
A Component Composition and Customization Language
for the Liberty Simulation Environment

ABSTRACT
To build efficient hardware, designers must be able torapidly con-
struct simulators for a wide range of candidate designs. Fortu-
nately, different hardware designs utilize many similar hardware
blocks, and thus a good library of reusable components can greatly
ease the task of constructing a simulator. Unfortunately, existing
simulator construction methodologies do not facilitate construction
of such libraries.

The Liberty Simulation Environment (LSE) addresses this gap in
simulator construction technology. LSE consists of a user-extensible
library of reusable components, the Liberty Structural Specifica-
tion (LSS) language, and a tool that generates an executable simu-
lator from an LSS program and the component library.

This paper discusses the design and implementation of the LSS
language. The LSS programming language is unique in that it is
designed not to specify the execution behavior of a simulator, but
rather, to specify how components from the library should be com-
posed and customized to form new components or to build a com-
plete system model. LSS allows the designer to specify an arbitrar-
ily deep hierarchical description of components in an intuitive fash-
ion. Furthermore, the designer can use component parameters and
system connectivity in one level of the hierarchy to determine the
structure of lower levels in the hierarchy. To allow thisuse-based
specialization, the LSS language uses novel evaluation semantics,
an algorithmic specification of structure, and several programming
language techniques including type inference and aspect oriented
programming.

1. INTRODUCTION
In order to design an efficient hardware system, designers must bal-
ance many considerations when making their design decisions. Of-
ten, there are no analytical models with which to evaluate and opti-
mize a design given the constraints on the system. As a result, de-
signers are forced to simulate candidate designs in order to discover
their characteristics and address any unforeseen shortcomings.

Often, the limiting factor preventing the exploration of many can-

didate designs is the time taken to build simulators. The process
of mapping a structural design which is inherently concurrent into
a sequential simulator is tedious and error prone [13]. It would be
useful to the designer if the structure of the simulator closely re-
sembled the actual hardware being modeled. Further, once a simu-
lator has been written, it is desirable to leverage this code in other
simulators. Since different hardware systems are often very similar
in structure and functionality, this reusability could be achieved by
using customizable components from a extensible library of com-
ponents. Unfortunately, most existing simulation methodologies
preclude the creation of libraries of reusable components.

The most common simulator construction technique, hand coding
the simulator in a traditional sequential programming language,
suffers from the difficulty of mapping a concurrent design into
sequential code and from an inability to reuse existing code in
the construction. Simulators written in this style typically model
the structural hardware components and their communication using
functions and function invocation, respectively. Unfortunately, the
hardware concurrency that must be modeled by the software forces
code for a component to be partitioned so that it may be appropri-
ately interleaved with code from other components. The specific
way in which the code must be partitioned is often dependent on
theconnectivityof the system rather than thebehaviorof the com-
ponent [13]. Thus, producing components that work in varying
connection schemes is extremely difficult.

To address the shortcomings of these sequential simulators, re-
searchers have proposed domain specific simulation systems [3, 11,
15]. Unfortunately, these systems are restricted to modeling hard-
ware in that domain only (e.g. simple pipelined microprocessors)
and thus do not provide a generic solution.

Other simulation systems use structural composition and concur-
rency to avoid the pitfalls of hand-written sequential simulators.
Unfortunately, these systems are not well suited for creating li-
braries of reusable components and are not capable of specifying
systems of arbitrary granularity. Low level hardware description
languages [6, 12] model systems at too fine a granularity to explore
system-level design decisions. While it is possible to build coarser
grained components, these components are not sufficiently param-
eterizable to create an effective module library.

Higher level concurrent-structural simulation systems [2, 7, 9] ex-
ist, but they suffer from inappropriate concurrent semantics or lack
a stringent contract governing inter-component communication. As
a result, components developed independently cannot always com-
municate with one another, precluding a useful library of compo-

nents. For some systems, the concurrent semantics do not allow
arbitrarily timed communication and thus force a particular decom-
position into components, precluding reuse. In other systems, de-
signers are free to specify the interaction of components, especially
control interaction, in an ad-hoc fashion with custom communica-
tion interfaces that are optimized for the interaction of a given set
of components. This specialization makes it very hard to have two
components inter-operate if they were not explicitly designed to in-
teract in the first place [13]. Thus, components described in these
systems are inappropriate for component libraries.

We developed the Liberty Simulation Environment (LSE) to ad-
dress these shortcomings of existing systems. LSE allows for the
construction of hardware system simulators by specifying the in-
terconnection of components instantiated from a user-extensible li-
brary of reusable components. In this paper, we present the Liberty
Structural Specification (LSS) language, a language developed to
allow concise and clear descriptions of hardware systems and spec-
ifications of powerful and highly parameterizable components. By
allowing dynamic component behavior to be specified separately,
the LSS language is able to leverage novel evaluation semantics
making the system more parameterizable. In addition, the LSS lan-
guage utilizes programming language techniques such as type in-
ference and aspect-oriented programming to increase specification
ease and power.

The rest of this paper is about the design and implementation of
the Liberty Structural Specification language. Section 2 provides
an overview of LSE. Section 3 will discuss the necessary charac-
teristics of a system description language. Section 4 describes the
LSS language and how the key features address the concerns raised
in Section 3. Section 5 explains the evaluation semantics needed
to make the syntax behave as expected. Section 6 presents some
experience using the language. Section 7 describes related work.
Finally, this paper concludes in Section 8.

2. OVERVIEW OF LSE
The Liberty Simulation Environment automatically constructs an
executable simulator from a hardware system description written
in the LSS language. These LSS system descriptions may utilize
components from a user extensible library in order to simplify de-
scription. The simulator construction flow is shown in Figure 1.
The compiler which transforms LSS descriptions into simulators
is comprised of two components. The first piece, the LSS inter-
preter, emits a system’s static structure and runtime configuration
parameters by interpreting the LSS system description and each of
its components’ descriptions. Then, the emitted system structure
is combined with each component’s runtime behavior by the code-
generator to produce an executable simulator.

