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ABSTRACT
Coordinated data structures are sets of (perhaps unbounded)
data structures where the nodes of each structure may share
abstract types with the corresponding nodes of the other
structures. For example, consider a list of arguments, and
a separate list of functions, where the n-th function of the
second list should be applied only to the n-th argument of
the first list. We can guarantee that this invariant is obeyed
by coordinating the two lists, such that the type of the n-th
argument is existentially quantified and identical to the ar-
gument type of the n-th function. In this paper, we describe
a minimal set of features sufficient for a type system to sup-
port coordinated data structures. We also demonstrate that
two known type systems (Crary and Weirich’s LX [6] and
Xi, Chen and Chen’s guarded recursive datatypes [24]) have
these features, even though the systems were developed for
other purposes. We illustrate the power of coordinated data
structures as a programming idiom with three examples: (1)
a list of function closures stored as a list of environments and
a separate list of code pointers, (2) a “tagless” list, and (3)
a red-black tree where the values and colors are stored in
separate trees that are guaranteed to have the same shape.

Categories and Subject Descriptors: D.3.3 [Language
Constructs and Features]: Data types and structures

General Terms: Languages

Keywords: Coordinated Data Structures

1. INTRODUCTION
This paper describes the features that polymorphic typed

λ-calculi need in order to express invariants between coordi-
nated recursive data structures. Examples of such invariants
include two trees with identical shape, or a list of function
pointers and a separate list of corresponding environment
records (where the n-th environment record corresponds to
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the n-th function). This section motivates why such invari-
ants are important, explores why the scope of type variables
makes the problem appear daunting, and previews the rest
of the paper.

1.1 Low-Level Type Systems
Recent years have witnessed substantial work on powerful

type systems for safe, low-level languages. Standard moti-
vation for such systems includes compiler debugging (gener-
ated code that does not type check implies a compiler error),
proof-carrying code (the type system encodes a safety prop-
erty that the type-checker verifies), automated optimization
(an optimizer can exploit the type information), and manual
optimization (humans can use idioms unavailable in higher-
level languages without sacrificing safety). An essential dif-
ference between high- and low-level languages is that the
latter have explicit data representations; implementations
are not at liberty to add fields or levels of indirection. Com-
pilers for high-level languages encode constructs (e.g., func-
tion closures) explicitly (e.g., as a pair of a code pointer and
an environment record of free-variable values).

For many reasons, including the belief that data represen-
tation decisions affect performance, low-level type systems
aim to allow great flexibility in making these decisions. But
as usual, the demands of efficient type-checking limit the
possible encodings. Type systems striking an attractive bal-
ance between data-representation flexibility and straightfor-
ward checking have typically been based on typed λ-calculi
with powerful constructors for sum types, recursive types,
universal types, existential types, and (higher-order) type
constructors. In such calculi, we can encode data structures
such as lists of closures without the type system mandating
the representation of lists or closures.

1.2 Type-Variable Scope
Unfortunately, many low-level typed λ-calculi suffer from

an unfortunate restriction resulting from the scope of type
variables. For example, consider encoding closures of func-
tions that have type int → int in a typed functional lan-
guage such as Haskell or ML. A simple encoding is ∃α. α×
((α× int)→ int). We abstract over the type of a data struc-
ture storing the values of the function’s free variables and
use a pair holding this structure and a closed function taking
the structure and an int [12]. (Whether pair types add a
level of indirection is important in low-level languages, but
not for this paper.) The existential quantifier is crucial for
ensuring all functions of type int → int in the source lan-
guage have the same type after compilation (even if their
environments have different types), which allows functions
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Figure 1: A function-closure list as (a) a conventional list, and (b) a coordinated pair of lists (using different
list representations).

to be first-class. For example, a list of such functions could
have type µβ.unit+((∃α. α× ((α× int)→ int))× β) (or an-
other list encoding), where α+β represents a sum type with
variants α and β. Figure 1a displays this encoding.

But suppose we want two coordinated lists (as in Fig-
ure 1b) in which one list holds environment records (the
αs) and the other holds code pointers (the→s), with the ith

element of one list being the record for the ith element of the
other. This choice may seem silly for a functional-language
compiler, but there are many reasons why we may wish to
“distribute” an existentially bound tuple across coordinated
data structures (such as lists):

• Legacy code: We may be conceptually adding a field
to existing types but be unable to recompile parts of
our system. We can do this by leaving arrays of such
records unchanged and using a “parallel array” to hold
the new field.

• Cache behavior: If some fields are rarely accessed, we
may place them in a separate data structure to reduce
working-set size.

• Data packing: Collections of records with fields of dif-
ferent sizes can be stored more efficiently by segregat-
ing the fields rather than the records. For example,
a pair of a one-bit and a 32-bit value often consumes
64-bits of space due to alignment restrictions.

The most important reasons are ones we have not thought
of: The purpose of low-level type systems is to allow “natu-
ral” data representations without planning for them in ad-
vance. In low-level code, there is nothing unnatural about
coordinated data structures.

At first glance, polymorphic type systems do not seem
equipped to allow this flexibility: To abstract a type, we
must choose a scope for the type variable. For coordinated
lists, we need a scope encompassing the lists. But the lists
have unbounded size, thus the scope may be unbounded.

This problem is fairly well-known, but to our knowledge it
has never been investigated directly. Perhaps it was feared
that supporting coordinated data structures would cause un-
desirable complications for what are already sophisticated
languages. We argue, however, that such fear is unwar-
ranted: With just a few additions to the polymorphic λ-
calculus, we can support coordinated data structures while
retaining type safety and syntax-directed type-checking.

Moreover, the additions—which by themselves are proba-
bly too special-purpose for direct use in a real type-checker—
give us a direct way to judge other systems’ power: If a
system can encode our additions, it can support coordi-
nated data structures. We know of two such systems: Crary
and Weirich’s LX [6] (originally designed for type analysis)
and Xi, Chen, and Chen’s guarded recursive datatypes [24]
(originally designed for object encodings and staged compu-
tation). By using our minimal system to show that these
systems are powerful enough to encode coordinated data
structures, we provide additional incentive for their adop-
tion.

1.3 Outline
The rest of this paper describes a simple type-theoretic

way to allow coordinated data structure invariants in a typed
λ-calculus, shows how we can use some existing languages
to encode these invariants, and demonstrates their power
through examples. Specifically, we:

• Explain how we use can use type lists, an enriched form
of recursive type, and a new “peel” coercion to circum-
vent the type-variable scoping issues (Section 2).

• Build progressively more complex languages, starting
with a language for coordinated lists (Section 3), ex-
tending it with singleton integers (Section 5), and fi-
nally supporting more general recursive coordinated
types (Section 6). We illustrate each language with an
extended example.

