way as for sample and hold: long lived large flows have their traffic counted exactly after their first interval above the threshold. As with sample and hold, preserving entries basically doubles all the bounds for memory usage.

Shielding has a strong effect on filter performance, since it reduces the traffic presented to the filter. Reducing the traffic α times increases the stage strength to $k * \alpha$, which can be substituted in Theorems 2 and 3.

5. COMPARING MEASUREMENT METH-ODS

In this section we analytically compare the performance of three traffic measurement algorithms: our two new algorithms (sample and hold and multistage filters) and Sampled NetFlow. First, in Section 5.1, we compare the algorithms at the core of traffic measurement devices. For the core comparison, we assume that each of the algorithms is given the *same* amount of high speed memory and we compare their accuracy and number of memory accesses. This allows a fundamental analytical comparison of the effectiveness of each algorithm in identifying heavy-hitters.

However, in practice, it may be unfair to compare Sampled NetFlow with our algorithms using the same amount of memory. This is because Sampled NetFlow can afford to use a large amount of DRAM (because it does not process every packet) while our algorithms cannot (because they process every packet and hence need to store per flow entries in SRAM). Thus we perform a second comparison in Section 5.2 of complete traffic measurement devices. In this second comparison, we allow Sampled NetFlow to use more memory than our algorithms. The comparisons are based

Measure	Sample and hold	Multistage filters	Sampling
Relative error	$\frac{\sqrt{2}}{Mz}$	$\frac{1+10 \ r \ \log_{10}(n)}{Mz}$	$\frac{1}{\sqrt{Mz}}$
Memory accesses	1	$1 + log_{10}(n)$	$\frac{1}{x}$

Table 1: Comparison of the core algorithms: sample and hold provides most accurate results while pure sampling has very few memory accesses

on the algorithm analysis in Section 4 and an analysis of NetFlow taken from [6].

5.1 Comparison of the core algorithms

In this section we compare sample and hold, multistage filters and ordinary sampling (used by NetFlow) under the assumption that they are all constrained to using M memory entries. We focus on the accuracy of the measurement of a flow (defined as the standard deviation of an estimate over the actual size of the flow) whose traffic is zC (for flows of 1% of the link capacity we would use z = 0.01).

The bound on the expected number of entries is the same for sample and hold and for sampling and is pC. By making this equal to M we can solve for p. By substituting in the formulae we have for the accuracy of the estimates and after eliminating some terms that become insignificant (as p decreases and as the link capacity goes up) we obtain the results shown in Table 1.

For multistage filters, we use a simplified version of the result from Theorem 3: $E[n_{pass}] \leq b/k + n/k^d$. We increase the number of stages used by the multistage filter logarithmically as the number of flows increases so that a single small flow is expected to pass the filter⁷ and the strength of the stages is 10. At this point we estimate the memory usage to be $M = b/k + 1 + rbd = C/T + 1 + r10C/Tlog_{10}(n)$ where r depends on the implementation and reflects the relative cost of a counter and an entry in the flow memory. From here we obtain T which will be the maximum error of our estimate of flows of size zC. From here, the result from Table 1 is immediate.

The term Mz that appears in all formulae in the first row of the table is exactly equal to the oversampling we defined in the case of sample and hold. It expresses how many times we are willing to allocate over the theoretical minimum memory to obtain better accuracy. We can see that the error of our algorithms decreases inversely proportional to this term while the error of sampling is proportional to the inverse of its square root.

The second line of Table 1 gives the number of memory locations accessed per packet by each algorithm. Since sample and hold performs a packet lookup for every packet⁸, its per packet processing is 1. Multistage filters add to the one flow memory lookup an extra access to one counter per stage and the number of stages increases as the logarithm of

⁷Configuring the filter such that a small number of small flows pass would have resulted in smaller memory and fewer memory accesses (because we would need fewer stages), but it would have complicated the formulae.

⁸We equate a lookup in the flow memory to a single memory access. This is true if we use a content associable memory. Lookups without hardware support require a few more memory accesses to resolve hash collisions.

the number of flows. Finally, for ordinary sampling one in x packets get sampled so the average per packet processing is 1/x.

