
Gib:
The Generic, Embeddable, Interactive Programming

Language

Brian Koropoff

June 1, 2007

1

CONTENTS CONTENTS

Contents
1 Introduction 3

1.1 Abstract . 3
1.2 Organization . 3
1.3 Works . 3

2 Conception 4
2.1 Principles . 4
2.2 Motivation . 4

2.2.1 Command Line Paradigm . 4
2.2.2 Existing Interfaces . 6
2.2.3 Scripting Languages . 6

2.3 Intended Applications . 7

3 Goals and Design 9
3.1 Interactivity . 9

3.1.1 Completion . 10
3.2 Semantics . 11

3.2.1 Runtime Architecture . 11
3.2.2 Relationship with Interactivity Requirements 12

3.3 Embedding . 12
3.3.1 Generality . 13
3.3.2 Adaptability . 13
3.3.3 Pragmatics . 15

4 Applications 19
4.1 GibShell . 19
4.2 GibShell GTK . 21
4.3 GibForge . 23
4.4 GibXml . 24
4.5 GibNgram . 25

5 Conclusion 26

6 Appendices 27

2

1 INTRODUCTION

1 Introduction

1.1 Abstract
Gib is a new programming language designed primarily for interactive use – that is, as the backend
interpreter for a command line interface (CLI). It was envisioned as a generic, reusable compo-
nent which would serve as a scripting layer and command-based user interface as part of a larger
application. Indeed, Gib – unlike languages such as C or Python – does not constitute a complete
programming language or environment by itself. Rather, it acts as the core of a potentially infinite
set of domain-specific languages sharing a carefully-honed subset of syntax and semantics, ready
to be specialized for the needs of a particular program and environment.

1.2 Organization
This document will explore the development of Gib in several stages. First, the factors behind its
conception will be examined, including motivation, intended applications, and high-level notions
about the language’s mode of operation. These general considerations will then be expanded and
refined into a more concrete set of goals and design considerations, at which point the specific
design decisions that went into Gib will be elucidated. The final section will examine several
example applications of the language.

1.3 Works
The works produced as part of this research project include the following:

• The Gib core runtime, a C++ library

• GibShell, a text-based Unix command line shell based on Gib

• GibShell GTK, a command line shell based on Gib with graphical enhancements

• GibForge, a plugin to the QuakeForge game engine that replaces the standard command line
console with Gib

• GibXml, a library and command line frontend for accessing and navigating XML files

3

2 CONCEPTION

2 Conception

2.1 Principles
The field of programming languages is already quite saturated with contenders, including a healthy
array of popular general-purpose languages (Java, C++, Python) and countless numbers of domain-
specific languages (MatLab, SQL). Cross-pollination of features and programming paradigms
has become so pervasive that most modern languages offer at least the following set of fea-
tures or equivalents: functions, exceptions, garbage collection, concurrency, packages/namespaces,
etc. In addition to these staples, most languages also draw from a pool of features such as
classes/inheritance, first-class functions, generators/co-routines, and so forth. Indeed, the task
of the modern language designer is akin to cooking – to choose from among these stock features
(ingredients) and bind them together with a syntax and runtime model (cooking), hoping for a
compelling end product. These choices are guided by several principles:

• Complexity – avoid too many or too few features

• Compatibility – features should work well together and not duplicate functionality

• Audience – features should ease the programming task for the intended users of the language

2.2 Motivation
Given these principles, the motivation for designing a new language is to fulfill the needs of a par-
ticular audience through experimentation with a novel combination of features and paradigms. In
the case of Gib, the target audience – users of command line interfaces – requires a very particular
set of language design choices. However, it is first worth exploring why a new language should be
targeted toward this audience in the first place – why create yet another command line interface?

2.2.1 Command Line Paradigm

Despite decades of research and growth in the field of graphical user interfaces, command line
interfaces remain a staple in the workflow of technical users. Unix and Unix-like systems (e.g.
Linux) are still largely administered through command line interfaces despite the availability of an
array of robust graphical work environments. Even on Microsoft Windows, a primarily graphical
platform, the command line shell has recently received a major upgrade after overwhelming user
demand. In addition, many individual applications on a variety of platforms offer command line
interfaces as a supplement or adjunct to their graphical interfaces.

The enduring appeal and staying power of command line interfaces can be traced to several
advantages for both users and developers. These advantages are rooted in the way the underlying
features of an application are mapped into its user interface – or rather, how instructions issued
to the user interface are mapped to underlying operations of the application. This is a non-trivial
concern, as the set of problems an application can solve is usually infinite while the interface itself
is finite. Thus, from a theoretical perspective, we might view the user interface – command-based
or graphical – as a language which describes the desired operation of the underlying program. Just

4

2.2 Motivation 2 CONCEPTION

as a finite grammar can define an infinite language, a finite user interface description can allow an
infinite set of input patterns and thus, behavior of the program.

Under this interpretation, the advantages of command line interfaces are immediately apparent.
Command line languages, as formal context-free languages, are similar in structure to natural
human languages, being of potentially unlimited recursive depth. The ability of human languages
to express an infinite number of possible meanings is due to this recursive nature, as the set of
grammar rules and the lexicon are both finite in size. Thus, command line languages (and formal
programming languages in general) allow a human user to describe the desired behavior of the
program in a manner analogous to the process of natural language utterance – generation of a
linearly-ordered string of symbols with a potentially infinite deep structure.

Unlike a formal context-free language, a graphical interface is usually limited to some pre-
programmed depth – for example, a finite chain of nested dialog windows. This is not a technical
limitation, but a pragmatic one – graphical elements are generally designed by hand to be intu-
itive and visually appealing, and to conform to the limitations of the graphical environment such
as screen size. Thus, programmatically-generated or infinitely-recursive interfaces are usually
avoided for usability reasons. A graphical interface may employ some manner of visual program-
ming; for example, many applications allow the user to query a database by visually assembling
various predicates into a compound Boolean expression (see figure 1). This approach is, in the-
ory, as expressive as a recursive programming language, but is more complicated to use and less
time-efficient.

Figure 1: A graphical query editor in a music application

5

2.2 Motivation 2 CONCEPTION

Thus, graphical interfaces generally grow in size and complexity with problem set of the appli-
cation, while command line interfaces can remain largely unchanged. This reduces the burden of
the developer and spares the user increasingly convoluted and expansive interfaces.

