
21

Virtual Machine Showdown:
Stack Versus Registers

YUNHE SHI1 and KEVIN CASEY

Trinity College Dublin

M. ANTON ERTL

Technische Universität Wien

and

DAVID GREGG

Trinity College Dublin

Virtual machines (VMs) enable the distribution of programs in an architecture-neutral format,
which can easily be interpreted or compiled. A long-running question in the design of VMs is
whether a stack architecture or register architecture can be implemented more efficiently with an
interpreter. We extend existing work on comparing virtual stack and virtual register architectures
in three ways. First, our translation from stack to register code and optimization are much more
sophisticated. The result is that we eliminate an average of more than 46% of executed VM in-
structions, with the bytecode size of the register machine being only 26% larger than that of the
corresponding stack one. Second, we present a fully functional virtual-register implementation of
the Java virtual machine (JVM), which supports Intel, AMD64, PowerPC and Alpha processors.
This register VM supports inline-threaded, direct-threaded, token-threaded, and switch dispatch.
Third, we present experimental results on a range of additional optimizations such as register allo-
cation and elimination of redundant heap loads. On the AMD64 architecture the register machine
using switch dispatch achieves an average speedup of 1.48 over the corresponding stack machine.
Even using the more efficient inline-threaded dispatch, the register VM achieves a speedup of 1.15
over the equivalent stack-based VM.

Categories and Subject Descriptors: D.3.4 [Programming Language]: Processor—Interpreter

1Extension of Conference Paper: An earlier version of the work in this paper appeared in the
First ACM/Usenix Conference on Virtual Execution Environments (VEE’05) [Shi et al. 2005]. The
new material in this paper consists of (1) a complete reimplementation of the register VM using the
Cacao 0.95 JVM (2) SSA form intermediate representation (3) redundant load elimination using
SSA (4) virtual register allocation to minimize the size of Java stack frame, (5) support of two addi-
tional VM instruction dispatch methods: direct threaded and inline threaded, (6) support additional
architectures such as AMD64, Alpha, and PowerPC, (7) additional optimizations investigated, such
as preliminary work on assessing the impact of redundant field and array load elimination
Corresponding author’s address: David Gregg, Department of Computer Science, Trinity College
Dublin, Dublin 2, Ireland. David.Gregg@cd.tcd.ie.
Permission to make digital or hard copies part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific per-
mission and/or a fee. Permissions may be requested from the Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1544-3566/2008/01-ART21 $5.00 DOI 10.1145/1328195.1328197 http://doi.acm.org/
10.1145/1328195.1328197

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 21, Publication date: January 2008.

21:2 • Y. Shi et al.

General Terms: Performance, Language

Additional Key Words and Phrases: Interpreter, virtual machine, register architecture, stack ar-
chitecture

ACM Reference Format:
Shi, Y. Casey, K., Ertl, M. A., and Gregg, D. 2008. Virtual machine showdown: stack versus
registers. ACM Trans. Architec. Code Optim. 4, 4, Article 21 (January 2008), 36 pages. DOI =
10.1145/1328195.1328197 http://doi.acm.org/10.1145/1328195.1328197

1. MOTIVATION

Virtual machines (VMs) enable the distribution of programs in an architecture-
neutral format, which can easily be interpreted or compiled. The most popular
VMs, such as the Java virtual machine (JVM) and Microsoft .NET’s common
language runtime (CLR), use a virtual stack architecture, rather than the reg-
ister architecture that dominates in real processors.

Interpreters are frequently used to implement virtual machines because they
have several practical advantages over native code compilers. Interpreters are
much slower than the native code produced by just-in-time compilers (even
the fastest interpreters are currently about 5–10 times slower), but they are
nonetheless widely used for lightweight language implementations. If written
in a high-level language, interpreters are portable; they can simply be recom-
piled for a new architecture, whereas, generally, a just-in-time (JIT) compiler
requires considerable porting effort. Interpreters also require little memory:
the interpreter itself is typically much smaller than a JIT compiler [Radhakr-
ishnan et al. 2000], and the interpreted bytecode is usually a fraction of the
size of the corresponding executable native code. For this reason, interpreters
are commonly found in embedded systems. Furthermore, interpreters avoid
the compilation overhead in JIT compilers. For rarely executed code, interpret-
ing is typically much faster than JIT compilation. The Hotspot JVMs [Sun-
Microsystems 2001] take advantage of this by using a hybrid interpreter/JIT
system. Code is initially interpreted, saving the time and space of JIT com-
pilation. Sections of code are then JIT compiled only if they are found to be
executed frequently. Interpreters are also dramatically simpler than compil-
ers; they are easy to construct, and easy to debug. Finally, it is easy to provide
tools such as debuggers and profilers when using an interpreter because it is
easy to insert additional code into an interpreter loop. Providing such tools for
native code is much more complex. Interpreters provide a range of attractive
features for language implementation. In particular, most scripting languages
are implemented using interpreters.

1.1 Previous Work

A long-running question in the design of VMs is whether a stack architecture or
a register architecture can be implemented more efficiently with an interpreter.
Stack architectures allow smaller VM code so less code must be fetched per
VM instruction executed. However, stack machines require more VM instruc-
tions for a given computation, each of which requires an expensive (usually

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 21, Publication date: January 2008.

Virtual Machine Showdown: Stack Versus Registers • 21:3

unpredictable) indirect branch per VM instruction dispatch. Several authors
have discussed the issue [Myers 1977; Schulthess and Mumprecht 1977; Mc-
Glashan and Bower 1999; Winterbottom and Pike 1997] and presented small
examples where each architecture performs better, but no general conclusions
can be drawn without a larger study.

The first large-scale quantitative results on this question were presented by
Davis et al. [Davis et al. 2003; Gregg et al. 2005] who translated JVM stack code
to a corresponding register machine code. A straightforward translation strat-
egy was used with simple compiler optimizations to eliminate instructions that
become unnecessary in register format. Of the resulting register code, around
35% fewer VM instructions were needed to perform the same computation than
the stack code. However, the resulting register VM code was around 45% larger
than the original stack code and resulted in a similar increase in bytecodes
fetched. Given the high cost of unpredictable indirect branches, these results
strongly suggest that register VMs can be implemented more efficiently than
stack VMs with an interpreter. However, this work did not include an imple-
mentation of the virtual register architecture, so no real running times were
presented.

1.2 Contribution

The present paper extends the work of Davis et al. in two respects. First, our
translation from stack code to register code and subsequent optimization are
much more sophisticated. We use a more aggressive copy propagation approach
to eliminate almost all of the stack load and store VM instructions. We also
optimize redundant constant load and other common subexpressions and move
loop invariants out of loops. The result is that an average of more than 46%
of executed VM instructions are eliminated. The resulting register VM code
is roughly 26% larger than the original stack code, compared with the 45% for
Davis et al. We find that the increased cost of fetching more VM code requires an
average of only 1 extra CPU load per executed VM instruction eliminated. Given
that VM dispatches are much more expensive than CPU loads, this indicates
strongly that register VM code is likely to be much more time-efficient when
implemented with an interpreter. The cost of this gain is the slightly increased
VM code size.

The second contribution of our work is measurements of running times and
code behaviour for a fully functional, interpreter-based implementation of a
register JVM. We present comparative experimental results for four different
VM instruction dispatch mechanisms on twelve different benchmark programs
from the SPECjvm98 and Java Grande benchmark suites. Measurements are
included from hardware performance counters that allow us to investigate the
effect of using a register rather than stack VM on the microarchitectural be-
haviour of the interpreter.

1.3 Other Factors

There are other factors to consider in the choice of code format. Compiling source
code to stack-based bytecode is usually simpler than compiling to register code,

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 21, Publication date: January 2008.

21:4 • Y. Shi et al.

one of the reasons being that there is no need for a register allocator. If the
compilation has been simple, stack code is also usually relatively simple to
decompile. Similarly, stack-based bytecode may be better suited than register
code as a source language for JIT compilation, at least partly because there is
no assumption about the number of available registers. Apart from execution
speed and suitability for JIT compilation, there are other issues in the choice
of code format:

Code Size. One of the attractions of a stack VM is that the code is quite
compact, due to the absence of explicit register operands. Later in this paper, we
present work that shows that the bytecode for a register VM is only 26% larger
than stack bytecode. In the case of Java, however, the bytecode only accounts
for about 18% of a class file [Antonioli and Pilz 1998], the rest being occupied
primarily by the constant-pool. This constant-pool is a table, used to store inter-
face, class and field names and various constants used by the the class. Various
techniques such as those employed by JAX [Tip et al. 2002] can be employed
to reduce the constant-pool size. As a result bytecode can occupy as much as
75% of the memory footprint in some embedded systems [Clausen et al. 2000].

There are other options for the code format. For example, compressed syntax-
tree based representations [Kistler and Franz 1999] are around twice as com-
pact as stack-based bytecode, and are often considered a better source language
for JIT compilation because they retain most of the high-level information from
the source code. However, such tree based encodings are difficult to interpret
efficiently, so they are most suitable when the VM will be implemented using
only a JIT compiler.

Compressed Code Size. Code size is not only important because of the memory
consumed, but also because programs may need to be sent over networks. In the
case of Java, the contents tend to be easily compressed, repeating text, highly
suitable for the jar file format commonly used for classfile transport. Typically
classfiles are compressed to about 50% of their original size, and schemes have
been proposed that compress classfiles even further (up to 10% to 25% of their
original size [Pugh 1999]).

Preparation Time. Much work has been done in the JVM in the area of
bytecode verification, a task which is greatly simplified by the simpler stack
IR. One area which a VM designer may wish to consider, but which we do
not examine in this paper, is the issue of how much more difficult bytecode
verification becomes when dealing with a register IR.