Hardware components in LSE are instantiations of predefined or
user-defined hardware component abstractions calledmodules. When
the module is instantiated with the parameters that it defines, a cus-
tomizedmodule instanceis produced for use in the system. A de-
signer will describe the system’s communication paths by specify-
ing connections between theports on module instances. Thus, a
system is described in the LSS language through the customization
and instantiation of modules and the specification of port-to-port
connections.

In addition to declaring the ports and parameters that an instance
has, a module will also specify the runtime behavior of the instance
that is built from it. An LSS module can specify its behavior struc-

LSS
Interpreter

Code
Generator Simulator

Executable
Description

LSS
System

Liberty Simulator Constructor

Component Library

LSS
Component
Description

Component
Runtime
Behavior

Figure 1: Overview of the LSE system.

turally by instantiating other modules and internally connecting the
ports of the resulting sub-instances to its own ports. Modules de-
fined in this way are calledhierarchical modules. Alternatively, a
module can specify its runtime behavior by including a behavioral
specification written in a behavioral specification language (BSL).
This BSL is more suited toward specification of computation rather
than structure. Modules defined in this style are calledleaf mod-
ules. Currently, LSE uses a stylized version of C for the BSL, how-
ever, LSS is independent of this language.

The output of the LSS interpreter is used by the code generator to
weave together the instance behaviors specified in the BSL with a
scheduler to correctly order the computation specified by the sys-
tem’s connectivity. Topics related to concurrent execution seman-
tics and building an efficient simulator from the behavior descrip-
tions are beyond the scope of this paper, but they are discussed in
references [10, 13].

3. LANGUAGE REQUIREMENTS
To manage the complexity of system design and allow for the spec-
ification of highly customizable components, the system specifica-
tion language must be sufficiently powerful to allow concise spec-
ifications of designs. This language should facilitate the design
process by allowing the designer to describe hardware structurally,
to define components which comprise the system, and to specify
what data should be collected from the simulation. Furthermore,
the specification should allow the system to be analyzed by both
the designer and automated tools.

Specifying the static structure of a hardware system may seem triv-
ial, however, the size and complexity of the system makes the ob-
vious brute force techniques extremely cumbersome to use. While
not ideal, it may be manageable to enumerate all the components in
a given system. However, the massive number of connections pre-
cludes complete enumeration of the entire system structure. Luck-
ily, much of a system’s structure is regular and can be concisely
specified using algorithmic or idiomatic descriptions. A language
could, for example, provide idioms for connecting a bus, describ-
ing a butterfly network, or repeating some subset of a machine’s
structure. In order to effectively specify a system’s structure, the
specification languagemust include a convenient syntax for con-
cisely specifying regular structure.

In addition to specifying the system structure, the system design
language must also be able to specify the interfaces and behavior
of the components which make up the system. To allow for com-
ponent reuse (via the definition of truly generic components) the

...
Classification Queue 1

...
Classification Queue 2

...
Output Queue 1

...
Output Queue 2

...
Output Queue 3

...
Input Queue 1

...
Input Queue 2

...
Input Queue 3

PS

PS

PS

C
la

ss
if

ie
r

Sc
he

du
le

r

Figure 2: A block diagram of a hardware router.

description language must allow module definitions to export pa-
rameters which controlboth a module’s runtime behavior and its
interface to other components. For example, the parametrization
should allow for polymorphic types on communication paths to al-
low the definition of type-neutral components such as generic data
routers and also allow unanticipated behavior modifications such as
a novel replacement policy on a cache memory.

Finally, the design language needs also to be able to specify what
data will be collected from the simulation. This specification, while
tightly coupled to the behaviorandstructure of the machine, ought
to be specified independently since, for even a fixed hardware model,
the set of statistics collected from a system simulation may vary
from one simulation to another.

In the next section, we provide an overview of the Liberty Struc-
tural Specification and describe how it achieves each of these goals.

4. OVERVIEW OF LSS
In this section, we will introduce the LSS language by walking
through a small example of system specification. We will then
discuss how to build reusable components by composing existing
modules or by referencing externally specified behavior. Finally,
we will discuss how to instrument a system specification to collect
statistics, drive visualization, or debug designs.

4.1 System Specification
Consider the high level view of a router shown in Figure 2. Three
packet sources (markedPS in the figure) feed the routers input
queues. The router then classifies the packets coming out of the
input queues and places them into the appropriate classification
queues. The packet scheduler pulls packets from the classification
queues, determines their destination, and sends the packets into the
appropriate output queue which ultimately feeds one of the routers
output ports.

Figure 3 shows the LSS specification for this router. The first thing
to notice from the specification is that LSS is an imperative pro-
gramming language that describes system structure rather than a
format for enumerating instances and connections. For program-
mers familiar with the C or JAVA programming languages the syn-
tax should look familiar, although unique syntactic elements exist.
The description begins by instantiating the modules which make up
the system (lines 2-19). The instances are declared using thein-
stance keyword, specifying the instance name and the module
name from which it should be instantiated (lines 2-5, 7, and 13).
An instance can be customized by setting its parameters using sim-
ple assignment statements. For example, we set the classification
policy (line 9) of the classifier, the routing map of the crossbar (line
15), and the queue size of the input queues (line 25). The system
communication paths can be specified by connecting together in-
stances’ ports using the-> operator (lines 31-32).