2.2.2 Existing Interfaces

Given the merits of command line interfaces, a question still remains: why create yet another? On
Unix platforms in particular, command line shells are nearly as numerous as text editors. However,
the vast majority of these shells share a common set of flaws and limitations that make them sub-
optimal.

The most critical flaw is lack of a powerful underlying semantic model. Classical command
line languages generally do not provide a compelling set of data types, provide few data structures
beyond primitive arrays, and rely heavily on external programs to perform even basic calculations.
For example, the popular bash shell views all data as a string, provides only an array data structure,
and must call an external program just to test the equality of two strings.

Many of these flaws can be traced to the lack of modern programming language features such
as garbage collection. Powerful data structures in particular tend to require dynamic allocation of
memory on the heap. Without garbage collection, this memory would need to be freed manually
by the user – unacceptable in an interactive session. Thus, many of these shell languages were
designed to prevent any operation which could leak memory, severely limiting their abilities.

Reliance on external programs is a symptom of a more general flaw: shells make huge as-
sumptions about their platforms, relying on the existence of a filesystem, external programs which
can be invoked by name, and other trappings of Unix environments. Although these assumptions
are not a handicap for a Unix shell per se, they prevent the shells from being adapted to other
environments or maintaining some common denominator of functionality that allows code reuse.
For example, a set of utility functions written in bash script cannot be reused in the debugger gdb,
even though both feature command line interaction. Not only does this situation make code reuse
impossible, it necessitates a large degree of duplicate effort; every program with a command line
must implement it from scratch.

2.2.3 Scripting Languages

There is a class of languages which have overcome many of these flaws: embeddable scripting
languages. This class includes popular choices such as Python, Perl, and Lua. These languages
can be linked into an existing application and hooked into its internals in order to allow robust
scripting with minimal effort. Languages such as Python and Perl were designed as stand-alone
interpreters but can also be embedded, while languages such as Lua were designed strictly for this
purpose. Gib is similar to Lua in this regard.

Scripting languages avoid many flaws of classical command line languages. Perl in particular
was created as an integrated alternative to bash and its accompanying Unix programs such as
sed, grep, and awk. These languages feature automatic memory management, a wide array of
data types, and powerful, easy data structures. In fact, it is becoming increasingly common for
applications to offer Perl/Python/Lua consoles as part of the graphical interface. Although these
languages are powerful and capable of being used interactively, they also lack many of the expected
features and design characteristics of interactive languages.

6

2.3 Intended Applications 2 CONCEPTION

For example, most command line interfaces offer some manner of automatic completion; by
striking a key such as tab, the user is presented with a list of possible ways to complete the cur-
rent partially-typed command. This feature, in combination with other language elements such as
filename pattern matching (globbing), significantly accelerates common use cases such as manip-
ulating files.

Interactive languages also exhibit certain systematic syntax and semantic properties which lend
themselves to interactive use. In order to minimize typing, interactive languages eliminate un-
necessary “punctuation” and other syntactic fluff for the common case. Consider the following
examples:

python: foo("bar", "bob", baz)
bash: foo bar bob $baz

In interactive languages, the most common operation in a session is executing a command. Thus,
shells such as bash eschew Python-style function call syntax, adopting simple space-separated
arguments in lieu of Python’s parentheses and commas. Another notable difference is bash’s “quo-
tation by default.” String literals in Python must be enclosed in quotes, while in bash a typed string
evaluates to itself without any special delimiters. However, this entails the use of a dollar sign as a
sigil in front of variables, which Python does not require. Thus, interactive language must some-
times shift syntactic complexity away from common interactive use cases to less common ones.
It is worth noting that this predilection for simple common-case syntax can be a disadvantage for
scripting; bash in particular has rather verbose or convoluted syntax for flow control structures,
arithmetic expressions, conditional expressions, and so forth.

Compared to pure scripting languages, interactive languages tend to operate on much higher-
level objects, manipulating entire files or calling external programs with a single command. Similar
operations, even in very high-level scripting languages, often require use of a more fine-grained
interface with multiple steps.

Given these systematic differences, these is still value in designing a new language which com-
bines the modern features and power of a scripting language with the conveniences of interactive
languages.

2.3 Intended Applications
Gib was conceived as a language to be embedded into a larger application to quickly add a com-
mand line interface. Examples of applications which could use such a command line layer are
numerous:

• Debuggers

• Command line shells

• Games

• Computer algebra systems

• Administrative consoles

7

2.3 Intended Applications 2 CONCEPTION

• File managers

In order to fit into such a wide array of applications, Gib was envisioned as a small C++ library
which would be linked into the embedding application. The application would then attach to
several well-defined hooks to connect Gib to the internals of the application. In this way, Gib
could be written in a very generic manner by delegating specific details to the client application.

8

3 GOALS AND DESIGN

3 Goals and Design
Given these motivating factors and notions about the proper operation of a command line language,
Gib was designed with a bevy of specific goals in mind. These goals fall into three broad cate-
gories: interactivity, semantics, and embedding. Interactivity encompasses features that contribute
to a comfortable and efficient command line environment; semantics refer to underlying language
meaning, features, and power; and embedding concerns the interface provided to programmers to
adapt Gib into their particular applications. Each of these categories and their corresponding goals
will be enumerated along with contingent design considerations and the final decisions that shaped
Gib’s architecture.

3.1 Interactivity
Based on the aforementioned aspects of easy-to-use command line interfaces, the following guide-
lines were devised:

• The syntax should be straight-forward and designed to minimize typing as much as possible.

• Automatic completion of partially-entered commands should be possible.

• Some manner of globbing or pattern matching should be supported.

• It should be possible to run tasks in the background.

• Manipulating high-level objects, such as files, should be simple.

• Combining commands together in interesting ways should be simple, both conceptually and
syntactically.

• It should be possible to easily redirect input and output of commands to and from files and
other data sources.

Rather than reinvent the wheel, it was decided that Gib would be patterned after bash in order
to satisfy these requirements. The Unix paradigm, enshrined in its command line shell, has not
endured for so long without reason; indeed, it handily satisfies all the above guidelines. This
is no coincidence, as these guidelines are a reflection of the features and niceties that modern
users of command lines have come to expect, largely due to the use of Unix or Unix-influenced
environments.

Bash syntax is quite simple for common cases and employs very few “punctuation” or “delimit-
ing” tokens or characters. It supports automatic completion, globbing, background and foreground
tasks, quick manipulation of files or entire sets of files and directories, command pipelines, and
input/output redirection. Command pipelines in particular are noteworthy as the crux of the Unix
workflow: run a command to produce or read data, send it through another command to manipulate
it, and so on.