Portability. We do not envisage a huge difference between a stack-based
IR and a register-based one, as long as neither make assumptions about the
underlying hardware.

Complexity of Implementation. As we note elsewhere, a stack IR can be an
easier compilation target (the complexity of the compiler being the issue here).
From a VM interpreter point of view, a stack IR and register IR in terms of com-
plexity of implementation seem, from our experience, to be roughly equivalent.
It is a different issue if one is choosing an IR with a view to the complexity of
the JIT in a VM (if present). For a naive inlining JIT, a register IR is clearly
preferable while for a more sophisticated JIT, a stack IR may be preferred.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 21, Publication date: January 2008.

Virtual Machine Showdown: Stack Versus Registers • 21:5

The choice of IR for the work presented in this paper was driven primarily by
a different concern to those discussed above. To allow a meaningful comparison
between a stack and register VMs, it was decided to keep the instruction sets
as similar as possible. Where experimental issues are not the driving force, the
choice of IR is likely to be made on the basis of a combination of these issues.

1.4 Paper Overview

The rest of this paper is organized as follows. In section 2, we describe the main
differences between virtual stack machine and virtual register machines from
the perspective of an interpreter. In section 3, we show how stack Java bytecode
is translated into register bytecode and the optimizations applied on the new
code. In section 4, we analyze the static and dynamic code behaviour before and
after optimization, and we show the performance improvement in our register
JVM when compared to the original stack JVM. In section 5, we examine other
possible optimizations. In section 6, we discuss how our results can be extended
to other VMs. Research related to our work is examined in section 7. Finally, in
section 8, we conclude with a summary of the work presented in this paper.

2. STACK VERSUS REGISTER

The cost of executing a VM instruction in an interpreter consists of three com-
ponents: dispatching the instruction, accessing the operands and performing
the computation. In this section we consider the influence of these three com-
ponents on the running time of VM interpreters.

2.1 Dispatching the Instruction

In instruction dispatch, the interpreter fetches the next VM instruction from
memory and jumps to the corresponding segment of its code that implements
the fetched instruction. A given task can often be expressed using fewer register
machine instructions than stack ones. For example, the local variable assign-
ment a = b + c might be translated to stack JVM code as iload c, iload b,
iadd, istore a. In a virtual register machine, the same code would be a single
instruction iadd a, b, c. Thus, virtual register machines have the potential
to significantly reduce the number of instruction dispatches.

Instruction dispatch is typically implemented in C with a large switch state-
ment, with one case for each opcode in the VM instruction set. Switch dispatch is
simple to implement, but is rather inefficient. Most compilers produce a range
check and an additional unconditional branch in the generated code for the
switch. In processors using a branch target buffer (BTB) for indirect branch
prediction, there is only one entry in the BTB for all indirect branch targets.
Thus, the indirect branch generated by most compilers is highly unpredictable
(around 95% [Ertl and Gregg 2003]) on architectures using a BTB for indirect
branch prediction. The main advantages of switch dispatch are that the byte-
code executed by the VM is compact, and it can be implemented using any ANSI
C compiler.

An alternative to the switch statement is token-threaded dispatch [Klint
1981]. Threaded dispatch takes advantage of languages with labels as first

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 21, Publication date: January 2008.

21:6 • Y. Shi et al.

class values (such as GNU C and assembly language) to optimize the dispatch
process, at the expense of the portability of the interpreter source code. Token-
threaded dispatch uses the opcodes to lookup the target address of their imple-
mentation in a dispatch target address table. This enables the range check and
additional unconditional branches to be eliminated, and permits the code to be
restructured to improve the predictability of the indirect branch dispatch (to
around 45% [Ertl and Gregg 2003]). On architectures with BTBs for indirect
branch prediction, each instruction implementation has its own indirect branch
instruction and thus, multiple entries of indirect branch targets can exist in the
BTB.

Another alternative is direct-threaded dispatch [Bell 1973]. Direct-threaded
code directly encodes the jump addresses as the opcodes of instructions and
thus further reduces the cost of dispatch. The code to be interpreted is trans-
lated from bytecode into threaded code. In threaded code, VM opcodes are no
longer bytes, but are instead addresses of the executable native code within
the interpreter that performs the computation that corresponds to the original
VM opcode. Thus the table lookup from token-threaded code can be eliminated,
further reducing the cost of dispatch. Direct-threaded dispatch requires first
class labels, a translation step, and the VM code size increases by up to a factor
of four on a 32 bit machine or eight on a 64 bit machine.

An even more sophisticated approach is inline-threaded dispatch [Piumarta
and Riccardi 1998] which copies executable machine code from the interpreter
and relocates it to remove the dispatch code entirely. This requires an even
more complicated translation from bytecode, much greater memory require-
ments, and is even less portable than the other forms of threaded dispatch. It
is, however, the fastest VM instruction dispatch mechanism, and we present
results for it in this paper.

Another alternative is context threading [Berndl et al. 2005]. The context
threading approach uses subroutine threading to change indirect branches to
call/returns, which better exploits the hardware return-address stack to reduce
the cost of dispatches. However, this approach requires some mechanism to
generate native executable machine code at run time. We have not implemented
this dispatch mechanism, although we believe that it is slightly less efficient
than inline threading, which eliminates indirect branches entirely.

As the cost of dispatches falls, any benefit from using a register VM instead
of a stack VM falls. However, switch and token-threaded dispatch are the most
commonly used interpreter techniques because two of the main motivations for
using an interpreter are to avoid additional translation steps, and to maintain
the small size of bytecode. If ANSI C must be used (as is the case in the
interpreters for many scripting languages) then switch is the only efficient
alternative.

2.2 Accessing the Operands

The location of the operands must appear explicitly in register code, whereas in
stack code, operands are found relative to the stack pointer. Thus, the average
register instruction is longer than the corresponding stack instruction, register

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 21, Publication date: January 2008.

Virtual Machine Showdown: Stack Versus Registers • 21:7

code is larger than stack code, and register code requires more memory fetches
to execute. Small code size and small numbers of memory bytecode fetches are
the main reasons why stack architectures are so popular for VMs.

From the viewpoint of a VM interpreter, a stack VM must keep track of the
bytecode instruction pointer (IP), the stack pointer (SP), and the frame pointer
(FP) while a register VM only needs the IP and FP. Thus, when the register VM
is implemented using an interpreter on a real processor, one variable fewer is
required in the inner loop of the interpreter than for the stack VM. This reduces
real machine register pressure, and may result in less spilling and reloading
of variables. On platforms with small numbers of architected registers2, such
as Intel x86 processors which have only eight general purpose registers, this
reduction in register pressure may impact performance. Moreover, a stack VM
must update the SP as values are pushed or popped.

2.3 Performing the Computation

Given that most VM instructions perform a simple computation, such as adding
or loading, this is usually the smallest part of the cost. The basic computation
has to be performed regardless of the instruction format. However, eliminating
loop invariants and redundant loads (common subexpressions) is only possible
on a register VM3. In Section 3.3, we exploit this property to eliminate repeated
loads of identical values in a register VM.

3. TRANSLATION AND OPTIMIZATION

In this section, we describe a system of translating JVM stack code to virtual
register code and its optimization in a just-in-time manner. This JIT translation
was chosen as a useful mechanism to allow us to compare stack and register
versions of the JVM easily. Whether or not JIT translation (or any particular
run-time translation) from stack format to register format is the optimal way to
use virtual register machines remains an open question. In a realistic system,
it is most likely that one would use only the register machine, and compile for
that directly. Finally, it should be noted that standard, well-known JIT compiler
techniques are used for this run-time translation, given that the focus of this
research is on the results of the translation, and not on the translation itself.

2Architected registers are those registers available to the programmer, and described in the in-
struction set architecture (ISA). For example, the Pentium III supports the x86 ISA, which has 8
general purpose, 8 floating point and several architected control registers. However, the Pentium
III implementation of the x86 ISA uses 64 integer and 64 floating point physical registers which
are used internally within the processor. The programmer has no direct access to these physical
registers.
3In theory, the stack VM can benefit from eliminating complex common subexpressions by storing
the computational results in local variables and reloading those values onto the operand stack
when needed. In practice, we do not find any such complex common subexpressions, which may be
due to the optimization already done by Java compiler. The stack VM will not benefit from simple
redundant loads because the value will be loaded onto the stack anyway.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 21, Publication date: January 2008.

21:8 • Y. Shi et al.

stack pointer

index

index

Operand

Stack

Frame

Data

Local

Variables
Frame

Data

Virtual

Registers

Stack Archi tecture Register Archi tecture

parameters

parameters

frame pointer

frame pointer

Fig. 1. The structure of a Java frame.

Stack bytecode Register bytecode

iload 1 move r1 -> r10

iload 2 move r2 -> r11

iadd iadd r10 r11 -> r10

istore 3 move r10 -> r3

Fig. 2. Stack bytecode to register bytecode translation. Assumption: current stack pointer before
the code shown above is 10. The registers after -> are destination registers.

3.1 Translation from Stack to Register

Our implementation of the JVM pushes a new Java frame onto a run-time stack
for each method call. The Java frame for a stack architecture contains local
variables, frame data, and the operand stack for the method (see Figure 1). In
the stack JVM, a local variable is accessed using an index, and the operand stack
is accessed via the stack pointer. In the register JVM, both the local variables
and operand stack can be considered as virtual registers for the method. There is
a simple mapping from stack locations to register numbers, because the height
and contents of the JVM operand stack are known at any point in a program
[Gosling 1995]. In practice, the number of virtual registers (local variables and
stack slots) in a method will only be limited by the size of the operand used to
specify the register number. Each method call has its own set of virtual registers
on its Java frame.

