
A Semi-Automated Approach to Online Assessment

David Jackson
Dept. of Computer Science

University of Liverpool
Chadwick Building, Peach Street

Liverpool L69 7ZF
United Kingdom

d.jackson@csc.liv.ac.uk

Abstract

Desirable though fully automated assessment of student
programming assignments is, it is an area that is beset by
difficulties. While it is not contested that some aspects of
assessment can be performed much more efficiently and
accurately by computer, there are many others that still
require human involvement. We have therefore designed a
system that combines the strengths of the two approaches,
the assessment software calling upon the skills of the
human tutor where necessary to make sensible judgements.
The technique has been used successfully on a systems
programming course for several years, and student
feedback has been supportive.

1 Introduction

Recent trends towards teaching large numbers of students
at low cost have led a number of researchers to examine
ways in which the assessment of student assignments could
be automated [1,3-6]. In particular, courses on computer
programming would seem a natural testing ground for
computer-based marking. It transpires, however, that the
area is a lrninefield of problems. Existing systems tend to
concentrate on those aspects of assessment that are
straightforward to perform, whilst ignoring those that are
difficult. For example, measuring the execution time of a
student's program is a trivial operation that is easily
automated; on the other hand, attempting to interpret the
content of comments within the code is a task that is well
beyond current capabilities. By focusing on the former at
the expense of the latter, we are in danger of producing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies hear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
iTiCSE 2000 7/00 Helsinki, Finland
© 2000 ACM 1-58113-207-7/00/0007...$5.00

appraisals that are, at best, skewed and incomplete, and, at
worst, totally unrelated to the work put in by the student.

To illustrate the problem further, consider the job of
automatically validating a student's program. Mechanising
the process of applying the program to a number of sets of
test data poses few problems. The difficulty lies in devising
a foolproof approach to judging whether the outputs
produced by that program are correct. If a problem
specification is to be at all open to interpretation - and this
is often impossible to avoid - then it is unlikely that any
two solutions to that problem will generate precisely the
same output. This is especially true of assignments along
the lines of 'Write a program to generate a table of rnonthly
rainfall,' but it can also be true of more tightly specified
exercises such as 'Write a program to calculate the value of
pi to three decimal places.' Even assuming that an
automatic assessor is sophisticated enough not to be
distracted by minor deviations in formatting and layout, the
student who precedes the answer with 'The value of pi
is... ' might give it more of a headache. Of course, a tutor
could go to the extreme of making the problem
specification so detailed that it becomes completely
unambiguous, but then what room does that leave for
innovation on the part of the student?

Such problem areas have been highlighted before, and a
number of innovative approaches have been suggested to
help overcome them [7]. Indeed, there are several aspects
of assessment that can be performed much more accurately
and efficiently by computer, and that can lead to more
uniform marking across large groups of students. The fact
remains, however, that there are still some aspects of
assessment that are best performed by human tutors.
Perhaps, then, the ideal solution is an approach which
combines the talents ofhurnan and machine.

2 Semi-Automated Assessment

The idea of combining forces in this way has led us to
develop a software system that takes responsibility for the
more mechanical aspects of assessment, and which prompts

164

the human tutor as necessary for more advanced
judgements. The system is implemented as a UNIX shell
script. The main tasks it performs are:

Prepar ing submissions - Student programming
solutions are submitted by e-mail. The system prepares
these for subsequent analysis by stripping e-mail
headers, confirming the presence of expected files, and
unpacking archives.

Compilat ion and building - Students are normally
asked to submit a UNIX makefile as part of their
solution to an assignment. One of the system's jobs is
to run this in order to build an executable program. It
also has to act in a sensible way in cases where the
rnakefile has been omitted.

Testing - Despite the difficulties mentioned earlier,
there are still many operations associated with the
testing phase for which automation is straightforward
(and therefore desirable). These include running the
student executables over selected test data, collating
output during those runs, and maintaining records of
tests passed and failed. The need for human input
cannot be obviated entirely, however, and as we shall
see, it is during this testing phase that interaction
between the system and the tutor is at its most intense.

Style analysis - To an extent it is also possible to
automate the analysis of programming style. Here, the
system employs a number of metrics to assess things
such as modularity, level of commenting, use of
indentation, and so on.

Repor t generation - All of this analysis is of little use
if it cannot be properly summarised and presented.
Another of the system's tasks, therefore, is to prepare
and forward appropriate reports for the benefit of both
the tutor and the student.

Where the system looks to the human tutor for assistance is
for evaluation of:

Documenta t ion - Artificial Intelligence techniques are
not yet advanced to the point of being able to make
qualitative assessments of items such as README
files and other supporting documentation. When
necessary, the system presents the document and
prompts the tutor for a view; this usually takes the
form of a multiple choice classification.