At its core, a pipeline is simply a model for composition of existing functionality; the com-
mands themselves implement some generic operation (read a file, count number of lines, transform
strings), while the composed whole solves some specific problem. Thus, the pipeline paradigm

9

3.1 Interactivity 3 GOALS AND DESIGN

is not terribly different from any other designed to encourage generic programming: procedural
programming with standard function libraries, object-orientation with inheritance, first-class func-
tions, etc. Most of these models, however, are a poor fit for an interactive environment. Performing
subclassing in a syntactically frugal way is tricky, and mere economy of keystrokes does not mit-
igate the difficulties of implementing an interface or contract on-the-fly, Java’s anonymous inner
classes being a prime example. A functional approach would be preferable, as lambda syntax can
be quite sparse and there is only one “interface” to implement. However, complex compositions
of first-class functions can result in deeply-nested expressions and subtle type safety errors, a sit-
uation familiar to ML or Haskell programmers. The procedural paradigm seems an ideal match
as command line interfaces are inherently procedural. However, the necessity of individually ex-
ecuting each step of the operation and saving intermediate results is discouraging; compare the
economy of map in a functional language to achieving a similar result in C.

Pipelines can be considered a compromise that allows easy composition of existing functions
while maintaining the “do x, then y, then z” approach of procedural programming. A pipeline
c1|c2|c3 could be viewed as mapping the function composition c3 • (c2 • c1) over some list of
input values, an approach to solving a problem that would not seem out of place in a functional
language. Unix pipelines operate on arbitrary chunks of binary data rather than discrete elements,
but the principal is the same.

This approach is syntactically clean and intuitively represents the notion of procedural pro-
cessing; the underlying mechanism of a data “assembly line” is semantically simple but powerful.
Although there are complicating factors in practice, the implementation is theoretically trivial: a
simple extension of the stream mechanism used for input/output redirection. Thus, pipelines stand
among globbing, paths, input/output streams, and filesystem-like data sources as staple bash fea-
tures inherited by Gib.

Gib syntax is very reminiscent of bash, but contains numerous improvements and extensions;
for examples, refer to Appendix A. The underlying architecture is, at the surface, informed by bash
sensibilities, and was specifically designed to allow for pipelines, a navigable “filesystem,” globs
and paths, and threads (background tasks). However, these sensibilities alone provided only guide-
lines; in order to satisfy all of the goals behind Gib’s creation, other factors had to be considered
before settling on a particular architecture.

3.1.1 Completion

The Gib completion framework was designed to support nearly any syntactic element in the lan-
guage. In order to realize this, completion support was integrated directly into the abstract syntax
tree representation. The particular technique was inspired by a common approach to compiler
construction in object-oriented languages: syntax tree nodes implement some manner of “emit” or
“lower” method which generates an equivalent representation in an intermediate language; recur-
sive calls to the method are performed on child nodes as needed. Analogously, Gib syntax tree
nodes support a “complete” method which generates a list of completion suggestions, delegating
the task to child nodes as appropriate. The Gib compiler is also designed to handle incomplete
commands as gracefully as possible, allowing a partial syntax tree to be constructed and subse-
quently queried.

This approach is in contrast to shells such as bash, where completions are constructed in a
non-syntactic manner involving ad-hoc parsing of the partial command. Gib currently supports

10

3.2 Semantics 3 GOALS AND DESIGN

completion on namespaces and nested namespaces, file and directories, variables, and command
names; further support is merely a matter of adding completion logic to the remaining node classes.

3.2 Semantics
Although patterning Gib after bash was advantageous for its suitability to interactive use, care
had to be taken to avoid many of the aforementioned pitfalls that plague traditional command line
languages, particularly their tendency toward bare-bones semantics and runtime models. It was
decided that Gib would avoid this issue by providing a runtime system comparable to modern
dynamic scripting languages, featuring the following at a minimum:

• Automatic memory management

• Multiple primitive datatypes: string, integer, float, etc.

• Arrays

• Associative arrays (“dictionaries”)

• First-class functions

• Lexically- and dynamically-scoped variables

• Namespaces

• Standard control structures: if, while, foreach, ...

• C-style expressions

• A full contingent of binary and unary arithmetic and Boolean operators with support for
overloading

In short, Gib was designed to be a flexible scripting language on par with Python and its ilk in
addition to a command line environment. Toward that end, architectural elements from these
languages were borrowed for use in Gib.

3.2.1 Runtime Architecture

In the tradition of modern interpreted languages such as Perl, Gib was designed to be compiled on-
the-fly to an internal bytecode representation which would be executed by a virtual machine. The
virtual machine itself was patterned vaguely after the Java virtual machine, borrowing its operand-
stack-based computation model, local variable array, and argument passing conventions. However,
it was supplemented by several additions and modifications to support a dynamically-typed script-
ing language: array and dictionary construction, closure construction, dynamic dictionary and
namespace lookups, overloading-aware arithmetic instructions, bulk string concatenation, lexical
and dynamic variable frames, and so on. Unlike Java, Gib does not directly use primitive types; all
values in Gib are passed by reference, with wrapped primitives being immutable.

Because the compiler and virtual machine are both invoked at runtime, no serialized on-disk
bytecode representation was devised; rather, the same in-memory data structure is used for both
bytecode emission and interpretation.

11

3.3 Embedding 3 GOALS AND DESIGN

3.2.2 Relationship with Interactivity Requirements

In order to adequately support features inherited from bash, it was necessary to integrate shell-like
constructs into a more ordinary scripting language runtime model. Pipes and input/output streams
required the addition of explicit virtual machine support for stream opening, closing, reading and
writing, as well as pipe instantiation. It was also necessary to somehow represent the notion of the
current standard input and output streams; the easiest solution which presented itself was to store
these values in special internal variables in the dynamically-scoped variable frame. This approach
did not require additional virtual machine instructions specifically for the task and could later be
applied to other dynamic state that needed to be stored such as the current directory, handles for
spawned background commands, or application-specific data. Under this paradigm, redirecting
the standard input/output streams simply entails entering a new dynamic variable frame with the
appropriate variables set.

