
Using Java Reflection to Automate Extension Language Parsing

Dale Parson (dparson@lucent.com)

Bell Laboratories, Lucent Technologies

Abstract
An extension language is an interpreted programming
language designed to be embedded in a domain-specific
framework. The addition of domain-specific primitive
operations to an embedded extension language
transforms that vanilla extension language into a
domain-specific language. The LUxWORKS processor
simulator and debugger from Lucent uses Tcl as its
extension language. After an overview of extension
language embedding and LUxWORKS experience, this
paper looks at using Java reflection and related
mechanisms to solve three limitations in extension
language - domain framework interaction. The three
limitations are gradual accumulation of ad hoc interface
code connecting an extension language to a domain
framework, over-coupling of a domain framework to a
specific extension language, and inefficient command
interpretation.

Java reflection consists of a set of programming
interfaces through which a software module in a Java
system can discover the structure of classes, methods
and their associations in the system. Java reflection and
a naming convention for primitive domain operations
eliminate ad hoc interface code by supporting recursive
inspection of a domain command interface and
translation of extension language objects into domain
objects. Java reflection, name-based dynamic class
loading, and a language-neutral extension language
abstraction eliminate language over-coupling by
transforming the specific extension language into a run-
time parameter. Java reflection and command objects
eliminate inefficiency by bypassing the extension
language interpreter for stereotyped commands. Overall,
Java reflection helps to eliminate these limitations by
supporting reorganization and elimination of hand-
written code, and by streamlining interpretation.

1. Introduction
This paper examines the design of a set of Java utility
interfaces and classes that simplify the work of
integrating an extension language into a Java-based
domain framework. Section 2 examines the role that
extension languages play in extending domain-specific
application frameworks. Section 3 looks at a
commercial domain framework - extension language
from Lucent called LUxWORKS. Experience in

designing, building and maintaining LUxWORKS has
led to this current research project within Bell Labs.
Section 3 examines some limitations that have surfaced
in the original, C++-based implementation of
LUxWORKS. Section 4 follows through by eliminating
these limitations, using a combination of Java reflection,
Java dynamic class loading, a language-neutral
extension language abstraction, and a set of naming
conventions. Section 5 looks at related extension
language-Java efforts. Section 5 also summarizes.

2. Extension Languages for domain-specific
software systems

An extension language is a programming language that
extends a domain-specific software application, tool or
framework (hereafter “framework”). Interpreted
languages such as Scheme [1], Tcl [2], or Python [3]
often serve as extension languages because their
interpreters support interactive creation and execution of
custom extensions by framework users at run time.
Many proprietary, framework-specific extension
languages have come and gone, but with the maturation
of extension language technology and the mass
acceptance of so-called scripting languages [4], there is
now seldom a need to invent a new extension language
for an interactive framework. The term command
language highlights the fact that an extension language
usually adds imperative commands to a framework.

An extension language provides an application
programming interface (API) that supports connections
between the extension language and the system
programming language [4] such as C, C++ or Java that
implements the basic capabilities of the domain-specific
framework. An extension language supports three
categories of extensions:

• A framework extends an extension language by adding
domain-specific primitives to the extension
language’s instruction set.

• Conversely, an extension language extends a domain-
specific framework by adding an interpreted language
capability.

• An extension language user extends the composite
framework-language by writing extension functions
in the extension language.

A framework engineer codes domain-specific primitives
in a system programming language for efficiency, for
security, and for compatibility with existing code
libraries. Extension language designers intend their
languages to be extended with new primitives;
extension languages differ in this way from languages
whose definitions are frozen by standardization. A
primitive becomes an integral part of the extension
language. If the extension language supports dynamic
loading of primitives, then even users in the field can
extend a framework-language system. Otherwise
framework developers must add primitives via static
linking.

Figure 1 illustrates the major calling relationships in a
framework-language system. A user interface or
extension language program (a.k.a. “script”) passes
textual extension language expressions to the extension
language’s eval primitive, named after the classic LISP
eval that evaluates a textual expression [5]. Eval
tokenizes and parses the expression. Eval then executes
the functional pieces of the expression by calling apply
(again from the LISP legacy) with a function and its
arguments as parameters. Apply calls a primitive
function directly. Apply invokes a function written in
the extension language by binding formal parameters to
arguments and calling eval recursively with the text of
the interpreted function. In extension languages that
support incremental compilation of intermediate code
(a.k.a. byte code), apply invokes a function written in
the extension language by calling an intermediate code
interpreter with the intermediate code of the compiled
function.

In a purely functional, LISP-like language, the result
returned from eval is the result of the outermost function
invocation in the expression. Non-functional languages
may include operators that do not reduce to primitive
function calls; eval interprets these directly.

Eval builds atop generic extension language primitives
as well as domain-specific primitives. Primitives build
atop library classes and functions in their respective
modules. In addition, domain code can call extension
language primitives directly, without the overhead of
eval-based parsing. Domain code can also call extension
language library code, for example string or hash table
utility functions. Finally, eval itself is a primitive,
allowing nesting of expressions within expressions and
within domain data structures to arbitrary depth. One
typical use of nesting is attachment of an extension
language callback expression to some condition in the
domain framework. When the domain meets that
condition, it triggers a callback event to the extension
language, and the extension language evaluates the
expression as part of domain execution. Event-directed
control is found in graphical user interfaces, in
simulation systems, in loosely coupled distributed
computing, and in the JavaBeans programming
environment [6].

3. Tcl and the LUxWORKS embedded
system simulator and debugger

3.1 Tcl-Luxdbg architecture
The research project of this paper grew out of
experience in the architecture, design, implementation
and maintenance of Lucent’s luxdbg simulator and
debugger for embedded processors [7]. Luxdbg uses Tcl
as its extension language [8]. For an overview of
luxdbg’s architecture and design patterns see [9].

