
D. Parson, Lucent Technologies, 4/12/99 32nd Annual Simulation Symposium p. 1

A Framework for Simulating Heterogeneous Virtual Processors

32nd Annual Simulation Symposium, System Simulation session

April 12, 1999

Dale Parson, Paul Beatty, John Glossner and Bryan Schlieder

Bell Labs Innovations for Lucent Technologies

dparson@lucent.com

D. Parson, Lucent Technologies, 4/12/99 32nd Annual Simulation Symposium p. 2

Design Patterns Generate Behavior across Media

The question is whether it is possible to write down rules or
patterns for architecture—and software and art—so that
ordinary people can follow the rules or patterns and, by the
nature of the patterns and using only the abilities of ordinary
people, beauty is generated. If this happens, then the rules or
patterns are generative, which is a rare quality.
— Richard Gabriel, Patterns of Software

LUxWORKS luxdbg simulator / debugger applies three design patterns across
system layers:

• Build and extend abstract virtual processors.

• Build reflective entities.

• Build a covariant extensible system.

D. Parson, Lucent Technologies, 4/12/99 32nd Annual Simulation Symposium p. 3

Universal Design Patterns constitute a lingua franca

“I can go anywhere in the system and recognize what is going on.”
— a processor designer using LUxWORKS framework.

Primitive medium (domain building blocks)

Aggregate medium (construction process, modules)

Extension medium (meta-data, extension language)

Key Domain Entity Reflection Extension covariance

registers,
instructions

multi-processor
system on a chip

on-the-fly
configuration

PATTERNS

D. Parson, Lucent Technologies, 4/12/99 32nd Annual Simulation Symposium p. 4

Layers of the LUxWORKS Framework

Modeling infrastructure

Processor model

Processor monitor / control

Tcl processor monitor / control commands

Hardware interface

Tcl subsystem

script callback

Tcl/Tk graphical user interface Tcl/Tk subsystem

widget event callback

Vendor simulator interface

cosimulate

0..1
1

1
*

1
1

1

*

0..1
1

0..1

*

IO callback

D. Parson, Lucent Technologies, 4/12/99 32nd Annual Simulation Symposium p. 5

Modules of the LUxWORKS Framework

PHASE

LUxDBG
Tcl/

TVM API

Tk

Scheduler

Chain Manager

JTAG Driver

DSP1600
TAP Mgr

DSP16K
TAP Mgr

ALGORITMIC API

func(input1[], input2[], output[])

DATACOEF

Finite Arithmetic
effects

DATA

INST

DSP1600
DSP16K

Embed-
ded

API

BEHAVIORAL API

D. Parson, Lucent Technologies, 4/12/99 32nd Annual Simulation Symposium p. 6

PATTERN #1: Build and extend abstract virtual processors.

for (tap = 0 ; tap < numtap ; tap++) {
accum += sample[tap]

* coefficient[(tap+offset) % numtap];

}

D. Parson, Lucent Technologies, 4/12/99 32nd Annual Simulation Symposium p. 7

PATTERN #1: Build and extend abstract virtual processors.

circuit VM

processor VM

procedural VM

extension language VM

application VM

models,
layouts,
chips

DSP1600, DSP16K,
SC140, ARM-7, ...

C/C++ debugging,
profiling

voice coders,
feature logic,
control logic

Tcl test scripts,
profile scripts,
FAE extension scripts

Every layer is a virtual processor.

modeling
infrastructure

processor
model

processor
monitor /
control

Tcl
subsystem

D. Parson, Lucent Technologies, 4/12/99 32nd Annual Simulation Symposium p. 8

What can one do with an Abstract Virtual Processor?

Circuit

eval() = 0

InterfaceProcessor

instruction stream

DriverProcessor

reset() = 0
strobe() = 0

probe query table
event triggers

A concrete
class derived
from Circuit
implements
a circuit.

A concrete
class derived
from Interface
Processor
implements an
instruction set.

A concrete
class derived
from Driver
Processor
implements a
processor chip.

instruction
decoder

DSP16K

DSP16210

Update output
and state from
input and state

Run, stop,
trigger breakpoint,
fire exception,
program

Reset,
synchronize,
connect to world

D. Parson, Lucent Technologies, 4/12/99 32nd Annual Simulation Symposium p. 9

How can one combine Abstract Virtual Processors?