Table 1 provides a fundamental comparison of our new algorithms with ordinary sampling as used in Sampled Net-Flow. The first line shows that the relative error of our algorithms scales with 1/M which is much better than the $1/\sqrt{M}$ scaling of ordinary sampling. However, the second line shows that this improvement comes at the cost of requiring at least one memory access per packet for our algorithms. While this allows us to implement the new algorithms using SRAM, the smaller number of memory accesses (< 1) per packet allows Sampled NetFlow to use DRAM. This is true as long as x is larger than the ratio of a DRAM memory access to an SRAM memory access. However, even a DRAM implementation of Sampled NetFlow has some problems which we turn to in our second comparison.

5.2 Comparing Measurement Devices

Table 1 implies that increasing DRAM memory size M to infinity can reduce the relative error of Sampled NetFlow to zero. But this assumes that by increasing memory one can increase the sampling rate so that x becomes arbitrarily close to 1. If x = 1, there would be no error since every packet is logged. But x must at least be as large as the ratio of DRAM speed (currently around 60 ns) to SRAM speed (currently around 5 ns); thus Sampled NetFlow will always have a minimum error corresponding to this value of x even when given unlimited DRAM.

With this insight, we now compare the performance of our algorithms and NetFlow in Table 2 without limiting NetFlow memory. Thus Table 2 takes into account the underlying technologies (i.e., the potential use of DRAM over SRAM) and one optimization (i.e., preserving entries) for both our algorithms.

We consider the task of estimating the size of all the flows above a fraction z of the link capacity over a measurement interval of t seconds. In order to make the comparison possible we change somewhat the way NetFlow operates: we assume that it reports the traffic data for each flow after each measurement interval, like our algorithms do. The four characteristics of the traffic measurement algorithms presented in the table are: the percentage of large flows known to be measured exactly, the relative error of the estimate of a large flow, the upper bound on the memory size and the number of memory accesses per packet.

Note that the table does not contain the actual memory used but a bound. For example the number of entries used by NetFlow is bounded by the number of active flows and the number of DRAM memory lookups that it can perform during a measurement interval (which doesn't change as the link capacity grows). Our measurements in Section 7 show that for all three algorithms the actual memory usage is much smaller than the bounds, especially for multistage filters. Memory is measured in entries, not bytes. We assume that a flow memory entry is equivalent to 10 of the counters used by the filter because the flow ID is typically much larger than the counter. Note that the number of memory accesses required per packet does not necessarily translate to the time spent on the packet because memory accesses can be pipelined or performed in parallel.

We make simplifying assumptions about technology evolution. As link speeds increase, so must the electronics. Therefore we assume that SRAM speeds keep pace with link capacities. We also assume that the speed of DRAM does not improve significantly ([18] states that DRAM speeds improve only at 9% per year while clock rates improve at 40% per year).

We assume the following configurations for the three algorithms. Our algorithms preserve entries. For multistage filters we introduce a new parameter expressing how many times larger a flow of interest is than the threshold of the filter u = zC/T. Since the speed gap between the DRAM used by sampled NetFlow and the link speeds increases as link speeds increase, NetFlow has to decrease its sampling rate proportionally with the increase in capacity⁹ to provide the smallest possible error. For the NetFlow error calculations we also assume that the size of the packets of large flows is 1500 bytes.

Besides the differences (Table 1) that stem from the core algorithms, we see new differences in Table 2. The first big difference (Row 1 of Table 2) is that unlike NetFlow, *our algorithms provide exact measures for long-lived large flows* by preserving entries. More precisely, by preserving entries our algorithms will exactly measure traffic for all (or almost all in the case of sample and hold) of the large flows that were large in the previous interval. Given that our measurements show that most large flows are long lived, this is a big advantage.

Of course, one could get the same advantage by using an SRAM flow memory that preserves large flows across measurement intervals in Sampled NetFlow as well. However, that would require the router to root through its DRAM flow memory before the end of the interval to find the large flows, a large processing load. One can also argue that if one can afford an SRAM flow memory, it is quite easy to do Sample and Hold.

The second big difference (Row 2 of Table 2) is that we can make our algorithms arbitrarily accurate at the cost of increases in the amount of memory used¹⁰ while sampled NetFlow can do so only by increasing the measurement interval t.

The third row of Table 2 compares the memory used by the algorithms. The extra factor of 2 for sample and hold and multistage filters arises from preserving entries. Note that the number of entries used by Sampled NetFlow is bounded by both the number n of active flows and the number of memory accesses that can be made in t seconds. Finally, the fourth row of Table 2 is identical to the second row of Table 1.