1 /* Router */
2 instance ps : packet_source[3];
3 instance input_q : mqueue[3];
4 instance class_q : mqueue[2];
5 instance output_q : mqueue[3];
6
7 instance classifier : demux;
8 /* Define class decision behavior */
9 classifier.decide =
10 <<< if(get_priority(data) > 10) return Class1;
11 else return Class0; >>>;
12
13 instance scheduler : crossbar;
14 /* Define packet scheduler behavior */
15 scheduler.map =
16 <<< /* The 2nd high priority input overrides lower
17 priority input. */
18 in_to_out[get_out_port(data[0])] = 0;
19 in_to_out[get_out_port(data[1])] = 1; >>>;
20
21 var i : int;
22
23 /* Connect packet sources to input queues */
24 for(i = 0; i < 3; i++) {
25 input_q[i].size = 4;
26 /* Drop packet if queue is full */
27 input_q[i].in.control =
28 <<< return SIM_port_ack |
29 SIM_port_status_data(istatus) |
30 SIM_port_status_enable(ostatus); >>>;
31 ps[i].out -> input_q[i].in;
32 input_q[i].out -> classifier.in[i];
33 }
34
35 ...
36 /* Repeat the above for the other connections */

Figure 3: LSS description of the hardware router.

In addition to these declarations and statements, an LSS program
can define variables (line 21) and use standard C-style control flow
statements (lines 24-33) and expressions. These constructs, when
used together, allow for analgorithmic specification of structure,
rather than a declarative one. This approach is far more power-
ful than supplying idioms for common connection schemes, since
any regular pattern, rather than a limited set, may be concisely ex-
pressed. Moreover, specifying the structure using a programming
language allows for the structure to be parametrically controlled.
As the example in the Section 4.2 will show, a module parameter,
for instance, can influence the network topology in a communi-
cation fabric. To further increase the specification clarity and re-
duce redundancy, algorithms for common connection or instantia-
tion patterns can be packaged into functions or other modules.

Note that while the syntax for declaring an instance looks strikingly
similar to declaring a variable, the two operations aresignificantly
different. Instance declarations create components of the system
being described, while variable declarations create local storage for
use in algorithms specifying what instances should be created, how
they should be parameterized, or how they should be connected. In-
stance declarations, parameter declarations, parameter assignment,
and connect statements haveside-effects. In fact, these side-effects
are theonlyoutputs an LSS program has.

4.2 Module Declaration
After seeing how to instantiate and connect together module in-
stances in the LSS language, the next logical step is to see how to
define modules. As was mentioned earlier, there are two ways to
define modules in LSS. The first, defining modules hierarchically,
uses the syntax discussed above with only a few more statements

and declarations. Specifying leaf modules, on the other hand, uses
only a limited subset of the features discussed. When defining
modules it is possible to put them into packages. These packages
provide a mechanism to organize module libraries and they also
provide definitions foreventswhich module instances can emit at
run-time (see Section 4.5).

4.2.1 Hierarchical Module Declarations
Consider the task of specifying a system-on-a-chip. As part of
the system, one needs to specify an array of processing elements,
and the interconnection network between the processors. Figure 4
shows two possible design alternatives. Suppose that we wanted to
build an LSS module which had a parameter to select the number
of processors in the network and other parameters to specify the
network topology. Figure 5 shows a possible definition for such a
module.

Notice that the specification of this module is similar to the sys-
tem specification illustrated earlier. To create a hierarchical mod-
ule, LSS statements are simply wrapped in amodule block. The
MultiProcessor module specifies its input/output behavior by
connecting its external ports (declared on lines 7-8) to internal in-
stances (lines 11-12).

In addition to the system features illustrated earlier, this example
also demonstrates parameter declarations (lines 2, 3, and 24) and
port declarations (lines 7-8). Notice the use of the parameter to
control the number of processors instantiated (line 4). Within the
module block, parameters behave like variables, except all assign-
ments (such as that on line 3) give the parametersdefaultvalues and
are thus not unconditional assignments. Any value already speci-
fied during instantiation overrides these default values. To promote
specification ease, assigning to a parameter multiple times is per-
mitted (e.g. to allow conditional default values). However, once a
parameter value is read, its value is fixed; any subsequent attempt
to write to the parameter would produce an error. This behavior
ensures that all users of a parameter see a consistent value. Vari-
ables are intended to behave as normal variables in an imperative
programming language.

Take special note that thetopology parameter is controlling the
connectivity and thus the functionality of this module (lines 14 and
23). Enumerating all the connections in such a system would be
extremely tedious and it would be impossible to have such a de-
sign have a parameterizable number of processing elements as this
example does. While idiom based connectivity systems could po-
tentially describe these two topologies even in the presence of a
variable number of processors, it is unlikely that they would eas-
ily be able to handle the irregularity caused by thememctrl in-
stance (the node marked “M” in the Figure 4). The algorithmic
specification provides an elegant mechanism to specify the connec-
tivity even in the presence of such an irregularity.

Finally, notice that thetopology parameter is guarding the decla-
ration of two additional parameters:height andwidth (line 24).
These parameters only have meaning when using the grid topology
and thus their declaration is appropriately predicated. In much the
same way, it is also possible for a module declaration to guard the
declaration of ports with control flow statements predicated on pa-
rameters. Since parameters and ports can conditionally exist based
on the values of other parameters, it may seem as though it is im-
possible to evaluate the language. However, fairly simple execu-
tion semantics exist that allow evaluation, and such semantics prove

P P P

M P P

P P

To Memory

(a) Ring topology

P P P

P P P

M P P

To Memory

(b) Grid topology

Figure 4: Multiprocessor network.

quite natural for structural specification. The details of the execu-
tion semantics are discussed in Section 5.

The MultiProcessor module defined above behaves just like
any other module. This means that it is possible to define another
hierarchical module that usesMultiProcessor as one of its
sub-instances. This process can continue recursively as far as the
user needs.