Globs were initially envisioned as a second-class language construct, albeit with consistent
language-wide availability. That is, they could be used to index into dictionaries in addition to
appearing as arguments to commands. However, after this implementation proved too limiting,
they were re-imagined as first-class objects in a generic pattern matching framework that allowed
for them to be passed, stored, and composed with themselves and other matching primitives. This
system is supported by virtual machine instructions to create first-class glob and path objects and
match them against data sources such as dictionaries; special syntax was added to explicitly expand
a pattern to its set of matches.

In order to maintain symmetry and simplicity, the filesystem is viewed by Gib as an associative
data structure similar to a dictionary, allowing it to be accessed in the same way. This permits files
to be specified and queried by paths and globs as in bash, while being treated as first-class objects
with a more powerful representation than a simple path string.

Certain features, such as C-like expressions and flow control, proved difficult to reconcile with
the bash-like syntax. In particular, a string such as 5+5 appearing unadorned as a command argu-
ment should be interpreted as a literal string, as in the bash command echo 5+5. A string such
as 5 + 5 appearing in a command would be interpreted as three separate arguments due to bash’s
space-sensitive syntax. In order to support C-style, whitespace-insensitive expressions, a tiered
syntax model was adopted. Under this model, bash-style syntax applies at the level of individ-
ual commands, while anything within at least one layer of parentheses is parsed using a C-style
grammar, including full math and logical operators with precedence, C-style function calls, and
sigil-less variables. This allows the syntactic paradigm appropriate to the task to be used with a
minimum of overhead. The actual implementation of this system was simple with modern compiler
construction tools, although it significantly inflated the size of the grammar.

3.3 Embedding
Preserving the embeddability of Gib proved to be the design challenge that demanded the most
substantial thought and research. The issues that presented themselves in this undertaking fell into
three categories: generality, adaptability, and pragmatics. Generality concerns preserving bash-
derived semantics and features in an unknown application or environment. Adaptability refers
to the potential for the portions of a client application that need to be command line-accessible
to be adequately mapped into the Gib runtime model. Pragmatics are practical concerns such as

12

3.3 Embedding 3 GOALS AND DESIGN

resource usage, development time, and programming interfaces associated with the use of the Gib
core library.

3.3.1 Generality

The semantics of bash, although well-honed for daily interactive use, rely on several assumptions
about the runtime environment that are troublesome for an embeddable language: the presence of
a filesystem, system environment variables, executable on-disk programs found through a search
path, etc. Most operating systems provide these facilities, making it theoretically possible to write
a cross-platform command line shell. However, using these facilities directly may not be desirable
for a given embedding application. For example, some applications may not wish to allow arbi-
trary filesystem or system program access for security reasons. In many applications, commands
should not dispatch external programs but rather call program-internal functions, and access to the
filesystem may be unnecessary in lieu of some other navigable data structure such as a database.
In essence, the purpose of Gib is not to interact with a computer system in general but rather the
specific facilities of a particular application.

Because it was not possible to make assumptions about the needs or semantics of embedding
applications, it was necessary to find some way to preserve the superficial forms of the bash fea-
tures without specifying a particular underlying representation or implementation. This underlying
implementation would have to be delegated to application programmer, who would be cognizant
of the particular needs of the program and the abilities of the runtime environment. Luckily, the
object-oriented programming paradigm provides a clean, well-understood solution to this prob-
lem. By crafting a set of interfaces which specify some minimum functionality necessary for the
semantics of Gib, the language itself could be written on top of abstract data types and preserve
guaranteed core features. The responsibility would fall on the application programmer to imple-
ment these interfaces, thus fleshing out the abstract core language into a functional command line
system.

The selection and design of these interfaces, however, was not trivial. The remaining two
categories of concerns, adaptability and pragmatics, remained to be satisfied.

3.3.2 Adaptability

In order to adapt to the needs of any potential client application, the interfaces used in Gib had to be
kept as flexible as possible while still preserving the semantics of the language, particularly those
originating from bash. For this reason, bash was established as the gold standard; Gib would,
at a minimum, have to be flexible enough to be used as a basis for reimplementing a bash-like
Unix shell. This entailed careful analysis and contemplation of bash’s key features: filesystem
navigation and globbing, data streams and input/output redirection, pipes, etc. By viewing bash
as a potential client application of Gib, and its features as concrete implementations of the desired
abstract interfaces, it was possible to work backwards and extract the most basic interfaces which
conceivably could be specialized back into full implementations.

After careful consideration, the following set of interfaces – hereafter referred to by their C++
class names – were selected as the core set that would be used by Gib:

• Object
As the base class of all data that can be manipulated by the Gib interpreter, Object is note-

13

3.3 Embedding 3 GOALS AND DESIGN

worthy for establishing the most basic operations that all types should support, such as hash-
ing. Rather than enumerating the methods of the interface here, operations that required
methods to be hoisted into the base class will be mentioned as part of the interfaces that use
them.

• Table
An associative array interface, resembling Java’s Map, which stores and fetches key/value
pairs. As Tables can potentially be infinitely nested, this abstract data structure is suitable
for forming trees; thus, the “filesystem” used by Gib is a client-provided implementation of
this interface. Tree structures in general are well-regarded for their ability to store and repre-
sent almost any data imaginable in a powerful way. XML, for example, is a tree-structured
file format designed exactly for this purpose. Also notable are “virtual” filesystems such
as Linux’s /proc, which presents program, kernel, and driver information and options as a
nesting of simulated directories and files. To a shell, these files are indistinguishable from
physical on-disk data, and can be read, written, queried, and manipulated using the same set
of tools and techniques. Indeed, the Unix “everything is a file” philosophy has proved the
filesystem robust enough to serve as the interface to a variety of underlying systems. Tables
are even more general, being capable of representing cyclic directed graphs. Thus, this in-
terface was selected for its ability to expose almost any conceivable data to a command line.
In order to support indexing and querying of tables, methods for hashing and performing
pattern matches (such as globbing) were hoisted into the Object class; Java takes a similar
approach to implement HashMap.

• InputStream, OutputStream
These interfaces allow for streams of data to be read and written, respectively. Methods
for opening input and output streams were hoisted into Object in order to guarantee that
input/output redirection could be defined for all conceivable arguments. This also allowed
InputStreams to double as iterators by overriding these hoisted methods in container classes
such as Table. In order to be as flexible as possible, streams were designed to operate on
single, atomic objects (passed by reference) rather than blocks of untyped binary data. This
was particularly necessary because streams are used to implement pipes, which should be
capable of passing objects between Gib functions without marshaling them to a byte-oriented
representation.