In the stack JVM, most operands of an instruction are implicit; they are
found on the top of the operand stack. Most of the stack JVM instructions are
translated into corresponding register JVM instructions, with implicit operands
translated to explicit operand registers. For example, the stack JVM instruc-
tion if icmpeq branchbyte1 branchbyte2 is encoded with three bytes, one byte
for the opcode and two bytes for the branch offset. The instruction takes two
operands from the operand stack and performs a comparison to decide the
next execution path. After conversion to register code, the operands are no
longer implicit. Thus, the instruction becomes if icmpeq r1 r2 branchbyte1
branchbyte2, occupying a total of five bytes, one byte for the opcode, one byte
for each register and two bytes for the branch offset. Figure 2 shows an-
other simple example of bytecode translation. The bytecode adds two inte-
gers from two local variables and stores the result back into another local
variable.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 21, Publication date: January 2008.

Virtual Machine Showdown: Stack Versus Registers • 21:9

There are a few exceptions to the above one-to-one translation rule:

(1) pop and pop2 can be eliminated immediately because they are not needed
in the virtual register machine code. Many invoke instructions (method
calls) push a return value that is not used by the following instruc-
tion onto the operand stack and the stack JVM also uses a number
of pop/pop2 instructions purely to maintain consistency of the operand
stack.

(2) Instructions that load a local variable onto the operand stack or store a
value from the operand stack in a local variable are translated into move
instructions.

(3) Stack manipulation instructions (e.g. dup, dup2, . . .) are translated into ap-
propriate sequences of move instructions by tracking the state of the operand
stack.

(4) Wide stack VM instructions which address local variables numbered above
255 can be handled through the addition of one or more move wide instruc-
tions. These are register VM instructions with four bytes of operands (two
bytes for the source and two for the destination). In the case of Java, this
simple extension would enable up to 65535 local variables to be addressed,
as permitted by the Java Standard.

(5) The iinc instruction in the stack JVM is used to increment a local variable
by a constant value. iinc is an interesting VM instruction in stack JVMs
because the computation is done without the operand stack. The computa-
tion should push an operand and a constant, add, and store the result to a
local variable. It can be regarded as a type of register VM instruction that
is available in the stack JVM. We translate an iadd or isub into an iinc
VM instruction if one of its operands is a small integer constant (i.e. it is
preceded by a VM instruction that pushes a small integer constant onto the
stack).

3.2 Method Invocation

JVM method invocation instructions, such as invoke virtual, are unusual in
that they take a variable number of operands from the stack. As with other
instructions, we include the register locations of each of these operands in the
register version of the instruction. The result is that method invocation in-
structions are variable length in the register VM. The number of bytes in the
instruction depends on the number of items that the original method call takes
from the stack when the method call is made.

In a stack JVM, operands (parameters) always come from the top of the
stack, and become the first local variables of the called method (see Figure 1). A
common way to implement a stack JVM is to overlap the current Java frame’s
operand stack (which contains a method call’s parameters) and a new Java
frame’s local variables.

In the register JVM, we do not overlap the Java frames to pass method pa-
rameters. Instead, we copy all the parameters from the virtual registers in the

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 21, Publication date: January 2008.

21:10 • Y. Shi et al.

Fig. 3. Different categories of dynamically executed stack VM instructions.

calling method’s Java frame into the virtual registers in the Java frame for the
new (called) method. We considered a similar mechanism in our virtual regis-
ter machine as in a stack JVM. We would place the parameters for a method
invocation in consecutive registers, in the highest numbered registers for the
method. Instead of copying the values of these registers into the stack frame
of the called method, we could simply move the frame pointer to point to the
first of these parameters. Although this would provide an efficient parame-
ter passing mechanism, it prevents us from copy propagating into the source
registers (parameters) of a method call. Even though the operands of method
invocation VM instructions are contiguous after initial translation, once we
have performed copy propagation and other optimizations this ordering is lost.
However, the benefits of our optimizations are much greater than the small loss
in efficiency of parameter passing.

3.3 Optimization

In the stack architecture, computation is done through the operand stack. The
operands of an instruction are pushed onto the operand stack before they can
be used, and results are stored from the operand stack to local variables to
save the value. In the register architecture, most of the operand stack load
and store instructions are redundant. The main objective of optimization is
to take advantage of the opportunities provided by a virtual register machine
architecture. There are two main categories of redundant loads.

—Loads and stores between operand stack and local variables are translated
into move instructions in register code. On average, more than 42% (see
Figure 3) of executed VM instructions in the SPECjvm98 and Java Grande

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 21, Publication date: January 2008.

Virtual Machine Showdown: Stack Versus Registers • 21:11

benchmark suites (including library code) consist of loads and stores between
local variables and the operand stack.

—Redundant loads of constant values and other arithmetic common subexpres-
sions: In the stack architecture, constants are loaded onto the operand stack
each time when needed for computation. The same constant could be loaded
multiple times in a method, which is required on a stack-based architecture.
An average of 6% (see Figure 3) of original executed instructions are constant
load instructions.

In order to make a fair comparison, we try:

—Not to perform optimizations that do anything other than take advantage of
the register architecture. Such optimizations would give the register VM an
unfair advantage over stack code.

—to keep the instruction set and their implementation in the interpreter the
same except for the adaptation to the new instruction format and those dif-
ferences mentioned in the Section 3.1.

An important question is whether the resulting comparison is fair. If we ap-
plied the same optimizations to the stack code, would it also be improved?
In fact, the Soot optimization framework [Vallée-Rai et al. 1999] was used
to translate stack JVM code to three-address code. They applied more ag-
gressive optimizations than we use, and translated the resulting code back
to stack JVM code. In order to achieve any improvements in running time,
inter-procedural optimizations (which we do not perform) were required. They
concluded that intra-procedural optimizations generally have very little ef-
fect on Java bytecode, on the basis that these can only work on scalar
operations. This strongly suggests that the differences in performance we
measure are the result of inherent differences between stack and register
code, rather than the result of applying optimizations to one and not the
other.

A similar question could be asked about the quality of the register code. If
we were to design a register machine from scratch and generate code for it
from source, we might produce a more efficient VM implementation. However,
it is essential to our comparison that there are as few differences as possible
between the stack and register VM. Otherwise, our results might be affected
by other implementation issues.

A brief description of the optimizations is as follows:

—Copy propagation: Copy propagation [Muchnick 1997] is applied to eliminate
move instructions in basic blocks. The stack pointer is used to find out whether
an operand on the stack is alive or dead. Forward copy propagation is used
to eliminate operand stack loads and backward copy propagation is used to
eliminate operand stack stores.

—Global redundant load elimination: An immediate dominator tree is used
to discover and eliminate redundant constant load instructions and other
common subexpressions globally.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 21, Publication date: January 2008.

21:12 • Y. Shi et al.

Fig. 4. The control flow of the example.

Fig. 5. Source code for the hashCode() method in the java.lang.String(GNU Classpath 0.90)
class.

—Loop invariant motion: An immediate dominator tree and loop information
are used to discover and move constant load instructions and other loop-
invariant instruction out of loops.

3.4 Putting it all together

The runtime process for translating stack bytecode and optimizing the resulting
register instructions for a Java method are as follows:

(1) Translate original bytecode into virtual register intermediate representa-
tion and build a factored control flow graph [Choi et al. 1999]

(2) Apply local copy propagation on basic blocks [Muchnick 1997]
(3) Build a dominator tree [Lengauer and Tarjan 1979] and enhance the inter-

mediate representation with SSA form [Cytron et al. 1991]
(4) Remove dead code [Cytron et al. 1991]
(5) Apply global copy propagation
(6) Apply global redundant load elimination
(7) Apply loop invariant code motion [Muchnick 1997]
(8) Virtual register allocation [Mössenböck 2000; Briggs et al. 1994] and remove

SSA φ functions
(9) Write the optimized register code into virtual register bytecode in memory.

To demonstrate the effect of the optimizations, we present the following ex-
ample (see Figure 5 for Java source code and Figure 6 for corresponding byte-
codes) with 6 basic blocks and one loop (see Figure 4 for its control flow graph).
In Figure 6:

—The VM instruction operands with # are immediate operands.
—Virtual register numbers are prefixed with the initial r.
—Field identifiers are shown using the names of the fields.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 21, Publication date: January 2008.

Virtual Machine Showdown: Stack Versus Registers • 21:13

Fig. 6. Original stack VM code and corresponding register VM code for the hashCode() method in
the java.lang.String(GNU Classpath 0.90) class.

—In each instruction, the register number after -> is the destination register.
—The stack VM instructions are numbered 1 to 37.
—The instruction numbers in the register code show the stack instruction from

which each register instruction originated.

All the local load and store VM instructions have been eliminated by
the translation to register code. In Figure 6 the constant load instruction
(number 20) is loop invariant and has been moved out of the loop to its pre-
header. A total of 37 VM instructions has been reduced to just 19. Most impor-
tantly, the number of VM instructions in the loop (basic blocks 3 and 4) has
been reduced from 13 to 6.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 21, Publication date: January 2008.

21:14 • Y. Shi et al.

Table I. Hardware and Software Configuration

Processor OS Compiler
AMD Athlon(tm) 64 X2 Dual Core Processor 4400+ Linux 2.6.14 GCC 4.0.3
Intel(R) Pentium(R) 4 CPU 2.26GHz Linux 2.6.13 GCC 2.95
DEC Alpha 800MHz 21264B Linux 2.6.8 GCC 3.3.5
Motorola MPC 7447a (PowerPC) 1066MHz Linux 2.6.18 GCC 4.0.2
Intel(R) Core(TM)2 CPU 2.13GHz Linux 2.6.18 GCC 3.2.3

4. EXPERIMENTAL EVALUATION

4.1 Setup

For the present work, we used Cacao 0.95 (interpreter only with JIT disabled)
as a base VM to implement the virtual register machine4. Cacao, released under
the GPL, uses GNU Classpath as its class library and has a Boehm-Demers-
Weiser garbage collector. Additionally, since version 0.93, Cacao has included a
vmgen [Ertl et al. 2002] interpreter generator, which is used to define the virtual
register machine instruction set and generate the interpreter. Both the virtual
register and virtual stack interpreters support inline-threaded [Piumarta and
Riccardi 1998; Ertl et al. 2006], direct-threaded, token-threaded, and switch
dispatches.