Figure 2 shows Tcl applied to luxdbg. Luxdbg registers
the names and C++ function addresses of its primitives
with Tcl at initialization time. Command strings drive
Tcl. Tcl performs its language-specific manipulations
on command strings, including variable substitution and
concatenation of strings returned from nested Tcl

User interface Extension language Domain framework

eval (expression)

language primitives

library classes & functions

apply (function, args ...)

function call

or program

invoke

return

domain primitives

domain classes
& functions

function call
apply

function
call

Figure 1: Calling patterns in a domain framework - extension language system

function invocations. Tcl then interprets byte codes for
built-in primitives, and it forwards commands that start
with registered primitive names to luxdbg. Like all Tcl
functions, a luxdbg primitive returns a result string or
error diagnostic upon completion of its invocation. Tcl
can insert a result from a luxdbg primitive back into a
higher-level expression; Tcl exception handling can
catch luxdbg errors.

Figure 2 shows four classes of luxdbg primitives.
Processor management primitives allow users to create,
locate, initialize and destroy multiple processor
instances. Processor instances include simulation
models or connections to hardware processors of
assorted types. Processor access primitives allow users
to read and write processor state found in processor
memory, registers and signals. Processor control
primitives allow users to set and clear breakpoint event
triggers, to handle breakpoint and error exceptions, to
reset a processor, and to resume processor execution.
Processor IO primitives allow users to connect input or
output from processor input-output ports to data files or
Tcl callback functions.

Exception processing and input-output processing
provide two interesting examples of event-driven
callbacks from the luxdbg domain framework to the Tcl
extension language. A user can enable callbacks by
associating a Tcl expression string with a breakpoint,
with a processor error, or with a processor IO event.
When one of these events occurs, luxdbg calls back to
Tcl, passing a processor-event-expression triplet. Tcl
evaluates the expression in the context of the processor
and event. Callbacks can extend processor capabilities.
An output callback, for example, can copy results from
an output port to the input port of another processor,
simulating interconnection. A breakpoint callback can

log debugging information. Callbacks can access
multiple processors. All callbacks can conditionally
continue or halt processor execution. Tcl callbacks can
consequently implement a multiprocessor simulation
scheduler.

These four categories of primitives combine with
domain event-driven control to transform Tcl from a
vanilla programming language to a domain-specific
processor manipulation language. Tcl expressions
evaluated within callback functions can extend or
override the native computations of processors.

3.2 Tcl-Luxdbg limitations
Luxdbg as diagrammed in Figure 2 has a number of
limitations.

3.2.1 Ad hoc primitive interface code
Connecting a new luxdbg primitive to Tcl requires
writing new, special-case code. Tcl forwards commands
to luxdbg through the following interface function:

int Primitive(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[])

The clientData parameter is a C void pointer that the
domain framework initializes when it registers a
primitive with Tcl. Thereafter Tcl supplies this pointer
as clientData when it calls the primitive. The pointer is
useful for passing domain state information.

The interp parameter is a reference to the Tcl
interpreter. It is useful for eval callbacks and calls to Tcl
primitives and library functions.

The remaining two parameters, argc (argument count)
and argv (argument vector), are standard fare for C
programmers. Argument vector is a vector of strings and

User interface
Tcl luxdbg

Tcl_Eval (Tcl expression)

language primitives

library functions

TclExecuteByteCode

function call

or programmed

invoke

return

domain primitives

processor hardware &
simulation functions

function callfunction
call

Figure 2: Calling patterns in the Luxdbg framework - Tcl language system

• processor management
• processor access
• processor control
• processor IO

Tcl commands
apply

argument count holds its length. In calling a domain-
specific primitive, Tcl stores the name and arguments of
the primitive in argv. The primitive receives the
arguments as strings, and the primitive has the
responsibility of converting the strings to their
appropriate values. Values might include strings as
received, atomic types (e.g., int or float), Tcl-specific
structured strings (e.g., Tcl lists), or domain-specific
structured strings (e.g., an infix expression string for a
processor debug statement). When a conversion error
such as an invalid integer string occurs, the primitive
has the responsibility of detecting the error and asserting
a Tcl exception.

Tcl version 8.0 introduced an additional primitive
interface for simplifying conversion of argument strings
to atomic C types and for type mismatch detection [2]:

int TclPrim(ClientData clientData, Tcl_Interp *interp,
int objc,Tcl_Obj *CONST objv[])

This interface replaces the string-based argv parameter
with an array of Tcl objects. Client code can request
conversion of one form of an object to another (e.g., a
numeric string to an integer), but responsibility for
directing argument type conversion and raising format
exceptions still lies with the procedural code of
primitives.

The need for testing parameter type-specific formats,
directing translation of argument strings into objects of
these types, verifying the correct number of arguments,
and formatting return values, has resulted in a layer of
luxdbg code to satisfy this need. Each new primitive
requires a function to test and to convert its Tcl
arguments to argument types required by its
corresponding implementation function. The
measurable cost is 1537 lines of non-comment code for
48 primitive functions in the current luxdbg, or about 32
lines of code on average for each primitive. While 1537
lines is a small number when compared with the roughly
80,000 lines of processor-neutral simulator and
debugger code currently in luxdbg, the need to perform
Tcl argument manipulation within each primitive
contributes complexity out of proportion to the number
of lines of code. Each designer of a primitive is saddled
with the job of writing argument conversion code that
has nothing to do with the primitive’s semantics.
Because this code comes in little, unrelated packets,
each of which is specific to its primitive, it is written in
an ad hoc manner. The process invites errors and time-
consuming debugging and correction.

In addition, the creation of other tools that use Tcl as
their extension language in our organization is causing
the amount of code involved in ad hoc argc-argv

manipulation to grow. Section 4 shows that Java
reflection and a simple naming convention for
primitives can eliminate this code.

