
A Structuring Algorithm for Decompilation

�

Cristina Cifuentes

cifuente@�tmail.qut.edu.au

School of Computing Science

Queensland University of Technology

GPO Box 2434, Brisbane, QLD 4001, Australia

Abstract

This paper presents a structuring algorithm for ar-

bitrary reducible, unstructured graphs. Graphs are

structured into semantically equivalent graphs, with-

out the need of code replication or introduction of new

variables. The algorithm makes use of structures such

as, if..then..elses, while, repeat and loop loops,

and case statements. Gotos are only used when the

graph cannot be structured with any of the above con-

structs.

This algorithm is adequate for the analysis needed

in the decompilation of programs, given that a binary

program does not contain information as to the lan-

guage and compiler used to compile the original source

program. And given that unstructuredness is intro-

duced by the use of gotos (still widely available in

today's compilers) and optimizations produced by the

compiler, we have to assume an unstructured graph

for our decompilation analysis. This algorithm has

been implemented as part of the dcc decompiler, cur-

rently under development at the Queensland Univer-

sity of Technology.

[Key words: structuring algorithm, decompiler,

intervals, graph theory]

1 Introduction

A control
ow graph (cfg) is a directed graph that

represents the
ow of control of a program. Each node

represents a basic block and each directed arc repre-

sents
ow of control from one node to another. Cfgs

0

appeared in XIX Conferencia Latinoamericana de In-

form�atica, Buenos Aires, Argentina, 2-6 August 1993, pp. 267-

276.

are normally built by compilers for analysis, code gen-

eration, and optimization purposes, but a lot of com-

pilers nowadays produce code on the
y and therefore

do not need to construct such cfg. In the case of de-

compilers, cfgs have proven to be a necessity due to

the lack of information about the program constructs.

The control structures of high level languages such

as Modula 2 produce structured control
ow graphs.

Unstructuredness is introduced by the use of gotos

or optimizations done by the compiler. Even more,

the optimizer might even produce irreducible graphs.

It is not hard to demonstrate that structured high

level languages which do not make use of the goto are

reducible[1, 2].

A structuring algorithm is concerned with arbitrary

graphs, that is, graphs produced by a structured or

unstructured high level language, and that in most

cases have been optimized and therefore transformed

into unstructured or even irreducible graphs. The aim

of a structuring algorithm is to transform an arbitrary

graph into a semantically equivalent structured graph;

whenever this is not possible, gotos are used. The

�nal structured graph will be composed of high level

language constructs selected from a predetermined set

of constructs that suit the problem in hand.

1.1 Previous Work

Structuring algorithms have been used to structure

owgraphs produced by unstructured languages such

as Fortran. Most of these algorithmsmake use of node

splitting techniques (i.e. code replication) and intro-

duce new Boolean variables[3, 4], or choose a set of

high level language constructs not available in com-

monly used languages[5].

In Fortran, the lack of control structures available

in the language leads to very unstructured programs.

A structuring algorithm that structured Fortran pro-

grams into Ratfor (a structured version of Fortran)

was develop in 1977[6]. This algorithm made use of

if..then..elses, loops, multilevel exit and continue,

and gotos. It proved to be very useful, as the struc-

tured version of a program was easier to understand.

In the case of Pascal, gotos can transfer control not

only within the procedure, but also from one proce-

dure to another. Di�erent methods have been pro-

posed; most of them introduce new local and global

variables[3], or make use of multilevel exits[7].

Only one method was directly related to decompi-

lation, and it explained only how to structure loops

by means of intervals; other constructs were not

mentioned[8]. Since this decompiler took as input only

programs compiled in the Mixal language, it did not

have to consider complex control structures such as

case statements, multiexit, or multientry loops.

The rest of this paper is structured in the following

way: an explanation of the needs and requirements of

a structuring algorithm for decompilation, basic no-

tions from graph theory, a description of each major

structuring stage, followed by a summary and conclu-

sions.

