
Automated Grading Assistance

For Student Programs

David G. Kay
Department of Information and

Computer Science
University of California

Irvine, California 92717
kay@ic.s,uci.edu

Terry Scott
Department of Mathematical Sciences

University of Northern Colorado
Greeley, CO 80639

tscott@dijkstra. UnivNorthCo .edu

Overview Students are ill-served when grading
fails to detect errors in their solutions to program-

ming assignments; they will assume that their devel-

opment process was adequate when in fact it was
not. Yet assignments even in introductory courses

can be too complex to evaluate thoroughly by con-

ventional, manual means.

Some instructors have used various sofiware tools to
assist in the task of evaluating student programming
assignments. The ability to collect students’ work

in a consistent form and test it automatically against

a wide range of data can enhance students’ skills in

program design, coding, analysis, and testing, and

can free the instructor from much tedium, allowing

more time for more rewarding activities.

But the use of such tools is far from widespread, de-
spite the impossibility of thorough, valid, reliable as-
sessment without them. No repository of such sys-

tems exists, nor do such systems themselves exist for

all popular instructional computing platforms.

Automating the testing process is trivial in theory

(“for each student, for each test case, produce the
result”), but difficult in application. Practically us-
able systems must be reasonably secure from student
tampering, scalable to large classes, flexible enough
to accommodate different forms of assignments,
and robust in the face of bugs in the students’ pro-

grams and in the lab environment.

Peter Isaacson
Department of Mathematical Sciences

University of Northern Colorado

Greeley, CO 80639
isaacson@dijkstra. UnivNorthCo.edu

Kenneth A. Reek
Department of Computer Science

Rochester Institute of Technology

One Lomb Memorial Drive

Rochester, NY 14623
kar@cs.rit.edu

We will share our experiences with such systems,
both in their development on various platforms and

in their use on students’ assignments.

We invite the audience to discuss the implications
of these systems, share their own experiences, sug-

gest solutions to still-open issues, and help us begin
to compile a catalog of the systems that are available
and assessinterest in developing, enhancing, and
widely disseminating them.

Inadequacy of conventional evaluation: Student

programs, even in a first programming course, are

typically too complex for an instructor to assess

their correctness accurately and comprehensively

simply by reading the source code.

The instructor must test the students’ pralgrams on
various sets of inputs, but the time involved to run
each test on each student’s program, one by one, is

prohibitive. Students can be required to design and

run their own tests, submitting the results for grad-

ing along with the program’s text. However, creat-
ing comprehensive, objective, valid sets of test data

is a separate skill we also must teach, and thus one
which students cannot be relied upon to have mas-
tered. Students’ failings in test design thus could
detrimentally affect the separate issue of their pro-
grams’ correctness.

Further, modern computer systems allow any stu-

dent to “doctor” the results of his or her program to

381



conceal its errors and omissions; unfortunately this
is a temptation that students under deadline or

grade pressure sometimes fail to resist.

Automated grading assistance: These tools must
recognize that students will misinterpret instruc-

tions, will miss deadlines, will fill up file systems,

and will introduce all manner of unanticipated er-

rors, both due to misconceptions on their part and

inevitable ambiguities in the problem specification.

Nonetheless, students must be rewarded to the ex-
tent that their efforts are successfid. Furthermore,
such a system must scale up easily to longer assign-
ments in larger classes. The system should consist
of a submittal component and a testing component,

as described below.

Submittal componenfi When a student has com-

pleted an assignment, he or she will run the submit-

tal program; this will take a copy of the student’s

source code and save it somewhere accessible only to
the instructor, noting the date and time of submit-
tal.

An ideal submittal system will allow for multiple

source files, and for ancillary files of various types:

documentation, student-supplied test cases, and so
on. It will allow students to resubmit all or part of

their assignment, at least up to the due date and
perhaps thereafter, keeping track of the new submis-
sion time. (Experience shows that it’s preferable to
accept late assignments appropriately timestamped
than to refuse them, because accepting them pre-

serves the state of the student’s progress at that mo-

ment and the lateness may be renegotiated based on

the student’s excuse.) The system should also keep

a log of each transaction, to support or rei%te stu-
dent claims of system failure or unavailability (due,
most often, to file systems filling up just before the
due date).

When the student submits a program, the system
should compile it and even run it against some pub-
lished test cases. This alerts the student to any gross
failures (such as having added a last-minute com-

ment without an ending delimiter) and any unex-

pected discrepancies with the automated running
process. Indeed, one way to use the system is to re-
quire the students to run their own programs suc-

cessfully against a series of tests.

Testing componene Afier the students have sub-
mitted their programs, the testing component takes
each program, compiles it, and runs it against every
test case that the instructor has specified. It collects

the results of every test for each student, printing or
displaying them for the instructor to compare with

the expected correct results. This approach also
promotes the course’s curricular goals directly, be-

cause it uncovers more flaws in the student’s pro-

gram than conventional grading methods do, which

brings home the importance of carefi.d, considered
design and testing.

We emphasize, however, that this testing tool does
not necessarily compute scores or grades, nor does it

reduce the human judgement involved in evaluating
students’ work (which includes not only the pro-
gram’s correctness, which quality we address here,

but also its adherence to the principles of good de-

sign, its documentation, and perhaps its user inter-
face or the student’s own choice of test data). This
tool does provide the evaluator with the compre-
hensive information necessary to produce an in-
formed, thorough, and fair assessment of correct-

ness. Nor would one generally use automatic com-

parison tools to match each case’s result with the ex-
pected one, because too ofien students misspell

words or miscalculate white space, leading to a

“false negative” result. For problems of any signifi-
cance, experience shows that even the most sophisti-

cated case-converters and white-space filters fail to
discriminate between significant and trivial errors as
well as a human reader’s quick perusal can.

This approach also allows the instructor to use auto-

matic tools to examine students’ programs for signs
of plagiarism; such examination by manual means is

sporadic, haphazard, and largely ineffective. Experi-
ence with similar systems indicates that afier one or
two terms of use, when plagiarists have been detect-
ed and disciplined, students come to know that
such a strategy does not bear fruit and the overall
incidence of plagiarism decreases,

Given the complexity of sofhvare, even in introduc-

tory students’ assignments, using this kind of tool is

essential. The time has come to devote effort and
resources to developing robust, flexible, widely
available sools for automated program evaluation.
We can no longer pretend to be able to assessstu-
dents’ work validly and reliably by manual means.

382


