
D. Parson, Lucent Technologies, 9/28/99 Lucent CORBA 1999: Distributed Debugging API p. 1

Lucent CORBA Seminar 1999

Distributed Debugging API for ORBs and Services

Request for Proposal, test/99-08-02

September 28, 1999

Dale Parson, Distinguished Member of Technical Staff

Bell Labs, Microelectronics Division

dparson@lucent.com

D. Parson, Lucent Technologies, 9/28/99 Lucent CORBA 1999: Distributed Debugging API p. 2

Communicating
threads, tasks or
processes on

Process on a
workstation O.S.
communicates with an
embedded processor,
maybe no O.S.

uC DSP

Communicating
processes in
simulated or even
mixed simulated -
real multiprocessors.

PROBLEM: Debug two or more processes together
(in OS’s, or embedded processors, or simulations).

heterogeneous
processors,
languages and
operating systems.

D. Parson, Lucent Technologies, 9/28/99 Lucent CORBA 1999: Distributed Debugging API p. 3

HIERARCHY: Persistent virtual processor servers (O.S.,
hardware interface card or simulator) provide access to
multiple Virtual Processors..

Operating System Object
contains one or more
Virtual Processors as
Sequential Threads

registers
memory
flags
page table
breakpoints
profile

registers
memory
flags
page table
breakpoints
profile

registers
memory
flags
page table
breakpoints
profile

registers
memory
flags
page table
breakpoints
profile

Hardware Debug Server
Object runs on Interface
Card Processor to provide
access to Embedded
Application Processors

uC DSP

Circuit Simulator or
Functional Simulator
Object runs on Simulation
Processor to provide
access to Simulated
Processor Models

D. Parson, Lucent Technologies, 9/28/99 Lucent CORBA 1999: Distributed Debugging API p. 4

ProcessorGroup

contain processors
schedule processors
sync processors
execute en masse
expose processor

VirtualProcessor

programmed instructions
implement state machine
support breakpoints &
state change events
support state query

contains

implements

*

0..1

operating
system

hardware
controller

(processes) (chips)

simulator
(processor
models)

process processor

modelthread

Debugger, Profiler, etc. (client)

queries & runs queries & debugs* *

(instruction stream)(instr. stream collection)

D. Parson, Lucent Technologies, 9/28/99 Lucent CORBA 1999: Distributed Debugging API p. 5

Four-part debugging / profiling API proposal:

• Black box CORBA component debugging

• Networked, heterogeneous source debugging

• Real-time, embedded system debugging

• Simulated processor system debugging

D. Parson, Lucent Technologies, 9/28/99 Lucent CORBA 1999: Distributed Debugging API p. 6

Black box CORBA component debugging

debugger / profiler

CORBA
Component 3

CORBA
Component 1

CORBA
Component 2

Debug state
API

interceptorscall

call
return

return

D. Parson, Lucent Technologies, 9/28/99 Lucent CORBA 1999: Distributed Debugging API p. 7

Black box CORBA component debugging (mandatory)

• Interface repository identifies operations,
parameter types, return values

• Interceptors support inspection of client-side and
server-side parameters and return values (orbos/
98-09-11)

• Debugger can halt & restart server at intercepted
points (black box breakpoints)

• Debug / profile state API, described via meta-
data, available for debugger state inspection

• Interceptors can buffer information, raise
exceptions on overflow

D. Parson, Lucent Technologies, 9/28/99 Lucent CORBA 1999: Distributed Debugging API p. 8

Networked, heterogeneous source debugging (optional)

User
appli cation

Operating
system

CORBA compliant
debug API

OS-neutral debug API
(specified in CORBA IDL)

CORBA compliant
debug API

OS-neutral debug API
(specified in CORBA IDL)

User
application

Operating
system

machine A machine B

debugger / profiler

Object files

Source files

Machine
description

Object files

Source files

Machine
description

D. Parson, Lucent Technologies, 9/28/99 Lucent CORBA 1999: Distributed Debugging API p. 9

Real-time, embedded system debugging (optional)

debugger / profiler

Object files

Source files

Machine
description

machine M

CORBA compliant
debu g API

OS-neutral debug API
(specified in CORBA IDL)

Operating
system

User
application

Embedded
hardware

CORBA system S

CORBA
Component N

Debug state
API

CORBA
Component M

Embedded
hardware

D. Parson, Lucent Technologies, 9/28/99 Lucent CORBA 1999: Distributed Debugging API p. 10

Circuit layer: registers, memory, memory map, flags, signals,
pins, buses, subcircuits, IO ports.
Events: read, write, access, change, input, output.