DriverProcessor

InterfaceProcessor

Circuit Circuit

Circuit Circuit

InterfaceProcessor

Circuit Circuit

Circuit

ARM /
DSP16K
System in
a chip

ARM

control

datapath

shared
memory

DSP16K

Connect
them at
construction
time.

D. Parson, Lucent Technologies, 4/12/99 32nd Annual Simulation Symposium p. 10

Abstract Virtual Processors for architectural prototypes

ctx00

ctx01

ctx[n]

Interface Processor

Circuit::
Fetch[fBW]

Circuit::
Decode[d]

Circuit::
Window[w]

Circuit::
Retire[lr]

Circuit::
Schedule/Issue[li]

Circuit::Global_Issue_Schedule[gi]

Circuit::
ExecutionUnit[e]

Circuit::Global_Retire[gr]

Exec0 Exec[e]

infraSgnl::

Regs[r]

infraMemory Circuit::
ControlStateMachine

Driver Processor

Update output
and state from
input and state

Run, stop,
trigger breakpoint,
fire exception,
program

Reset,
synchronize,
connect to world

D. Parson, Lucent Technologies, 4/12/99 32nd Annual Simulation Symposium p. 11

PATTERN #2: Build reflective entities.

circuit VM

processor VM

procedural VM

extension language VM

application VM

What are your

What is your

What are your

What are your
What are your extensions,

Every layer is reflective.
registers, pins,
memories?

instruction pointer,
instruction memory,
byte ordering?

classes, functions,
variables, files?

sources, sinks,
features,
databases?

tests, sample data frames?

D. Parson, Lucent Technologies, 4/12/99 32nd Annual Simulation Symposium p. 12

Reflective processors yield configurable tools.

LUxDBG
Tcl/

TVM API

Tk

DSP1600
DSP16K

Embed-
ded

API

GUI uses relational and hierarchical mega-widgets.
GUI configures itself to processors & programs at run time.

D. Parson, Lucent Technologies, 4/12/99 32nd Annual Simulation Symposium p. 13

Reflective processors yield configurable bridges to tools.

circuit

machine code processor

assembly code processor

procedural code processorbehavioral simulator

DSP16k pin
interface

algorithmic simulator

fft
DSP16k

fft
function
interface

gen filt

out

Algorithmic simulator bridge
queries simulator & LUxWORKS
symbol table for function &
parameter bindings.

Behavioral simulator bridge
queries simulator & LUxWORKS
model for pin & clock timing
bindings.

D. Parson, Lucent Technologies, 4/12/99 32nd Annual Simulation Symposium p. 14

PATTERN #3: Build a covariant extensible system.

circuit VM

processor VM

procedural VM

extension language VM

application VM

Signal types &

Breakpoint trigger

Breakpoint

Breakpoint targets
Callback extensions covary with

Covariance keeps generic classes generic.
probe types
covary.

types covary
with processor.

commands covary
with types.

covary with
application.

processor type or instance.

D. Parson, Lucent Technologies, 4/12/99 32nd Annual Simulation Symposium p. 15

Forces driving simulation & debugging architectural evolution

circuit VM

processor VM

procedural VM

extension language VM

application VM

Partial definition
by processor

Third party
coresMultiple heterogeneous

processors

C++ on controllers,
embedded Java

networked
application
(e.g., Internet
telephony)

Distributed
embedded
systems need
networked
debugging &
profiling.

Run-time feature update
via Java networked loaders
for optimized code

core vendors

D. Parson, Lucent Technologies, 4/12/99 32nd Annual Simulation Symposium p. 16

Conclusions

• Virtual Processor pattern gives universal ability to trigger events,
reset, execute, halt execution and deliver break events to clients.

• Universal inheritance from Virtual Processor base classes — Circuit
and Interface Processor — supports on-the-fly composition of
processors into higher-order system simulations.

• Universal reflection allows tools and tool bridges to configure
themselves to processors and programs at execution time.

• Processor-oriented covariance allows tool capabilities to vary with
process-specific support without perturbing generic tool code.

• Current direction is unification of simulation, embedded hardware
execution & real-time operating system task execution.

• Increase in support for networked simulation & debugging.