2 The need for another structuring al-

gorithm

The structuring algorithms available in the litera-

ture are not speci�cally targeted at decompilation and

cannot be easily accommodated to this problem. As

mentioned earlier, the control
ow graph of executable

programs is likely to be unstructured and therefore

we need to handle this property. Also, the set of de-

sired high level language constructs should be wide

enough to cater for di�erent control structures avail-

able in commonly used languages such as C, Pascal,

Modula-2, and Fortran.

The main requirements of this algorithm are:

1. The need to structure loops, if..then..elses

and case statements.

2. To di�erentiate between di�erent type of loops,

namely, while, repeat, and loop. Note that the

for loop is a special case of while loops.

3. Multiexit loops should have one real exit, and all

other exits should make use of gotos.

4. Multiexit loops are preferred over multientry

loops, since multientry loops are not as easy to

understand, and can produce irreducible graphs.

5. Gotos are only to be used when it is really nec-

essary, i.e. the graph could not be structured in

any other way.

6. Functional and structural equivalence are needed,

therefore, the introduction of new variables or

code replication are not allowed.

This algorithm will be concerned only with re-

ducible
ow graphs, given that any irreducible graph

can be transformed into an equivalent reducible graph

by means of node splitting. Di�erent methods have

been proposed in the literature[9, 2].

For decompilation, once the graph has been struc-

tured, an extra pass can be done to structure even

further. This restructuring stage deals with speci�c

control structures available in the target language. In

the case of our decompiler, dcc, the target language is

C, and several of C's structures were not considered

in the structuring stage. One of such structures is the

continue statement, which terminates the execution

of the current loop iteration and starts the next iter-

ation. This is equivalent to a multiexit loop with a

goto to the start of the loop, and this can be easily

checked for. Another example are for loops. They

are equivalent to a while loop that makes use of an

indexed variable. In this case there would be need to

�nd this indexed variable via data
ow analysis. It is

not the purpose of this paper to explain any further

about this restructuring stage, as it is target language

dependent.

3 Basic Notions

A directed graph G is a tuple (V;E; h) where V is

the set of nodes, E is the set of edges, and h is the root

of the graph. An edge is a pair of nodes (v; w), with

v; w 2 V . A path from v

1

to v

n

, represented v

1

! v

n

,

is a sequence of edges (v

1

; v

2

); (v

2

; v

3

); : : : ; (v

n�1

; v

n

).

An interval is a graph theoretic construct �rst de-

�ned by J.Cocke[10], and widely used by F.Allen[11,

12]. An interval I(h) is the maximal, single-entry sub-

graph in which h is the only entry node and in which

I := fg.

H := fhg.

for (all unprocessed n 2 H) do

I(n) := fng.

repeat

I(n) := I(n) + fm 2 G :

8p = immedPred(m), p 2 I(n)g.

until

no more nodes can be added to I(n).

H := H + fm 2 G : m 62 H and m 62 I(n)

and (9 p = immedPred(m) : p 2 I(n))g.

I := I + I(n).

endFor

Figure 1: Interval Algorithm

all closed paths contain h. The unique interval node h

is called the header node. By selecting the proper set

of header nodes, G can be partitioned into a unique

set of disjoint intervals I = fI(h

1

); I(h

2

); : : : ; I(h

n

)g,

for some n � 1. The algorithm to �nd the unique

set of intervals of a graph is described in Figure 1 for

a graph G with entry node h. This algorithm makes

use of the variables H (set of header nodes), I(i) (set

of nodes of interval i), and I (list of intervals of the

graph G), as well as the function immedPred(n) which

returns the next immediate predecessor of n.

The derived sequence of graphs, G

1

: : :G

n

, was de-

scribed by F.Allen[11, 12] based on the intervals of

graph G. The construction of graphs is an iterative

method that collapses intervals. The �rst order graph,

G

1

, is G. The second order graph, G

2

, is derived from

G

1

by collapsing each interval in G

1

into a node. The

immediate predecessors of the collapsed node are the

immediate predecessors of the original header node

which are not part of the interval. The immediate

successors are all the immediate, non-interval succes-

sors of the original exit nodes. Intervals for G

2

are

found and the process is repeated until we �nd a limit

ow graph G

n

. G

n

has the property of being a single

node or an irreducible graph. Figure 2 describes such

an algorithm.