3.2.2 Hard-coded dependence on Tcl
Several research-oriented luxdbg users have expressed
interest in using the Scheme and Python languages with
luxdbg. Nothing about the architecture of Figure 2
precludes replacing Tcl with a different extension
language, but there are some hurdles. ELK-Scheme [1]
and Python [3] use the following primitive interfaces:

Object ELK_Constarg_Primitive(Object firstArg,
Object secondArg /* , etc. */)

Object ELK_Vararg_Primitive(int argc, Object *argv)

Object ELK_Lazyeval_Primitive(Object arglist)

int PyArg_ParseTuple(PyObject *argv, char *format,...)

ELK provides the first three, distinct interfaces. The
first interface organizes arguments to a primitive call
precisely by number of parameters supplied as part of
primitive registration. The second interface allows a
variable number of arguments. Both types use eager
evaluation, resolving arguments to built-in Scheme
types before calling the primitive. This is standard call-
by-value evaluation. ELK passes arguments as
dynamically-typed Scheme objects. The second
interface supports variable-length argument lists and
optional parameters. The third ELK interface uses lazy
evaluation to pass a list of unevaluated Scheme objects
to the primitive. This is a call-by-name mechanism that
relies on the primitive to resolve argument text to
argument values.

Python’s argv is a Python tuple that contains call-by-
value arguments. Format is a type conversion string
similar to C’s scanf function’s format string [10]; it uses
type conversion characters to direct type conversion of
Python arguments into C atomic values and strings.
Format implements a run-time interface definition
language (IDL). Arguments following format are
addresses of C variables that receive the results of
format-directed conversions; there is no compiler or
run-time check to ensure that format strings match the
types of these variables. Python supports optional
arguments and variable-length arguments, but
PyArg_ParseTuple’s format is limited to a fixed
maximum number of arguments.

This variety in extension language-to-primitive
interfaces presents a problem for designing a multiple
extension language interface for a domain framework. A
unique domain interface might be required for each

extension language. There is an underlying similarity
among these interfaces, however, that is of assistance.
Each invokes a primitive function with an argument list
of extension language objects. An object may be a Tcl
string, a Tcl_Obj, an ELK Object or a Python PyObject,
but it is some type of an extension language object.
Multiple extension languages result in a two-
dimensional type system, where the set of extension
languages defines one dimension (set of types typex =
{Tcl, ELK, Python, ...}) and the union of all extension
language internal types defines the other (set of types
typey = {integer, float, string, sequence, ...}). An
object’s type is an element of typex × typey.

A simple solution would be to design yet another
primitive functional interface, this one for the domain
framework. Each extension language would require a
language-primitive-to-domain converter (typex × typey
→ typedomain), that would map its proprietary object
format into the domain object format, thereby
eliminating the typex dimension. One problem with this
approach is the need to design typedomain. Another
problem is the overhead of constructing an intermediate
copy of each object in this language-neutral format.
Section 4 shows that Java incremental class loading and
reflection can support automated (typex × typey →
typeJy) conversion, where typeJy represents Java classes
∪ Java primitive types, and can include domain-specific
classes. No intermediate format is necessary.

3.2.3 Unnecessary interpretation overhead
Every luxdbg command goes through extension
language interpretation, resulting in execution that is
slower than necessary.

In a scenario where a user enters commands directly
into a terminal or commands come from an extension
language script, interpretation overhead is necessary and
acceptable. A user or program can supply any valid
combination of commands, literal strings, control
constructs (e.g., “if” statements), variable names and
nested procedure calls. The extension language
interpreter must resolve control flow, variable
substitutions and return values from nested calls before
calling domain primitive functions.

In luxdbg, however, typical interactive usage consists of
a user interacting with a graphical user interface (GUI).
The GUI forwards command strings to Tcl and receives
result strings in reply. Tcl relays display update events
from luxdbg to the GUI. Interpretation overhead is
necessary in some cases, but for many cases it is not.
Many of the commands coming from the GUI are
stereotyped commands. These commands do not entail

extension language control constructs, variables or
procedure calls. One example is a button for resuming
processor execution; it always sends the “resume”
command, which Tcl interprets and sends to a luxdbg
primitive. Another example is a text box for modifying a
processor register value; it always sends a register
assignment command with a value entered by the user,
and again Tcl interprets the command and sends it to
luxdbg without changes. Most commands attached to
GUI objects are stereotyped commands that Tcl passes
to luxdbg unchanged. These could go directly from the
GUI to luxdbg, avoiding Tcl overhead.

Unfortunately, the primitive function interface of
luxdbg in Figure 2 is not uniform. Direct GUI-to-
primitive function calls would entail detailed encoding,
within the GUI, of parameter type signatures of all
luxdbg primitive functions. Ad hoc code for connecting
specific GUI buttons, menus and text boxes to specific
primitive functions and parameters would proliferate.
Tcl strings provide a uniform command medium that
avoids this proliferation, albeit at the cost of
interpretation overhead.

Once again the simple solution proposed for dealing
with multiple extension languages suggests itself. A
GUI could encode a stereotyped command as a function
name and list of arguments using the common object
format typedomain, and the domain framework would
complete the job by mapping typedomain types to
primitive parameter types. Section 4 shows an extension
language-neutral way to reuse any extension language’s
internal types as typedomain, thereby avoiding the
creation of a framework-specific typedomain.

4. Java reflection supports an extension
language-to-domain bridge

The limitations in the current implementation of luxdbg
as well as opportunities afforded by Java infrastructure
have set me on the path of replacing the upper, debugger
and profiler layers of luxdbg with a new design in Java.
Lower processor modeling and hardware interface
layers remain in C++. Anticipated Java-enabled
improvements include the following:

• Better networking support for distributed debugging.

• Dynamic configuration through incremental loading.

• Reflection-based extension language interface support.

This section looks at ways in which Java’s incremental
loading and reflection can help to overcome luxdbg’s
existing limitations.

4.1 Java reflection and a naming convention
eliminate ad hoc primitive interface code

4.1.1 Java reflection
Reflection is a mechanism whereby parts of a software
system can query the system itself, in addition to the
usual ability to query for application domain
information. Whereas domain queries are the typical
queries of any query-supporting system, reflective
queries are meta-queries [11]. Meta-queries ask the
question: “How does this system do some particular
thing?”