4.2.2 Leaf Module Declarations
Just like hierarchical modules, leaf module declarations are speci-
fied within amodule block. The LSS portion of a module speci-
fication for a basic storage element is shown in Figure 6. A mod-
ule indicates that it is a leaf module by assigning a value to the
tar file parameter (line 2). This parameter identifies the be-
havioral code that will implement this module’s functionality. In
addition to thetar file parameter, leaf modules and leaf mod-
ules’ ports have several other parameters which declare scheduling
properties of the module instances (lines 3-6 and 19-22).

This example also demonstrates the type polymorphism available
on ports. The ports declared on lines 16 and 17 use a type vari-
able,’type , instead of explicitly specifying types for the ports.
This allows the ports to have any type, but thesrc anddest ports
must have the same type, since both ports reference the same type
variable. The specification of types through unconstrained type
variables means that port types in LSE are polymorphic. In the
example, the storage element is indifferent to the type of the value
it stores; without polymorphic port types, a separate module would
have to be created for each type. However, polymorphism allows a
single, generic module to specify the behavior forall types.

In general, the symbol to the right of the colon in a port declaration
specifies a constraint on the valid types for that port. Type variables
have module statement scope and impose the constraint that ports
with the same type variable have the same type. More complex
constraints, such as set membership are also possible. Type infer-
ence is used to identify actual port types and is discussed in more
detail in Section 5.2.

4.3 Parameters
While scanning through the code in Figures 3 and 5, one may have
noticed that many of the parameter assignments (e.g. Figure 3
lines 9-11) look strange. These statements are assigning to code-

1 module MultiProcessor {
2 parameter topology : enum{ring, grid};
3 parameter numprocs=4 : int;
4 instance procs : Processor[numprocs];
5 instance memctrl : MemoryController;
6
7 inport responseIn : int32;
8 outport requestOut : SIM_addr_t;
9
10
11 memctrl.requestOut -> requestOut;
12 responseIn -> memctrl.responseIn;
13
14 if(topology == ring) {
15 var i : int;
16
17 for(i = 0; i < numprocs - 1; i++) {
18 procs[i].dataOut -> procs[i+1].dataIn;
19 }
20 memctrl.dataOut -> procs[0].dataIn;
21 procs[numProcs - 1].dataOut -> memctrl.dataIn;
22 }
23 else if(topology == grid) {
24 parameter height, width : int;
25
26 assert(height * width == (numprocs-1));
27
28 memctrl.dataOut -> procs[0].dataIn;
29 procs[0].dataOut -> memctrl.dataIn
30 memctrl.dataOut -> procs[x.width-1].dataIn;
31 procs[x.width-1].dataOut -> memctrl.dataIn;
32
33 var x,y : int;
34 for(x = 0; x < width; x++) {
35 for(y = 0; y < width; y++) {
36 if(x != 0 || y != 0) {
37 if(x - 1 > 0) {
38 procs[y*width+x-1].dataOut ->
39 procs[y*width+x-2].dataIn;
40 procs[y*width+x-2].dataOut ->
41 procs[y*width+x-1].dataIn;
42 }
43 /* Repeat the above code for x+1,
44 y-1, and y+1 */
45 }
46 }
47 }
48 }
49 };

Figure 5: LSS description of a multiprocessor network.

1 module flop {
2 tar_file="flop";
3 phase=FALSE;
4 phase_start=TRUE;
5 reactive=FALSE;
6 phase_end=TRUE;
7
8 parameter unblock_at_receive=TRUE:bool;
9 parameter initial_state : userpoint(
10 <<<int porti, SIM_dynid_t *init_id,
11 SIM_port_ctype(dest) *init_value>>> =>
12 <<<gboolean>>>);
13
14 initial_state = <<< return FALSE; >>>;
15
16 inport src:’type;
17 outport dest:’type;
18
19 src.handler=FALSE;
20 dest.handler=TRUE;
21 src.independent=TRUE;
22 dest.independent=FALSE;
23
24 };

Figure 6: LSS specification for a basic storage element.

typed parameters. The values, enclosed within<<< and>>>,
are pieces of algorithms, written in the BSL (stylized C), that are
used by the code-generator to customize run-time instance behav-
ior. Modules may declare these code-typed parameters, including
the signature of the arguments and return value of the code, using
the syntax shown on lines 9-12 of Figure 6. The code-value to the
left of the => operator indicates the list of arguments available to
the code, and the value to the right of the operator indicates the
code’s return value. Since all the values enclosed within<<< and
>>> are only used during code generation, the syntax and seman-
tics of code values are determined by the BSL. During code gen-
eration, the code inside the code-typed parameters is type checked
to verify that it is compatible with the signature. The code values
are essentially treated like string constants by the LSS interpreter,
however, they do have access to all the variables and parameters
presently in-scope, including other code-typed parameters. These
code-typed parameters increase the reusability of modules by pro-
viding a very flexible mechanism to modify the runtime behavior
of a component.

In addition to code-typed parameters, LSS supports a strongly-
typed and slightly augmented (e.g. support for specific width in-
tegers) version of the C type system (excluding pointers). As the
example in Figure 5 showed, parameters with more conventional
types likeint andenumcan be used to customize the structure of
hierarchical modules. However, since the LSS type system closely
parallels that of the BSL, these conventionally typed parameters
may also be used by leaf modules to customize BSL specified be-
havior. For example, thesize parameter of the leaf modulemqueue
(see Figure 3) controls the maximum number of elements that can
be stored in the queue. Notice, however, that LSS is BSL indepen-
dent provided that there is a map from LSS types to BSL types, a
fairly loose restriction.

4.4 Ports and Connections
The example shown in Figures 4 and 5 illustrates another impor-
tant feature of LSS, its management of multiple connections to a
port. When using the grid topology, theMultiProcessor mod-
ule makes multiple connections to each processor’s dataOut and
dataIn port, one connection for each neighboring processor. In most
structural systems, multiple connections to a single port specifies
fan out or fan in. However, in LSE all connections are point-to-
point to allow for a uniform, customizable specification of control
semantics [13].