• Show how Crary and Weirich’s LX [6] and Xi, Chen
and Chen’s guarded recursive datatypes [24] can en-
code coordinated data structures (Section 4).

• Discuss our prototype implementation (Section 7), re-
lated work (Section 8), and future work (Section 9).

• Establish type safety and type erasure for the simple
coordinated list language (Appendix).

2. THE TRICK
We now describe a minimal and sufficient set of exten-

sions to provide support for coordinated data structures in
a polymorphic typed λ-calculus.
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The essence of coordinated data structures is that they
assume a potentially unbounded number of type equalities.
For example, two lists may assume their ith elements have
some connection (such as if one has type β then the other
has type β → int for some β). Conventional type systems
can describe potentially unbounded data structures with a
recursive type, µα.τ , that has finite size. We change con-
ventional recursive types to a simple form of parameterized
recursive type:

µ(σ ← β)α.τ

where σ is an infinite-list of types and, later, an infinite-
tree of types, and β (and α) are bound in τ . Intuitively, on
the ith unrolling of a recursive type, we substitute the ith

element of σ for β. The typing rule for an unroll coercion
is therefore the following, where τ [τ ′/α] is capture-avoiding
substitution of τ ′ for α in τ :

unroll

∆; Γ �t e : µ(τ ′::σ′ ← β)α.τ

∆;Γ �t unroll e : τ [τ ′/β][µ(σ′ ← β)α.τ/α]

That is, if σ is some τ ′ :: σ′ (a list beginning with τ ′), then
the unroll coercion substitutes τ ′ for β and µ(σ′ ← β)α.τ
for α, so the next unroll will use the next element of σ (i.e.,
the first element of σ′). The roll coercion is, as usual, the
inverse of unroll:1

roll

∆;Γ �t e : τ [τ ′/β][µ(σ′ ← β)α.τ/α]

∆; Γ �t roll e as µ(τ ′::σ′ ← β)α.τ : µ(τ ′::σ′ ← β)α.τ

Both rules reduce to the conventional rules for recursive
types provided β does not occur free in τ and we ignore
the type lists.

To express that two (or more) data structures are coordi-
nated, we just use the same σ. The example from Figure 1b
separating closure-environments and code pointers into co-
ordinated lists is

(µ(σ ← β)α.unit + β × α)
× (µ(σ ← β)α.unit + α× ((β × int)→ int))

But adding just σ and β accomplishes nothing: The type
of an unbounded data structure would include a σ of un-
bounded size. Fortunately, many uses of coordinated data
structures need not know the elements of σ, only that the
coordinated data structures use the same σ. Hence, it suf-
fices to abstract over lists of types, using ordinary existential
quantification. For example:

∃β′:L.( (µ(β′ ← β)α.unit + β × α)
×(µ(β′ ← β)α.unit + α× ((β × int)→ int)))

where L is a kind annotation indicating that β′ represents
a list of types. Adding this kind to a type system that
already has kinds requires no changes to the typing rules for
quantified types.

However, our typing rule for unroll does not apply to types
of the form µ(β′ ← β)α.τ , so there is not yet a way to do
anything useful with the pair obtained from unpacking a
value with the existential type above. We need a way to
replace the β′ with some αhd::αtl (where αhd has kind T,
the kind of conventional types, and αtl has kind L). Most
crucially, given multiple types that are coordinated in that

1The result type must be well-formed; the rule in Section 3
includes the necessary technical condition.

they use the same β′, we need to replace the β′ with the
same αhd and αtl lest we forget the very invariant we aim
to track. We introduce a “peel” coercion (as in peeling αhd

off an unknown list) for this purpose:2

peel

∆;Γ �t e1 : (µ(σ ← β)α.τ1)× (µ(σ ← β)α.τ2)
∆, αhd :T, αtl :L; Γ, x:(µ(αhd ::αtl ← β)α.τ1) ×

(µ(αhd ::αtl ← β)α.τ2)
�t e2 : τ

∆;Γ �t peel e1 as αhd , αtl , x in e2 : τ

This rule allows two coordinated data structures; in practice
peel should allow an n-tuple. As Section 3.2 shows, the
coercion never fails at run-time.

In summary, we have introduced type-lists, a kind for ab-
stracting over them, an enrichment of recursive types, and
a particular coercion called peel.

3. LANGUAGE FOR COORDINATED LISTS
In this section, we present a simple language based on the

extensions in Section 2. Sections 3.1, 3.2, and 3.3 present,
respectively, the syntax, semantics, and typing rules. Sec-
tion 3.4 illustrates the language with an example.

We emphasize that this language is powerful enough to en-
code only coordinated data structures where each node has
at most one recursive child3 (e.g., lists). In Section 6, we
generalize the language to support coordinated data struc-
tures with multiple children (e.g., trees).

3.1 Syntax
Figure 2 defines the syntax for our simple language. Ex-

pressions (e) can be: () for unit, x for variables, (e, e) for
pairs, πi e for projection, ini e for injection into a sum type,
case e of x.e x.e for branching based on sum types, λx:τ. e
for functions, e e for function application, or fix e for recur-
sion. We also have four cases for introducing and eliminat-
ing universally and existentially quantified types. Finally,
we have roll and unroll coercions for recursive types, and the
previously mentioned peel coercion.

Types (τ or σ) also contain the standard forms, including
τ × τ for pair types, τ + τ for sum types, ∀α:κ.τ for univer-
sally quantified types, and ∃α:κ.τ for existentially quantified
types. We also have the enriched recursive types described
in Section 2. The last two cases, τ∗ and τ ::σ, indicate type
lists. The type τ∗ represents an infinite list of τ s, and τ ::σ
represents the list created by adding τ to the head of the
type list σ. The kind T represents conventional types, and
the kind L represents lists of conventional types.

3.2 Semantics
Figure 3 presents the operational semantics for our coordi-

nated list language. The term-substitution notation e1[e2/x]
signifies capture-avoiding substitution of e2 for x in e1. Sim-
ilarly, we use τ1[τ2/α] for type substitution. The semantics
uses evaluation contexts (E) to specify order of evaluation

2The rule as stated here requires e1 to be a pair. In a low-
level setting, constructing a pair requires an extra alloca-
tion. We could replace our peel with peel e1, . . . , en as
αhd , αtl , x1, . . . , xn in en+1, but the rule as stated here has
the advantage of allowing a first class argument to peel.
3Technically, multiple recursive children can be supported,
but only if the coordinated types are identical in every child.
See Section 6.
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variables x ∈ Var
type variables α, β ∈ Tyvar
kinds κ ::= T | L
types σ, τ ::= unit | α | τ × τ | τ + τ | τ → τ | ∀α:κ.τ | ∃α:κ.τ | µ(σ ← β)α.τ | τ∗ | τ ::σ
expressions e ::= () | x | (e, e) | πi e | ini e | case e of x.e x.e | λx:τ. e | e e | fix e | Λα:κ. e | e [τ ]

| pack τ, e as τ | unpack e as α, x in e | roll e as τ | unroll e | peel e as α, α, x in e
values v ::= () | (v, v) | ini v | λx:τ. e | Λα:κ. e | pack τ, v as τ | roll v as τ
type contexts Γ ::= · | Γ, x:τ
kind contexts ∆ ::= · | ∆, α:κ

Figure 2: The syntax for a language supporting coordinated lists.