Table 2 demonstrates that our algorithms have two advantages over NetFlow: i) they provide exact values for longlived large flows (row 1) and ii) they provide much better accuracy even for small measurement intervals (row 2). Besides these advantages, our algorithms also have three more advantages not shown in Table 2. These are iii) provable lower bounds on traffic, iv) reduced resource consumption for collection, and v) faster detection of new large flows. We now examine advantages iii) through v) in more detail.

⁹If the capacity of the link is x times OC-3, then one in x packets gets sampled. We assume based on [16] that Net-Flow can handle packets no smaller than 40 bytes at OC-3 speeds.

¹⁰Of course, technology and cost impose limitations on the amount of available SRAM but the current limits for on and off-chip SRAM are high enough for our algorithms.

Measure	Sample and hold	Multistage filters	Sampled NetFlow
Exact measurements	$\lesssim longlived\%$	longlived%	0
Relative error	1.41/O	$\lesssim 1/u$	$0.0088/\sqrt{zt}$
Memory bound	2O/z	$2/z + 1/z \log_{10}(n)$	$\min(n, 486000 t)$
Memory accesses	1	$1 + log_{10}(n)$	1/x

Table 2: Comparison of traffic measurement devices

iii) Provable Lower Bounds: A possible disadvantage of Sampled NetFlow is that the NetFlow estimate is not an actual lower bound on the flow size. Thus a customer may be charged for more than the customer sends. While one can make the average overcharged amount arbitrarily low (using large measurement intervals or other methods from [5]), there may be philosophical objections to overcharging. Our algorithms do not have this problem.

iv) Reduced Resource Consumption: Clearly, while Sampled NetFlow can increase DRAM to improve accuracy, the router has more entries at the end of the measurement interval. These records have to be processed, potentially aggregated, and transmitted over the network to the management station. If the router extracts the heavy hitters from the log, then router processing is large; if not, the bandwidth consumed and processing at the management station is large. By using fewer entries, our algorithms avoid these resource (e.g., memory, transmission bandwidth, and router CPU cycles) bottlenecks.

v) Faster detection of long-lived flows: In a security or DoS application, it may be useful to quickly detect a large increase in traffic to a server. Our algorithms can use small measurement intervals and detect large flows soon after they start. By contrast, Sampled NetFlow can be much slower because with 1 in N sampling it takes longer to gain statistical confidence that a certain flow is actually large.

6. DIMENSIONING TRAFFIC MEASURE-MENT DEVICES

We describe how to dimension our algorithms. For applications that face adversarial behavior (e.g., detecting DoS attacks), one should use the conservative bounds from Sections 4.1 and 4.2. Other applications such as accounting can obtain greater accuracy from more aggressive dimensioning as described below. Section 7 shows that the gains can be substantial. For example the number of false positives for a multistage filter can be four orders of magnitude below what the conservative analysis predicts. To avoid a priori knowledge of flow distributions, we adapt algorithm parameters to actual traffic. The main idea is to *keep decreasing the threshold below the conservative estimate until the flow memory is nearly full* (totally filling memory can result in new large flows not being tracked).

Figure 5 presents our threshold adaptation algorithm. There are two important constants that adapt the threshold to the traffic: the "target usage" (variable *target* in Figure 5) that tells it how full the memory can be without risking filling it up completely and the "adjustment ratio" (variables *adjustup* and *adjustdown* in Figure 5) that the algorithm uses to decide how much to adjust the threshold to achieve a desired increase or decrease in flow memory usage. To give stability to the traffic measurement device, the *entriesused* ADAPTTHRESHOLD

```
usage = entriesused/flowmemsize

if (usage > target)

threshold = threshold * (usage/target)^{adjustup}

else

if (threshold did not increase for 3 intervals)

threshold = threshold * (usage/target)^{adjustdown}

endif

endif
```

Figure 5: Dynamic threshold adaptation to achieve target memory usage

variable does not contain the number of entries used over the last measurement interval, but an average of the last 3 intervals.

Based on the measurements presented in [6], we use a value of 3 for *adjustup*, 1 for *adjustdown* in the case of sample and hold and 0.5 for multistage filters and 90% for *target*. [6] has a more detailed discussion of the threshold adaptation algorithm and the heuristics used to decide the number and size of filter stages. Normally the number of stages will be limited by the number of memory accesses one can perform and thus the main problem is dividing the available memory between the flow memory and the filter stages.