We use the SPECjvm98 client benchmarks [SPEC 1998] (size 100 inputs)
and Java Grande [Bull et al. 2000] (Section 3, data set size A). Methods are
translated to register code the first time they are executed; thus all measure-
ments in the following analysis include only methods that are executed at least
once. The measurements include both the benchmark program code and the
Java library code (GNU Classpath 0.90) executed by the VMs.

Table I shows the hardware and software configuration for the experiments.
In the rest of the paper, we refer to these different processor architectures as
AMD64, Intel Pentium 4, Alpha, PPC, and Intel Core 2 Duo. The choices of
GCC compilers on different hardware platforms are based on their availability.
We tested different GCC versions and selected the one that generated the in-
terpreter with the best performance for each platform. We tried to make sure
that the frequently used variables, such as the virtual IP, the virtual SP and
the frame stack pointer are located in processor registers. Moreover, we had
to avoid certain GCC versions because of GCC bugs: PR15242 and PR25285.
These bugs could degrade the performance of interpreters up to 300% because
of some optimizations performed on computed gotos. These bugs increase the
dispatch cost of the interpreter. We believe that the increase in dispatch cost
will affect stack-based VMs more than register-based VMs.

4.2 Static Instruction Analysis of Register Code

Figure 7 shows the breakdown of statically appearing VM instructions after con-
verting to register code (translating and optimizing). On average 1.8% of VM

4Cacao changes different types of constant instructions (such as iconst 0 and iconst 1) into one
generic one (such as iconst #immediate). In order to make a fair comparison between stack and
register implementations, we retain all those forms of constant instructions, forgoing this default
Cacao transformation.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 21, Publication date: January 2008.

Virtual Machine Showdown: Stack Versus Registers • 21:15

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Compress

Jess

Db

Javac

Mpegaudio

Mtrt

Jack

MolDyn

RayTracer

Euler

MonteCarlo

Search

Average

Nop/Pop eliminated Move Eliminated Constant Eliminated Others Eliminated

Move Remaining Constant Remaining Others Remaining

Fig. 7. Breakdown of statically appearing VM instructions before and after optimization for all
the benchmarks.

instructions are pop or pop2 instructions. These can simply be translated to nop
instructions in the register VM and eliminated, because they move the stack
pointer, but do not move any values or perform any computation. A significant
number of statically appearing move instructions are eliminated. Originally,
move instructions account for 31% of VM instructions, but this is reduced to
only 0.32% (of the original instructions) after translation. Similarly, optimiza-
tion results in the elimination of constant load instructions, from an average of
28% of total statically appearing VM instructions down to 18% (of the original
instructions) after translation. This is achieved by reusing commonly occur-
ring constants, thus allowing the constant loads to be removed. Eliminating
other common subexpressions allows a further 2.1% of static VM instruction
to be optimized away. Overall, an average of 44% of static VM instructions are
eliminated.

4.3 Stack Frame Space

Each method in the stack JVM has both a set of local variables and an operand
stack. In order to perform computations, values must be copied from the local
variables to the operand stack. Thus, within the interpreter, the stack frame for
each method must contain two separate regions for local values which cannot
be used interchangeably. The register VM, on the other hand, has only a single,
unified set of registers which can both store local values and be used to per-
form operations on those values. Thus, there is potential for the register VM to
require fewer slots in the stack frame than the stack VM.

As part of the translation from stack to register code we apply a simple graph-
colouring register allocation to pack the values which were previously split

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 21, Publication date: January 2008.

21:16 • Y. Shi et al.

Table II. The Comparison of Required Stack/Local Variable
Slots (Virtual Registers) Between Stack and Register

Architectures

Register without Register with
redundant load redundant load

Benchmark Stack elimination elimination
Compress 5.29 3.86 4.17
Jess 5.13 3.74 4.03
Db 5.33 3.89 4.20
Javac 6.34 4.72 5.02
Mpegaudio 5.56 4.14 5.37
Mtrt 5.38 3.97 4.28
Jack 5.19 3.83 4.26
MolDyn 5.62 4.14 4.49
RayTracer 5.60 4.07 4.32
Euler 5.57 4.09 4.44
MonteCarlo 5.31 3.90 4.13
Search 5.34 3.85 4.26
Average 5.47 4.02 4.41

between the locals and the evaluation stack into a smaller number of virtual
registers. Table II shows the average number of stack frame slots required in
a method for the locals and operand stack in the stack machine, and for the
virtual registers in the register machine. On average, methods for the stack
VM require 5.47 slots. The corresponding number for our register VM code is
4.61. It is important to note, however, that the register VM code normally has
more live values. Eliminating redundant constant load instructions will keep
more variables alive at the same time, which means more virtual registers are
required. If we do not apply these redundancy elimination optimizations, we
find that the register machine needs an average of only 4.02 slots. Even though
a smaller stack frame size has little impact on the execution time of the VM
interpreter, it may be beneficial to embedded or other small devices with tight
memory constraints.

4.4 Dynamic Instruction Analysis of Register Code

In order to study the dynamic (runtime) behaviour of our register JVM code,
we counted the number of VM instructions executed in the stack and register
VMs. Figure 8 shows the breakdown of VM instructions dynamically executed
before and after converting to register code.

(1) The biggest category of eliminated instructions is move instructions, ac-
counting for a much greater percentage (42%) of executed VM instructions
than static ones (30%). The remaining moves account for only 0.28% of the
original VM instructions executed.

(2) The second largest category of executed instruction elimination is constant
load instructions (3.5% on average), which is much lower than the constant
load instruction elimination (10% on average) in static code. The remaining
dynamically executed constant VM instructions account for 2.9%. However,
there are far more remaining constant load instructions (18%) in static

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 21, Publication date: January 2008.

Virtual Machine Showdown: Stack Versus Registers • 21:17

Fig. 8. Breakdown of dynamically appearing VM instructions before and after optimization for all
the benchmarks.

code than those dynamically run (2.9%) in the benchmarks. We discovered
that there are a large number of constant instructions in the initialization
bytecode which are usually executed only once.

(3) Elimination of other instructions accounts for 1.2% of VM instructions ex-
ecuted while the static elimination is an average of 2.1%.

(4) Elimination of pop/pop2 only contributes to a 0.14% reduction in dynami-
cally executed instructions.

Overall, we eliminate an average of 46% of dynamically executed VM in-
structions. In general, copy propagations of move instructions produce the most
effective result. Other optimizations are more dependent on the characteristics
of the particular program. For example, in the benchmark moldyn, eliminated
constant load VM instructions account for only 0.11% of total executed instruc-
tions, although such instructions account for 10% of static instructions.

4.5 Code Size

The register VM code size is usually larger than that of a stack VM. There
are actually two effects in action here. Register machine instructions are larger
than stack instructions because the locations of the operands must be expressed
explicitly. On the other hand, register machines need fewer VM instructions to
do the same work, so there are fewer VM instructions in the code. Figure 9
shows the increase in code size of our register machine code compared to the
original stack code. On average, the register code size is 26% larger than that
of the original stack code, despite the fact that the register machine requires
44% fewer static instructions than the stack architecture. This is a significant

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 21, Publication date: January 2008.

21:18 • Y. Shi et al.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Com
pr

es
s

Je
ss Db

Ja
va

c

M
pe

ga
ud

io
M

trt
Ja

ck

M
ol
Dyn

Ray
Tra

ce
r

Eul
er

M
on

te
Car

lo

Sea
rc

h

Ave
ra

ge

Code Size Bytecode Load

Fig. 9. Fractional increase in total code size (static) of executed methods and bytecode loads (dy-
namic) for register over stack architecture.

increase in code size, but it is far lower than the 45% increase reported by Davis
et al. [2003].

Although static code size is an important issue, we also consider the size
increase in executed bytecode when moving from stack to register VMs. This
increase in executed bytecode is a direct result of the (static) increased code size
of the register JVM. Because of this, more VM instruction bytecodes (both op-
codes and operands) must be loaded, on average, from memory as the program
is interpreted. Figure 9 also shows the resulting increase in bytecode loads.
Interestingly, the increase in overall code size is often very different from the
increase in instruction bytecodes loaded in the parts of the program that are
executed most frequently. Nonetheless, the average increase in loads (25%) is
similar to the average increase in code size (26%). An alternative to fetching
each operand location separately is to use a four-byte VM instruction contain-
ing the opcode and three register indices. This entire VM instruction could be
fetched in a single load. However, it would still be necessary to extract the
opcode and register numbers inside the four-byte VM instruction. This would
involve shifting and masking the loaded VM instruction. Clearly the cost of such
operations varies from one processor to another. For example the Northwood-
core Pentium 4 has no barrel shifter, so large shifts are expensive. In general,
if a piece of code loads four successive bytes and does something with them,
most compilers generate separate byte loads, rather than a single word load
and using shifts and masks to extract the bytes5.

5Preliminary experiments by the authors on the Pentium IV suggest that shifting/masking is the
slower approach on that particular architecture.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 21, Publication date: January 2008.

Virtual Machine Showdown: Stack Versus Registers • 21:19

0.00

0.50

1.00

1.50

2.00

2.50

Com
pr

es
s

Je
ss Db

Ja
va

c

M
pe

ga
ud

io
M

trt
Ja

ck

M
ol
Dyn

Ray
Tra

ce
r

Eul
er

M
on

te
Car

lo

Sea
rc

h

Ave
ra

ge

Fig. 10. Increase in dynamically loaded bytecode instructions per VM instruction dispatch elim-
inated by using a register rather than stack architecture. In other words, if the register VM uses
one less dispatch, how many extra bytes of bytecode must it load?