(see, for instance, [23]). With the exception of the peel co-
ercion, the rules are fairly standard.

The peel coercion takes a pair of recursively typed values
with identical type lists and applies the partial metafunction
peel(σ) (defined for all closed types of kind L) to split the
type list into a head and a tail. The reduction produces the
expression e, modified by substituting the list head for αhd ,
the list tail for αtl , and the input pair (with peeled lists)
for x. A well-typed peel coercion never fails (gets stuck) at
run-time. As the example in Section 3.4 shows, we can use
unit∗ (or another infinite-list type) for finite terms like the
empty-list.

3.3 Typing Rules
Typing judgments have the form ∆;Γ �t e : τ , where ∆ is

the kind environment and Γ is the type environment. We
implicitly assume ∆ and Γ have no repeated elements. To
avoid naming conflicts, we can systematically rename bind-
ing occurrences. The rules ensure every variable in Γ has
kind T under ∆. Figure 4 presents the typing rules for our
extended language. We use the notation

P1

P2

P3

as shorthand for
P1

P2
and

P1

P3
.

The kstar and kcons rules imply that list types (types of
kind L) can be constructed by either applying the ∗ operator
to a conventional type (a type of kind T), or by applying
the :: operator to a conventional type followed by a list type.
The kmu rule states that the type list of a recursive type
must have kind L, and that if we assume the bound type
variables (α and β) have kind T, then the body (τ ) must
also have type T. It is correct to assume that β has type T,
because the kstar and kcons rules guarantee that the list
σ from which β is instantiated will be composed of types of
kind T.

The peel rule states that the peeled expression (e1) must
be a pair of recursively typed expressions with identical type
lists. The type lists are replaced with αhd ::αtl , and the re-
sulting type is assumed for x in e2 (similar to how x is
assigned type τ ′ in the expression e2 for unpack coercions).
The roll and unroll rules are explained in Section 2. The
rest of the rules have their standard forms. Thus our exten-
sion requires only modest changes to the type system. The
system also remains syntax-directed, thus type-checking is
straightforward.

3.4 An Extended Example
As in Section 2, we consider storing the environments and

code pointers for a collection of closures separately. For

brevity and readability, we use standard syntactic sugar such
as type abbreviations, let x:τ = e1 in e2 for (λx:τ. e2) e1, and
let rec for fix. To emphasize that we do not restrict programs
to use predefined data representations, we use different list
encodings for the environments4 and the code pointers5:

let t1 = ∃β′:L.(
(µ(β′ ← β)α. unit + (β × α))
×(µ(β′ ← β)α. unit + (α× ((β × int)→ int))))

The function apply nth takes a t1 and returns the applica-
tion of 0 to the nth closure, or 0 if the lists are too short:

let apply nth : t1->int->int = λx. λ n.

let rec f x n =

peel x as α1,α2,x2 in

case unroll(π1 x2) of

x3. 0 (*1st list too short*)

x3. case unroll(π2 x2) of

x4. 0 (*2nd list too short*)

x4. if n==1(*apply closure or recur*)

then (π2 x4) ((π1 x3), 0)

else f ((π2 x3), (π1 x4)) (n-1)

in

unpack x as β′,x1 in

f x1 n

Without the peel coercion, the subsequent unroll expression
would not typecheck because π1 x has a type of the form
µ(β′ ← β)α.τ . Furthermore, we must peel both components
of x simultaneously or the function application in the then
branch would not type-check.

Adding a closure to a list involves creating an existential
type abstracting a larger list of types:

let cons: t1→ (∃α.α× ((α× int)→ int))→t1

= λ x. λ c.

unpack x as β′,x2 in

unpack c as α′,c2 in

pack α′::β′,
((roll (in2 (π1 c2, π1 x2)) as

µ(α′::β′ ← β)α. unit + (β × α)),
(roll (in2 (π2 x2, π2 c2)) as

µ(α′::β′ ← β)α. unit + (α× ((β × int)→ int))))
as t1

One problem remains: How do we make the pair of empty
lists for when there are no closures? For the recursive types,
any σ suffices, so we can use unit∗. Infinite lists of types
ensure the peel coercion in apply nth never gets stuck.

4We place the next-node pointer at the end of each node.
5We place the next-node pointer at the front of each node.
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E ::= [·] | (E, e) | (v, E) | πi E | ini E | case E of x.e x.e | E e | v E | fix E | E [τ ]
| pack τ, E as τ | unpack E as α, x in e | roll E as τ | unroll E | peel E as α, β, x in e

πi (v1, v2)
r→ vi where i ∈ {1, 2}

case ini v of x.e1 x.e2
r→ ei[v/x] where i ∈ {1, 2}

(λx:τ. e) v
r→ e[v/x]

fix λx:τ. e
r→ e[(fix λx:τ. e)/x]

(Λα:κ. e) [τ ]
r→ e[τ/α]

unpack (pack τ1, v as ∃α:κ.τ2) as α, x in e
r→ e[τ1/α][v/x]

unroll roll v as τ
r→ v

peel (roll v1 as µ(σ ← β)α.τ1, roll v2 as µ(σ ← β)α.τ2) as αhd , αtl , x in e
r→ e[τ ′/αhd ][σ′/αtl ][(roll v1 as µ(τ ′::σ′ ← β)α.τ1, roll v2 as µ(τ ′::σ′ ← β)α.τ2)/x]
where peel(σ) = τ ′::σ′

peel(τ ::σ) = τ ::σ
peel(τ∗) = τ ::τ∗

e
r→ e′

E[e]→ E[e′]

Figure 3: The operational semantics for our coordinated-list language.