Reflection provides support for self-configuring tools
and utilities. A generic tool or utility can read reflection
information and adapt itself to its target system.
JavaBeans provide a popular example [6]. A Java class
that conforms to certain method naming conventions,
and that may provide additional compiled information
that describes the class, makes itself available for
manipulation by graphical design tools. JavaBean
system developers can instantiate objects, set object
properties and create inter-object communication paths
using tools that contain no encoding of the APIs or
semantics of particular JavaBeans classes. Instead of
hard coding target class dependencies, JavaBean tools
encode knowledge of the JavaBean reflection API. At
system design time these tools read JavaBean class-
specific information through the API, giving customers
access to the unique capabilities of each JavaBean class
in a set of beans.

Java reflection allows Java code to query about
available Java classes, interfaces, methods, fields, and

their properties at run time [12]. Figure 3 shows four
major reflection classes — Class, Object, Method and
Field — along with their associations and several
methods that are important for this discussion. There are
many more classes and methods in package
java.lang.reflect.

Every Java object inherits from java.lang.Object. A
reflection-based tool or utility calls Object.getClass to
get a domain object’s Class (java.lang.Class). With the
object’s Class in hand, a utility can determine
constructors, superclass, implemented interfaces, nested
classes, levels of protection, and most importantly for
this discussion, methods and fields. Class.getMethods
returns an array of Method objects, Class.getField
returns a specific named Field, and
Class.getComponentType returns the base type of an
array. These are a few of the methods in class Class.

A Method supplies its name as a String, its parameter
types as an array of Class objects, and its return type as a
Class object. Clients of java.lang.reflect can build an
array of correctly-typed Object arguments, and then call
Method.invoke to invoke a Method on those arguments.
Method.getParameterTypes provides the basis for
automating the (typex × typey → typeJy) conversion.
Method.invoke provides the basis for automating
domain primitive invocation.

A Field supplies its name as a String, its type as a Class
object, and an assortment of get and set methods for
retrieving and modifying its value. Reflective field
query provides the basis for determining optional
domain primitive parameters as part of automating the
(typex × typey → typeJy) conversion.

Class

getName
getMethods
getField
getComponentType

Object

getClass

Method

getName
getParameterTypes
getReturnType
invoke

Field

getName
getType
get
set

Figure 3: Central Java reflection classes

4.1.2 Eliminating ad hoc interface code
Figure 4 uses the Unified Modeling Language (UML)
[13] to illustrate the major classes for (typex × typey →
typeJy) conversion and primitive method invocation.
Hollow arrows signify inheritance, pointing from
derived classes or interfaces to their parent classes or
interfaces. Solid arrows are associations annotated for
navigability. Clients navigate to the classes that serve
them.

Class extensionParser is the central, client class of
Figure 4.1 ExtensionParser has three main methods: its
constructor, its parse method, and its private apply
method (“-” signifies private). The constructor takes a
target Object as its parameter. The target is a domain
object of any Java class type. Target makes domain
primitives available to extensionParser. Each of target’s
primitive methods adheres to the naming convention
“command_NAME,” where NAME is the command
name from an extension language’s perspective. For
example in luxdbg,

String command_stepi(int stepcount)

is a target method that implements the “stepi” command
for stepping a processor “stepcount” machine cycles,
returning processor status as a String upon completion.

At construction time extensionParser uses
target.getClass to get the domain object’s class, then it
uses Class.getMethods to search the class for
“command_” prefixed public methods. The constructor
stores these in a hash table that is keyed on method
name (without the “command_” prefix). Java permits
method name overloading, and a slot in the hash table
can hold multiple method references when that slot’s
method name is overloaded.

Command parsing relies on the interfaces on the left
side of Figure 4. A Java interface defines public method
signatures, but it has no body. Another interface can
extend an interface’s set of methods, and a class can
implement the methods of any number of interfaces. In
Figure 4 interface extensionObject represents an
extension language object such as a Tcl_Obj, an ELK
Object or a Python PyObject. Interface extensionList
represents an ordered sequence of extensionObjects.
Interface extensionReturn is a utility interface for
converting Java objects into extensionObjects and
extensionLists. ExtensionReturn is an inverse mapper

1. A working example of the code for
extensionParser will be available as part of the on-
line proceedings of this conference.

Figure 4: ExtensionParser translates extension language primitive calls

extensionParser

extensionParser(
target : Object)

 parse
- apply

target«interface»
Serializable

«interface»
extensionObject

toObject
toString
getName

«interface»
extensionList

toObjectList
toExtensionList

Class

getName
getMethods
getField
getComponentType

Object

getClass

Method

getName
getParameterTypes
getReturnType
invoke

Field

getName
getType
get
set

«interface»
extensionReturn

extobj
extlist

that formats return values when returning from a Java
primitive to an extension language caller. The fact that
these interfaces extend interface java.io.Serializable
means that extensionObjects, extensionLists and
extensionReturns can be passed as value parameters in
networked method calls and stored as persistent objects.

Method extensionParser.parse receives an array of
extensionObjects as an input parameter from an
extension language primitive call. The first array
element holds the command name, and the remaining
elements hold its arguments. ExtensionParser.parse calls
extensionObject.getName — all extensionObjects can
be converted to Strings — and matches the returned
command name to the method names stored in
extensionParser’s hash table. A hash slot gives a list of
candidate methods that match the command name. Parse
also receives an extensionReturn object from the
extension language for formatting parse’s return value.

The methods of extensionObject and extensionList
come into play when parse calls extensionParser.apply.
Apply is a recursive, backtracking match algorithm
inspired by the more powerful match algorithms of
PROLOG [14] and ML [15]. Apply takes as arguments
the command name, a matching candidate Method, an
input array of extensionObject primitive-arguments,
another input array of Method parameter types
(obtained in parse via Method.getParameterTypes), an
array of domain Object arguments that apply populates
by translating the extensionObject array, and parse’s
extensionReturn parameter.