Depth �rst search, DFS, is a traversal method that

selects edges to traverse emanating from the most re-

cently visited node which still has unvisited edges[13].

A depth �rst spanning tree (DFST) of a
ow graph

G

1

= G.

I

1

= intervals(G

1

).

i = 2.

Repeat /* Construction of G

i

*/

Make each interval of G

i�1

a node in G

i

.

immedPreds(n) n 2 G

i

= immedPreds(h) :

immedPred(h) 62 I

i�1

(h).

(a; b) 2 G

i

i� 9 n 2 I

i�1

(h) and

m = header(I

i�1

(m)) : (m;n) 2 G

i�1

.

I

i

= intervals(G

i

).

Until

G

i

== G

i�1

.

Figure 2: Derived Sequence Algorithm

procedure DFS(x)

x.visited = True

for (all unprocessed s 2 successors(x))

if (s.visited == False)

add (x;s) to DFST

DFS(s)

�

endFor

x.revPostorder = i

i = i� 1

end procedure

Figure 3: Depth �rst search

G is a directed, rooted, ordered spanning tree of G

grown by a DFS algorithm[14, 15, 2]. A DFST T can

partition the edges in G into three sets:

1. Back edges = f(v; w) : w! v 2 Tg.

2. Forward edges = f(v; w) : v ! w 2 Tg.

3. Cross edges = f(v; w) : 6 9 (v ! w or w ! v) and

w � v in preorderg.

A DFS algorithm also de�nes a partial ordering of

the nodes of G. The reverse postorder is the num-

bering of nodes during their last visit; the numbering

starts with the maximum number of nodes and �n-

ishes at 1. Figure 3 describes a recursive DFS algo-

rithm that constructs a DFST and numbers the nodes

-
�

�

-
�

�

?

�
-

�

�

�

� �

�

� �

�

� �

�

� �

�

� �

�

� �

.

.

.

.

.

.

.

.

.

?

?

?

?

?

?

.

.

.

.

.

.

.

.

.

?

?

.

.

.

.

.

.

.

.

.

?

?

while

loop

repeat

Figure 4: Proper loops

in reverse postorder. The variable i is initialized to

the maximum number of nodes in G.

A node v dominates node w if every path from the

root to w contains v. The immediate dominator of w

is the closest dominator node to w, other than itself.

4 Structuring Loops

A loop is a directed subgraph such that there is

a path between any two nodes and there is one back

edge to the head of the loop (i.e. a strongly connected

region (SCR) with one back edge). Such a directed

graph has a unique entry point. The back edge comes

from a conditional or unconditional node, commonly

referred to as the latching node.

4.1 Types of Loops

Loops have been classi�ed into two main groups:

proper and improper. A proper loop is one that �ts

into the de�nition of a loop. Di�erent types of simple

loops are determined by the header and latching nodes

(see Figure 4):

1. While: the header node is conditional, and the

latching node is unconditional.

2. Repeat: the latching node is conditional.

�

?

#

?

�

�
�

�

��

�

$
�

-
'

�

"
-

%

�

%

�

m

m

m

mm

m

m

m

m

m

m

m

m

?

?

?

?

@

@R

�

�	

?

.

.

.

.

.

.

.

.

?

?

?

?

?

?

?

?

?

?

.

.

.

.

.

.

.

.

entwined

parallel

multientry

multiexit

Figure 5: Improper loops

3. Loop (endless loop): the latching node is an

unconditional node.

Improper loops are based on the structure of proper

loops, but have some added characteristics. The fol-

lowing de�nitions describe their nature (see Figure 5):

1. Multiple entry loop: a loop with n di�erent en-

tries.

2. Multiple exit loop: a loop with m di�erent exits.

3. Tangent loops: two or more loops found in the

same strongly connected region. Two di�erent

types can be distinguished:

(a) Parallel loops: loops with a common header

node.

(b) Entwined loops: two loops in di�erent SCRs

such that the header node of one SCR is the

latching node of the other SCR.