Our measurements confirm that dynamically adapting the threshold is an effective way to control memory usage. Net-Flow uses a fixed sampling rate that is either so low that a small percentage of the memory is used all or most of the time, or so high that the memory is filled and NetFlow is forced to expire entries which might lead to inaccurate results exactly when they are most important: when the traffic is large.

7. MEASUREMENTS

In Section 4 and Section 5 we used *theoretical* analysis to understand the effectiveness of our algorithms. In this section, we turn to *experimental* analysis to show that our algorithms behave much better on real traces than the (reasonably good) bounds provided by the earlier theoretical analysis and compare them with Sampled NetFlow.

We start by describing the traces we use and some of the configuration details common to all our experiments. In Section 7.1.1 we compare the measured performance of the sample and hold algorithm with the predictions of the analytical evaluation, and also evaluate how much the various improvements to the basic algorithm help. In Section 7.1.2 we evaluate the multistage filter and the improvements that apply to it. We conclude with Section 7.2 where we com-

Trace	Number of flows (min/avg/max)			Mbytes/interval
	5-tuple	destination IP	AS pair	$(\min/avg/max)$
MAG+	$93,\!437/98,\!424/105,\!814$	40,796/42,915/45,299	7,177/7,401/7,775	201.0/256.0/284.2
MAG	99,264/100,105/101,038	43,172/43,575/43,987	7,353/7,408/7,477	255.8/264.7/273.5
IND	13,746/14,349/14,936	8,723/8,933/9,081	-	91.37/96.04/99.70
COS	5,157/5,497/5,784	1,124/1,146/1,169	-	14.28/16.63/18.70

Table 3: The traces used for our measurements

pare complete traffic measurement devices using our two algorithms with Cisco's Sampled NetFlow.

We use 3 unidirectional traces of Internet traffic: a 4515 second "clear" one (MAG+) from CAIDA (captured in August 2001 on an OC-48 backbone link between two ISPs) and two 90 second anonymized traces from the MOAT project of NLANR (captured in September 2001 at the access points to the Internet of two large universities on an OC-12 (IND) and an OC-3 (COS)). For some of the experiments use only the first 90 seconds of trace MAG+ as trace MAG.

In our experiments we use 3 different definitions for flows. The first definition is at the granularity of TCP connections: flows are defined by the 5-tuple of source and destination IP address and port and the protocol number. This definition is close to that of Cisco NetFlow. The second definition uses the destination IP address as a flow identifier. This is a definition one could use to identify at a router ongoing (distributed) denial of service attacks. The third definition uses the source and destination autonomous system as the flow identifier. This is close to what one would use to determine traffic patterns in the network. We cannot use this definition with the anonymized traces (IND and COS) because we cannot perform route lookups on them.

Table 3 describes the traces we used. The number of active flows is given for all applicable flow definitions. The reported values are the smallest, largest and average value over the measurement intervals of the respective traces. The number of megabytes per interval is also given as the smallest, average and largest value. Our traces use only between 13% and 27% of their respective link capacities.

The best value for the size of the measurement interval depends both on the application and the traffic mix. We chose to use a measurement interval of 5 seconds in all our experiments. [6] gives the measurements we base this decision on. Here we only note that in all cases 99% or more of the packets (weighted by packet size) arrive within 5 seconds of the previous packet belonging to the same flow.

Since our algorithms are based on the assumption that a few heavy flows dominate the traffic mix, we find it useful to see to what extent this is true for our traces. Figure 6 presents the cumulative distributions of flow sizes for the traces MAG, IND and COS for flows defined by 5-tuples. For the trace MAG we also plot the distribution for the case where flows are defined based on destination IP address, and for the case where flows are defined based on the source and destination ASes. As we can see, the top 10% of the flows represent between 85.1% and 93.5% of the total traffic validating our original assumption that a few flows dominate.

7.1 Comparing Theory and Practice

We present detailed measurements on the performance on sample and hold, multistage filters and their respective op-

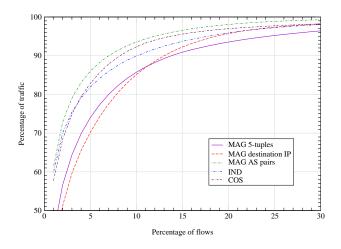


Figure 6: Cumulative distribution of flow sizes for various traces and flow definitions

timizations in [6]. Here we summarize our most important results that compare the theoretical bounds with the results on actual traces, and quantify the benefits of various optimizations.