Each recursive call to apply attempts to match the next
extensionObject argument to the next Method parameter
type. Apply relies on an extension language-specific
class that implements interface extensionObject to do
the hard part. ExtensionObject.toObject takes the
Method parameter type as its argument, and it attempts
to convert itself into a Java Object of that type, returning
that Object as its return value. Conversion starts by
matching basic extension language object types to basic
Java Method parameter types such as integers, booleans,
floats and strings. When simple conversion fails, apply
uses reflection to determine whether the Method
parameter type has a class-static valueOf method that
can convert an extensionObject into a domain Object.
Target domain classes can provide custom
extensionObject-to-domain Object converters by
defining valueOf. ExtensionObjects transform into
specialized domain-class objects without encoding
domain awareness into extensionObject classes. Finally,
if toObject cannot transform its extensionObject into the
required domain Object, toObject throws a
typeMismatch exception to apply.

A concrete extensionObject.toObject method is doing
most of the work of (typex × typey → typeJy) conversion.
There is one such concrete method for each extension
language in typex, and by operating behind the abstract
extensionObject interface it eliminates its specific typex
language from extensionParser’s view. A concrete
extensionObject.toObject method must be written once
for each extension language. Its availability simplifies
(typex × typey → typeJy) conversion to (typey → typeJy)
conversion at the time that parameter matching occurs.
The extension language internal type of typey maps
itself to the domain type of typeJy; the latter is
extensionObject.toObject’s Method parameter type
argument.

ExtensionParser.apply uses some mechanisms in
addition to extensionObject.toObject. Apply checks
whether the target Method accepts an extensionObject
at the current position, passing an unaltered argument
when acceptable. In this case the primitive must initiate
conversion of the extensionObject at a later time. When
a position match succeeds, apply advances to the next
extensionObject and Method parameter type. When a
position match fails, apply inspects a list of optional
parameter positions built by extensionParser’s
constructor. The constructor uses the target Object’s
Class.getField method to locate an integer array
“optional_NAME” for command method “NAME.” If
the array exists, each of its elements gives the offset of a
parameter position that is optional for that command.
Apply supplies a Java null reference for an optional
position that cannot match the current extensionObject,
then it continues searching.

If apply encounters an array Method parameter, it uses
Java’s instanceof predicate to determine whether its
current extensionObject is in fact an extensionList, and
apply uses reflection to determine whether the
component type of the extensionList matches the
component type of the parameter (obtained from
Class.getComponentType). On a match, apply builds an
array argument.

Finally, if apply arrives at the last Method parameter
with a sequence of unmatched extensionObjects, and if
the last Method parameter is an array, apply attempts to
populate the array from these residual extensionObjects.
A final array of type extensionObject receives the
trailing arguments unaltered; apply invokes
extensionObject.toString for a final array of type String.

If, at last, extensionParser.apply matches all parameters
and consumes all extensionObject arguments, it uses
Method.invoke to invoke the primitive method on its
Java Object arguments. On success, apply uses
extensionReturn.extobj to return the primitive result to

the extension language. When an applied method fails,
apply and parse throw an exception back to the
extension language.

Match failure, on the other hand, does not throw back to
the extension language. Upon match failure, apply
backtracks and attempts to use nulls for optional
parameters; then it again works forward. If exhaustive
attempts to match a particular Method fail, and if that
Method name is overloaded, parse supplies another
Method to apply. Only when all possibilities have been
examined does parse report a usage error to the
extension language.

Consider the example of Figure 5. This example shows
two variants of a debugger stop command. Command
“stop at location ?expression?” sets a breakpoint at a
numeric processor address. Command “stop in function
?expression?” sets a breakpoint within a named
function. Both primitives specify an optional callback
expression to evaluate when the breakpoint fires. The
callback is an interpreted extension language expression
provided by a user.

This example is useful in pointing out what
extensionParser both can and cannot do. It cannot
distinguish a method on the basis of a textual keyword.
Regardless of whether stop’s first argument is “at” or
“in,” matching will pair it with the “String keyword”
parameter of either method and attempt to use it. A more
complex extensionParser mechanism would allow
keyword-method pairs to be listed in a target Object
field, and it would invoke a method only if its specified
keywords are matched. It turns out that it is just as easy
to have a matched method check its keywords on
invocation, throwing exception typeMismatch on a
keyword mismatch. ExtensionParser.apply treats
typeMismatch as a mismatched method, and it continues
searching for another match. This approach is similar to
failure in the body of a PROLOG clause whose head has

matched its arguments [14].

In the first attempt for method “stop,” apply fails to
match string “myfunc” to an int location parameter.
Backtracking determines that the first parameter is not
optional, and so apply backtracks to parse, which calls
apply with another “stop” method. In this attempt, apply
matches “myfunc” to the function parameter and the
callback string to the expr parameter. Apply invokes the
second command_stop method. If the callback
expression had been missing, apply would have
backtracked and inspected the optional parameter entry
derived from optional_stop_3, filling expr with a null
reference.

Note that while the callback expression {puts “stopped
in myfunc” ; resume} is a Tcl list, nothing in the match
algorithm encodes dependence on Tcl. The third
extensionObject argument happens to be an
extensionList that happens to be a Tcl list, but the
concrete realization of this extensionObject as a Tcl list
is unknown to extensionParser. The syntax handling for
Tcl list construction occurs in the Tcl interpreter before
the primitive call begins. Domain object access to list
elements can occur through extensionList.toObjectList
or extensionList.toExtensionList, converters that strip
off language-specific list syntax and return an array of
domain objects or an array of extension language
objects respectively. In this example the domain object
simply stores the Tcl list without decoding its values.
When a domain processor reaches a breakpoint it passes
the callback to the extension language (without
encoding its identity as a Tcl interpreter) for evaluation.