• Function
This interface represents anything invokable, such as a command or function. Indeed, there
is no distinction made between the two in Gib; first class functions written in Gib as well
as program-specific commands such as built-in functions or external programs are all imple-
mentations of this interface. By making Gib functions an interface, client code can expose
callable portions of itself to Gib in any way the programmer might see fit.

• Thread
This interface represents a thread of execution within the interpreter. In order to properly
support command pipelines, which are run in parallel, Gib required the guaranteed availabil-
ity of concurrent execution. The same mechanism is also used for background tasks.

14

3.3 Embedding 3 GOALS AND DESIGN

Using these interfaces, it was possible to write the Gib compiler and runtime without foreknowl-
edge of specific environments or implementation details. Selecting the most generic, flexible in-
terfaces possible would enable Gib to fulfill the needs of applications with substantially different
use case scenarios or data binding requirements.

Aside from the design of these interfaces, several additional features were added to Gib to
maximize the ability of a client application to customize the language for its needs. For example,
embedding applications can define custom data types simply by subclassing Object and regis-
tering overloaded operator definitions relevant to those types. This could be used to implement
numeric or algebraic libraries among other applications. In order to allow some degree of syntax
customization, an XML-like tag system was added to the grammar. The client application can
register handlers for certain named tags; when these tags are encountered in the input, the enclosed
data is passed verbatim to the handler and the result from the handler inserted into the parse tree.
This could allow for custom data type constants, such as inline regular expressions, inline XML,
large text or binary data lumps, database schema, or anything else imaginable. The application
can even extend the abstract syntax tree class hierarchy with its own node types if necessary; the
bytecode emission interface is also exposed.

3.3.3 Pragmatics

Although these interfaces and customization mechanisms solved the conundrum in theory, many
practical concerns remained for both the language implementation and hypothetical users of the
library. In particular, foisting the majority of implementation work on the application programmer
would require substantial effort to make even basic use of Gib. A variety of design patterns, APIs,
and tools were explored in order to reduce this workload.

The first step was to minimize the number of interfaces that the programmer must implement
before Gib will function. Two approaches were taken here: first, to reduce the number of unique in-
terfaces used; second, to provide partial or complete implementations for common cases to reduce
the burden on the client application.

A great deal of complexity was eliminated by using the Table interface wherever possible, both
language-internally and for integration into client code. In addition to representing the filesystem,
Gib uses Tables to represent namespaces, variable frames, and dictionary and array data struc-
tures used by Gib code. The decision to make Tables double as both dictionaries and arrays was
inspired chiefly by the Lua scripting language, which takes a similar approach. By using Tables
for namespaces and variable frames, client applications can expose functions and data to Gib by
implementing or manipulating the global environment frame to define the desired variables.

The situation was improved further by providing stock implementations for many of the in-
terfaces. The HashTable implementation of Table, for example, is used internally for variable
frames, arrays and dictionaries constructed by Gib code; there is no need for the client application
to provide such basic functionality. When the client application wishes to expose data or functions
to Gib through a table, such as by defining functions in the global environment, the HashTable
implementation will suffice either as-is or with minor modification through subclassing. Even the
“filesystem” backend used for globbing and navigation could be filled with a HashTable if such an
approach is appropriate to the application. The Function interface also has a canonical implemen-
tation, Closure, which represents first-class functions defined by Gib code. The Gib library also
provides an array of standard concrete data types that the language stipulates must be available,

15

3.3 Embedding 3 GOALS AND DESIGN

such as String, Integer, and Float.
This approach is hardly groundbreaking; it is considered good practice for a library to provide

convenient implementations of common functionality while allowing the client to customize be-
havior “by hand” if necessary. Also, much of the Gib runtime model – closures, primitive types,
and so forth – is implementable without knowledge of the embedding environment or applica-
tion, so there is little reason to leave such tasks to the application programmer. However, some
interfaces proved to be a difficulty; implementing them would be a considerable task for the ap-
plication programmer, but providing canonical implementations could cause incompatibilities on
certain platforms or for certain programs.

The most troublesome was Thread. Gib required a concurrency model in order to guarantee
the operation of command pipelines, but requiring the client application to implement a threading
system – or at least a wrapper around one – is a steep request. This put the onus on the Gib library
to provide a threading implementation that would play well with any conceivable client application
or environment, an equally tall order.

Several solutions were considered. The first was to simply use system threads through a cross-
platform threading library; this solution had the advantage of being well-established and requiring
no extra implementation work on the part of Gib. However, it was ultimately rejected for sev-
eral reasons, the most compelling being that applications using Gib would quite likely be single-
threaded. By using system threads, any application using Gib would become susceptible to is-
sues that classically plague multi-threaded programs. The application would have to be written or
rewritten to perform locking/synchronization, despite making no use of threads itself. Languages
such as Python address this problem by requiring explicit cooperation of the embedding application
in order for threads to be supported by the interpreter, allowing the application to force interpreted
code to also be single-threaded. As Gib must guarantee the availability of a concurrency model,
this was an unacceptable solution.

Also considered were so-called fibers – lightweight, user-space threads scheduled and run by
the application process rather than the operating system. This solution was attractive for two
reasons. One, because scheduling was controlled in-process, a cooperative task switching system
could be used to guarantee the atomicity of code; since a fiber gives up control voluntarily when
it is in a known consistent state, explicit synchronization and locking is unnecessary. Two, such
a system could appear completely transparent to the client application, thereby allowing Gib to
support the use of threads with the application being none-the-wiser.

A variant of Python known as Stackless Python was turned to for inspiration for building a
fiber implementation. Stackless Python eliminates use of the C call stack by Python code, instead
using heap-allocated, garbage-collected stack frames to keep Python program state. By saving and
restoring these frames, Stackless Python could support first-class continuations. This feature –
commonly associated with the Scheme dialect of Lisp – allows threading, co-routines, exceptions,
and many other call-stack-manipulating constructs to be implemented by explicitly saving and
restoring the execution context; continuations are, in essence, a more general version of all these
features. Because continuations could allow future additions to Gib such as exceptions, they were
adopted as the fiber implementation mechanism.

However, Stackless Python’s particular approach was still flawed. Because growth of the in-
terpreter’s stack could not correspond to growth of the C stack, native code sandwiched between
interpreted code frames would have to explicitly save and restore state and make asynchronous
calls back into the interpreter, a massive inconvenience. Modern Scheme implementations solve

16

3.3 Embedding 3 GOALS AND DESIGN

this problem by saving and restoring the physical C stack rather than using heap-allocated stack
frames. This introduces a caveat: in general, it is not safe to restore a particular context more
than once, as doing so could cause double-free and similar errors in C or C++ code. However, as
this behavior was not necessary to implement fibers, stack-copying continuations were chosen as
a basis for the Gib thread system.