Machine code layer: instruction pointer, program memory.
Events: reset, execute, breakpoint, interrupt, overlay load, trace.

Assembly code layer: source file-lines, symbol table.
Events: symbolic mapping of machine code layer events.

Procedural code layer: scope, data rep, frame pointer.
Events: symbolic mapping of machine code layer events,
expression evaluation, complex breakpoints.

Networked, Source Debugger Distributed API

Layers of Virtual Processors Available for Debugging

DEBUGGER

PROCESSOR/PROCESS

D. Parson, Lucent Technologies, 9/28/99 Lucent CORBA 1999: Distributed Debugging API p. 11

Language (e.g., C)
expression eval
data access
scope information

Networked, Source Debugger Distributed API

Vendor value-adding debugger client

Object file
format (e.g.,
COFF, ELF/
DWARF)

Language -
architecture
cross-product
(C on x86)

Virtual Processor / Process Object

Machine code level
self-description
(x86, Pentium II,
registers, custom
memory, IO, etc.)

Memory contents
Register contents
Scalar signals
Memory layout
IO & other state

Control:
reset, execute,
trigger event
(breakpoint, load
overlay, interrupt)

D. Parson, Lucent Technologies, 9/28/99 Lucent CORBA 1999: Distributed Debugging API p. 12

Issues for embedded systems
• Intra-processor and inter-processor signals
• Inter-processor subcircuits, IO objects, registers
• Pins and buses
• Timing — clock ticks, measurement, sync
• Execution & breakpoint control in wiring events
• Other asynchronous events
• Possible lack of an operating system

Issues for simulated systems
• Observation hooks exceeding physical systems
• Simulated time is important
• On-the-fly tuning of processor architecture
• Multi-valued bit states — 0, 1, U, Z, etc.

D. Parson, Lucent Technologies, 9/28/99 Lucent CORBA 1999: Distributed Debugging API p. 13

Options in the RFP

• Source code debugging

• Real-time or embedded systems

• Debugger can halt & restart one client thread at
server intercepted points

• Call tracing through distributed CORBA system

• Meta-Object Facility support for automatic
configuration of debugging tools, based on MOF
model or meta-model

D. Parson, Lucent Technologies, 9/28/99 Lucent CORBA 1999: Distributed Debugging API p. 14

Other standardization efforts in the debugging, embedded
system or processor CAD industry.

Open Microprocessor Systems Initiative (OMI)
• European consortium associated with Esprit
• Generic Debug Instrument Interface (GDI), 1/98
• Addresses embedded hardware and simulation
• Marginally addresses multiprocess debugging
• No support for multi-valued simulation logic
• Six companies involved — Kontron, Siemens,

TASKING, IMEC, Syndesis, Synopsis
• www.omimo.be and www.tasking.com

D. Parson, Lucent Technologies, 9/28/99 Lucent CORBA 1999: Distributed Debugging API p. 15

JavaSoft’s distributed Java™ debugger protocol (JPDA)
• http://java.sun.com/products/jpda/
• Java™ Virtual Machine Debugger Interface
• Java™ Debug Wire Protocol
• Java™ Debug Interface
• Single language support
• Single virtual machine support
• Distributed debugging
• Lowest level is Java class-object-method-frame
• No interface into “machine code” JVM

D. Parson, Lucent Technologies, 9/28/99 Lucent CORBA 1999: Distributed Debugging API p. 16

Distributed Debugging API status

• Revised draft RFP in San Jose in August

• Final revision, ORBOS and Architecture Board
vote targeted for November

• OMG members (tools vendors) have around a
year to respond to RFP with proposals

• Likelihood of source debugging & embedded
system debugging unknown — major tools
players are not fully engaged

• My guess is little or no source code debugging

D. Parson, Lucent Technologies, 9/28/99 Lucent CORBA 1999: Distributed Debugging API p. 17

Conclusions

• Programs will always have bugs & bottlenecks

• Programmers will need debuggers & profilers

• Lack of visibility of distributed program behavior
puts an upper limit on the complexity of systems

• OMG should be a place to raise that limit

• Bell Labs / Lucent ME in conjunction with
Lehigh University EECS, is supporting research
into distributed debugging & profiling for
heterogeneous distributed systems