This section has shown how Java reflection and a
naming convention on method names eliminates hand
coded parameter conversion code for primitive methods.
ExtensionParser aligns parameters and reports errors.
The next section shows how dynamic class loading
combines with the reflective capabilities of

stop in function ?expression? String command_stop(String keyword,String function, String expr)
public static final int optional_stop_3[] = new int[1]; // 3 parameters
static { optional_stop_3[0] = 2 } ; // callback “expr” position

stop myfunc {puts “stopped in myfunc” ; resume}

location ?expression?

X

Figure 5: An example of automatic primitive method parameter alignment

stop at location ?expression? String command_stop(String keyword, int location, String expr)

in

at

stop myfunc {puts “stopped in myfunc” ; resume}

function ?expression?

in

in

extensionObject to support extension language selection
at run time.

4.2 Extension language as a parameter
Figure 6 shows interfaces extensionObject,
extensionList and extensionReturn of Figure 4, and it
also shows interface extensionLang that encapsulates an
extension language interpreter. ExtensionLang includes
public methods for interpreting expressions and
applying functions. Figure 6 also shows Tcl
implementation classes that implement these four
interfaces. The dashed lines signify UML realization
equivalent to Java’s implements directive. TclObject,
TclList and TclReturn assist in converting Tcl objects to
Java Objects and in returning Java Objects to Tcl as
discussed in the last section. TclInterp houses a Tcl
interpreter that uses TclObjects, TclLists and TclReturn
to communicate with Java primitive methods.

The Tcl classes of Figure 6 support Tcl by wrapping the
C implementation of Tcl 8.1.1 with Java Native
Interface (JNI) proxy methods [16]. Each proxy method
calls its Tcl counterpart through JNI’s C binding. Tcl
does not encode dependence on Java, and most Java

classes that use extension languages encode dependence
only on the abstract interfaces of Figure 6.

The four classes TclInterp, TclObject, TclList and
TclReturn constitute a Tcl software component.
Collectively they implement the four interfaces needed
to install an extension language in this Java framework.
Furthermore, Java’s ClassLoader.loadClass method
allows this Java framework to load a specific extension
language, by name, at run time. The luxdbg extension
language loader appends the string “Interp” to the
extension language name (e.g., “TclInterp”), loads that
specific language class from the luxdbg package that
houses extension language components, and performs a
run-time type check to ensure that the loaded class
implements the extensionLang interface. ExtensionLang
uses the other interfaces of Figure 6, and loading an
extension language also loads the other concrete classes.
Loading TclInterp loads TclObject, TclList and
TclReturn classes as well. The loader is similar to
reflection in supporting a string-based approach to
determining available extension languages at run time.
A GUI could inspect available languages in luxdbg’s
extension language package and allow a user to select

Figure 6: ExtensionLang encapsulates an extension language

«interface»
extensionObject

toObject
toString
getName

«interface»
extensionList

toObjectList
toExtensionList

«interface»
extensionReturn

extobj
extlist

TclObject

toObject
toString
getName

TclList

toObjectList
toExtensionList

«interface»
extensionLang

evalString
evalFile
applyFunc

TclInterp

evalString
evalFile
applyFunc

TclReturn

extobj
extlist

«interface»
extensionPrimitive

primitiveFunc

extensionParser

extensionParser(
target : Object)

 parse
- apply

the language of choice.

ExtensionLang defines helper interface
extensionPrimitive that specifies method primitiveFunc.
ExtensionPrimitive.primitiveFunc has the same
signature as extensionParser.parse. For the TclInterp
example, TclInterp queries its extensionParser for
“command_” primitive names at construction time, and
it registers each primitive command with its C-level Tcl
interpreter. Registration includes a pointer to a JNI
function that, when called as a primitive from Tcl, calls
TclInterp’s version of
extensionPrimitive.primitiveFunc. Tcl delegates
primitive commands to a C-level JNI function, which in
turn delegates to TclInterp’s
extensionPrimitive.primitiveFunc, which in turn
delegates to extensionParser, which then performs the
matching and method invocation discussed in the last
section. Return values and exceptions come back the
delegation chain. TclReturn converts return objects to
Tcl objects, and the JNI function converts Java
exceptions to Tcl exceptions.

Thus, four straightforward interface abstractions — an
extension language, its objects, object sequences, and
return values — suffice to encapsulate a complex
language as a Java software component. The typex term
has become a run-time parameter that users can set.

4.3 Commands that bypass the interpreter
Section 3.2.3 raised the issue of unnecessary
interpretation overhead. Stereotyped commands from a
GUI need not go through an extension language
interpreter because the extension language does not
change stereotyped command strings. The alternative of
connecting a GUI directly to domain object
implementation methods is undesirable because it over-
couples GUI code to primitive method signatures. GUI
code becomes ad hoc. Section 3.2.3 proposed that a GUI
could encode a stereotyped command as a function
name and list of arguments using the common object
format typedomain, and the domain framework would
complete the job by mapping typedomain types to
primitive parameter types.

ExtensionParser.parse is precisely the method needed to
provide a uniform command interface that bypasses the
extension language interpreter. Parse’s main input
parameter is an array of extensionObjects to translate. A
Java GUI can map user interface events (e.g., button
pushes, etc.) → arrays of Strings, then map Strings →
typedomain objects in the form of extensionObjects by
calling extensionReturn.extobj, then send an array of
extensionObjects to extensionParser.parse; parse then
maps typedomain objects as extensionObjects → typeJy

via extensionParser.apply and
extensionObject.toObject. All extensionObject classes
can hold strings (string representation is possible for all
extension language types), so mapping Strings →
typedomain objects entails no type conversion overhead.