Even though this is an exhaustive list of possible

loops, some loops may have characteristics from two

di�erent categories, and therefore will need a heuris-

tic method to determine the type of loop. For exam-

ple, what happens when a loop has both header and

latching nodes being conditional nodes? A heuristic

method needs to decide whether this is a while or a

repeat loop. In our case we say that such a loop is

considered a while with an abnormal exit (the one

nodesInLoop := frevPost(h)g

for (i := revPost(h)+1 : : : revPost(a)-1)

if ((revPost(immedDom(i)) 2 nodesInLoop) and

(i 2 nodesInInterval))

nodesInLoop := nodesInLoop + fig

�

endFor

nodesInLoop := nodesInLoop + frevPost(a)g

Figure 6: Finding nodes in a loop

from the latching node) if the successors of the header

node belong to the loop; otherwise it is considered a

repeat loop and there are no abnormal exits.

4.2 The method

The method for �nding loops is based on interval

theory and the derived sequence of graphs G

1

: : :G

n

.

Intervals give us a way of �nding loops, and the de-

rived sequence gives us a way of �nding nesting lev-

els. We are interested in structuring proper loops, any

other exits or entries the loop might have are going to

be handled with labels and gotos.

Given an interval I(h

j

) with header h

j

, there is a

loop rooted at h

j

if there is a back edge to the header

node h

j

from a latching node n

k

2 I(h

j

). This prop-

erty is easily checked when the nodes are numbered

in reverse postorder; the latching node will be a pre-

decessor of the header node that will have a greater

reverse postorder number than the header. If there is

such a back edge, the nodes that belong to the loop

have to be
agged. A linear pass (in reverse postorder

numbering) over the subgraph rooted at h

j

is all that

is needed: a node belongs to the loop if its immediate

dominator also belongs to the loop. Figure 6 describes

an algorithm that returns a list of nodes that belongs

to a loop, given the back edge (a; h) that delimits it.

Our method for �nding loops in a graph G is as fol-

lows, after constructing I

1

: : :I

n

, the intervals in I

1

are checked for loops, as previously explained. The

nodes that belong to loops are
agged so that they

only belong to the one loop at any time. Next, the in-

tervals in I

2

are checked for loops, and the process is

repeated until intervals in I

n

are checked for. If there

is a potential loop that takes a node that has already

for (G

i

:= G

1

: : :G

n

)

for (I

i

(h

j

) := I

1

(h

1

) : : : I

m

(h

m

))

if (h

j

has a back edge, (x; h

j

))

if (x.inLoop == False)

�nd all nodes in loop

ag inLoop for all these nodes

else

ag h

j

.label

�

�

endFor

endFor

Figure 7: Loop structuring algorithm

been
agged, such node cannot be considered and in-

stead a label and a goto are to be used; the appropri-

ate �elds are
agged (see Figure 7). This process gives

us the loops in appropiate nesting levels, from inner-

most to outermost. This algorithmmakes use of extra

�elds in the basic block node, namely, the loopType

(will hold the type of loop, if any), the inLoop Boolean

(will determine whether the node belongs to a loop or

not), and the label Boolean (determines whether there

is need of a label).

It is interesting to see how improper loops are

structured by this algorithm, and whether the result

is appropriate to the type of loop. The following is the

description of each case:

1. Parallel loops: parallel loops belong to the

same interval since there is only one header

node. Given that parallel loops correspond to

continues or optimization of the last jump (i.e.

the original graph only had one loop), it is appro-

priate to consider them as one loop with multiple

exits back to the header node.

2. Entwined loops: entwined loops represent nested

while loops in most cases. Our method will con-

sider the most nested loop a while loop, the sec-

ond most nested will not be considered to be loop

and therefore will make use of a label and a goto

statement, the third most nested loop will be a

while loop, and so on.

%

$�

-
'

&

� �

� �

� �

� �

� �

� �

� �

� �

?

?

?

?

