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HIERARCHY: Persistent virtual processor servers (O.S., 
hardware interface card or simulator) provide access to 
multiple Virtual Processors..
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Four-part debugging / profiling API proposal:

•  Black box CORBA component debugging

•  Networked, heterogeneous source debugging

•  Real-time, embedded system debugging

•  Simulated processor system debugging
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Black box CORBA component debugging (mandatory)

•  Interface repository identifies operations, 
parameter types, return values

•  Interceptors support inspection of client-side and 
server-side parameters and return values (orbos/
98-09-11)

•  Debugger can halt & restart server at intercepted 
points (black box breakpoints)

•  Debug / profile state API, described via meta-
data, available for debugger state inspection

•  Interceptors can buffer information, raise 
exceptions on overflow
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Networked, heterogeneous source debugging (optional)
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Real-time, embedded system debugging (optional)
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Circuit layer: registers, memory, memory map, flags, signals, 
pins, buses, subcircuits, IO ports.
Events: read, write, access, change, input, output.

Machine code layer: instruction pointer, program memory.
Events: reset, execute, breakpoint, interrupt, overlay load, trace.

Assembly code layer: source file-lines, symbol table.
Events: symbolic mapping of machine code layer events.

Procedural code layer: scope, data rep, frame pointer.
Events: symbolic mapping of machine code layer events, 
expression evaluation, complex breakpoints.

Networked, Source Debugger Distributed API 

Layers of Virtual Processors Available for Debugging

DEBUGGER

PROCESSOR/PROCESS
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Language (e.g., C)
expression eval
data access
scope information

Networked, Source Debugger Distributed API 

Vendor value-adding debugger client
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self-description 
(x86, Pentium II, 
registers, custom 
memory, IO, etc.)

Memory contents
Register contents
Scalar signals
Memory layout
IO & other state

Control:
reset, execute,
trigger event
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Issues for embedded systems
•  Intra-processor and inter-processor signals
•  Inter-processor subcircuits, IO objects, registers
•  Pins and buses
•  Timing —  clock ticks, measurement, sync
•  Execution & breakpoint control in wiring events
•  Other asynchronous events
•  Possible lack of an operating system

Issues for simulated systems
•  Observation hooks exceeding physical systems
•  Simulated time is important
•  On-the-fly tuning of processor architecture
•  Multi-valued bit states —  0, 1, U, Z, etc.
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Options in the RFP

•  Source code debugging

•  Real-time or embedded systems

•  Debugger can halt & restart one client thread at 
server intercepted points

•  Call tracing through distributed CORBA system

•  Meta-Object Facility support for automatic 
configuration of debugging tools, based on MOF 
model or meta-model
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Other standardization efforts in the debugging, embedded 
system or processor CAD industry.

Open Microprocessor Systems Initiative (OMI)
•  European consortium associated with Esprit
•  Generic Debug Instrument Interface (GDI), 1/98
•  Addresses embedded hardware and simulation
•  Marginally addresses multiprocess debugging
•  No support for multi-valued simulation logic
•  Six companies involved —  Kontron, Siemens, 

TASKING, IMEC, Syndesis, Synopsis
•  www.omimo.be and www.tasking.com



D. Parson, Lucent Technologies, 9/28/99  Lucent CORBA 1999: Distributed Debugging API p.  15

JavaSoft’s distributed Java™  debugger protocol (JPDA)
•  http://java.sun.com/products/jpda/
•  Java™  Virtual Machine Debugger Interface
•  Java™  Debug Wire Protocol
•  Java™  Debug Interface
•  Single language support
•  Single virtual machine support
•  Distributed debugging
•  Lowest level is Java class-object-method-frame
•  No interface into “machine code” JVM
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Distributed Debugging API status

•  Revised draft RFP in San Jose in August

•  Final revision, ORBOS and Architecture Board 
vote targeted for November

•  OMG members (tools vendors) have around a 
year to respond to RFP with proposals

•  Likelihood of source debugging & embedded 
system debugging unknown —  major tools 
players are not fully engaged

•  My guess is little or no source code debugging
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Conclusions

•  Programs will always have bugs & bottlenecks

•  Programmers will need debuggers & profilers

•  Lack of visibility of distributed program behavior 
puts an upper limit on the complexity of systems

•  OMG should be a place to raise that limit

•  Bell Labs / Lucent ME in conjunction with 
Lehigh University EECS, is supporting research 
into distributed debugging & profiling for 
heterogeneous distributed systems