Going back to Figure 1, a User Interface can bypass the
Extension Language component and send all
stereotyped commands directly to the Domain
Framework’s extensionParser interface. Two design
patterns from the Gang of Four book are conspicuous
here [17]. ExtensionParser implements the Facade
Pattern. ExtensionParser provides a unified,
homogeneous interface to a set of heterogeneously
typed primitive domain methods. Next,
extensionParser.parse’s input array of extensionObjects
implements the Command Pattern. The first array
element is a command name and the remaining elements
are its arguments. Command arrays can be stored,
queued, forwarded and ultimately executed via
extensionParser.parse.

The only potential drawback to bypassing the extension
language is the fact that users cannot extend or
otherwise redefine stereotyped commands in the
extension language if those commands always bypass
the extension language. Luxdbg avoids this problem by
registering primitives, including stereotyped command
names, with the extension language, and then having the
extension language notify UI components if any
stereotyped commands are redefined. At that point those
commands are no longer stereotyped. After redefinition,
UI components must send these commands through the
extension language component.

4.4 Performance
The current Java implementation of luxdbg transforms
the C++ implementation of Figures 1 and 2 into
associations of UI and Domain Framework Java
components interconnected by extensionLang,
extensionObject, extensionList, extensionReturn and
their Tcl concrete counterparts. UI-Domain
communications ultimately pass through
extensionParser to luxdbg’s Domain Framework. How
much does all this encoding, message passing, and
reflection-based decoding cost?

The answer is that, compared to extension language
interpretation costs, reflection-based command parsing
is cheap. Table 1 summarizes the results of sending
250,000 command calls through each of three
interfaces:

• direct UI-to-Domain object method calls with no
extension language or extensionParser involvement

• construction and passage of command objects (i.e.,
extensionObject arrays) from UI strings to
extensionParser as discussed in Section 4.3,
bypassing the extension language interpreter

• evaluation of UI command strings in the extension
language interpreter, which uses extensionParser to
decode primitive calls

The target primitive method takes a single integer
parameter and it returns a constant Java String. The
machine is a lightly loaded Toshiba Tecra laptop with a
266 MHz Pentium processor, 96 Mbyte RAM and
32Kbyte internal cache, running Windows 95, Sun’s
Java Development Kit 1.2 and Tcl 8.1.1. The test driver
invokes Java’s garbage collector immediately before
each of the three measured 250,000-call series. Table 1
reports time-per-call in microseconds.

The first two rows use Tcl’s original string-based, char
**argv primitive interface. The last two rows use the
newer Tcl_Obj object interface that attempts to keep
objects in an appropriate primitive format (e.g., string,
int or float) until the object is needed. The first and third
rows define only 1 method, the test target method, in the
test domain object. The second and fourth rows define
50 primitive methods, including 2 additional,
overloaded instances of the target method name with
different parameter types.

All rows show that 250,000 calls were not enough to
bring direct call overhead out of the noise. The 0 figure
does signify that communication and interpretation

overhead accounts for all measurable delays in other
columns.

Average extension language interpretation runs about
10.6 times slower than command objects that bypass the
interpreter. Clearly overhead is eliminated. At 29 to 43
microseconds of command overhead per GUI event,
command objects that bypass the extension language are
clearly fast enough. There is no reason to over-couple
the GUI to the Domain Framework for speed.

378 to 417 microseconds of interpreter overhead
includes the call to extensionParser.parse on the Domain
Framework side of the extension language. Roughly 400
microseconds per call is still not a lot of overhead. C++
luxdbg has the additional problem that the extension
language extracts all Domain Framework-to-GUI
update events and sends them to the GUI. Java luxdbg
will eliminate the extension language from stereotyped
GUI callbacks as well.

The first surprise comes with the fact that the second
row, working with a more heavily populated
extensionParser Method hash table than the first row, is
nevertheless faster than the first row. This result was
consistent across tests, and it is repeated between rows
three and four. The only conclusion is that Java hash
tables are marginally more efficient when populated
with a typical command set size.

The next surprise comes with the fact that the first two
rows, last column, are marginally more efficient than
their counterparts in the last two rows. The char **argv
implementation of Tcl objects in the first two rows
translates Tcl objects to Java strings immediately upon
leaving Tcl to invoke a primitive. The Tcl_Obj
implementation of Tcl objects in the last two rows stores
a reference to a C-level Tcl_Obj in each Java TclObject.
It does not translate a Tcl_Obj into a domain Object
until TclObject.toObject runs, and it converts it directly
to the integer needed by the test method. It skips the
intermediate format of a Java String. The benefit of
avoiding the intermediate String format appears to be
offset by the fact that TclObject.toObject must call
through the Java Native Interface to C in order to extract
the integer value by calling Tcl’s Tcl_GetIntFromObj
library function. JNI calls add overhead. The TclObject
caches its value to avoid subsequent calls through JNI,
but typical extensionObjects (e.g., TclObjects) require
only one toObject call, so caching is not much help.
Tcl’s original char **argv is both simpler to program
and faster for this application.

ExtensionParser cost is roughly one tenth the cost of
extension language + extensionParser costs for calling a
stereotyped command that does nothing.

Table 1: µSeconds-per-call for direct calls,
command objects and interpreted

expressions

test direct
parsed

command
objects

Tcl 8.1.1
interpreter

argv, 1
method

0 42 399

argv, 50
methods

0 29 378

Tcl_Obj,
1 method

0 43 417

Tcl_Obj,
50
methods

0 36 391

ExtensionParser’s percentage contribution to overhead
diminishes as the extension interpreter is given real
scripts to interpret, and as the Domain Framework is
given real primitives to execute. Interpreter and domain
costs go up while extensionParser costs remain constant.
Clearly performance is adequate for extension language
primitive interfaces and Command design pattern
objects.