Testing - As mentioned above, the system can do
much of the housekeeping work surrounding the
testing procedure, but it is still reliant on the hurnan
tutor to handle the many cases of uncertainty that crop
up.

Source Code - There are many forms of analysis of
source code that could be automated with ease, but the
opportunity to cast a human eye over a program is still
to be valued. Checking, for example, that the
programming techniques specified in the problem have
been employed, and that dubious practices have been
avoided, is still best done by a human.

Appreciating the interplay between human and computer
during the running of the assessment system is perhaps best
illustrated by studying its application to a real student
program.

3 ASample Session

Here we present and narrate an abridged transcript obtained
when marking a student's solution to a real exercise. The
class was asked to write a version of the UNIX 'head'
command (to be called 'fathead'), and then to submit it
electronically as part of an archive that also contained a
README file and a makefile for rebuilding the executable.
The session proceeded as follows:

$ mark44 studentX

2CS44 EX. 1

REPORT ON studentX (~John Doe")

CHECKING SHAR FILE...

< S t a r o f submit ted f i ~ displayed here>

HAVE -Cce OPTIONS BEEN USED?

The command to run the assessment system is 'mark44'
followed by the username of the student. After some
initialisation that includes looking up the real name of the
student and copying all the necessary files into a test area,
the system's first task is to check that the solution has been
submitted in the required manner. Students are instructed to
use the UNIX 'shar' congnand to bundle together their C
files, a README file, and a makefile. They are also
required to specify a number of options to the shar
command (-Cce), The system therefore displays the first
few lines of the submission, allowing the tutor to check that
shar has been used correctly. In this particular case it is
clear that not all of the -Cce options have been used, and
the tutor will therefore respond negatively to the question.
The reason for asking the tutor to make this check rather
than automating it is that students quite often send all kinds
of wrong files by mistake, including binary executables that
could confound the system. In this case the error is not so
serious, and in reply to the next question:

Is file otherwise OK (y,n)?

the tutor can answer yes.

165

STRIPPING MAILER HEADER...

UNPACKING ARCHIVE...

x - fathead.c

x - README

x - makefile

CHECKING SUBMITTED FILES...

README OK

MAKEFILE PRESENT

RUNNING MAKE...

cc -Aa fathead.c -o fathead

MAKE RAN OK

FATHEAD CREATED

GETTING MARKS FOR README file...

Hit return to view

The system now strips off the header information inserted
by the mailer, unpacks the archive, and confirms that all the
expected files are present. Students are told what names to
give their files; if they overlook this requirement, the
system will give the tutor the opportunity to rename the
files that have been sent. It then runs the student's makeffie
to build the executable. Students are asked to write a
makefile that does not require any arguments. If, for any
reason, this does not work, the system will try again with
the name of the target as an argument; if this too fails, the
system will try to build the system from scratch using an
appropriate sequence of compile and link commands. An
inability to proceed beyond this point is usually due to fatal
compilation errors, meaning that the student has not even
got as far as producing a working program.

Assuming that the executable can be generated, the system
then goes on to consider the README file. There is little it
can do here other than to present the contents of the file to
the tutor.

Choose a category for the README file:

I) awful

2) poor

3) fair

4) good

5) very good

Once the tutor has had a chance to study the README file,
the system asks for an assessment. To simplify things, the
tutor is asked to select one from the five categories shown.

***TEST I... (simple call)

fathead fl

MODEL OUTPUT

<Ou~utofmodelso~fiondisplayedhere>

STUDENT OUTPUT

<Ou~utofsmdentso~t~ndisplayedhere>

DIFFERENCES

0al;2

> ==> datal <==
>

9a12
>

ARE THESE THE SAME? n

TEST FAILED

The system is now in a position to begin black-box testing
of the student's code. As mentioned earlier, making the
automation of this foolproof is notoriously difficult, and it
is for this reason that great emphasis has been placed on
dividing the responsibility for the task between the
assessment system and the human tutor. The system's role
is to execute the student program a number of times on
selected test data, redirecting the program output into a
temporary work file which can then be compared with an
'ideal' output file. The tests are not made using random test
data; rather, each set of data is designed to evaluate key
properties of the student's program. The ideal file can
either be prepared in advance by the tutor, or simply
generated on the fly from a model solution. I f the system
finds no differences between the student program output
and the expected output, it will accept that the test has been
passed. If, on the other hand, it detects variations, no matter
how slight, it calls upon the human tutor to act as the final
arbiter.