?

loop 2 = f2, 3, 4g

loop 1 = f1, 2, 3g

4

3

2

1

Figure 8: Overlapping loops

3. Multiple exit loops: a multiexit loop is contained

in the one interval most of the time. When all

the exits have the same target node, the loop is

certainly contained in the one interval. When

there are di�erent target exit nodes, one will

be selected to be the real exit and all others

will be considered abnormal exits. The type of

abnormal exit in the underlying DFST provides

some interesting cases:

(a) Back edge: this case produces overlapping

loops. Overlapping loops can be seen from

two di�erent perspectives: one sees a multi-

entry loop with an in-edge from the latching

node of the other loop, and the second sees a

multiexit loop with an out-edge being a back

edge for the other loop (see Figure 8). Our

method will decide in favour of a multiexit

loop rather than a multientry loop.

(b) Tree edge: this case represents the impor-

tance of checking each possible node that be-

longs to the loop, as being part of the same

interval (see Figure 9).

4. Multiple entry loops: a loop with n entries will

belong to n di�erent intervals, but there will

always be one interval that will hold the back edge

-'

&

m

m

m

m

m

m

m

m

m

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

A

A

A

A

AU

�

�

�	

P

P

P

P

P

Pq

?

?

?

?

?

?

?

revPost numbering

I2

I3

I1

Ii: interval

DSFT

7

6

2

9

8

5

4

3

1

Figure 9: Abnormal tree-edge exit

-
'

&

-
'

&

%

$
�

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

. .

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

?

?

?

?

?

?

?

?

?

I1

I3

I2

Figure 10: Intervals of a multiple entry loop

(see Figure 10). Two cases can be distinguished

by the type of in-edge from the underlying DFST:

(a) Backward edge: produces an overlapping

loop, as for the case of multiexit loops with

an abnormal back edge exit (refer to item

3a).

(b) Tree, cross, and forward edges: all of these

cases produce irreducible graphs. Since we

are dealing with reducible graphs, this case

will never occur.

It is worth to mention that the interval method is

not widely used for
ow analysis due to its overhead.

In our case, dcc makes use of intervals to check for

reducibility of a graph, and this means that the struc-

ture already exists and is being used for other parts of

the analysis of graphs.

5 Structuring Case Statements

A case statement is an n-way conditional branch

which has a common end node (i.e. all paths from

the n branches should reach this common end node).

The end node has the property of being immediately

dominated by the case header node; the only other

nodes being immediately dominated by the header are

the n immediate successors of this header node.

5.1 Abnormal case's

An abnormal case is de�ned as an n-way condi-

tional branch that has more than one end node (i.e.

abnormal exits), or has more than one entry point (i.e.

abnormal entries). Abnormal entries and exits make

it di�cult to determine the extent of the case, and

therefore heuristics are needed for such cases. The fol-

lowing cases demonstrate the heuristics methods used

in our algorithm when dealing with di�erent types of

abnormal edges of the underlying DFST:

1. Abnormal forward exit: this case has the problem

of not knowing which is the real case exit. Our

heuristic method opted for the node with the

greater number of in-edges from paths coming

from the n branches to be taken as the real exit.

2. Abnormal backward exit: the problem introduced

by this exit is that the back edge should not be

considered to form a loop, as it is an abnormal

backward exit. The solution is to
ag the target

nodes as requiring a label, and a goto will be used

to get to this node.

for (all nodes x in reverse revPostorder)

if (nodeType(x) == caseNode)

caseHead = x

endNode = y : (immedPred(y) = x) and (8z:

immedPred(z) = x, #inEdges(y) � #inEdges(z)

caseNodes := fcaseHeadg

for (all successors(caseHead), s)

agCaseNodes (caseNodes,caseHead,endNode,s)

endFor

caseNodes := fg

�

endFor

Figure 11: Case structuring algorithm

3. Abnormal cross-edge or tree-edge exit: the target

exit node is not dominated by the case header

node, so therefore this exit is considered abnormal

and the target node is labelled.

4. Abnormal backward in-edge: the latching node is

dominated by the end node of the case, so all is

needed is to label the target node and use a goto

when jumping to this node.

5. Abnormal forward in-edge: this case is really

pathological as it makes a subgraph of the case

be dominated by a node that does not belong

to the case; therefore the case end node is not

dominated by the case header node. No solution

has been proposed to this case yet.