5. Related work and conclusions

5.1 Related work
Other existing Java-based implementations of Tcl
include Jacl and TclBlend [18]. Jacl is a partial
implementation of the Tcl interpreter in Java, while
TclBlend is a conventional C Tcl implementation with
an interface to Java. The report on Jacl and TclBlend
states, “For the Java platform, we envision an
architecture that includes Java as the ‘component’
language used by component developers and Tcl as the
‘glue’ language used by application assemblers.” [18]
That perspective appears to make Tcl the center of the
framework. Tcl is responsible for interconnecting and
synchronizing Java components. Jacl is purported to be
slow [19] — Jacl interprets Tcl on top of a Java
bytecode interpreter — although a Jacl implementation
that produces Java bytecodes is certainly possible.

Luxdbg’s use of Java and Tcl takes a different approach.
Luxdbg uses Tcl where extension language
interpretation makes sense, but it does not put extension
language interpretation overhead in the middle of the
architecture. Luxdbg’s extension language interpreter
has access to all primitives, and it is possible to
coordinate all framework activities from Tcl, but it is
not mandatory. JavaBeans construction environments
do a reasonable job of generating “glue” code for
stereotyped component interactions, saving the
extension language for what it does best, extending the
system at run time. Given Tcl’s inability to coordinate
multiple Java threads within a single Tcl interpreter
[20], Tcl is not an ideal candidate for the center of any
multi-threaded Java framework.

Part of the impetus for creating the extension language-
neutral extensionLang interface was the desire to
experiment with JPython [21], a Java implementation of
Python, within luxdbg. Interesting features of JPython
include dynamic compilation to Java bytecodes for
performance, and the ability to extend existing Java
classes in JPython. JPython is tightly integrated into
Java, and implementing extensionLang and the related
interfaces should be straightforward. This is an area for
future investigation.

5.2 Conclusions
This paper started out as an overview of using extension
language components with application domain
frameworks. It looked at a particular framework,
luxdbg, and its coupling to the Tcl extension language.
Integration of Tcl into C++ luxdbg has been a great
success, but it has suffered from a few limitations.
Interface code from Tcl to C++ primitives is often ad
hoc and annoying to program, tight coupling of the
luxdbg framework to Tcl limits its ability to work with
other extension languages, and putting the extension
language in the center of all UI-to-Domain interactions
adds unnecessary overhead.

Java reflection and dynamic loading have provided the
basis for a set of mechanisms that overcome these
limitations. Reflection and a naming convention allow
class extensionParser and interface extensionObject to
work together to eliminate ad hoc primitive interface
code. The abstract extensionLang interface and
dynamic, name-based class loading work together to
make the specific extension language in a system a run-
time parameter. Command pattern objects in the form of
extensionObject arrays support stereotyped GUI-to-
Domain interactions that are uniform and efficient.
Clearly Java reflection and dynamic loading are very
powerful tools for enhancing the utility of extension
languages.

6. References
1. “The Extension Language Kit (ELK)”, http://www-

rn.informatik.uni-bremen.de/software/elk/. ELK is an
implementation of Scheme organized for use as an
extension language.

2. Brent Welch, Practical Programming in Tcl and Tk,
Second Edition. Upper Saddle River, NJ: Prentice
Hall PTR, 1997.

3. Guido van Rossum, Extending and embedding the
Python interpreter. Amsterdam: Stichting
Mathematisch Centrum, 1995, also at http://
www.python.org/doc/ext/ext.html.

4. John Ousterhout, “Scripting: Higher Level
Programming for the 21st Century,” IEEE Computer,
March, 1998, or Scriptics Corporation, http://
www.scriptics.com/people/john.ousterhout/
scripting.html.

5. John Allen, Anatomy of LISP. New York: McGraw-
Hill, 1978.

6. Robert Englander, Developing Java Beans.
Sebastopol, CA: O’Reilly, 1997.

7. LUxWORKS Debugger User Guide, luxdbg Version
1.7.0, Lucent Technologies, December, 1998.

8. D. Parson, P. Beatty and B. Schlieder, “A Tcl-based
Self-configuring Embedded System Debugger.”
Berkeley, CA: USENIX, The Fifth Annual Tcl/Tk
Workshop ‘97 Proceedings, Boston, MA, July 14-17,
1997, p. 131-138.

9. D. Parson, P. Beatty, J. Glossner and B. Schlieder, “A
Framework for Simulating Heterogeneous Virtual
Processors.” Los Alamitos, CA: IEEE Computer
Society, Proceedings of the 32nd Annual Simulation
Symposium, IEEE Computer Society / Society for
Computer Simulation International, San Diego, CA,
April, 1999, p. 58-67.

10. Brian W. Kernighan and Dennis M. Ritchie, The C
Programming Language, Second Edition. Englewood
Cliffs, NJ: Prentice Hall, 1988.

11. Frank Buschmann, “Reflection,” in Pattern
Languages of Program Design 2, ed. J. Vlissides, J.
Coplien and N. Kerth, Reading, MA: Addison-
Wesley, 1996, p. 271-294.

12. Ken Arnold and James Gosling, The Java™
Programming Language, Second Edition. Reading,
MA: Addison-Wesley, 1998.

13. James Rumbaugh, Ivar Jacobson and Grady Booch,
The Unified Modeling Language Reference Manual,
Reading, MA: Addison-Wesley, 1999.

14. W. F. Clocksin and C. S. Mellish, Programming in
PROLOG, Second Edition. Berlin: Springer-Verlag,
1984.

15. Jeffrey D. Ullman, Elements of ML Programming.
Englewood Cliffs, NJ: Prentice-Hall, 1994.

16. Rob Gordon, Essential JNI: Java Native Interface.
Upper Saddle River, NJ: Prentice Hall, 1998.

17. E. Gamma, R. Helm, R. Johnson and J. Vlissides,
Design Patterns: Elements of Reusable Object-
Oriented Software. Reading, MA: Addison-Wesley,
1995.

18. Ray Johnson, “Tcl and Java Integration,” Sun
Microsystems Laboratories, February 3, 1998. See
http://www.scriptics.com/java/

19. Assorted discussions on comp.lang.tcl.
20. Tcl 8.1.1 documentation at http://www.scriptics.com
21 JPython home page at www.jpython.org