Since all connections in LSE are point-to-point, multiple connec-
tions to a single port could be considered an error. However, LSS
uses multiple connections to a port to provide an easy mechanism
to scale the number of inputs or outputs a module has or provide a
simple way to connect buses of wires.

Each port in LSE is actually a variable length array of ports, where
the size of the array is specified by theport-name.width parameter
on the the port. Each connection to a port is actually a connection
to one of the ports in the array; each connection behaves as a sepa-
rate communication channel. The user can specify to which index
of a port a connection be made by indexing the port like an array.
For example,A.p[3] -> B.p[2] . However, since connections
to an instance’s ports may be distributed throughout a system spec-
ification, it may be difficult to keep track of the first unused index
on a port. Similarly, it may be burdensome to explicitly assign the
width parameter for each port. To relieve this burden, LSS sup-
ports an alternate syntax for connectivity. As shown on lines 28-31

of Figure 5, the user can omit the port index when specifying the
end point of a connection. LSS will automatically assign a unique
port index to each such end point. Furthermore, the LSS interpreter
will automatically set thewidth parameter for any port, for which
it is not explicitly specified, to the number of connections made to
the port. When the parameteris explicitly set, it is used as an as-
sertion to verify that the number of actual connections matches the
number specified in the parameter. Finally, to avoid confusion, the
LSS interpreter forbids simultaneously using a port in connection
statements with explicitly specified indices and connection state-
ments with inferred indices.

Entire port arrays and individual ports within these arrays may be
unconnected. LSS and BSL descriptions assign semantics to these
unconnected ports to allow designs to be specifiediterativelyand to
allow for simple use of generic modules. Accordingly, for each port
the module has a parameter,port-name.connected , to indicate
whether a port is connected. If not explicitly set, these parameters
are automatically set toTRUEor FALSE if the port is connected
or unconnected, respectively. If explicitly set, the parameter asserts
that a port should be connected or unconnected and produces an
error if the assertion is not true. These semantics give the module
writer an easy way to restrict the usage of ports, without excessively
verbose error checking code.

4.5 Instrumentation
In order for simulation to be useful, a user must be able to collect
data from a simulation run. However, different users want different
data from a system. Furthermore, different systems will have differ-
ent characteristics worth examining. In traditional simulation sys-
tems, the simulator usually has hard-coded instrumentation. This
does not allow for a modular simulator specification.

To separate behavior from data gathering and statistics computa-
tion, data collection in LSE occurs through events and data col-
lectors. Each module instance has a set of events that the BSL
behaviors can emit during simulation. Each event has a collec-
tion of data that is emitted along with the event. For example, on
a processor branch predictor module there may be an event called
PREDICTION. The prediction event would occur every time a pre-
diction is made, and it would have the prediction and an instruc-
tion identifier attached as data. This data could be used with other
events to compute the branch mispredict rate in a processor simu-
lation. In LSS, events are declared within packages and modules
within each package state which of these events they can emit.

Statistics computation and other uses of event data are cross-cutting
concerns in a program. In order to debug a design or visualize the
flow of data through a piece of hardware, events from throughout
the system need to be caught and processed. For example, in order
to visualize data flow, every event corresponding to a data trans-
fer on the ports needs to be caught by the visualization tool and
then used for display. Probing each event individually, of course,
would prove to be very tedious since there is one of these events for
each port on each module instance. Further, any changes to system
structure would require the specification to be re-instrumented. On
the other hand, some data collection requires catching very specific
events. For example, to compute the branch misprediction rate in a
microprocessor, the prediction event on the branch predictor mod-
ule and the branch-completed event on the branch unit need to be
caught.

Since data collection is a cross-cutting concern, LSS has an aspect-

1 package branch_predictor {
2 event PREDICTION:<<<struct { SIM_dynid_t id;
3 int predicted_dir; };>>>;
4 ...
5 module bpred {
6 inport predict:SIM_addr_t;
7 outport predicted_dir:int;
8
9 ...
10 emits PREDICTION;
11 ...
12 };
13 };

Figure 7: Example event declaration and specification of emis-
sion.

1 data_collectors {
2 !*:processor1.!* = <<< /* Visualization code */ >>>;
3 PREDICTION:processor2.bpredict =
4 <<< /* misprediction calculation code */ >>>;
5 };

Figure 8: Example data collector specification.

oriented [8] mechanism to specify code that will run when the cor-
responding event occurs.. Figure 7 shows the LSS code for a branch
predictor package and parts of a branch predictor module definition
relevant to defining thePREDICTIONevent. Lines 2-3 define the
event and declare that it has two data items. The first,id , is a dy-
namic identifier which will identify for which branch instruction
the prediction is made; the second,predicted dir is the direc-
tion predicted for the branch, either taken or not. Line 10 states that
modulebpred emits thePREDICTIONevent. In addition to the
user defined events, there is also a set of system wide events that
are associated with data transfers. In particular, there is an event
that is emitted any time data is sent along a port.

To specify what code should be associated with anevent instance(the
combination of the event name and the generating instance or in-
stances), a user defines a data collector at the top level in a section
nameddata collectors . Each event instance behaves like a
join point and the data collector like an aspect in an aspect-oriented
programming language. The user identifies the event and mod-
ule instances of interest and assigns a code-value to the event in-
stance. Rather than requiring individual instances and events to be
enumerated, the user may specify regular expressions (with. re-
placed by! as the wildcard character since. occurs frequently as
a normal character delimiting hierarchy), and any matching event
instance gets the code. Figure 8 shows several examples of the syn-
tax for this specification. As the example shows, regular expres-
sion syntax satisfies both the data collection requirements outlined
above. Thus, visualization and debugging tools can easily catch
many events, while specific statistics computations can easily catch
only specific events.