7.1.1 Summary of findings about sample and hold

Table 4 summarizes our results for a single configuration: a threshold of 0.025% of the link with an oversampling of 4. We ran 50 experiments (with different random hash functions) on each of the reported traces with the respective flow definitions. The table gives the maximum memory usage over the 900 measurement intervals and the ratio between average error for large flows and the threshold.

The first row presents the *theoretical* bounds that hold without making any assumption about the distribution of flow sizes and the number of flows. These are not the bounds on the expected number of entries used (which would be 16,000 in this case), but high probability bounds.

The second row presents theoretical bounds assuming that we know the number of flows and know that their sizes have a Zipf distribution with a parameter of $\alpha = 1$. Note that the relative errors predicted by theory may appear large (25%) but these are computed for a very low threshold of 0.025% and only apply to flows exactly at the threshold.¹¹

The third row shows the actual values we measured for

¹¹We defined the relative error by dividing the average error by the size of the threshold. We could have defined it by taking the average of the ratio of a flow's error to its size but this makes it difficult to compare results from different traces.

Algorithm	Maximum memory usage (entries)/ Average error				
	MAG 5-tuple	MAG destination IP	MAG AS pair	IND 5-tuple	COS 5-tuple
General bound	16,385 / 25%	$16,\!385 \ / \ 25\%$	16,385 / 25%	16,385 / 25%	16,385 / 25%
Zipf bound	8,148 / 25%	7,441 / 25%	5,489 / 25%	$6,303 \ / \ 25\%$	5,081 / 25%
Sample and hold	2,303 / 24.33%	$1,964 \ / \ 24.07\%$	714 / 24.40%	$1,313 \ / \ 23.83\%$	710 / 22.17%
+ preserve entries	3,832 / 4.67%	$3,213 \ / \ 3.28\%$	$1,038 \ / \ 1.32\%$	$1,894 \ / \ 3.04\%$	1,017 / 6.61%
+ early removal	2,659 / 3.89%	2,294 / 3.16%	$803 \ / \ 1.18\%$	$1,525 \ / \ 2.92\%$	$859 \ / \ 5.46\%$

Table 4: Summary of sample and hold measurements for a threshold of 0.025% and an oversampling of 4

the basic sample and hold algorithm. The actual memory usage is much below the bounds. The first reason is that the links are lightly loaded and the second reason (partially captured by the analysis that assumes a Zipf distribution of flows sizes) is that large flows have many of their packets sampled. The average error is very close to its expected value.

The fourth row presents the effects of preserving entries. While this increases memory usage (especially where large flows do not have a big share of the traffic) it significantly reduces the error for the estimates of the large flows, because there is no error for large flows identified in previous intervals. This improvement is most noticeable when we have many long lived flows.

The last row of the table reports the results when preserving entries as well as using an early removal threshold of 15% of the threshold (our measurements indicate that this is a good value). We compensated for the increase in the probability of false negatives early removal causes by increasing the oversampling to 4.7. The average error decreases slightly. The memory usage decreases, especially in the cases where preserving entries caused it to increase most.

We performed measurements on many more configurations, but for brevity we report them only in [6]. The results are in general similar to the ones from Table 4, so we only emphasize some noteworthy differences. First, when the expected error approaches the size of a packet, we see significant decreases in the average error. Our analysis assumes that we sample at the byte level. In practice, if a certain packet gets sampled all its bytes are counted, including the ones before the byte that was sampled.

Second, preserving entries reduces the average error by 70% - 95% and increases memory usage by 40% - 70%. These figures do not vary much as we change the threshold or the oversampling. Third, an early removal threshold of 15% reduces the memory usage by 20% - 30%. The size of the improvement depends on the trace and flow definition and it increases slightly with the oversampling.