∆ �k τ : κ

kbase

∆ �k unit : T
∆ �k α : ∆(α)

kpair

∆ �k τ1 : T ∆ �k τ2 : T

∆ �k τ1 × τ2 : T
∆ �k τ1 + τ2 : T
∆ �k τ1 → τ2 : T

kquant

∆, α:κ �k τ : T

∆ �k ∀α:κ.τ : T
∆ �k ∃α:κ.τ : T

kmu

∆ �k σ : L ∆, α:T, β:T �k τ : T

∆ �k µ(σ ← β)α.τ : T

kstar

∆ �k τ : T

∆ �k τ∗ : L

kcons

∆ �k τ : T ∆ �k σ : L

∆ �k τ ::σ : L

∆; Γ �t e : τ

base

∆;Γ �t () : unit
∆;Γ �t x : Γ(x)

inject

∆;Γ �t e : τ ∆ �k τ ′ : T

∆; Γ �t in1 e : τ + τ ′

∆;Γ �t in2 e : τ ′ + τ

pair

∆;Γ �t e1 : τ1 ∆;Γ �t e2 : τ2

∆;Γ �t (e1, e2) : τ1 × τ2

fun

∆;Γ, x:τ �t e : τ ′ ∆ �k τ : T

∆; Γ �t λx:τ. e : τ → τ ′

case

∆;Γ �t e : τ1 + τ2 ∆;Γ, x:τ1 �t e1 : τ ∆; Γ, x:τ2 �t e2 : τ

∆;Γ �t case e of x.e1 x.e2 : τ

proj

∆; Γ �t e : τ1 × τ2

∆; Γ �t π1 e : τ1

∆; Γ �t π2 e : τ2

app

∆;Γ �t e1 : τ ′ → τ ∆;Γ �t e2 : τ ′

∆;Γ �t e1 e2 : τ

fix

∆;Γ �t e : τ → τ

∆;Γ �t fix e : τ

tfun

∆, α:κ; Γ �t e : τ

∆;Γ �t Λα:κ. e : ∀α:κ.τ

tapp

∆;Γ �t e1 : ∀α:κ.τ ′ ∆ �k τ : κ

∆;Γ �t e [τ ] : τ ′[τ/α]

pack

∆;Γ �t e : τ ′[τ/α] ∆ �k τ : κ ∆ �k ∃α:κ.τ ′ : T

∆; Γ �t pack τ, e as ∃α:κ.τ ′ : ∃α:κ.τ ′

unpack

∆; Γ �t e1 : ∃α:κ.τ ′ ∆, α:κ; Γ, x:τ ′ �t e2 : τ ∆ �k τ : T

∆; Γ �t unpack e1 as α, x in e2 : τ

roll

∆;Γ �t e : τ [τ ′/β][µ(σ ← β)α.τ/α] ∆ �k µ(τ ′::σ ← β)α.τ : T

∆; Γ �t roll e as µ(τ ′::σ ← β)α.τ : µ(τ ′::σ ← β)α.τ

unroll

∆;Γ �t e : µ(τ ′::σ ← β)α.τ

∆;Γ �t unroll e : τ [τ ′/β][µ(σ ← β)α.τ/α]

peel

∆;Γ �t e1 : (µ(σ ← β)α.τ1)× (µ(σ ← β)α.τ2) ∆ �k σ : L
∆, αhd :T, αtl :L; Γ, x:(µ(αhd ::αtl ← β)α.τ1)× (µ(αhd ::αtl ← β)α.τ2) �t e2 : τ ∆ �k τ : T

∆; Γ �t peel e1 as αhd , αtl , x in e2 : τ

Figure 4: The typing rules for our coordinated-list language.
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let empty list : t1 =

pack unit::unit∗,
((roll (in1 ()) as

µ(unit::unit∗ ← β)α. unit + (β × α)),
(roll (in1 ()) as

µ(unit::unit∗ ← β)α. unit + (α× ((β × int)→ int))))
as t1

The encoding of an empty list appears daunting, but it needs
to be done only once.

4. EXISTING LANGUAGES FOR COORDI-
NATED DATA STRUCTURES

Now that we have identified a modest set of extensions
that support coordinated data structures, the natural next
step is to investigate whether or not any existing systems can
encode these extensions and thus support coordinated data
structures. In this section, we identify two such systems—
Crary and Weirich’s LX [6] (Section 4.1) and Xi, Chen and
Chen’s guarded recursive datatypes [24] (Section 4.2).

4.1 LX
Crary and Weirich’s formal language LX [6] was originally

designed for flexible run-time type analysis. In essence, it
provides a rich but strongly-normalizing programming lan-
guage at the type level. In this section, we show that LX
can encode the extensions described in Section 3, and can
thus support coordinated data structures.

We can encode our type lists with LX’s inductive kinds:

L = µj.Type + (Type× j)

The left side of the above sum type represents lists of the
form τ∗ and the right side represents lists of the from τ ::σ.

We use foldL(inj
Type+(Type×j)
1 τ ) to create lists of the form τ∗,

and foldL(inj
Type+(Type×j)
2 (τ, σ)) to create lists of the form

τ ::σ. In an ML-style syntax, we could instead write the list
kind as:

kind L = Star of Type (* τ∗ *)

| Cons of Type * L (* τ ::σ *)

The type-level primitive recursion of LX lets us deconstruct
our inductive list kind and define functions that return the
head and tail of a list:

head = pr(j,α : Type + (Type× j), ϕ : j → Type .

case α of

inj1 β ⇒ β
inj2 (β, γ) ⇒ β

tail = pr(j,α : Type + (Type× j), ϕ : j → L .

case α of

inj1 β ⇒ fold(inj1 β)
inj2 (β, γ) ⇒ γ

Both functions simply check whether the list is of the form
τ∗ or the form τ ::σ, and return the appropriate result. In
an ML-style syntax, we could instead write these functions
as:

head(Star(t)) = t (* head(τ∗) = τ *)

head(Cons(t,s)) = t (* head(τ ::σ) = τ *)

tail(Star(t)) = Star(t) (* tail(τ∗) = τ∗ *)

tail(Cons(t,s)) = s (* tail(τ ::σ) = σ *)

We can define our peel coercion as:

peel(α) = Cons(head(α),tail(α))

Finally, the enriched recursive types µ(σ ← β)α.τ from sec-
tion 3 become recL(c1, σ), where

c1 = λφ : L→ Type.λβ : L.τ [head(β)/β][(φ(tail(β)))/α] .

When unrolled, the φs in τ are replaced with a function
which takes an argument π and returns a new recursive type
recL(c1, π) parameterized by π. The βs in τ are replaced
with the original parameter σ. Thus, this type unrolls and
reduces to

τ [head(σ)/β][recL(c1, tail(σ))/α] ,

which is equivalent to the unrolling of the enriched recursive
types presented in section 3.

4.2 Guarded Recursive Datatypes
Xi, Chen, and Chen’s guarded recursive datatypes [24]

were initially developed for run-time type passing. In this
section, we show that they are also sufficiently powerful to
encode our extensions, and thus to represent coordinated
data structures.