5. LSS EVALUATION SEMANTICS
This section describes the evaluation semantics of the LSS lan-
guage. While the language shares many properties in common
with other imperative object-oriented programming languages, an
important distinction exists in the way in which the module abstrac-
tions are instantiated to create module instances. Typically, in an
imperative object-oriented programming language, a program ex-
plicitly instantiates a class by using an operator of the language
such asnew. As arguments to the operator, one normally specifies

all the parameters necessary for instantiating the abstraction.

These standard evaluation semantics preclude the use of several
features that are desirable in a structural specification language.
For example, standard evaluation semantics would prevent the con-
structor of a module from using the number of connections to its
ports unless this connection count is explicitly passed as a parame-
ter. However, as shown in the grid processor example in Figure 5,
the user may not always care about or know the exact number of
connections made to a port. It would be very inconvenient to force
the user to change the connection count in the instantiation state-
ment every time they added or removed a connection.

Standard instantiation schemes require all of a constructor’s ar-
guments to be specified before an abstraction can be instantiated.
However, it is preferable to have these parameters disjointly speci-
fied throughout the code on a single level of the hierarchy. Further-
more, the existence or absence of certain parameters should be able
to depend on the value thatwill be assigned to another parameter.
Thus, the LSS evaluation semantics must allow for delayed abstrac-
tion instantiation. Since this allows instances to adapt themselves
based on how they are used, we refer to this style of instantiation
asuse-based specialization.

Use-based specialization has the benefit that a component can im-
plicitly inform the compiler of valid parameter combinations and
connection patterns and have the compiler enforce the consistency.
The module does this by predicating the declaration of parameters
and ports on the values of other parameters. If the port usage and
parameter settings are incongruent, the compiler will flag an error
that an undeclared port or parameter was used.

5.1 Instantiation
To implement use-based specialization, the system must first for-
mally define the evaluation semantics. For this discussion, we will
identify all code with an instance in the hierarchy. Code on the top-
level (not explicitly in a module instance) will be considered part
of the top-level instance. Evaluation proceeds as a pre-order
depth-first traverse of the instance hierarchy tree. Obviously, this
tree is not fixed at the beginning of evaluation. Instead, each node
in the tree, when evaluated, adds the children it defines to the in-
stance tree. Once the evaluation of a particular node completes, the
node’s children are instantiated and evaluated. Since instantiation
is delayed until after the current node evaluates,all the parameters
needed by the child, including its connectivity, are available.

During evaluation of a particular instance, all statements which
set sub-instance parameters or connect to sub-instance ports are
logged. These logged values and connections are used when evalu-
ating the sub-instances to obtain parameter values or determine port
connectivity. Parameter types are checked versus assigned types to
ensure that they are consistent. Just before evaluation of a sub-
instance completes, the log is checked for assignments to unde-
clared parameters or connections to undeclared ports. As an ad-
ditional precaution, during instance evaluation all sub-instance pa-
rameter assignments are checked for consistency. It is illegal, for
example, to assign to a parameterp a value of typeτ1 and subse-
quently assign to it a value of typeτ2 even if the parameter will
be declared with typeτ2. This ensures that all executed code has a
consistentview of what the type of a parameter will be. This view
is then verified when the sub-instance is evaluated.

5.2 Type Inference

1 module A {
2 module B {
3 parameter p:bool;
4
5 module C1 {
6 inport src:int;
7 outport dest:int;
8 ...
9 };
10 module C2 {
11 inport src:int;
12 outport dest:int;
13 ...
14 };
15 ...
16 inport src:*;
17 outport dest:*;
18
19 if(p) {
20 instance c:C1;
21 } else {
22 instance c:C2;
23 }
24 src -> c.src;
25 c.dest -> dest;
26 };
27 ...
28 };

Figure 9: 3 levels of hierarchy.

While parameter types are checked for consistency using the tech-
nique described in section 5.1, port types are handled differently. If
ports were handled like parameters, all types in the system would
be resolved from the outermost to the innermost levels of the in-
stance hierarchy. While this may not seem restrictive, the following
example will demonstrate why more flexibility is desirable.

Consider the LSS in Figure 9. Here we see that if port types were
resolved like parameter types, it would be necessary for moduleA
to specify the types of moduleB’s ports, even though setting the
parameterp would be sufficient to determine the ports’ types. To
avoid this pitfall, LSS supports type inference on ports which uses
information from connections to sub-instances as well as external
connections to the module itself to infer a port’s type. The algo-
rithm to allow this is described below.

As was mentioned earlier, types given in port declarations are ac-
tually constraints on the set of types possible on that port. These
constraints take two possible forms: equality constraints and set
membership constraints. Port declarations like the one on line 7 of
Figure 5 or line 16 of Figure 6 are equality constraints where the
former asserts equality to theint_32 type while the latter asserts
equality to the type variable’type . Set membership constraints
can be specified during port declaration by replacing a type name
or type variable name with a * character or a comma separated list
of types enclosed in brackets. The * character represents the uni-
versal set of types, while the comma separated list is the set of all
types in the list. Connection statements also add constraints to the
system. An equality constraint between the two connected ports is
added since connected ports must share the same type. The connec-
tion itself may specify additional constraints using the->: con-
straint operator instead of the conventional-> operator. The
-> is actually shorthand for->:* . Constraints are added asserting
that both ports in a connection are equal to the type or members of
the set specified with the connection.

After all evaluation completes, the LSS interpreter uses these con-

straints to infer the type of each port. The types are determined by
solving the system of constraints described by the system where,
in addition to the explicit type variables, one type variable per port
is introduced. Obviously contradicting constraints are problematic,
but under constrained systems are also illegal. This is because the
underlying BSL behaviors are type abstractions which take, as ar-
guments during instantiation, the type ofall ports on a given in-
stance. The one exception concerns unconnected ports. Since the
data on the port is not used anywhere in the system, systems in
which unconnected ports have insufficient constraints to infer its
type are permitted. The type inference engine will introduce arbi-
trary artificial constraints on these ports to force them to a single
type.