Despite the cost of increased bytecode loads due to larger code, the fact
that that fewer VM instructions are needed by the register VM gives a sig-
nificant performance advantage. To measure the relative importance of these
two factors, we compared the number of extra dynamic bytecode loads required
by the register machine per dynamically executed VM instruction eliminated.
Figure 10 shows that the number of additional byte loads per executed VM
instruction eliminated is small at an average of only 1.00 loads. On most ar-
chitectures, even one CPU load costs much less to execute than an instruction
dispatch, with its difficult-to-predict indirect branch. This strongly suggests
that register machines can be interpreted more efficiently on most modern
architectures.

4.6 CPU Loads and Stores

Apart from CPU loads of instruction bytecodes, the main source of CPU loads
in a JVM interpreter comes from moving data between the local variables and
the stack. In most interpreter-based JVM implementations, the stack and the
local variables are represented as arrays in memory. Thus, moving a value from
a local variable to the stack (or vice versa) involves both a CPU load to read the
value from one array, and a CPU store to write the value to the other array. A
simple operation such as adding two numbers can involve large numbers of CPU
loads and stores to implement the shuffling between the stack and registers.

In our register machine, the virtual registers are also represented as an array.
However, VM instructions can access their operands in the virtual register
array directly, without first moving the values to an operand stack array. Thus,
the virtual register machine can actually require fewer CPU loads and stores

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 21, Publication date: January 2008.

21:20 • Y. Shi et al.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

Com
pr

es
s

Je
ss Db

Ja
va

c

M
pe

ga
ud

io
M

trt
Ja

ck

M
ol
Dyn

Ray
Tra

ce
r

Eul
er

M
on

te
Car

lo

Sea
rc

h

Ave
ra

ge

Read Write Total

Fig. 11. Dynamic number of CPU loads and stores required to access virtual registers in our
virtual register machine, expressed as a percentage of the corresponding loads and stores used to
access the stack and local variables in a virtual stack machine.

to perform the same computation. Figure 11 shows (a simulated measure of)
the number of dynamic CPU loads and stores required for accessing the virtual
register array, as a percentage of the corresponding loads and stores for the
stack JVM to access the local variable and operand stack arrays. The register
VM requires only 65% as many CPU loads and 52% as many CPU writes, with
an overall figure of 59%.

In order to compare these numbers with the number of additional loads re-
quired for fetching instruction bytecodes, we express these memory operations
as a ratio to the dynamically executed VM instructions eliminated by using the
virtual register machine. Figure 12 shows that on average, the register VM re-
quires 1.74 fewer CPU memory operations to access such variables per instruc-
tion dispatch eliminated. This is much larger than the number of additional
loads required due to the larger size of virtual register code (1.00). Thus, the
interpreter for the register VM would execute fewer memory operations overall.

However, these measures of memory accesses for the local variables, the
operand stack and the virtual registers depend entirely on the assumption that
they are implemented as arrays in memory. In practice, we have little choice but
to use an array for the virtual registers, because there is no way to index CPU
registers like an array on most real architectures. However, stack caching [Ertl
1995] can be used to keep the topmost stack values in registers, and eliminate
large numbers of associated CPU loads and stores. For example, around 50% of
stack access CPU memory operations could be eliminated by keeping just the
topmost stack item in a register [Ertl 1995]. Thus, in many implementations
the virtual register architecture is likely to need more CPU loads and stores to
access these kinds of values.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 21, Publication date: January 2008.

Virtual Machine Showdown: Stack Versus Registers • 21:21

0.00

0.50

1.00

1.50

2.00

2.50

Co
m
pr
es
s

Je
ss Db

Ja
va
c

M
pe
ga
ud
io

M
trt

Ja
ck

M
olD
yn

Ra
yT
ra
ce
r

Eu
ler

M
on
te
Ca
rlo

Se
ar
ch

Av
er
ag
e

Fig. 12. The reduction of CPU memory accesses for each executed VM instruction eliminated by
using a register VM rather than a stack VM. This is analogous to the measurement in Figure 10.

4.7 Timing Results

To measure the benchmark running times of the stack and register-based im-
plementations of the JVM, we ran both VMs on AMD64, Intel Pentium 4, In-
tel Core 2 Duo, Alpha and PowerPC systems (See Table I). The stack JVMs
simply interpret standard JVM bytecode. The running time for the register
JVMs includes the time necessary to translate and optimize each method the
first time it is executed. However, our translation routines are fast. In the
version of the virtual register machine that uses token-threaded dispatch,
the process of translation and optimization accounts for an average of only
0.8% of total execution time. As a result, we believe the comparison is fair.
In our performance benchmarking, we run SPECjvm98 with a heap size of
70MB and Java Grande with a heap size of 160MB. Each benchmark is run
independently.

We compare the performance of stack JVM interpreters and register JVM
interpreters with four different dispatch mechanism: (1) switch dispatch, (2)
token-threaded dispatch, (3) direct-threaded dispatch and (4) inline-threaded
dispatch [Piumarta and Riccardi 1998] (see Section 2). For fairness, we always
compare the performance of stack and register interpreter implementations
which use the same dispatch mechanism.

Figure 13 shows the speedup in running time of our implementation of the
virtual register machine compared to the virtual stack machine on the AMD64
machine using the various dispatch mechanisms. With switch dispatch, the
register VM has the highest average speedup (1.48) because switch dispatch
is the most expensive. Even with the efficient inline-threaded dispatch, the
register VM still has an average speedup of 1.15.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 21, Publication date: January 2008.

21:22 • Y. Shi et al.

0.50

1.00

1.50

2.00

Com
pr

es
s

Je
ss Db

Ja
va

c

M
pe

ga
ud

io
M

trt
Ja

ck

M
ol
Dyn

Ray
Tra

ce
r

Eul
er

M
on

te
Car

lo

Sea
rc

h

Ave
ra

ge

Inline Threaded Direct Threaded Token Threaded Switch

Fig. 13. AMD64: register VM speedups over stack VM of same dispatch (based on average real
running time of two runs).

Figure 14 shows the same figures for a Pentium 4 machine, whose processor
utilizes a trace cache. With inline-threaded dispatch, the register VM has an
average speedup of 1.00, and some benchmarks are very close to or worse than
on the stack VM. The switch register VM has highest speedup (1.46). The mtrt
benchmark performs very poorly for various dispatches, which may be due to
high cost of threading using GCC 2.95 compiler.

Figure 15 shows the speedup of register VMs over stack VMs on the Intel
Core 2 Duo processor. The average speedups of register over stack-based VMs
are 1.15 (inline-threaded), 1.32 (direct-threaded), 1.29 (token-threaded), and
1.65 (switch).

Figure 16 shows the speedups of register VMs over stack VMs on the IBM
PowerPC processor. The average speedups for the four dispatch mechanisms
(inline-threaded, direct-threaded, token-threaded and switch) are 1.16, 1.30,
1.29, and 1.41 respectively.

Figure 17 shows the speedup of register VMs over stack VMs on the Alpha
processor. The inline-threaded dispatch is not working for Alpha and there are
still bugs which prevent javac from running correctly (and thus is excluded
from the benchmark results). The average speedups are 1.22 (direct-threaded),
1.25 (token-threaded), and 1.64 (switch).

4.8 Performance Counter Results

To obtain a finer grained view of benchmark performance, we use AMD64 hard-
ware performance counters to measure various processor events during the exe-
cution of the programs. Figures 18 and 19 show performance counter results for
the SPECjvm98 benchmarks Compress and Jack. We measure the data cache
accesses, data cache misses, instruction cache fetches, instruction cache misses,

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 21, Publication date: January 2008.

Virtual Machine Showdown: Stack Versus Registers • 21:23

0.50

1.00

1.50

2.00

2.50

Com
pr

es
s

Je
ss Db

Ja
va

c

M
pe

ga
ud

io
M

trt
Ja

ck

M
ol
Dyn

Ray
Tra

ce
r

Eul
er

M
on

te
Car

lo

Sea
rc

h

Ave
ra

ge

Inline Threaded Direct Threaded Token Threaded Switch

Fig. 14. Intel Pentium 4: register VM speedups over stack VM of same dispatch (based on average
real running time of five runs).

0.50

1.00

1.50

2.00

2.50

Com
pr

es
s

Je
ss Db

Ja
va

c

M
pe

ga
ud

io
M

trt
Ja

ck

M
ol
Dyn

Ray
Tra

ce
r

Eul
er

M
on

te
Car

lo

Sea
rc

h

Ave
ra

ge

Inline Threaded Direct Threaded Token Threaded Switch

Fig. 15. Intel Core 2 Duo: register VM speedups over stack VM of same dispatch (based on average
real running time of three runs).

retired taken branches (which include indirect branches; unfortunately there
is no way to measure indirect branches alone by using AMD64’s performance
counters), retired taken branches mispredicted (indirect branches are the main
source of misprediction), and retired instructions6.

6On out-of-order processors, a retired instruction is one that has been executed and completed.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 21, Publication date: January 2008.

21:24 • Y. Shi et al.

0.50

1.00

1.50

2.00

Com
pr

es
s

Je
ss Db

Ja
va

c

M
pe

ga
ud

io
M

trt
Ja

ck

M
ol
Dyn

Ray
Tra

ce
r

Eul
er

M
on

te
Car

lo

Sea
rc

h

Ave
ra

ge

Inline Threaded Direct Threaded Token Threaded Switch

Fig. 16. IBM PowerPC: register VM speedups over stack VM of same dispatch (based on average
real running time of three runs).