We illustrate the encoding of our extensions through the
example of a pair of coordinated lists. We use an abstract
type constructor tylst to represent our type lists:

type tylst αhd αtl

The parameters αhd and αtl represent the list head and tail,
respectively. We use two algebraic datatypes parameterized
by tylst to represent the types of our two coordinated lists.
Our first algebraic type corresponds to a list of type µ(σ ←
β)α.unit + β × α in the language of Section 3:

typecons (type) listone =

{α} . (α) Nil

| {αtl , αhd} . (tylst αhd αtl) Cons of

αhd * (αtl listone)

The syntax {αtl , αhd} can be read “for all αtl and αhd”, and
the syntax αtl listone represents a listone parameterized with
type αtl . The second algebraic type

typecons (type) listtwo =

{α} . (α) Nil

| {αtl , αhd} . (tylst αhd αtl) Cons of

(αhd -> int) * (αtl listtwo)

corresponds to

µ(σ ← β)α.unit + ((β → int)× α)

in Section 3. In general, if we have an enriched recursive
type of the form µ(σ ← β)α.τ1 + τ2 + . . . where τ1 is a leaf
type (i.e, contains no recursive children α), we can encode
it with the guarded recursive type

typecons (type) foo =

{α} . (α) Foo1 of τ1[α/β]
| {α, β} . (tylst β α) Foo2 of τ2[α foo/α]
| . . .

We coordinate a list of type listone with a list of type
listtwo by creating a third type that represents pairs of lists
with equivalent type lists:

type lst1 lst2 pair =

{β′} . Pair of (β′ listone) * (β′ listtwo)
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κ ::= . . . | I | LI

τ ::= . . . | i | S(τ ) | if τ then τ else τ
e ::= . . . | i | tosum e, τ | match e x.e x.e
v ::= . . . | i | tosum v, τ

E ::= . . . | tosum E, τ | match E x.e x.e

match (i, (tosum v, E)) x.e1 x.e2
r→ e1[v/x] if i �= 0

match (i, (tosum v, E)) x.e1 x.e2
r→ e2[v/x] if i = 0

i ∈ Z
∆ �k i : I

∆ �k τ : I

∆ �k S(τ ) : T

i ∈ Z
∆; Γ �t i : S(i)

∆ �k τ1 : I ∆ �k τ2 : T ∆ �k τ3 : T

∆ �k if τ1 then τ2 else τ3 : T

∆ �k σ : LI ∆, α:T, β:I �k τ : T

∆ �k µ(σ ← β)α.τ : T

∆ �k τ : I

∆ �k τ∗ : LI

∆ �k τ : I ∆ �k σ : LI

∆ �k τ ::σ : LI

∆ �k σ : LI ∆;Γ �t e1 : (µ(σ ← β)α.τ1)× (µ(σ ← β)α.τ2)
∆, αhd :I, αtl :LI; Γ, x:(µ(αhd ::αtl ← β)α.τ1)× (µ(αhd ::αtl ← β)α.τ2) �t e2 : τ ∆ �k τ : T

∆; Γ �t peel e1 as αhd , αtl , x in e2 : τ

∆;Γ, x:τ2 �t e2 : τ4 ∆; Γ, x:τ3 �t e3 : τ4

∆;Γ �t e1 : S(τ1)× if τ1 then τ2 else τ3

∆;Γ �t match e1 x.e2 x.e3 : τ4

∆;Γ �t e : τ1 ∆ �k τ2 : T i �= 0

∆; Γ �t tosum e, if i then τ1 else τ2 : if i then τ1 else τ2

∆; Γ �t tosum e, if 0 then τ2 else τ1 : if 0 then τ2 else τ1

Figure 5: The extensions for singleton integers and conditional types.

This type is roughly equivalent to:

∃β′:L. µ(β′ ← β)α.(unit + β × α) ×
µ(β′ ← β)α.(unit + (β → int)× α)

In order to use a coordinated pair of lists in the language
of Section 3, we must first transform their type lists into a
form usable by the unroll coercion. We must also ensure that
the two lists continue to be parameterized by identical type
lists—otherwise the two lists will no longer be coordinated.
We use the peel coercion to accomplish the needed equality-
preserving transformation.

However, in the guarded recursive datatype encoding, peel
is no longer necessary. Pattern matching unpacks and un-
rolls the lists, and the type equalities in the guarded type-
variable contexts ensure that the equivalence of the two type
lists is not forgotten. For instance, we could write a function
that applies the first element of a listtwo to the first element
of a listone as follows:

let apply1 (l1: α listone) (l2: α listtwo) : int =

match l1 with

Nil -> 0

| Cons (x, ) -> (* x:β1, α = tylst β1 α1 *)

match l2 with

Nil -> 0

| Cons (y, ) -> (* y:β2 → int, α = tylst β2 α2 *)

(y x)

The first Cons pattern introduces the constraint that l1 is
parameterized with some tylst β1 α1 = α and the second
shows that l2 is parameterized with a tylst β2 α2 = α.
The theory of type equality then concludes both type lists
are the same, and thus (y x) is type safe. The τ∗ lists are
present in Section 3 only to ensure peel is defined for all list-
types since peel must precede unroll. A pattern-match that
simultaneously unrolls a recursive type and introduces type
equalities fills both roles.

4.3 Discussion
We have now seen three systems that support coordinated

data structures. The minimal language in Section 3 is, by

design, a direct approach with syntax-directed typecheck-
ing. LX and guarded recursive datatypes have rich notions
of type equality: The former uses normalization of a power-
ful type-level language and the latter uses explicit equalities
introduced by quantified types. In both cases, we have es-
tablished the nonobvious claim that the system supports
coordinated data structures by showing that it can encode
the direct approach’s type lists, recursive types, and peel
coercions. For LX, this amounted to programming with
primitive recursion. For guarded recursive datatypes, we
showed how pattern-matching exposes the same type equal-
ity that the peel coercion realizes via substitution. Using
pattern-matching to combine unroll, case, unpack, and the
introduction of a type equality leads to a particularly parsi-
monious solution.

5. SINGLETON-INTEGER SYNERGY
In this section, we discuss the synergy between coordi-

nated data structures and singleton-integer types. We show
how the combination of the two lets us create a pair of lists
where only one list has tags.

Standard implementations of typed recursive data struc-
tures require run-time tags indicating whether or not a node
has recursive children. For instance, in a list with type
µα.unit + int× α, each node carries a tag indicating whether
it has type unit or type int× α. These tags seem necessary
to discriminate between node types.

We can partially eliminate tags, though, by combining co-
ordinated data structures with singleton integers and condi-
tional types (see, e.g., [1]). Specifically, we can create a pair
of coordinated lists6 where one list has tagged nodes and
the other has tagless nodes. The type of the coordinated
pair ensures that corresponding nodes in the two lists are
either both empty or both non-empty. That is, both lists
have the same length. The type also ensures that a node of
the tagless list cannot be accessed without first checking the

6We can do the same thing for general recursive data struc-
tures using the extensions described in Section 6.