7.1.2 Summary of findings about multistage filters

Figure 7 summarizes our findings about configurations with a stage strength of k = 3 for our most challenging trace: MAG with flows defined at the granularity of TCP connections. It represents the percentage of small flows (log scale) that passed the filter for depths from 1 to 4 stages. We used a threshold of a 4096th of the maximum traffic. The first (i.e., topmost and solid) line represents the bound of Theorem 3. The second line below represents the improvement in the theoretical bound when we assume a Zipf distribution of flow sizes. Unlike in the case of sample and hold we used the maximum traffic, not the link capacity for com-

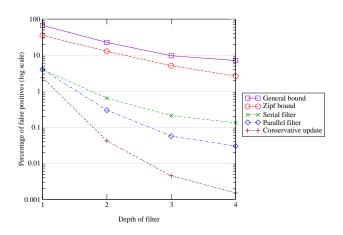


Figure 7: Filter performance for a stage strength of k=3

puting the theoretical bounds. This results in much tighter theoretical bounds.

The third line represents the measured average percentage of false positives of a serial filter, while the fourth line represents a parallel filter. We can see that both are at least 10 times better than the stronger of the theoretical bounds. As the number of stages goes up, the parallel filter gets better than the serial filter by up to a factor of 4. The last line represents a parallel filter with conservative update which gets progressively better than the parallel filter by up to a factor of 20 as the number of stages increases. We can see that all lines are roughly straight; this indicates that the percentage of false positives decreases exponentially with the number of stages.

Measurements on other traces show similar results. The difference between the bounds and measured performance is even larger for the traces where the largest flows are responsible for a large share of the traffic. Preserving entries reduces the average error in the estimates by 70% to 85%. Its effect depends on the traffic mix. Preserving entries increases the number of flow memory entries used by up to 30%. By effectively increasing stage strength k, shielding considerably strengthens weak filters. This can lead to reducing the number of entries by as much as 70%.

7.2 Evaluation of complete traffic measurement devices

We now present our final comparison between sample and hold, multistage filters and sampled NetFlow. We perform the evaluation on our long OC-48 trace, MAG+. We assume that our devices can use 1 Mbit of memory $(4096 \text{ entries}^{12})$ which is well within the possibilities of today's chips. Sampled NetFlow is given unlimited memory and uses a sampling of 1 in 16 packets. We run each algorithms 16 times on the trace with different sampling or hash functions.

Both our algorithms use the adaptive threshold approach. To avoid the effect of initial misconfiguration, we ignore the first 10 intervals to give the devices time to reach a relatively stable value for the threshold. We impose a limit of 4 stages for the multistage filters. Based on heuristics presented in [6], we use 3114 counters¹³ for each stage and 2539 entries of flow memory when using a flow definition at the granularity of TCP connections, 2646 counters and 2773 entries when using the destination IP as flow identifier and 1502 counters and 3345 entries when using the source and destination AS. Multistage filters use shielding and conservative update. Sample and hold uses an oversampling of 4 and an early removal threshold of 15%.

Our purpose is to see how accurately the algorithms measure the largest flows, but there is no implicit definition of what large flows are. We look separately at how well the devices perform for three reference groups: very large flows (above one thousandth of the link capacity), large flows (between one thousandth and a tenth of a thousandth) and medium flows (between a tenth of a thousandth and a hundredth of a thousandth – 15,552 bytes).

For each of these groups we look at two measures of accuracy that we average over all runs and measurement intervals: the percentage of flows not identified and the relative average error. We compute the relative average error by dividing the sum of the moduli of all errors by the sum of the sizes of all flows. We use the modulus so that positive and negative errors don't cancel out for NetFlow. For the unidentified flows, we consider that the error is equal to their total traffic. Tables 5 to 7 present the results for the 3 different flow definitions.

When using the source and destination AS as flow identifier, the situation is different from the other two cases because the average number of active flows (7,401) is not much larger than the number of memory locations that we can accommodate in our SRAM (4,096), so we will discuss this case separately. In the first two cases, we can see that both our algorithms are much more accurate than sampled NetFlow for large and very large flows. For medium flows the average error is roughly the same, but our algorithms miss more of them than sampled NetFlow. Since sample and hold stabilized at thresholds slightly above 0.01% and multistage filters around 0.002% it is normal that so many of the flows from the third group are not detected.

We believe these results (and similar results not presented here) confirm that our algorithms are better than sampled NetFlow at measuring large flows. Multistage filters are always slightly better than sample and hold despite the fact that we have to sacrifice part of the memory for stage counters. However, tighter algorithms for threshold adaptation can possibly improve both algorithms.