In the listing above, the program is being given its first,
most basic test. This simply applies it to a single file,
without any command options. The system presents the
output from the student program, followed by the output
that should have been produced, and then summarises the
differences between the two by making use of the UNIX
'd i f f cornand. This makes it much easier for the tutor to
spot where the student's solution has deviated from the
model solution, and to make a decision as to whether the
difference is serious enough to warrant deducting marks. In
this example, the student has preceded the command output
with the name of the file given as its argument. Since the
problem specification clearly stated that filenames should
only be given in the case of multiple arguments, the tutor
decides that the deviation is significant and the student is
deemed to have failed that particular test.

The testing phase continues in this manner for a number of
executions, using a variety of test data and command
options. Additional testing is then performed to check that

166

the student has thought about possible error conditions that
may arise. This bank of tests works differently from the
previous ones in that there is no comparison of output.
Instead, the system simply checks that an appropriate error
message is produced in each case.

C FILE IS fathead.c

PRESS RETURN TO VIEW SOURCE

Once the testing phase is over, the system gives the tutor
the opportunity to view the student's source code. It is at
this point that the tutor can perform aspects of code quality
assessment that are difficult or impossible to automate. The
tutor may wish to check, for example, that comments are
meaningful and that appropriate algorithms have been used.
If necessary, the tutor can also elect to impose penalties at
this stage.

APPLYING STYLE METRICS...

12.7

4.0

20.9

38.5

1.6

4 2

17 0

4 2

0 0

5 0

0 0

characters per line : 9.0

(max 9)
% comment lines : 0.0

(max 12)
% indentation : 9.7

(max 12)
% blank lines : 0.0

(max Ii)
spaces per line : 1.5

(max 8)
module length : 0.5

(max 15)
reserved words : 6.0

(max 6)
identifier length : 2.8

(max 14)
gotos : 0.0

(max -20)
include files : 5.0

(max 5)
% defines : 0.0
(max 8)

Score 34.5

Style mark = 34

The final form of assessment takes the form of an analysis
of the student's programming style. For this, the style
metrics proposed by Berry and Meekings [2] have been
adopted. As can be seen from the results above, this
particular student does not score well on style, gaining a
mark of only 34%.

FINAL SCORE = 65 (B)

Tidying up...

The scores from all the stages described above are
ultimately combined to give a final mark and grade.

Following this, a tidying up procedure ensues in which
terr~orary files are deleted, a database of class marks is
updated, and a final report is prepared for the student's
consumption. When all students have been assessed in this
way, a ffimher script is run which will send reports to
individual students via e-mail.

4 Conclusions

The system described here has been used successfully on a
second year course on systems programming for several
years, and across a range of exercises. Although the need
for the human to do some work has not been entirely
eliminated, assignments can be marked and returned to
students very much faster than they were in the days when
they were marked by hand. Moreover, the amount of
analysis, especially with regard to testing, has been
substantially increased using this approach: it is rare that
other course tutors using traditional marking methods ever
test student solutions online. A further advantage of using
the system is that both the marking process itself and the
reporting that is made back to students remain consistent
across a large class. Questionnaire returns confirm that,
while students would be less happy with a fully automated
marking system, they are generally satisfied with the
composite approach. Further enhancements planned for the
future include building in analyses of complexity and
efficiency, and improving the portability of the system to
different forms of assignment.

References

[1] Benford, S., Burke, E. and Foxley, E. Courseware to
Support the Teaching of Programming. Proc. Conf.
Developments in the Teaching of Computer Science
(1992), Univ. of Kent at Canterbury, 158-166

[2] Berry, R.E. and Meekings, B.A.E. A Style Analysis of
C Programs. Comm. ACM, 28(1) (1985), 80-88

[3] Hung, S-L., Kwok, L-F. and Chan, R. Automatic
Programming Assessment. Computers and Education
(Pergamon), 20(2) (1993), 183-190

[4] Jackson, D. A Software System for Grading Student
Computer Programs. Computers and Education
(Pergamon), 2 7(3/4) (1996), 171-180

[5] Jackson, D. Computer-Based Evaluation of Student
Software Quality. Proc. 2 "d Conf. Software
Engineering in Higher Education (SEHE92) (1992),
Southampton, UK, 93-104

[6] Jackson, D. and Usher, M. Grading Student Programs
using ASSYST. Proc. 28 th ACM SIGCSE Tech.
Symposium on Computer Science Education (1997),
San Jose, California, USA, 335-339

[7] Jackson, D. Using Software Tools to Automate the
Assessment of Student Programs. Computers and
Education (Pergamon), 17(2)(1991), 133-143

167