31



0 5 ✲ ✲ 1 ()0 7

✲✲

❛❛❛❛

✟✟✟✟

✏✏✏✏✏✏

������❅
❅❅�

���

❅❅

✏✏✏✏✏✏✏
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Figure 6: A tagged-tagless pair of lists. The type of the tags and the conditions of the if-then-else types are
drawn from an existentially quantified type list σ that is shared by both lists.

let τm = τ1, τ2, . . . , τm

κ ::= . . . | L(m,n) | LI
(m,n)

σ, τ ::= . . . | µ(σ ← (βm))(αn).τ | (τm)∗n | (τm)::m,n(σn)
e ::= . . . | peel e as αm, βn, x in e

E ::= . . . | peel E as αm, βn, x in e

peel(roll v1 as µ(σ ← βm)αn.τ1,

roll v2 as µ(σ ← βm)αn.τ2) as αm
hd , αn

tl , x in e
r→

e[τ ′
i/αhd,i ][σ

′
j/αtl,j ][(roll v1 as µ((τ ′m)::m,n(σ′n)← (βm))(αn).τ1,

roll v2 as µ((τ ′m)::m,n(σ′n)← (βm))(αn).τ2)/x]
for all i ∈ [1, m] and j ∈ [1, n], where peel(σ) = (τ ′m)::m,n(σ′n)

peel((τm)::m,n(σn)) = (τm)::m,n(σn)
peel((τm)∗n) = (τm)::m,n(((τm)∗n)n)

Figure 7: The syntactic and semantic modifications for the full coordinated data structure language.

tag of the corresponding node in the tagged list. Neither
singleton integers nor conditional types are new—it is their
combination with coordinated data structures that enables
this encoding.

To demonstrate how this encoding works, we extend our
language to include singleton integers. Figure 5 contains the
necessary changes. We add a new integer kind (I), a new
list kind for lists of integer types (LI), a new expression form
for integers (i), and two new type forms (i and S(τ )). We
use Z to denote the set of integers. We also add new typing
rules for integers and lists of integer types.

Figure 5 also contains extensions for conditional types.
We require a new conditional type (if τ then τ else τ ), two
new expression forms for constructing and deconstructing
conditional types (tosum e, τ and match e x.e x.e), and a
new value form (tosum v, τ ). We also add new typing rules,
expression contexts, and reductions for tosum and match.
The semantics and typing rules show that match, tosum,
and conditional types can achieve the same effect as case
and sum types, but with more control over the data repre-
sentation (see, for instance, [13] and [25]).

These additions let us create a coordinated pair consisting
of a tagged and a tagless list (see Figure 6). We give the
pair the type:

tagged tagless = ∃β′:LI.
((µ(β′ ← β)α.(S(β) × if β then unit else (int× α))) ×
(µ(β′ ← β)α. if β then unit else (int× α)))

The first list is tagged (the S(β)), and the second list is un-
tagged. However, the conditional types of both lists depend
on β. The two lists are coordinated, so both β are drawn
from the same type list β′. Thus, for each pair of corre-
sponding nodes, the conditional types must evaluate to the
same branch. That is, both will evaluate to unit (an empty

list), or both will evaluate to int×α (a non-empty list). We
also know that all accesses to the untagged list must first
check the corresponding tag in the tagged list. Recall that
conditionally typed values can be accessed only with match
expressions. For the match to typecheck, it must be passed a
pair that has a type of the form S(i)×if i then τ1 else τ2. For
the tagless list, the if-clause type (τ1 in if τ1 then τ2 else τ3)
is drawn from the existentially quantified list β′. Thus the
only integer which can be used as the first element of the
pair is the only integer known to have the correct type: the
tag of the corresponding element of the tagged list.

We have written zip and unzip functions for tagged-
tagless pairs of lists (see our website [27]). The zip function
converts a tagged-tagless pair into a single list of pairs, and
unzip is its inverse.

6. FULL LANGUAGE FOR COORDINATED
DATA STRUCTURES

In this section, we generalize our language from Sections 3
and 5 to support recursive data structures with multiple
children (e.g., trees). We use this extension to show how
coordinated data structures can encode a red-black tree [4]
implementation of integer sets as a pair of trees, where one
tree contains the values and the other tree contains the col-
ors. The type system guarantees that the two trees have the
same shape: Every value node has a corresponding color
node, and vice versa. By splitting the tree like this, the
lookup function needs to access only the value tree. In some
cases, this may lead to better cache performance. Similarly,
if our red-black tree were a dictionary (with a key and value
for each conceptual node), separating the keys and the val-
ues could make functions accessing only the keys (e.g., “is
member”) faster.
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∆ �k σ : L(m,n) ∆, αi:T, βj :T �k τ : T, ∀i ∈ [1, n], ∀j ∈ [1, m]

∆ �k µ(σ ← (βm))(αn).τ : T

∆ �k τi : T, ∀i ∈ [1, m]

∆ �k (τm)∗n : L(m,n)

∆ �k σ : LI
(m,n) ∆, αi:T, βj :I �k τ : T, ∀i ∈ [1, n], ∀j ∈ [1, m]

∆ �k µ(σ ← (βm))(αn).τ : T

∆ �k τi : I, ∀i ∈ [1, m]

∆ �k (τm)∗n : LI
(m,n)

∆ �k τi : T, ∀i ∈ [1, m] ∆ �k σi : L(m,n), ∀i ∈ [1, n]

∆ �k (τm)::m,n(σn) : L(m,n)

∆ �k τi : I, ∀i ∈ [1, m] ∆ �k σi : LI
(m,n), ∀i ∈ [1, n]

∆ �k (τm)::m,n(σn) : LI
(m,n)

∆ �k µ((τ ′m)::m,n(σn)← (βm))(αn).τ : T ∆; Γ �t e : τ [τ ′
j/βj ][µ(σi ← (βm))(αn).τ/αi], ∀i ∈ [1, n], ∀j ∈ [1, m]

∆; Γ �t roll e as µ((τ ′m)::m,n(σn)← (βm))(αn).τ : µ((τ ′m)::m,n(σn)← (βm))(αn).τ

∆;Γ �t e : µ((τ ′m)::m,n(σn)← (βm))(αn).τ

∆;Γ �t unroll e : τ [τ ′
j/βj ][µ(σi ← (βm))(αn).τ/αi], ∀i ∈ [1, n], ∀j ∈ [1, m]

τpair,i = µ(αm
hd ::

m,nαn
tl ← βm)αn.τi ∆;Γ �t e1 : (µ(σ ← βm)αn.τ1)× (µ(σ ← βm)αn.τ2)

∆, αhd,j :T, αtl,i :L
(m,n); Γ, x:τpair,1 × τpair,2 �t e2 : τ, ∀i ∈ [1, n], ∀j ∈ [1, m] ∆ �k τ : T ∆ �k σ : L(m,n)

∆;Γ �t peel e1 as αm
hd , αn

tl , x in e2 : τ

τpair,i = µ(αm
hd ::

m,nαn
tl ← βm)αn.τi ∆;Γ �t e1 : (µ(σ ← βm)αn.τ1)× (µ(σ ← βm)αn.τ2)

∆, αhd,j :I, αtl,i :LI
(m,n); Γ, x:τpair,1 × τpair,2 �t e2 : τ, ∀i ∈ [1, n], ∀j ∈ [1, m] ∆ �k τ : T ∆ �k σ : LI

(m,n)

∆;Γ �t peel e1 as αm
hd , αn

tl , x in e2 : τ

Figure 8: The modified typing rules for the full coordinated data structure language.