6. EXPERIENCE WITH LSS
It is truly difficult to evaluate the overall quality of a programming
language since much of its value relates to subjective metrics like
clarity or ease of specification. However, extensive use of a pro-
gramming language allows one to gain significant insight into the
value of various language features. In this section, we will present
some anecdotal evidence that shows that the LSS language is an ef-
fective language for structural hardware system specification. We
will present our experience with various systems that we have mod-
eled in LSE using the Liberty Structural Specification language and
contrast this with similar experiences describing systems in a pre-
decessor description language. We will also discuss the design of
components we have built and describe the reusability that LSS fa-
cilitated.

As a computer architecture research group, we have modeled sev-
eral microprocessor cores. As a proof-of-concept for LSE, we mod-
eled a hardware system behaviorally identical to the one modeled
by SimpleScalar [1], a popular architecture simulator hand-written
in C [13]. Our system model was initially specified in an XML
syntax that predated LSS. Specifications done in this XML format
were static enumerations of all the instances and connections in the
system. Additionally, this earlier system lacked the ability to hier-
archically compose modules (all modules were leaf modules), and
the system lacked type inference.

Despite these specification language shortcomings, LSE still pro-
vided large gains in specification ease compared to existing simu-
lation systems. However, the weaknesses of specifying a system
in XML were immediately apparent. Enumerating the system’s
connectivity required cut-and-paste of large sections of XML and
minor conceptual changes required significant changes to the de-
scription. The overall system structure was lost in the tangle of
connections. To ease some of the tedium, we introduced connec-
tion idioms into the XML syntax for bus connectivity. However,
due to minor irregularities, these idioms often could not be used,
and the specification complexity remained fairly high.

This experience provided the impetus for the development of the
Liberty Structural Specification language. As a case study we con-
verted the SimpleScalar machine configuration from the XML syn-
tax to LSS. The LSS description proved to have a 35% reduction
in the number of lines of code, but more importantly, it was con-
siderably more clear. The algorithmic specification of structure al-
lowed easy specification of regular connectivity even in the pres-
ence of slight irregularity. Type inference also made the specifica-
tion clearer. Since the type of connections is often understood (only
one type makes sense), avoiding specification of inferable types al-
lowed the machine’s actual structure to come through.

In addition to the SimpleScalar machine model, our group mod-
eled an in-order superscalar processor. The experiences obtained
while building this model were similar to those obtained above.
Outside of our research group, the modeling language has been
used to model and study power consumption in interconnection net-
works [14]. In fact these network simulators were constructed from
many of the same modules used for the processor architecture mod-
els. Only modules related to domain specific system control needed
to be added to the library. The modules’ use in these two disparate
modeling domains is a testament to LSS’s ability to specify flexible
modules.

For component specification, the LSS language proved to be in-
credibly useful. For example, specifying a generic memory cache
module required the creation of a few leaf modules to indepen-
dently describe the cache array, the tag comparator, and the cache
controller. Once defined, these components could then be con-
nected in a variety of ways to describe different cache styles. With-
out the ability to describe a new module as the composition of exist-
ing modules, changing the cache configuration for varying contexts
would prove exceedingly difficult. However, in the LSS language,
typical memory organizations could be wrapped into a single cache
module which could be parametrically controlled. In one such in-
stance, the cache has a parameter which toggles between simula-
tion of a perfect cache, which only requires a single sub-instance,
and a traditional cache, which required the composition of the three
principle modules with several auxiliary ones to appropriately route
data. Additionally, when the non-perfect cache is selected, addi-
tional parameters controlling its size, replacement policy, and other
behaviors were exposed. Thus the use-based specialization proved
particularly powerful for this component’s design.

7. RELATED WORK
In the introduction, we compared LSE to existing simulation ap-
proaches and briefly argued why LSE is needed. In this section,
we examine how LSS compares to existing structural specification
systems, concentrating on structural composition and component
construction. We also compare the evaluation semantics used by
LSS with existing schemes such as lazy evaluation.

As discussed earlier, other concurrent-structural specification sys-
tems have been proposed for hardware modeling and programming
in general [2, 4]. In addition to the shortcomings of these systems
for high-level hardware modeling described in the introduction,
these systems lack flexibility in the way in which users can cus-
tomize and construct new components from existing components.
Furthermore, many of them do not allow parameters to control how
components are instantiated and connected.

In SystemC [9] it is possible to build new components from exist-
ing ones using features of the C++ language, but this process can
be extremely cumbersome. The language mixes structure and be-
havior specification and consequently the structural specification is
encumbered with the execution semantics of C++ which proves in-
appropriate. Furthermore, the system does not explicitly support
polymorphism, but instead relies on C++’s heavyweight template
system. C++ templates add considerable syntactic overhead for
specification and use of polymorphic components, however they
offer only limited polymorphism which must be resolved without
the benefit of type inference.

Other systems, such as hardware description languages [6, 12], do
not allow any component customization and only limited forms of

parameter based instantiation. Components are written for a spe-
cific purpose and used only for that purpose. This is acceptable
for hardware synthesis, since the designer is likely to want detailed
control over exactly how a component is specified (and thus syn-
thesized), but it is not acceptable for high-level modeling where
reusable components are highly desirable.

Finally, systems such as Ptolemy [7], allow for some flexibility
and reusability through component parameters and a polymorphic
type system for the data passed between component ports. How-
ever the system structure is specified with a graphical user interface
or through MoML (an XML schema), thus precluding algorithmic
specification of structure. Instead the system is restricted to ex-
plicit enumeration of connections and instances. Thus, although
parameters may affect leaf component behavior, system structure
is independent of parameterization.