This solution did require some care in the way Gib was designed. In particular, a fiber that
causes the process to block would block all running fibers; therefore, it became necessary to use
asynchronous or non-blocking I/O, so that control could be transferred to the next fiber when an
operation could not be completed. The InputStream and OutputStream interfaces were designed
to support this, which would complicate matters for implementing applications. However, Gib
provides default implementations to support pipes and reading/writing to and from Tables, as well
as wrappers around standard C++ IO streams. In fact, it is not strictly necessary to provide an
implementation unless default standard input/output streams are required.

In addition to providing as many canonical implementations as possible, Gib was designed
with APIs to minimize the work necessary to implement these interfaces or otherwise customize
Gib. Several well-known C++ tricks were employed to reduce or eliminate boilerplate code. Many
Gib features, such as operator overloading or tag handling, required explicit registration of the han-
dler with the Gib library, necessitating boilerplate initialization routines. However, Gib provides
special C++ classes whose constructors register these handlers when run. By declaring a global
static instance of the class, the constructor will automatically be run at program startup and the
handler registered. Definition of both the handler function and the initializer class instance can
be performed simultaneously using macros. For example, the following C++ snippet defines the
addition operator for Gib Integers:

GIB_BINARY(OP_ADD, Integer, Integer, intr, first, second)
{

return new Integer(first->getValue() + second->getValue());
}

Using this combination of macros with C++ static initializers, registering Gib library hooks be-
comes concise and automatic.

Binding native functions and data into Gib was still a challenge. In a typical use case sce-
nario where a small library of built-in functions must be exposed to Gib, the client application
programmer would have to subclass Function for each, instantiate each class and insert it into
a Table which would act as a namespace, and then insert the table into the Gib interpreter. The
first approach taken to reduce the necessary work was similar to the above example of operator
overloading: use a macro to define and register a builtin function along with its desired name-
space. The interpreter would scan these registered functions and namespaces during initialization
and automatically import them into the global variable table.

This solution did not account for the fact that many library functions would frequently be
written in Gib itself; namespaces defined by Gib code and those defined within native code had to
be somehow merged together. Although feasible, it still created a situation where related functions
within the same namespace had to be defined in and loaded from two separate sources. Even in
Java, which uses a similar mechanism, the Java source code itself contains a prototype of the native
method, keeping all relevant API information in one location.

17

3.3 Embedding 3 GOALS AND DESIGN

The auto-registration approach was abandoned in favor of one that allowed inline C++ code
to be used as the body of a Gib function definition. Syntactically, this took the form of a special
extern keyword, followed by the name of the target language (usually C++) and a distinguish-
ing identifier, followed by the actual inline code enclosed within special delimiters. The compiler
would replace these expressions with lookups into a global table of known native functions using
the identifier and a hash of the code block itself. However, in order for these externs to success-
fully resolve, the actual compiled inline code had to have been registered in the table in advance.

To do this, an external tool called gib++ was developed that parsed a Gib source file and inter-
cepted the extern references. These C++ code blocks were output as a C++ source file with boil-
erplate code to automatically insert the functions into the global table, along with the Gib source
code itself as a static string constant. This essentially converted the Gib code into a self-contained
C++ file containing everything necessary to execute the script.

Finally, a system was developed that allowed the programmer to bind all the converted Gib
files together into a single named module with a bit of glue code. These modules would be regis-
tered automatically with the Gib library upon program startup using static initializers. When the
load_module directive was encountered in Gib code, the appropriate module would be looked up
and each script executed in sequence in the interpreter, with references to inline C++ code now
correctly resolved and executed.

To allow further customization, a module loading system was added. The client application
can register handlers to load unknown modules in response to load_module directives. A default
handler was provided to resolve modules by searching for a shared library. Upon the library being
loaded by the dynamic linker, the static initializers would run, automatically hooking custom tags,
operator overloads, and namespace and function definitions into Gib. This allowed Gib libraries
unassociated with a particular embedding application to be written and then used anywhere. For
example, the GibXml library mentioned in the introduction can be loaded into any application
embedding Gib to add XML support. The Gib standard library is also kept separate from the core
runtime in this way, allowing applications that don’t require it to avoid the resource usage.

As a final tool at the application programmer’s disposal, an AutoTable system was devised to
ease implementation of the Table interface. AutoTable is a series of complex C++ templates that
reflect methods and fields of a C++ class into Gib as a table. This can be used either as a means
of defining a namespace contained neatly within a single C++ class, or to instantiate multiple C++
objects with methods and fields accessible to Gib. Combined with C++’s support for multiple
inheritance, this could allow Gib bindings for object-oriented C++ libraries to be written using
AutoTable as a mix-in to the relevant classes.

The combination of these systems allows easy, powerful, dynamic creation and usage of li-
braries and native bindings with a minimum of code and maximum centralization and consistency.
Some of the example applications using Gib required only a few hundred lines to fully interface
with the core library, much of it written in Gib itself.

18

4 APPLICATIONS

4 Applications
In order to evaluate the efficacy of Gib in actual deployment situations, several example applica-
tions and libraries were developed to exercise language and API features. These applications and
their use of the Gib core library will be examined in brief.

4.1 GibShell
As the gold standard of Gib functionality and testbed for new features, GibShell was the most
important application to be developed with Gib. GibShell is a text-based Unix command line shell
using Gib for command and script evaluation. It consists of two parts. The first is a small library
providing implementations of the core Gib interfaces, including:

• Program, an implementation of Function which dispatches an external Unix program when
called, allowing Unix commands to be executed from the shell.

• A Table implementation representing a directory which queries the physical filesystem to
list keys or retrieve values, along with a new File data type to represent physical files. This
enables the filesystem to be navigated and queried from the shell using paths and globs, and
command input and output to be redirected to and from files.

• Implementations of InputStream and OutputStream backed by Unix file descriptors, used
by the File data type when asked for an input or output stream, as well as by Program to
integrate Unix pipes into Gib command pipelines.

• A Table implementation backed by system environment variables, enabling them to be ma-
nipulated from the shell as if they were any other variable.

• A Table implementation backed by the system program search path which returns instances
of Program, permitting Unix programs in the path to be run as if they were any other function
in the global scope.