In the third case since the average number of very large, large and medium flows (1,107) was much below the number

Group	Unidentified flows / Average error			Unidentified flows / Average e	
(flow size)	Sample	Sampled			
	and hold	filters	NetFlow		
> 0.1%	0%/0.075%	0%/0.037%	0%/9.02%		
$0.1 \dots 0.01\%$	1.8%/7.09%	0%/1.090%	0.02%/22%		
$0.01 \dots 0.001\%$	77%/61.2%	55%/43.9%	18%/50.3%		

 Table 5: Comparison of traffic measurement devices

 with flow IDs defined by 5-tuple

Group	Unidentified flows / Average error			Unidentified flows / Ave	
(flow size)	Sample Multistage Sampled				
	and hold	filters	NetFlow		
> 0.1%	0%/0.025%	0%/0.014%	0%/5.72%		
$0.1 \dots 0.01\%$	0.43%/3.2%	0%/0.949%	0.01%/21%		
$0.01 \dots 0.001\%$	66%/51.2%	50%/39.9%	11.5%/47%		

Table 6: Comparison of traffic measurement deviceswith flow IDs defined by destination IP

Group	Unidentified flows / Average error			
(flow size)	Sample Multistage Sample			
	and hold	filters	NetFlow	
> 0.1%	0%/0.0%	0%/0.0%	0%/4.88%	
$0.1 \dots 0.01\%$	0%/0.002%	0%/0.001%	0.0%/15.3%	
$0.01 \dots 0.001\%$	0%/0.165%	0%/0.144%	5.7%/39.9%	

Table 7: Comparison of traffic measurement devices with flow IDs defined by the source and destination AS

of available memory locations and these flows were mostly long lived, both of our algorithms measured all these flows very accurately. Thus, even when the number of flows is only a few times larger than the number of active flows, our algorithms ensure that the available memory is used to accurately measure the largest of the flows and provide graceful degradation in case that the traffic deviates very much from the expected (e.g. more flows).

8. IMPLEMENTATION ISSUES

We briefly describe implementation issues. Sample and Hold is easy to implement even in a network processor because it adds only one memory reference to packet processing, assuming sufficient SRAM for flow memory and assuming an associative memory. For small flow memory sizes, adding a CAM is quite feasible. Alternatively, one can implement an associative memory using a hash table and storing all flow IDs that collide in a much smaller CAM.

Multistage filters are harder to implement using a network processor because they need multiple stage memory references. However, multistage filters are easy to implement in an ASIC as the following feasibility study shows. [12] describes a chip designed to implement a parallel multistage filter with 4 stages of 4K counters each and a flow memory of 3584 entries. The chip runs at OC-192 line speeds. The core logic consists of roughly 450,000 transistors that fit on 2mm x 2mm on a .18 micron process. Including memories and overhead, the total size of the chip would be 5.5mm

¹²Cisco NetFlow uses 64 bytes per entry in cheap DRAM. We conservatively assume that the size of a flow memory entry will be 32 bytes (even though 16 or 24 are also plausible).
¹³We conservatively assume that we use 4 bytes for a counter even though 3 bytes would be enough.

x 5.5mm and would use a total power of less than 1 watt, which put the chip at the low end of today's IC designs.

9. CONCLUSIONS

Motivated by measurements that show that traffic is dominated by a few heavy hitters, our paper tackles the problem of directly identifying the heavy hitters without keeping track of potentially millions of small flows. Fundamentally, Table 1 shows that our algorithms have a much better scaling of estimate error (inversely proportional to memory size) than provided by the state of the art Sampled Net-Flow solution (inversely proportional to the *square root* of the memory size). On actual measurements, our algorithms with optimizations do several orders of magnitude better than predicted by theory.

However, comparing Sampled NetFlow with our algorithms is more difficult than indicated by Table 1. This is because Sampled NetFlow does not process every packet and hence can afford to use large DRAM. Despite this, results in Table 2 and in Section 7.2 show that our algorithms are much more accurate for small intervals than NetFlow. In addition, unlike NetFlow, our algorithms provide exact values for long-lived large flows, provide provable lower bounds on traffic that can be reliably used for billing, avoid resourceintensive collection of large NetFlow logs, and identify large flows very fast.