5.2 The method

The method for structuring case statements makes

use of the reverse postorder numbering of the nodes

in the graph, and a depth �rst search for each branch

of the case in hand. This method also handles nested

case statements, by performing a reverse traversal of

the nodes. The algorithms produce a list of nodes that

belong to a case, such list representing the nodes that

are
agged in the current pass.

Given that nested cases are allowed in a graph,

nodes are traversed in reverse reverse-postorder num-

bering, so that inner nested cases are analysed �rst

than outer ones. Once a case header node has been

determined, we traverse nodes in reverse-postorder to

�nd any node(s) such that their immediate dominator

is the case header node. Note that if there are several

such nodes, the one with the most number of in-edges

agCaseNodes (caseNodes, head, end, s)

s.traversed = True

if ((s 6= end) and (nodeType(s) 6= case) and

(immedDom(s) 2 caseNodes))

caseNodes := caseNodes [fsg

for (all successors r of s)

if (r.traversed == False)

agCaseNodes (caseNodes,head,end,r)

�

endFor

�

end procedure

Figure 12: Finding nodes of a case

is considered the end node (see Figure 11). Then,

nodes that belong to the case need to be
agged, for

this process, a depth �rst procedure is used. Basi-

cally, the path of each successor of the header to the

end node is followed, and nodes are
agged during this

procedure (see Figure 12).

6 Structuring Ifs

An if statement is a 1- or 2-way conditional

branch, which has a common end node that is reached

by all paths from the branches. This �nal end node is

referred to as the follow node, and has the property of

being immediately dominated by the if header node.

6.1 Types of ifs

Two types of ifs are distinguished, proper and im-

proper. Proper ifs conform to the previous de�nition,

and are widely known as:

1. if..then: 1-way conditional branch. The branch

is taken if a condition is true, and the path along

the then clause is followed. The follow node is the

target node of the branch not taken (i.e. when

the condition is false), and must be reached by

the path along the then clause.

2. if..then..else: two-way conditional branch. A

branch along the then clause is taken when the

condition is true, otherwise the branch along the

else clause is taken. Both paths should convey

to a common follow node.

unresolved = fg

for (all nodes m in reverse revPostorder)

if (nodeType(m) == ifNode)

if (9 n: n = minfi: immedDom(i) = m

and 9 2 paths from m! ig)

m.endIf = n

for (all x 2 unresolved)

x.endIf = n

endFor

else

unresolved = unresolved [fmg

�

�

endFor

if (#(unresolved) � 1)

for (all x 2 unresolved)

x.label = True

endFor

�

Figure 13: If structuring algorithm

Improper ifs allow for abnormal entries into the

then or else clauses. In these cases, the follow node

will not be immediately dominated by the if header

node.

6.2 The method

The method for structuring ifs is based on the fact

that the follow node of an ifhas as immediate domina-

tor the head of such if. It is also important to notice

that nested ifs are possible, and therefore a follow

node might end several ifs. This method makes use

of the reverse postorder numbering of the graph.

Nodes are traversed in reverse reverse-postorder

so that inner nested ifs are analysed before outer

ones. A list of unresolved if follow nodes is kept

throughout the process; it is initially empty. For each

if node, we check for any other node that takes it

as immediate dominator and is a junction node for at

least two if paths. When there are several of such

nodes, the closest node is chosen. The closest relation

is given by the reverse-postorder relation; the one with

the smallest number is the closest one. This node is

selected as the follow of the if header node. If there

are any nodes in the unresolved list, these nodes will

also have the same follow as they are nested in the

current if node. All nodes in the unresolved list get

assigned this follow node, and are eliminated from the

list. On the other hand, if there is no node that takes

the if node as an immediate dominator and is the end

of at least two paths, the if node is placed on the list

of unresolved nodes. The process is repeated for all

nodes. Once all nodes have been traversed, if there

are any nodes left on the unresolved list, their target

branch node is
agged as needing a label during code

generation; given that they are not properly nested in

another if. This procedure is illustrated in Figure 13.