0.50

1.00

1.50

2.00

2.50

C
om

pr
es

s
Je

ss D
b

Ja
va

c

M
pe

ga
ud

io
M

trt

Ja
ck

M
ol
D
yn

R
ay

Tra
ce

r

Eul
er

M
on

te
C
ar

lo

Sea
rc

h

Ave
ra

ge

Direct Threaded Token Threaded Switch

Fig. 17. Alpha: register VM speedups over stack VM of same dispatch (based on average real
running time of five runs).

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 21, Publication date: January 2008.

Virtual Machine Showdown: Stack Versus Registers • 21:25

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Data cache
accesses
(*100B)

Data cache
misses (*200M)

Instruction cache
fetches (*200B)

Instruction cache
misses (*2M)

Retired taken
branches (*25B)

Retired taken
branches

mispredicted
(*25B)

Retired
instructions

(*160B)

Register Inline Threaded Stack Inline Threaded Register Direct Threaded

Stack Direct Threaded Register Switch Stack Switch

Fig. 18. Compress: AMD64 performance counters.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Data cache
accesses (*16B)

Data cache
misses (*250M)

Instruction cache
fetches (*30B)

Instruction cache
misses (*30M)

Retired taken
branches (*4B)

Retired taken
branches

mispredicted
(*4B)

Retired
instructions

(*30B)

Register Inline Threaded Stack Inline Threaded Register Direct Threaded

Stack Direct Threaded Register Switch Stack Switch

Fig. 19. Jack: AMD64 performance counters.

Figure 18 shows the measured performance counters for inline-threaded,
direct-threaded and switch dispatches for the compress benchmark. From
Figure 8, we know that, for the compress benchmark, 54% of executed VM in-
structions are eliminated compared to the stack architecture. As the dispatch
method becomes more efficient, the difference between corresponding perfor-
mance counters for register VMs and stack VMs becomes smaller. For inline-
threaded dispatch, retired taken branches are almost the same for register and
stack VMs. The main source of advantage is fewer retired instructions, which
gives the register VM a speedup of 1.15 over the stack VM for inline-threaded
dispatch.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 21, Publication date: January 2008.

21:26 • Y. Shi et al.

For the compress benchmark, the register version of the machine always
executes fewer real machine instructions. As we saw in Figure 10, translation
to register format actually results in less than 0.5 extra bytecode loads per VM
instruction eliminated. However, compress is the benchmark with the greatest
reduction in real machine memory operations for manipulating local values (see
Figure 11). This accounts for the much lower number of retired real machine
instructions.

Figure 19 shows the measured performance counters of the jack benchmark
for inline-threaded, direct-threaded and switch dispatches. From Figure 8, we
know that 44% of executed instructions are eliminated from jack in the regis-
ter VM. The data cache miss ratio and instruction cache miss ratio are much
higher than those of the compress benchmark. For inline-threaded dispatch, the
register VM shows more data cache accesses, data cache misses, retired taken
branches, and retired instructions than those of the stack VM. Nonetheless, in-
struction cache misses and retired taken branches mispredicted are lower. The
inline-threaded dispatch speedup of register VM over stack VM for the jack
benchmark is only 1.02. For inline-threaded dispatch, both stack and register
VMs show very high numbers of instruction cache misses when compared with
other dispatch mechanisms because of binary executable code replication.

4.9 Dispatch Comparison

All the comparisons to this point have been between stack and register ar-
chitecture pairs using the same dispatch mechanism. For example, we have
shown performance of the register VM interpreter using token-threaded dis-
patch as a speedup over the performance of the corresponding stack VM. In
this section, we compare differences between the dispatch mechanisms. The
performance of the stack VM interpreter using switch dispatch is the baseline
value (speedup=1.0) and all other variants are shown relative to that value
(see Figure 20). Sun’s JDK 1.6.0 (interpreter mode only) gives an indication of
the speed of Cacao’s stack and register VMs and should be treated with caution
because of the different implementation.

We see that the more complex, less portable dispatch mechanisms give the
greatest speedups. We also observe that, at least for the benchmark results
presented, the register machine has a significant edge. For example, if one has
to choose between using direct-threaded dispatch on a stack VM and switch
dispatch on a register VM, it should be noted that there is little difference in
execution speed between the two implementations. However, switch dispatch
is simpler to implement and much more portable. Furthermore interpreted
bytecode is a fraction (typically 25%–50%) of the size of threaded code, so
there is also a significant space saving. Therefore, the register VM interpreter
with switch dispatch is preferable. If one is purely concerned with code size, a
token-threaded stack VM is still the most compact option.

4.10 Discussion

Although our implementation of the register JVM translates the stack byte-
code into register bytecode at runtime, we do not envision this in a real-life

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 21, Publication date: January 2008.

Virtual Machine Showdown: Stack Versus Registers • 21:27

Fig. 20. AMD64: speedups over the stack switch interpreter.

implementation. The purpose of our implementation is to evaluate a virtual
register JVM against an equivalent stack based one. Our register JVM imple-
mentation originates directly from a modification of a stack-based JVM im-
plementation, thus giving us two VMs identical in every other regard. Apart
from the necessary adaptation of the interpreter loop, along with some garbage-
collection and exception handling modifications, there are very few changes to
the original code segments responsible for interpreting bytecode instructions.
The objective is to provide a fair comparison between the stack-based JVM and
the register-based JVM.

Given a computation task, a register VM inherently needs far fewer instruc-
tions than a stack VM does. For example, our register JVM implementation
can reduce the static number of bytecode instructions by 44% and the dynamic
number of executed bytecode instructions by 46% when compared to those of the
stack JVM. The reduction of executed bytecode instructions leads to fewer real
machine instructions for the benchmarks and a significantly smaller number of
indirect branches. These indirect branches are very costly when they are mis-
predicted. Moreover, the elimination of large numbers of stack load and store
(move) instructions reduces the number of loads and stores in a real processor.
In terms of running time, the benchmark results show that our register JVM
still outperforms an equivalent stack JVM, even when both are implemented
using the most efficient dispatch mechanism. This is a very strong indication
that the register architecture can be implemented to be faster than the stack
architecture.

An important question is whether we would generate better register code
if we were to compile directly from Java source code, rather than translating
from stack code. The javac compiler generates optimized stack code, but the

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 21, Publication date: January 2008.

21:28 • Y. Shi et al.

optimizations may not suit register code. Furthermore, eliminating (partially)
redundant expressions in stack code is rarely worthwhile, because the common
expression must be stored and later recovered, which is often more expensive
than recomputing the expression. Although eliminating simple redundant com-
putations in stack code is easy, we might find it easier to eliminate more re-
dundancy if we were working from source code. In particular, eliminating some
kinds of redundant expressions, such as those described in the next section,
depends on pointer analysis to ensure that the transformation is safe. Pointer
analysis may be also be easier to perform on source code rather than after its
translation to register code.

5. MORE OPTIMIZATIONS

5.1 Redundant Heap Load Elimination

As we saw in Section 3.3, register machines can take advantage of redundant
computations more easily than stack machines. This is because (unlike stack
VMs) register VMs do not destroy operands to VM instructions as they
use them. The results presented in Section 4 are for register machine code
where redundant loads of constants and some simple common subexpressions
involving local variables were eliminated.

There is another category of redundant loads—the loads from class or object
fields and array elements, and there has been some work on eliminating these
redundant loads in compilers [Fink et al. 2000]. However, it is very important
to note that eliminating such loads from heap data structures requires sophis-
ticated pointer alias analysis to ensure that the object or array element is not
modified between apparently redundant loads [Diwan et al. 1998]. In particu-
lar, we need to know whether a reference to an object has escaped into another
thread, which may modify the object. Alias analysis is complex and slow; we
have not implemented it in our translation.

In order to examine the potential of the register machine to allow even more
redundant loads to be eliminated, we performed some preliminary experiments
without sophisticated alias analysis. Our very simple analysis is not safe—
in particular it does not check for references escaping to another thread, but
it allows us to get some idea of the potential benefit from register machines
exploiting this sort of redundancy.

Figure 21 shows that an average of 5% of original executed VM instructions
can be eliminated by removing redundant getfieldVM instructions. The corre-
sponding figure for array loads is 2%. All benchmarks benefit from redundant
getfield elimination, while only a few benchmarks benefit from redundant
array load elimination. In the Euler benchmark, eliminated redundant array
loads account for 13% of original executed VM instructions. After all optimiza-
tions, the register machine requires only 23% of the original stack machine
instructions.

Figure 22 shows the same dispatch speedup results for the AMD64. The
average speedup for inline-threaded goes from 1.15 to 1.29 and that of switch
dispatch from 1.48 to 1.74 as this optimization is added.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 21, Publication date: January 2008.

Virtual Machine Showdown: Stack Versus Registers • 21:29

Fig. 21. Breakdown of dynamically appearing VM instructions with additional redundant heap
load elimination for all the benchmarks. These results are indicative only, because our translator
makes unsafe assumptions about aliasing.

Fig. 22. AMD64: Register VM speedups with additional redundant heap load elimination (based
on average real running time of two runs). These results are indicative only, because our translator
makes unsafe assumptions about aliasing.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 21, Publication date: January 2008.

21:30 • Y. Shi et al.

Fig. 23. The average speedups of register VM over stack VM using the same dispatch for differ-
ent processors. The results which include heap load optimization are indicative only, because our
translator makes unsafe assumptions about aliasing.

Figure 23 summarizes the average speedups of register VM over stack VM
using the same dispatches with/without redundant heap load elimination. The
register VM could potentially benefit significantly from eliminating these loads,
but a real implementation of this optimization would require very sophisticated
alias and escape analysis.