In addition to these essential elements, the library provides an enhanced version of Pipe, the
class used for communication between elements in a command pipeline. The enhanced version,
UnixPipe, allows direct communication over a Unix pipe when elements on both sides are Unix
programs, meaning that a Gib command pipeline employing only Unix commands would theoreti-
cally run as fast as one in bash. A special version of the Thread class is also provided which tracks
extended information such as process IDs and command line arguments. The library also contains
additional API to help with common shell tasks and a Gib module of relevant builtin functions.

The second part of GibShell is the actual command line frontend, which uses the GNU readline
library to read commands from the user and pass them to a Gib interpreter initialized with elements
from the GibShell library. See figure 2 for an example session.

GibShell still lacks many features of mature command line shells such as bash, but serves as a
proof of concept that Gib is sufficiently powerful to implement such a shell.

19

4.1 GibShell 4 APPLICATIONS

Figure 2: GibShell

20

4.2 GibShell GTK 4 APPLICATIONS

4.2 GibShell GTK
GibShell GTK is an alternate frontend to the GibShell library which provides a graphically-enhanced
command line by subverting the traditional relationship between terminal and shell. On most
modern Unix systems, terminal-based programs are often run inside a graphical terminal emulator
which handles text input, output, and display. These emulators take the place of physical dumb
terminal hardware that was used in the early days of Unix systems. As such, modern Unix systems
such as Linux provide so called “pseudo terminals,” allocatable character-based interfaces which
allow the display-side of a terminal connection to be handled by a program rather than physical
hardware or a serial port. Thus, communication between the frontend terminal application and the
shell takes place over a primitive stream-based messaging system, with several extended controls
to manage screen size, cursor position, and so forth.

GibShell GTK was an experiment to discern what might be possible if this arbitrary schism
between shell and terminal were eliminated. Using a terminal emulator widget for the GTK graph-
ical interface toolkit, it presents a terminal to the user that is connected directly to itself rather
than a shell program in a separate process. The terminal emulator embeds the Gib and GibShell
libraries and takes care of all command execution directly. This permits complete awareness and
cooperation between the graphical and textual portions of the interface, allowing for interesting
mingling of the graphical and command line interface paradigms.

The new terminal program boasts several small but significant improvements over a traditional
shell-in-emulator setup. It uses a true graphical text entry widget which allows for editing of com-
mands using the mouse and standard key combinations – an impossibility in a traditional setup
where the terminal emulator in unaware of the workings of the shell’s input line. In addition, it
provides pop-up completion where possible commands and arguments are displayed in a conve-
nient list and can be selected with the mouse or keyboard, similar to the URL entry bar in many
modern web browsers. In a normal setup, the shell has no recourse but to dump the completions
to the terminal or cycle through them with subsequent presses of the completion key. A terminal
emulator could in theory provide a graphical input field without being integrated with the under-
lying shell. However, it would encounter several issues. First, completion logic would need to
be implemented from scratch, duplicating the facilities of the shell. Second, heuristics would be
required to determine whether keyboard input should be directed to the input line or to the actual
terminal device, a choice best determined by the presence of an executing foreground command;
in GibShell GTK, this shell-internal state is readily available.

Beyond improvements to the fundamental shell experience, GibShell GTK provides a side
pane with several extended features. The first is an integrated directory navigator and file chooser
which can synchronize the directory being browsed with the shell’s working directory. This is a
feature offered by some Unix file managers with integrated terminals, but their implementations are
typically less robust. Updating the shell’s current directory is achieved by inserting a cd command
into the terminal, producing undesirable results in the presence of a foreground task such as a
text editor. It also pollutes the command history with entries not actually typed by the user. In
addition, there is no way for the file manager to react to directory changes made by the shell, short
of periodically polling its process’s current directory; in GibShell GTK, the interpreter informs the
interface when the working directory has changed.

In addition to the file browser, a basic text editing widget is available in another side pane
tab. This widget subclasses the Gib Object class and allows for the contents to be accessed

21

4.2 GibShell GTK 4 APPLICATIONS

using standard Gib stream mechanisms; it can be referenced through the gibshell namespace
and used as an input/output redirection target for commands and command pipelines. Compared
to juggling temporary files, this system facilitates more convenient manual previewing and editing
of intermediate results. A third tab provides a real-time list of processes and threads currently being
run by the shell, complete with process IDs and command line arguments where appropriate.

Although these additions are seemingly trivial, in the hands of more seasoned user interface
researchers GibShell could be used to investigate new ways of integrating command line and graph-
ical interfaces for improved power and productivity.

Figure 3: GibShell GTK

22

4.3 GibForge 4 APPLICATIONS

4.3 GibForge
GibForge is a plugin for the QuakeForge engine, a 3d computer game system based on the source
release of iD Software’s Quake. Quake is notable in this context for being among the first com-
puter games to present the user with a command line console for advanced configuration and
limited scripting. Although the console was primarily a vehicle for development and debugging, it
was quite central to the behavior of the game: actions such as moving and shooting were actually
triggered by console commands; pressing the associated keys simply executed them transparently.
Portions of the network protocol were also dependent on the console. For example, the Quake-
World variant of the server steps the client through the initialization process by sending chunks of
text to be executed as console commands.

Quake’s console proved extremely influential, and to this day many computer games – even by
other software companies – feature pull-down consoles in addition to the usual graphical interfaces.
This makes such games a perfect use case scenario for Gib – rather than implementing a console
language from scratch, developers could simply embed Gib to provide a rich, scriptable command
line for development, debugging, and advanced users.

In order to test Gib’s suitability for this purpose, a plugin was developed which replaced the
usual QuakeForge console with one based on Gib. The features were as follows:

• Integration with existing console commands and variables. Built-in commands for the Quake-
Forge console were rewired into Gib as subclasses of Function, and console variables were
made accessible as ordinary variables through an implementation of Table.

• Integration with the Quake File System (QFS). Quake and its descendants present a sand-
boxed view of the filesystem which limits accessible files to user configuration directories
and bundled game data (graphics, sounds, levels, etc.). In addition, game data can be con-
tained either in the user’s configuration directory, in the system game directory, or in archive
files in the system game directory. Thus, the QFS is actually a union of files and directories
from several sources. GibForge provides a Table implementation backed by QFS access
functions, allowing transparent access to all Quake data from Gib.