This algorithm is not optimal (i.e. it does not provide

us with the maximum number of ifs in the graph),

but is simple, easy to implement, and covers most of

the cases of structured and unstructured ifs.

7 Summary and Conclusions

This paper presents a structuring algorithm for

transforming arbitrary reducible graphs into seman-

tically equivalent structured graphs. This algorithm

is adequate for the analysis needed in decompilation,

and has been implemented as part of the dcc decom-

piler, currently under development at the Queensland

University of Technology.

Structured graphs contain high level language con-

structs. Unstructuredness is introduced by the use

of gotos and by optimizations produced by the com-

piler. Given a binary program, we do not know what

type of language and compiler was used on the original

source program. This means that we cannot determine

whether the graph is structured or not, and thus we

suppose we have an unstructured graph (which is true

for most graphs).

The major control constructs that are considered

by this structuring algorithm are: if..then..elses,

while, repeat and loop loops, and case statements.

Gotos are only used when the graph cannot be struc-

tured with any of the above constructs. All other con-

structs available in high level languages can be mod-

elled by a second structuring stage, that is targeted at

the control structures speci�c to a language.

The structuring algorithm provides a method for

transforming unstructured graphs into structured ones

(whenever possible), without the introduction of new

variables or code replication. This method makes the

�nal target programs easier to follow and understand.

Acknowledgements

This research is partly funded by Australian Re-

search Council (ARC) grant no.A49130261.

References

[1] S.R.Kosaraju, \Analysis of structured pro-

grams," Journal of Computer and System Sci-

ences, vol. 9, no. 3, pp. 232{255, 1974.

[2] M.S.Hecht, Flow Analysis of Computer Pro-

grams. 52 Vanderbilt Avenue, New York, New

York 10017: Elsevier North-Holland, Inc, 1977.

[3] M.H.Williams and G.Chen, \Restructuring pas-

cal programs containing goto statements," The

Computer Journal, vol. 28, no. 2, pp. 134{137,

1985.

[4] M.H.Williams and H.L.Ossher, \Conversion of

unstructured
ow diagrams to structured form,"

The Computer Journal, vol. 21, no. 2, pp. 161{

167, 1978.

[5] M.Sharir, \Structural analysis: A new approach

to
ow analysis in optimizing compilers," Com-

puter Languages, vol. 5, pp. 141{153, 1980.

[6] B.S.Baker, \An algorithm for structuring
ow-

graphs," J. ACM, vol. 24, pp. 98{120, Jan. 1977.

[7] L.Ramshaw, \Eliminating go to's while preserv-

ing program structure," Journal of the ACM,

vol. 35, pp. 893{920, Oct. 1988.

[8] B.C.Housel, A Study of Decompiling Machine

Languages into High-Level Machine Independent

Languages. PhD dissertation, Purdue University,

Computer Science, Aug. 1973.

[9] F.E.Allen and J.Cocke, \Graph theoretic con-

structs for program control
ow analysis," Tech.

Rep. RC 3923 (No. 17789), IBM, Thomas J. Wat-

son Research Center, Yorktown Heights, New

York, July 1972.

[10] J.Cocke, \Global common subexpression elimina-

tion," SIGPLAN Notices, vol. 5, pp. 20{25, July

1970.

[11] F.E.Allen, \Control
ow analysis," SIGPLAN

Notices, vol. 5, pp. 1{19, July 1970.

[12] F.E.Allen, \A basis for program optimization,"

in Proc. IFIP Congress, (Amsterdam, Holland),

pp. 385{390, North-Holland Pub.Co., 1972.

[13] R.E.Tarjan, \Depth-�rst search and linear graph

algorithms," SIAM Journal of Computing, vol. 1,

pp. 146{160, June 1972.

[14] R.E.Tarjan, \Testing
ow graph reducibility,"

Journal of Computer and System Sciences,

pp. 355{365, Sept. 1974.

[15] M.Hecht and J.Ullman, \A simple algorithm for

global data
ow analysis problems," SIAM Jour-

nal of Computing, vol. 4, pp. 519{532, Dec. 1975.