The evaluation semantics of LSS resemble lazy type evaluation in
an eager programming language [5]. With lazy evaluation, eval-
uation of expressions resulting in lazy types is deferred until that
evaluation is necessary. The LSS evaluation semantics similarly
defer module instantiation, however, this instantiation is deferred
until all uses of the instance have been specified. Knowledge of
the uses guides the module evaluation during instantiation allow-
ing use-based specialization.

Since LSS has many of the execution semantics of a programming
language, it is possible to create new flexible and reusable compo-
nents from existing components as well as concisely specify com-
plex but regular connection patterns. LSS allows the number of
connections to a port as well as the module’s parameters to control
what modules a hierarchical module instantiates and how it inter-
connects them.

8. CONCLUSION
The Liberty Simulation Environment is the first simulation system
to separate the description of structure and the specification of run-
time behavior into two distinct descriptions using a specialized pro-
gramming language for each. LSE employs the Liberty Structural
Specification which allows for the algorithmic specification of the
structure of a system. Through the use of simple control flow state-
ments common to most imperative programming languages, many
regular patterns present in the hardware can be clearly and con-
cisely specified even in the presence of slight irregularities. The
separation of structural specification and behavioral specification
allows the syntax and semantics of the LSS language to be tailored
to ideally match the goals of structural specification.

The LSS language uses novel evaluation semantics to allow for use-
based specialization. The evaluation semantics allow component
customization parameters to be specified in a distributed fashion,
a natural paradigm for hardware specification. Additionally port
and parameter existence can be predicated on other parameter val-
ues providing powerful compiler support for assuring appropriate
parameterization of highly flexible reusable components.

LSS also leverages powerful programming language techniques such
as type inference and aspect-oriented programming to further facil-
itate component reusability and modular system specification. Us-
ing polymorphic port types and type inference allows the specifi-
cation of type-neutral reusable modules with type resolution occur-
ring automatically without user intervention. Aspect-oriented data
collection, separates simulator instrumentation from both behavior

and structure specification. Additionally, data collection can eas-
ily be specified for large subsets or specific pieces of the machine
using pattern matching to facilitate overall system visualization or
individual component performance analysis.

Overall, LSS provides designers with a powerful tool for efficiently
and accurately describing hardware in an elegant manner. An LSS
description closely resembles the hardware that is being modeled
and therefore the description is intuitive and easily modified. Fur-
ther, the nature of LSS language was designed specifically with
code reuse and design efficiency as a goal and this allows for the
specification of component libraries that maybe used to facilitate
description.

9. REFERENCES
[1] BURGER, D., AND AUSTIN, T. M. The SimpleScalar tool

set version 2.0. Tech. Rep. 97-1342, Department of
Computer Science, University of Wisconsin-Madison, June
1997.

[2] EMER, J., AHUJA, P., BORCH, E., KLAUSER, A., LUK ,
C.-K., MANNE, S., MUKHERJEE, S. S., PATIL , H.,
WALLACE , S., BINKERT, N., ESPASA, R., AND JUAN , T.
Asim: A performance model framework.IEEE Computer
0018-9162(February 2002), 68–76.

[3] GRUN, P., HALAMBI , A., KHARE, A., GANESH, V.,
DUTT, N., AND NICOLAU , A. EXPRESSION: An ADL for
system level design exploration. Tech. Rep. TR 98-29,
University Of California, Irvine, 1998.

[4] HALAMBI , A., GRUN, P., GANESH, V., KHARE, A.,
DUTT, N., AND NICOLAU , A. EXPRESSION: A language
for architecture exploration through compiler/simulator
retargetability. InProceedings of the European Conference
on Design, Automation and Test (DATE)(March 1999).

[5] HARPER, R. Programming Languages: Theory and
Practice. Draft, 2002.

[6] IEEE. VHDL: IEEE Standard 1076. http://www.ieee.org.
[7] JANNECK, J. W., LEE, E. A., LIU , J., LIU , X.,

NEUENDORFFER, S., SACHS, S.,AND X IONG, Y.
Discplining heterogeneity – the Ptolemy approach. InACM
SIGPLAN 2001 Workshop on Languages, Compilers, and
Tools for Embedded Systems (LCTES 2001)(June 2001).

[8] K ICZALES, G., LAMPING, J., MENDHEKAR, A., MAEDA ,
C., LOPES, C., LOINGTIER, J.-M., AND IRWIN, J.
Aspect-oriented programming. InProceedings of the 11th
European Conference for Object-Oriented Programming
(1997), pp. 220–242.

[9] OPEN SYSTEMC INITIATIVE (OSCI).Functional
Specification for SystemC 2.0, 2001. http://www.systemc.org.

[10] PENRY, D. A., AND AUGUST, D. I. Optimizations for a
simulator construction system supporting reusable
components. Tech. Rep. Liberty-02-03, Liberty Research
Group, Princeton University, September 2002.

[11] SISKA , C. A processor description language supporting
retargetable multi-pipeline dsp program development tools.
In Proc. of the 11th International Symposium on System
Synthesis (ISSS)(Dec. 1998).

[12] THOMAS, D. E., AND MOORBY, P. R.The Verilog
hardware description language. Kluwer Academic
Publishers, Norwell, MA, 1998.

[13] VACHHARAJANI , M., VACHHARAJANI , N., PENRY, D. A.,
BLOME, J. A., AND AUGUST, D. I. Microarchitectural
exploration with Liberty. InProceedings of the 35th
International Symp. on Microarchitecture(November 2002).

[14] WANG, H.-S., ZHU, X.-P., PEH, L.-S., AND MALIK , S.
Orion: A power-performance simulator for interconnection
networks. InProceedings of 35th Annual International
Symposium on Microarchitecture(November 2002).

[15] Z̆IVOJNOVIĆ, V., PEES, S.,AND MEYR, H. LISA -
machine description language and generic machine model
for HW/SW co-design. InIEEE Workshop on VLSI Signal
Processing(San Francisco, CA, October 1996).