6.1 The Full Language
The enriched recursive types presented in Section 3 are not

well suited for encoding coordinated sets of recursive data
structures with more than one child. For example, consider
a pair of coordinated binary trees. A conventional encoding
of a binary tree of pairs will have a type similar to

µα.unit + ((∃β.(β × β))× (α× α)) .

If we try to encode this tree as a coordinated pair of trees
we will end up with a type of the form

∃σ:L.((µ(σ ← β)α.unit + (β × (α× α)))×
(µ(σ ← β)α.unit + (β × (α× α)))) .

When we peel this pair, we get back a single αtl list tail.
When we unroll one of the trees, the same tail list will be
used for both children. So each child will share types drawn
from σ not only with the corresponding child in the other
tree, but also with its sibling in the same tree. In other
words, if node A1 in tree A has children A2 and A3, and
corresponding node B1 in tree B has children B2 and B3,
then the four nodes A2, A3, B2, and B3 all share types with
each other. This result is unsatisfactory if we only want A2

to share with B2, and A3 to share with B3.
We solve this problem by replacing our type lists with type

trees. Type trees are like type lists, except that each tree
has n children instead of a single tail. For generality, we also
add multiple types to each node of the type tree, instead of
a single head. Multiple types allow coordinated nodes to
share multiple existential types.

We describe the syntactic modifications in Figure 7. We
have new kinds L(m,n) and LI

(m,n) for n-ary type trees with
m coordinated types per node. For example, our red-black
tree example will use type trees of kind LI

(1,2). We also

modify our recursive types to take m βs (one for each of the
coordinated types) and n αs (one for each of the type tree’s
children). The modified star type ∗n takes a sequence τm of
m conventional types and generates an infinite n-ary tree of
nodes containing the types in τm. The modified cons type
::m,n takes a sequence τm of m conventional types and a
sequence σn of n type trees of kind L(m,n) (or LI

(m,n)), and
returns a tree whose root contains the types in τm and whose
children are the trees in σn. We also modify the syntax of
peel to take m + n type variables—one for each of the m
coordinated types and one for each of the n children.

Figure 7 also describes the necessary semantic modifica-
tions for this generalization. Only the peel reduction and
peel metafunction change. Applying the peel metafunction
to a type tree constructed with ::m,n yields the same tree
(as was the case with type lists constructed with ::). Apply-
ing the peel metafunction to a type tree constructed with
(τm)∗n yields a tree with a root containing the conventional
types in τm, and with n copies of (τm)∗n as children. The
modified peel reduction is simply the type tree analog of the
previously described peel reduction for type lists. The orig-
inal peel reduction substituted the head of the type list (τ ′

in Figure 3) for αhd . The new peel instead substitutes each
element τ ′

i of the type tree head for the corresponding type
variable αhd,i . Similarly, where the original peel substituted
the list tail σ′ for αtl , the new peel substitutes each child
tree σ′

j for the corresponding type variable αtl,j .
Figure 8 presents the modified typing rules. The kind-

ing rules for µ, ∗, and :: types simply formalize what we
described above, and ensure that the kinds and type vari-
ables match up with the number of coordinated types and
children. The type tree versions of the roll, unroll, and peel
rules are identical to their type list versions, except that we
now substitute all m coordinated types and all n children.
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Figure 9: A red-black tree encoded as a pair of coordinated trees.

LX and guarded recursive datatypes support this gener-
alization by increasing the arity of type constructors appro-
priately, which is the essence of the generalization.

6.2 Split Red-Black Trees
In this section, we describe a coordinated data structure

implementation of red-black trees. Our implementation uses
coordinated data structures to encode the tree as two sepa-
rate but coordinated trees. The first tree is tagged and con-
tains the values, and the second tree is tagless and contains
the corresponding colors. As was the case in Section 5, the
type of the pair guarantees that the two trees have the same
shape. A visual representation of this encoding is shown in
Figure 9. Because lookups access only the values of each
node, we do not need to use the color tree unless we are
adding or removing nodes. Our encoding has type rbtree =

∃β′:LI
(1,2).

(µ(β′ ← (β))(α1, α2).
(S(β)× if β then unit else (int× (α1 × α2))) ×

µ(β′ ← (β))(α1, α2).
(if β then black t else (color × (α1 × α2))))

where color = int (black = 0 and red = 1), and black t =
S(0). The empty leaf nodes of red-black trees are always
colored black, thus the then-clause of the second tree’s con-
ditional type is black t—the type of the value black.

We have implemented lookup and insert functions for our
tree-pairs (see Section 7). The lookup procedure accesses
only the value tree.

7. IMPLEMENTATION
We wrote an interpreter for our language in O’Caml and

verified that the examples in the previous sections typecheck
and evaluate as expected. We also confirmed that preserva-
tion and type erasure hold during evaluation. The inter-
preter and examples can be found on our website [27].

Our red-black tree implementation includes an empty tree,
a lookup function, and an insert function. The lookup func-
tion takes an integer and a tree pair. The value tree compo-
nent of the pair is passed to another function which recur-
sively searches for the key. Insert takes a tree pair and an
integer, inserts the integer, and balances both trees.

8. RELATED WORK
Typed assembly languages and proof-carrying code frame-

works (e.g, [14, 15, 10, 2, 3, 5]) aim to provide expressive
type languages so that compilers can choose natural and
efficient data representations. Many have singleton types
(which have uses such as enforcing lock-based mutual ex-
clusion [7, 8] or region-based memory management [21, 9]),

so supporting coordinated data structures (with any of the
three systems we have demonstrated) would provide the syn-
ergy we have demonstrated.

Guarded recursive datatypes have generated significant
recent attention [24, 18, 17, 11], suggesting that there may
be sufficient interest to see their widespread adoption. For
example, Pottier and Régis-Gianas’ [18] parser generator
uses guarded types to produce parsers that are both effi-
cient and type-safe.