5.2 Stack Caching for Stack VM

Stack caching [Ertl 1995] can be used to keep the topmost stack values in reg-
isters, and eliminate large numbers of associated CPU loads and stores. Take,
for example, the real machine memory operations required for the operand
stack access. Around 50% of these real machine memory operations could be
eliminated by keeping just the topmost stack item in a register [Ertl 1995].
Figure 24 shows the speedup over the stack VM with/without stack caching7

using the same dispatch mechanisms. Stack caching did show improvements
for the stack VMs. This improvement results in the speedups of the register
VM going from 1.16 and 1.30 (over stack VM with no caching) down to 1.14
and 1.26 (over stack VM with caching) for inline-threaded and direct-threaded
dispatch respectively.

5.3 Static Superinstructions

One way to reduce the number of VM interpreter dispatches is to add
static superinstructions to the instruction set of the VM. These are new VM

7We can only present the results of caching the topmost stack item for inline-threaded and direct-
threaded dispatches

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 21, Publication date: January 2008.

Virtual Machine Showdown: Stack Versus Registers • 21:31

0.5

1.0

1.5

2.0

C
om

pr
es

s
Je

ss D
b

Ja
va

c

M
pe

ga
ud

io
M

trt

Ja
ck

M
ol
D
yn

R
ay

Tra
ce

r

Eul
er

M
on

te
C
ar

lo

Sea
rc

h

Ave
ra

ge

Inline Theaded Direct Threaded Inline Theaded with Stack Caching Direct Threaded with Stack Caching

Fig. 24. PowerPC: register VM speedups over stack VM (with and without stack caching) of same
dispatch (based on average real running time of two runs).

instructions that behave in the same way as a sequence of regular VM instruc-
tions. For example, if one found that aload VM instructions are often followed
directly by a getfield VM instruction, one might introduce an aload-getfield
superinstruction. Wherever this sequence appears in the program, it can be re-
placed by the superinstruction, reducing the number of dispatches. It has been
argued that superinstructions can achieve the same effect as translating to a
register machine, without the damaging increases in VM code size. In fact, this
is not achievable in practice.

The main problem with superinstructions is choosing appropriate sequences.
The superinstructions must be hardwired into the interpreter, at a time when
the program to be run is usually unknown. Perhaps the best strategy for se-
lecting sequences is to look at a large variety of programs and identify the most
important sequences of VM instructions in those programs. Eller [2005] inves-
tigated using SPECjvm98 benchmarks to select superinstructions using a wide
variety of selection strategies. He found that superinstructions could be added
to a stack-based VM which would reduce the number of dispatches by up to
40%. However, to achieve that reduction, 1000 superinstructions were needed.
This means that it is no longer possible to encode the instruction opcode in a sin-
gle byte. Furthermore, the interpreter code to implement the superinstructions
becomes significantly larger than that of the original interpreter. In contrast,
the register machine does not require any additional VM instructions.

5.4 Two-Address Instructions

Our register JVM uses a three-address instruction format for arithmetic in-
structions. An obvious way to reduce code size would be to use a two-address

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 21, Publication date: January 2008.

21:32 • Y. Shi et al.

instruction format for these instructions instead, where one of the source regis-
ters would also be the target register of the instruction. This would reduce the
size of these instructions from four bytes (one opcode and three register indices)
to only three bytes. We investigated this possibility, but found that arithmetic
instructions account for only an average of only 6.3% of statically appearing
register VM instructions in the SPECjvm98 benchmarks. Thus, the overall
reduction in code size from two-address instructions is likely to be small. Fur-
thermore, there are some disadvantages with two-address instructions. They
make sharing of common subexpressions more difficult, because one of the input
values is overwritten by the output of the instruction. Additional move instruc-
tions must be introduced (or retained) to prevent values from being destroyed,
which would both increase code size and reduce the efficiency of the VM. A
more complicated allocation of variables to registers would also be needed to
minimize the number of move operations introduced. Given that the potential
reduction in code size was small anyway, we decided that this optimization was
not worthwhile.

6. APPLICABILITY OF RESULTS TO RELATED QUESTIONS

Although our experiments in this work have been limited to the JVM, we believe
that the results will extend to other VMs which employ an interpreter. Already,
the conversion of the Lua VM from stack machine to register machine (the up-
grade from version 4.0 to version 5.0) has yielded a substantial improvement in
performance. Ierusalimschy et al [2005] have compared the stack machine im-
plementation of version 4.0 to an equivalent register machine implementation
(with no additional optimizations). Across their selected benchmarks, the reg-
ister machine was an average of 1.30 times faster than the stack machine. More
significantly, on the benchmark they specifically selected to test the execution
engine, a speedup of 2.28 was reported.

The main benefit of the transition from stack VM to register VM is the reduc-
tion in the number of VM instruction dispatches, and consequently a reduction
in branch mispredictions. There are other benefits which we have observed such
as a reduction in real machine instructions at the CPU level. For coarse-grained
VMs with higher-level instruction sets which have a significantly lower number
of instruction dispatches to begin with, the transition to a register VM will not
yield the same speedups. For example, Vitale and Abdelrahman [2004] found
that inline threading had little benefit for a Tcl virtual machine, because each
VM instruction performed a lot of work. Hence, dispatch accounted for only a
small proportion of running time. It is likely that we would see similar results
in a comparison of stack and register VMs for Tcl. Where the cost of dispatch is
a small proportion of total time, there will be little benefit in any optimization
to reduce dispatches.

Another interesting question is whether a stack or register VM is more suit-
able as a source language for JIT compilation. Winterbottom and Pike [1997]
suggest that a register IR may be easier to compile to native code because it is
closer to the register architecture used by real processors. Others argue that a
stack machine is better, because stack code does not make assumptions about
the number of available registers.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 21, Publication date: January 2008.

Virtual Machine Showdown: Stack Versus Registers • 21:33

Unfortunately, our results apply only to interpreters, but we believe that JIT
compiling from well-behaved stack architectures like the JVM is probably a lit-
tle easier than from register architectures. This is because stack code is similar
to the tree representations of expressions often used in real compilers. On the
other hand, a register architecture allows more optimizations to be expressed,
because common subexpressions can be eliminated in the register code, rather
than relying on the JIT compiler to perform these kinds of optimizations.

However, an optimizing JIT compiler is typically a complex piece of software,
and translating the VM bytecode to a format more useful to the compiler is
likely to be only a small part of compilation regardless of whether a stack or
register VM is used. On the other hand, our results indicate that for a simple
code-inlining JIT, there are some significant gains to be made in choosing a
register IR rather than a stack IR. For a more aggressive JIT, the choice is
not so clear. Finally, for mixed mode JIT compilers such as Sun’s Hotspot VM
[Sun-Microsystems 2001], interpretation speed is still important, and therefore
a register VM may be used to improve the performance of interpretation.

7. RELATED WORK

A large number of JIT compilers have been constructed for stack-based
VMs such as the JVM. These include Cacao [Krall and Grafl 1997] and
Jikes RVM [Arnold et al. 2002]. Our translator uses the same standard,
well-known techniques that are used in these JIT compilers. The HotSpot JVM
[Sun-Microsystems 2001] uses a mixed-mode interpreter and JIT compiler.
Interpreting the large amount of rarely executed code in many Java programs
avoids the time and memory overhead of compilation and can be faster than
JIT compilation.

Myers [1977] attempts to refute the idea that stack machines will neces-
sarily result in smaller code, with lower cost to access operands. The argu-
ment is based on measurements of real programs which show that the expres-
sion in most assignment statements is extremely simple. Thus, in most cases,
operands must be loaded to the stack for use, rather than already being there
as part of the evaluation of a complex expression. Beyond measurements of the
complexity of expressions, Myers presents only a handful of small examples
showing situations where register code is superior to stack code. Schulthess
and Mumprecht [Schulthess and Mumprecht 1977] argue that Myers’ work is
inconclusive, because programs contain features other than expressions that
are better expressed using stacks (e.g. subroutine calls, parameter passing and
multitasking). No quantitative data is provided.

The controversy between stack and register code has arisen again recently
because of the decision to make the Parrot VM, the intermediate representation
for the Perl 6 language, a register rather than stack machine. Arguments for
this design decision [Sugalski 2002] have been based on just a couple of small
examples, rather than studies of real programs. The Lua VM [R. Ierusalimschy
et al. 1996] was also switched from a stack to a register machine, with the
release of version 5.0 in 2003. Similar suggestions were proposed for the JVM
[McGlashan and Bower 1999] and the Inferno VM [Winterbottom and Pike
1997], again without studies of real programs.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 21, Publication date: January 2008.

21:34 • Y. Shi et al.

Much of the early work on RISC architectures was based on systematic
studies of programs that examined the real, rather than presumed, frequency
of instruction usage. Studies on the IBM 360 [Shustek 1978; Alexander and
Wortman 1975] and the VAX [Wiecek 1982] caused researchers to rethink the
complex instruction sets of the time, and led to the first RISC architectures
[Patterson and Ditzel 1980]. Today, basing design decisions on measured, rather
than presumed, frequencies of instruction usage has become widely accepted
as sound engineering practice.

8. CONCLUSIONS

A long standing question has been whether virtual stack or virtual register
VMs can be executed more efficiently using an interpreter. Register VMs can
be an attractive alternative to stack architectures because they enable the num-
ber of executed VM instructions to be substantially reduced. In this paper we
have built on the previous work of Davis et al. [Davis et al. 2003; Gregg et al.
2005], which counted the number of instructions for the two architectures us-
ing a simple translation scheme. We have presented a much more sophisticated
translation and optimization scheme for translating stack VM code to register
VM code, which we believe gives a more accurate measure of the potential of
virtual register machine architectures. We have also presented experimental
results for a fully-featured register JVM.