• Programmable completion. Gib’s completion mechanism is far more powerful than that
included in the standard QuakeForge console, and also allows for custom completion logic
written in Gib. For example, the completion logic for the command map, which causes a
particular level to be loaded, could be overridden to suggest valid level names (see figure 4).

Due to Gib’s API design, GibForge amounted to only a few hundred lines of code, a lot of it
boilerplate that interfaces with QuakeForge’s plugin system.

23

4.4 GibXml 4 APPLICATIONS

Figure 4: GibForge

4.4 GibXml
GibXml wraps the DOM API of the Xerces XML library in order to present XML files to Gib as
a series of nested tables. It was created as an example application of the Gib Table interface to
non-filesystem backends. The accompanying program, gibxml, provides a simple command line
interface where XML data can be loaded and manipulated like standard Gib dictionaries. Because
the Table interface is also used for representing filesystems, an XML file can be set as the “current
directory” and navigated using bash-like commands such as cd and ls, as well as accessed using
paths and globs.

Because the GibXml library is an ordinary Gib module, it can be loaded into any application
using Gib – e.g. GibShell. It also provides a tag handler that allows inline XML to appear in Gib
source code enclosed by <xml> and </xml>; the data will automatically be parsed and evaluated
to its Table representation.

24

4.5 GibNgram 4 APPLICATIONS

Figure 5: GibXml

4.5 GibNgram
GibNgram, written as part of an unrelated computational linguistics project, is a module providing
a C++ implementation of an n-gram statistical language model, exposed to Gib through use of
the AutoTable feature. The library is not part of a dedicated program – rather, it is dynamically
loaded into GibShell, where scripts can access the filesystem to parse training data files and feed
them into the model. From there, the command line can be used to investigate the model and test it
against evaluation data. This library is notable for being a “real world” use case of Gib, rather than
a proof-of-concept. It allowed the n-gram implementation to be rapidly prototyped by removing
the need to manually write a front end with parsing logic. Testing and debugging were aided by
availability of a command line interface with full completion and access to Unix commands and
files. The result was a marked decrease in development time.

25

5 CONCLUSION

Figure 6: GibShell using the GibNgram module to model Japanese phonotactics

5 Conclusion
Gib combines the ease of use of an interactive command line environment with robust scripting
capabilities, providing users a familiar bash-like interface without the limitations of traditional
shells or the inefficient syntax of popular scripting languages. Developers are offered a convenient
pre-packaged solution which integrates tightly into their applications with a minimum of hassle.

These capabilities were made possible by careful analysis of computer interface and program-
ming language paradigms, and subsequent synthesis into a runtime platform and object-oriented
API that permit a generic, extensible base to be specialized into sundry potential applications.

Gib, in tandem with similar languages such as Microsoft’s PowerShell, could precipitate a
command line renaissance in a world increasingly dominated by graphical environments. Programs
such as GibShell GTK hint at future research into the integration of command line methodology
and graphical interface sensibilities, paving the way for more powerful applications and efficient
workflows.

26

6 APPENDICES

6 Appendices

Appendix A: Example Code Listings

gunit.gib: rudimentary unit test framework
// gunit unit test framework
// designed to be run from GibShell
// define gunit namespace
def gunit
{

// configurable setting
show_pass_results = $<false>
// runs a single test (a table containing a
// run function and an expected result)
def run_test (name, struct)
{

import struct::expect
import struct::run
result = (run())

if (result == expect)
if (show_pass_results)

echo "$name passed ($result)"
else

echo "$name passed"
else

echo "$name failed ($result != $expect)"
return (result == expect)

}
// runs a fixture of tests (a table mapping test
// names to individual tests
def run_fixture (fixture)
{

total = 0
failed = 0
passed = 0
foreach test < (gib::table::keys(fixture))
{

if (run_test(test,fixture[$test]))
passed = (passed+1)

else
failed = (failed+1)

total = (total+1)

27

6 APPENDICES

}
echo "$total test(s), $failed failed"
return {$total, $passed, $failed}

}
}

tests.gib: Front-end to gunit.gib
// runs all tests in gib scripts in the current directory
// that start with test_
source gunit.gib // pull in gunit definitions
gunit::show_pass_results = $<false>
import gunit::run_fixture // import the function we need
results = {0,0,0}
fixtures = 0
// constructs an array by expanding a glob, then iterates
// the array
foreach file < {?test_*.gib}
{

echo "-- $file --"
// define a fixture by executing the script file
// inside a namespace definition
def fixture
{

source $file
}
// run the fixture, tabulate results
result = (run_fixture(fixture))
foreach i < {0,1,2}
{

results[$i] = (results[$i] + result[$i])
}
fixtures = (fixtures + 1)
echo

}
total = $results[0]
passed = $results[1]
failed = $results[2]
echo "-- Tests complete --"
echo
echo "$fixtures fixture(s), $total test(s), $failed failed"

test_thread.gib: test fixture for threads and pipes
def pipes

28

6 APPENDICES

{
def double_filter ()

foreach value gib::stream::write (value*2)
expect = {4,8,12,16}
def run()
{

result = {}
double_filter < {1,2,3,4} | double_filter > $result
return $result

}
}
def unix_pipes
{

def dup_filter () foreach value gib::stream::write $value$value
def generate () foreach value < {a,b,c,d} gib::stream::write $value
def merge()
{

result = ""
foreach value
{

result = $result$value
}
gib::stream::write $result

}
expect = {aaaabbbbccccdddd}
def run()
{

result = {}
generate | cat | dup_filter | cat | dup_filter | merge > $result
return $result

}
}
def concurrency
{

expect = {1,a,2,b,3,c}
def run()
{

result = {}
{

foreach val < {1,2,3}
{

result = {@$result, $val}
gib::thread::wait;

}
} &

29

6 APPENDICES

first = $&
{

foreach val < {a,b,c}
{

result = {@$result, $val}
gib::thread::wait;

}
} &
second = $&
gib::thread::join $first
gib::thread::join $second
return $result

}
}

Appendix B: Trivia
• Gib stands for “Gib isn’t Bash,” due to its superficial similarity to the popular Unix shell but

vastly different underlying architecture.

• The majority of the core code was written in a four month time frame, with subsequent addi-
tions and enhancements occurring on a sporadic as-needed basis. The example applications
were written in approximately one month.

• The core runtime consists of approximately 26,000 lines of code.

• Compiled as a shared library, the core of Gib is approximately 600kb; this figure could be
reduced further by more prudent use of C++ templates and other optimizations.

30