Xi’s work on dependent types [26, 25] has expressiveness
that overlaps with our type system, but it is actually in-
comparable. Both approaches can enforce that two lists of
unknown length have the same length. By using type-level
arithmetic, dependent types can also enforce that an append
function returns a list of length n + m given lists of lengths
n and m. But arithmetic summarizes quite a bit; it cannot
express that corresponding elements of two lists are related.
Similarly, Xi’s dependent types can enforce the red-black
invariant for balanced trees, but they cannot describe tree
shapes.

Okasaki has used nested datatypes and rank-2 polymor-
phism to enforce data-structure shapes, such as the fact that
a matrix is square [16]. We have not investigated his ap-
proach thoroughly, but it seems to suffice for “coordinated”
examples over finite domains (such as tag bits), but not for
infinite domains (such as closures’ environment records).

Separation logic [19] can often express more sophisticated
data invariants than type systems, but it appears no better
equipped to abstract over an unbounded number of coordi-
nated elements. Adapting our approach to a program logic
could prove interesting.

Many type systems abstract over type lists (for example,
consider row variables [22]). The key for coordinated data
structures, however, is having a way to implement the peel
coercion, whether explicitly or through pattern matching (as
in Section 4.2).

9. CONCLUSIONS AND FUTURE WORK
Surprisingly modest extensions to low-level, polymorphic

type systems can support coordinated data structures. We
circumvented the type-variable scoping problems with type
trees and enriched recursive types. We also demonstrated
our extension’s synergy with singleton integers and condi-
tional types. For example, we encoded a red-black tree using
a pair of trees that are guaranteed to have the same shape.
We also showed that our system is a useful tool for identify-
ing other systems that support coordinated data structures.
In particular, we showed that Crary and Weirich’s LX [6]
and Xi, Chen and Chen’s guarded recursive datatypes [24]
are sufficiently powerful to encode coordinated data struc-
tures, although neither was designed for this purpose.
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In the future, we hope to investigate systems for coordi-
nated arrays. Typical arrays have (1) first-class index ex-
pressions and (2) mutation. The first is easy to handle, but
mutable coordinated data may prove more challenging; we
know of no existing systems with such support.
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APPENDIX
This appendix describes important metatheoretic results for
the language presented in Section 3. We outline our type-
safety proof and briefly describe our type-erasure theorem.

Type Safety
The accompanying technical report [20] contains detailed
proofs of all lemmas. Here we consider only a few lemmas
and their proofs’ most interesting cases.

Definition 1 (Stuck).

An expression e is stuck if e is not a value and there is no
e′ such that e→ e′.

Theorem 2 (Type Safety).

If ·; · �t e : τ and e→∗ e′ (where →∗ is the reflexive, transi-
tive closure of →), then e′ is not stuck.

Proof sketch: As usual, type safety is a corollary of the
Preservation and Progress Lemmas [23].

Lemma 3 (Preservation).

1. If ·; · �t e : τ and e
r→ e′, then ·; · �t e′ : τ .

2. If ·; · �t e : τ and e→ e′, then ·; · �t e′ : τ .

Proof sketch: We consider only the first lemma, as the
second lemma is a corollary. Our proof is by cases on the
reduction rules. We present the peel reduction case here:

• Case e =
peel(roll v1 as µ(σ ← β)α.τ1,

roll v2 as µ(σ ← β)α.τ2)

as αhd , αtl , x in e1
r→ e′

where e′ =
e1[τ

′/αhd ][σ
′/αtl ]

[(roll v1 as µ(τ ′::σ′ ← β)α.τ1,
roll v2 as µ(τ ′::σ′ ← β)α.τ2)/x]

and peel(σ) = τ ′::σ′:
By the peel typing rule, ·; · �t e : τ ensures:

(1) · �k τ : T

(2)

·; · �t (roll v1 as µ(σ ← β)α.τ1,
roll v2 as µ(σ ← β)α.τ2) :

µ(σ ← β)α.τ1 × µ(σ ← β)α.τ2

(3)

·, αhd:T, αtl:L; ·, x:(µ(αhd ::αtl ← β)α.τ1)×
(µ(αhd ::αtl ← β)α.τ2)

�t e1:τ

By inversion of (1) and the peel metafunction, · �k τ ′ : T
and · �k σ′ : L. With this, (2), and (3), the Substitution
Lemma (below) can conclude ·; · �t e′ : τ .

Lemma 4 (Progress).

1. If ·; · �t e : τ and e is not a value then there exists an
E, er, and e′r such that e = E[er] and er

r→ e′r.

2. If ·; · �t e : τ then e is a value or there exists an e′ such
that e→ e′.

Proof sketch: Again, we consider only the first lemma.
The proof is by induction on the structure of e. We consider
the peel case:

• If e is some peel e1 as αhd , αtl , x in e2, then inverting
·; · �t e : τ ensures
·; · �t e1 : µ(σ ← β)α.τ1 × µ(σ ← β)α.τ2.
If e1 is not a value, then by induction there are E1

and er such that e1 = E1[er] and er
r→ e′r. Then

e = peel E1[er] as αhd , αtl , x in e2, so letting E =
peel E1 as αhd , αtl , x in e2 suffices. Otherwise, if e1

is a value then the canonical forms of pair types and
recursive types (and inversion of the pair rule), ensures
that e1 has the form
(roll v1 as µ(σ ← β)α.τ1, roll v2 as µ(σ ← β)α.τ2).

Thus e
r→ e2[τ

′/αhd ][σ
′/αtl ]

[(roll v1 as µ(τ ′::σ′ ← β)α.τ1,
roll v2 as µ(τ ′::σ′ ← β)α.τ2)/x]

where peel(σ) = τ ′::σ′. Thus [·] suffices for E.

Lemma 5 (Substitution).

1. If ∆, α:κ′; Γ �t e : τ and ∆ �k τ ′ : κ′,
then ∆;Γ[τ ′/α] �t e[τ ′/α] : τ [τ ′/α].

2. If ∆;Γ, x:τ ′ �t e : τ and ∆;Γ �t e′ : τ ′,
then ∆;Γ �t e[e′/x] : τ .

Proof sketch: By induction on the typing derivations for
e.

Erasure
We define an erase metafunction that converts expressions
in our typed language into equivalent expressions in an un-
typed language. The erasure rules for our language are all
standard, and can be found in the accompanying technical
report [20]. The rule for peel is typical for coercions:

erase(peel e1 as αhd , αtl , x in e2) =
(λx. erase(e2)) erase(e1)

The technical report proves erasure and evaluation com-
mute:

Theorem 6 (Erasure Theorem).

If e is an expression in the typed language, v is a value in the
typed language, and e →� v, then erase(e) →�erase(v) in
the untyped language. (Also, e and erase(e) have the same
termination behavior.)
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