We found that a register architecture requires an average of 46% fewer ex-
ecuted VM instructions. The resulting register code is 26% larger than the
corresponding stack code. The increased cost of fetching more VM code due
to larger code size involves only around one extra CPU load per VM instruc-
tion eliminated. On an AMD64 machine, the register machine has an average
speedup of 1.48 if dispatch is performed using a C switch statement. Even if
the more efficient inline-threaded dispatch is available, the average speedup
over a corresponding stack JVM is still 1.15 for the register architecture on an
AMD64.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers of VEE 2005 and ACM TACO,
whose comments greatly improved earlier versions of this paper.

REFERENCES

ALEXANDER, W. AND WORTMAN, D. 1975. Static and dynamic chracteristics of XPL programs. Com-
puter 8, 11 (Nov.), 41–46.

ANTONIOLI, D. N. AND PILZ, M. 1998. Analysis of the Java class file format. Tech. rep.
ARNOLD, M., HIND, M., AND RYDER, B. G. 2002. Online feedback-directed optimization of Java. In

OOPSLA ’02: Proceedings of the 17th ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications. ACM Press, New York. 111–129.

BELL, J. R. 1973. Threaded code. Commun. ACM 16, 6, 370–372.
BERNDL, M., VITALE, B., ZALESKI, M., AND BROWN, A. D. 2005. Context threading: A flexible and

efficient dispatch technique for virtual machine interpreters. In 2005 International Symposium
on Code Generation and Optimization.

BRIGGS, P., COOPER, K. D., AND TORCZON, L. 1994. Improvements to graph coloring register alloca-
tion. ACM Transactions on Programming Languages and Systems 16, 3 (May), 428–455.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 21, Publication date: January 2008.

Virtual Machine Showdown: Stack Versus Registers • 21:35

BULL, M., SMITH, L., WESTHEAD, M., HENTY, D., AND DAVEY, R. 2000. Benchmarking Java Grande
applications. In Second Ineternational Conference and Exhibtion on the Practical Application of
Java. Manchester, UK.

CHOI, J.-D., GROVE, D., HIND, M., AND SARKAR, V. 1999. Efficient and precise modeling of excep-
tions for the analysis of Java programs. In PASTE ’99: Proceedings of the 1999 ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineering. ACM Press, New
York. 21–31.

CLAUSEN, L. R., SCHULTZ, U. P., CONSEL, C., AND MULLER, G. 2000. Java bytecode compression for
low-end embedded systems. ACM Trans. Program. Lang. Syst. 22, 3, 471–489.

CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N., AND ZADECK, F. K. 1991. Efficiently com-
puting static single assignment form and the control dependence graph. ACM Transactions on
Programming Languages and Systems 13, 4 (Oct.), 451–490.

DAVIS, B., BEATTY, A., CASEY, K., GREGG, D., AND WALDRON, J. 2003. The case for virtual register
machines. In Interpreters, Virtual Machines and Emulators (IVME ’03). 41–49.

DIWAN, A., MCKINLEY, K. S., AND MOSS, J. E. B. 1998. Type-based alias analysis. In SIGPLAN
Conference on Programming Language Design and Implementation. 106–117.

ELLER, H. 2005. Optimizing interpreters with superinstructions. M.S. thesis, Institut für Com-
putersprachen, Technische Universität Wien. http://www.complang.tuwien.ac.at/ Dimplomar-
beiten/eller05.ps.gz.

ERTL, M. A. 1995. Stack caching for interpreters. In SIGPLAN ’95 Conference on Programming
Language Design and Implementation. 315–327.

ERTL, M. A. AND GREGG, D. 2003. The structure and performance of efficient interpreters. The
Journal of Instruction-Level Parallelism 5. http://www.jilp.org/vol5/.

ERTL, M. A., GREGG, D., KRALL, A., AND PAYSAN, B. 2002. vmgen—A generator of efficient virtual
machine interpreters. Software—Practice and Experience 32, 3, 265–294.

ERTL, M. A., THALINGER, C., AND KRALL, A. 2006. Superinstructions and replication in the Cacao
JVM interpreter. Journal of .NET Technologies 4, 25–32. Journal papers from .NET Technologies
2006 conference.

FINK, S., KNOBE, K., AND SARKAR, V. 2000. Unified analysis of array and object references in
strongly typed languages. Lecture Notes in Computer Science Volume 1824 (Feb.), 155–174.

GOSLING, J. 1995. Java Intermediate Bytecodes. In Proc. ACM SIGPLAN Workshop on Interme-
diate Representations. ACM Sigplan Notices, vol. 30:3. San Francisco, CA. 111–118.

GREGG, D., BEATTY, A., CASEY, K., DAVIS, B., AND NISBET, A. 2005. The case for virtual register
machines. Science of Computer Programming, Special Issue on Interpreters Virtual Machines
and Emulators 57, 319–338.

IERUSALIMSCHY, R. L., DE FIGUEIREDO, H., AND CELES, W. 1996. Lua—an extensible extension lan-
guage. Software: Practice and Experience 26, 6, 635–652.

IERUSALIMSCHY, R., DE FIGUEIREDO, L., AND CELES, W. 2005. The implementation of Lua 5.0.
Journal of Universal Computer Science 11, 7, 1159–1176. http://www.jucs.org/jucs 11 7/

the implementation of lua.
KISTLER, T. AND FRANZ, M. 1999. A tree-based alternative to Java byte-codes. International Jour-

nal of Parallel Programming 27, 1, 21–33.
KLINT, P. 1981. Interpretation techniques. Software—Practice and Experience 11, 963–973.
KRALL, A. AND GRAFL, R. 1997. Cacao—a 64-bit JavaVM just-in-time compiler. Concurrency—

Practice and Experience 9, 11, 1017–1030.
LENGAUER, T. AND TARJAN, R. E. 1979. A fast algorithm for finding dominators in a flowgraph.

ACM Trans. Program. Lang. Syst. 1, 1, 121–141.
MCGLASHAN, B. AND BOWER, A. 1999. The interpreter is dead (slow). Isn’t it? In OOPSLA’99 Work-

shop: Simplicity, Performance and Portability in Virtual Machine Design.
MÖSSENBÖCK, H. 2000. Adding static single assignment form and a graph coloring register allo-

cator to the Java Hotspot client compiler. Technical Report TR-15, Johannes Kepler University
Linz Institute for Practical Computer Science, Altenbergerstra 69, A-4040 Linz.

MUCHNICK, S. S. 1997. Advanced compiler design and implementation. Morgan Kaufmann, San
Francisco, CA.

MYERS, G. J. 1977. The case against stack-oriented instruction sets. Computer Architecture
News 6, 3 (Aug.), 7–10.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 21, Publication date: January 2008.

21:36 • Y. Shi et al.

PATTERSON, D. AND DITZEL, D. 1980. The case for the reduced instruction set computer. Computer
Architecture News 8, 6 (Oct.), 25–33.

PIUMARTA, I. AND RICCARDI, F. 1998. Optimizing direct threaded code by selective inlining. In
SIGPLAN ’98 Conference on Programming Language Design and Implementation. 291–300.

PUGH, W. 1999. Compressing Java class files. In PLDI ’99: Proceedings of the ACM SIGPLAN
1999 conference on Programming language design and implementation. ACM Press, New York.
247–258.

RADHAKRISHNAN, R., VIJAYKRISHNAN, N., JOHN, L. K., AND SIVASUBRAMANIAM, A. 2000. Architectural
issues in Java runtime systems. In Proceedings of the Sixth International Symposium on High-
Performance Computer Architecture (8–12 Jan.). Toulouse, France. 387–398.

SCHULTHESS, P. AND MUMPRECHT, E. 1977. Reply to the case against stack-oriented instruction sets.
Computer Architecture News 6, 5 (Dec.), 24–27.

SHI, Y., GREGG, D., BEATTY, A., AND ERTL, M. A. 2005. Virtual machine showdown: stack versus
registers. In ACM/SIGPLAN Conference on Virtual Execution Environments. ACM Press, New
York. 153–163.

SHUSTEK, L. 1978. Aanalysis and performance of computer instruction sets. Ph.D. thesis, Stanford
University.

SPEC. 1998. SPEC releases SPEC JVM98, first industry-standard benchmark for measuring
Java virtual machine performance. Press Release. http://www.spec.org/jvm98/press.html.

SUGALSKI, D. 2002. Parrot in detail. In Yet Another Perl Conference (YAPC 02). Saint Louis, Mis-
souri. http://www.parrotcode.org/talks/ParrotInDetail2.pdf.

SUN-MICROSYSTEMS. 2001. The Java Hotspot virtual machine. Tech. rep., Sun Microsystems Inc.
TIP, F., SWEENEY, P. F., LAFFRA, C., EISMA, A., AND STREETER, D. 2002. Practical extraction techniques

for Java. ACM Trans. Program. Lang. Syst. 24, 6, 625–666.
VALLÉE-RAI, R., HENDREN, L., SUNDARESAN, V., LAM, P., GAGNON, E., AND CO, P. 1999. Soot—a Java

optimization framework. In Proceedings of CASCON 1999. 125–135.
VITALE, B. AND ABDELRAHMAN, T. S. 2004. Catenation and specialization for Tcl virtual machine

performance. In IVME ’04: Proceedings of the 2004 workshop on Interpreters, Virtual Machines
and Emulators. ACM Press, New York. 42–50.

WIECEK, C. 1982. A case study of the VAX 11 instruction set usage for compiler execution. In Pro-
ceedings of the Symposium on Architectural Support for Programming Languages and Operation
Systems. IEEE/ACM, Palo Alto, California. 177–184.

WINTERBOTTOM, P. AND PIKE, R. 1997. The design of the Inferno virtual machine. In IEEE Compcon
97 Proceedings. San Jose, California. 241–244.

Received August 2006; revised February 2007; accepted April 2007

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, Article 21, Publication date: January 2008.