The above comparison only indicates that the algorithms in this paper may be better than using Sampled NetFlow when the only problem is that of identifying heavy hitters, and when the manager has a precise idea of which flow definitions are interesting. But NetFlow records allow managers to *a posteriori* mine patterns in data they did not anticipate, while our algorithms rely on efficiently identifying stylized patterns that are defined *a priori*. To see why this may be insufficient, imagine that CNN suddenly gets flooded with web traffic. How could a manager realize before the event that the interesting flow definition to watch for is a multipoint-to-point flow, defined by destination address and port numbers?

The last example motivates an interesting open question. Is it possible to generalize the algorithms in this paper to automatically extract flow definitions corresponding to large flows? A second open question is to deepen our theoretical analysis to account for the large discrepancies between theory and experiment.

We end by noting that measurement problems (data volume, high speeds) in networking are similar to the measurement problems faced by other areas such as data mining, architecture, and even compilers. For example, [19] recently proposed using a Sampled NetFlow-like strategy to obtain dynamic instruction profiles in a processor for later optimization. We have preliminary results that show that multistage filters with conservative update can improve the results of [19]. Thus the techniques in this paper may be of utility to other areas, and the techniques in these other areas may of utility to us.

10. ACKNOWLEDGEMENTS

We thank K. Claffy, D. Moore, F. Baboescu and the anonymous reviewers for valuable comments. This work was made possible by a grant from NIST for the Sensilla Project, and by NSF Grant ANI 0074004.

11. REFERENCES

- [1] J. Altman and K. Chu. A proposal for a flexible service plan that is attractive to users and internet service providers. In *IEEE INFOCOM*, April 2001.
- [2] B. Bloom. Space/time trade-offs in hash coding with allowable errors. In *Comm. ACM*, volume 13, July 1970.
- [3] N. Brownlee, C. Mills, and G. Ruth. Traffic flow measurement: Architecture. RFC 2722, Oct. 1999.
- [4] N. Duffield and M. Grossglauser. Trajectory sampling for direct traffic observation. In ACM SIGCOMM, Aug. 2000.
- [5] N. Duffield, C. Lund, and M. Thorup. Charging from sampled network usage. In SIGCOMM Internet Measurement Workshop, Nov. 2001.
- [6] C. Estan and G. Varghese. New directions in traffic measurement and accounting. Tech. Report 699, UCSD CSE, Feb. 2002.
- [7] M. Fang et al. Computing iceberg queries efficiently. In VLDB, Aug. 1998.
- [8] W. Fang and L. Peterson. Inter-as traffic patterns and their implications. In *IEEE GLOBECOM*, Dec. 1999.
- [9] A. Feldmann et al. Deriving traffic demands for operational IP networks: Methodology and experience. In ACM SIGCOMM, Aug. 2000.
- [10] W. Feng et al. Stochastic fair blue: A queue management algorithm for enforcing fairness. In *IEEE INFOCOM*, April 2001.
- [11] P. Gibbons and Y. Matias. New sampling-based summary statistics for improving approximate query answers. In ACM SIGMOD, June 1998.
- [12] J. Huber. Design of an OC-192 flow monitoring chip. UCSD Class Project, March 2001.
- [13] J. Mackie-Masson and H. Varian. *Public Access to the Internet*, chapter on "Pricing the Internet." MIT Press, 1995.
- [14] R, Mahajan et al. Controlling high bandwidth aggregates in the network. http://www.aciri.org/pushback/, July 2001.
- [15] D. Moore. http://www.caida.org/ analysis/ security/ code-red/.
- [16] Cisco NetFlow http://www.cisco.com /warp /public /732 /Tech /netflow.
- [17] R. Pan et al. Approximate fairness through differential dropping. Tech. report, ACIRI, 2001.
- [18] D. Patterson and J. Hennessy. Computer Organization and Design, page 619. Morgan Kaufmann, second edition, 1998.
- [19] S. Sastry et al Rapid profiling via stratified sampling. In 28th ISCA, June 2001.
- [20] S. Shenker et al. Pricing in computer networks: Reshaping the research agenda. In ACM CCR, volume 26, April 1996.
- [21] Smitha, I. Kim, and A. Reddy. Identifying long term high rate flows at a router. In *High Performance Computing*, Dec. 2001.
- [22] K. Thomson, G. Miller, and R. Wilder. Wide-area traffic patterns and characteristics. In *IEEE Network*, December 1997.