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The basic idea

Read the program, make changes, write a new version

Easier than doing it to a source program:

e no big parsing problem

e everything’s in the same ‘‘language’’

e can include libraries if desirable

Harder than doing it to a source program:
e have to understand grungy details

e addresses of things matter
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What is it? Why do it?
The building blocks

The general technique

System overviews

Pitfalls

Applications
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Why do it?

Optimization

e peephole optimization

e cache line allocation

e intermodule register allocation

e procedure integration
Instrumentation

e basic-block counting

e edge counting

e address tracing

Translation

mﬂgnnau Western Research Laboratory
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Who does it?

Mahler [Wall91a]: Register allocation, pipeline
scheduling, instrumentation

Moxie [Himelstein+87]: Compiled simulation
Pixie [MIPS89]: Block-counting, address tracing
Qp [LarusBall92]: Edge-counting, address tracing

MTOOL [GoldbergHennessy92]: Performance
instrumentation

VEST [Digital92]: Architectural translation
Postloading [Johnson90]: Lots of stuff

Purify [HastingsJoyce92]: Memory use error
detection
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Compiling and linking

source and
| assembly files
object files
executable
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What is it?

The general technique

QOutline

System overviews

Pitfalls
Applications

Post-Compiler Code Transformation

Typical memory layout

global-reg [F—=

stack-ptr [F—
frame-ptr [3—=

. -H
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Why do it?
The building blocks

text (code)
segment

small data segment

init data
segment

uninit data
segment

heap

stack

S,
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(one proc’s frame)
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Typical executable format

—

header information

text (code)
segment

sizes, file indices, and
runtime addresses of:
text segment

small data segment
init data segment
size and runtime address of:
uninit data segment
entry-point address

small data segment

init data
segment

Post-Compiler Code Transformation

segments of executable

Post-Compiler Code Transformation
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What a linker does

Resolves external references in modules

Combines corresponding segments of objects into

5 December 1994 11 of 69

Instruction formats

opc | opnd | opnd offset
offset may be word, byte, or inmediate
opc | opnd | opnd | opnd more opc
three-operand register operations
opc very long immediate

¥ mngnnan Western Research Laboratory

mainly used for long jumps and calls
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Object files are marked-up executables

extsym Prefetch:
(start of Prefetch)

0%104:
0x168: load
0x1l6c: jal

extsym Query:
(start of Query)

load r2,4(gp) [displ ext:deltal

0%320:
0x440: load
0x444:
0x448: jal

mﬂ@ﬂnan Western Research Laboratory

extern Radix (double);
extern double delta;
static int counts;
Prefetch () {
Query(counts);

Query (int i); {
Radix (delta);

rl, 20 (gp) {displ sdatal
0x320 [jdest text]

rl,0(gp) [displ ext:deltal

0x0 [jdest ext:Radix]
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Linking algorithm
Step through objects noting segment sizes

Plan where each object segment goes in final
executable

Note final value of each external symbol

Post-Compiler Code Transformation 5 December 1994 13 of 69

Symbol table entries
symbols

Step through objects again, putting pieces in place

Relocate internal and external address references

type ———_|

value

index of string

coun UNDEF
ts ¢ TEXT
elta SDATA
Pre IDATA
fetc UDATA
h Qu
ery
Radi
x

strings

mﬂgﬂnan Western Research Laboratory &
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Typical object format

sizes, file indices, and
runtime addresses of:

text segment
small data segment
init data segment
size and runtime address of:
uninit data segment
sizes and e indices of:
relocation tables
symbol table
entry-point address

header information

text (code)
segment

small data segment

init data
segment

tond
refovation table

sinall dats
refocation table

init data
retocation table

symbol
iable
mﬂgﬂnan Western Research Laboratory
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Relocation records

address within this object file,

L or index into the segment
is it due to an

external symbol
or to the relocation
of this object module?

location to be adjusted

| e .
)t( g'dnjﬁg adjustment base
is the item: index of external symbol
complete address in symbol table
top half of address or
bottom half of address code for segment that
displacement in sdata final address should
or what? be considered part of

mngnnan Western Research Laboratory :
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QOutline

Relocation algorithm

location to be adjusted

kind of
adjust

pastes]

What is it?  Why do it?

adjustment base

.

The building blocks

Find the word at the specified location The general technique

Use kind to determine field of word
to relocate

System overviews

Pitfalls

If relocation is external, then:

) Applications
Add value of adjustment symbol

to relocated field
Else:

Interpret field value as address in
adjustment segment of object, and
reinterpret it as address in executable

mnannan Western Research Laboratory mnﬂnnan Western Research Laboratory &
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What’s hard?

bﬁe r2,x0,.+18

i

Inserting or deleting code changes addresses

i

]

é%

How do we get new resources? |

i

jal  0x400a94

=

=

o

=

v

1w rl4,16(rle)

How do we deduce the control structure?

duw reenp, m
e addud rtemp, rtemp, 1
sw rtemp, memoount

1w rld,16(rle)

Architectural considerations:
e branch/jump ranges

e multi-instruction operations
* bgt(r8,r9,L) into slt(r1,r9,r8);bnz(r1,L)

¢ la(r4,0x10007d30) into
lui(r4,0x1000);add(r4,r4,0x7d30)

e pipeline constraints

Jélr ra o

lui rl7,0x40

Tui
addui rl7,rl17,15308

e delayed branches addui r17,r17 {15308

case?
return?

ﬂnﬁnnan Western Research Laboratory mnﬂnuan Western Research Laboratory |
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Mapping old addresses to new

Build table mapping old addresses to new
e keep track of insertions and deletions

e each old address corresponds to a new address

Insertion after or before?

addu r4d,r4,r2

rtemp, memcount

rld,16(rle) =

Post-Compiler Code Transformation 5 December 1994 21 of 69

Static address translation
r2,r0, .+18

inst.disp := xl[oldaddr+inst.disp] - newaddr

i

inst.dest := xI[inst.dest]

leave it alone, but leave it relocated

addui rl7,r17,15308
instl.disp << 16 + inst2.disp

inst2.disp = (dest <<16) >>16
instl.disp := (dest - inst2.disp) >> 16

(data) 0x403bcc
change to xI[self]

{fword text]

e

s

leave them alone; code to generate address used
was translated statically

G Xmmnaﬂan Western Research Laboratory #
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Two kinds of address translation

Are relocation tables still available?
Static address translation:
e use relocation tables to identify addresses
e translate them during code transformation
Dynamic address translation:
e build table literally into modified program

e translate addresses when used during modified
execution

i w‘&ﬂﬂgnnan Western Research Laboratory
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Dynamic address translation

§ No relocation, so must be conservative
:yi - . .
% Translate branches and direct jumps statically

Must include translation table in transformed program

Precede all indirect jumps by code to compute new
address

Do all address computation in old space

Engnnan Western Research Laboratory
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0x100: (start of proc)

0x140: (start of proc)

0x22c: 1lw 1r23,x1[r31]
0x230: jr 1x23

0x428: jal r31,0x100

0x42c: 0x5c0: la r31l,0x42c
0x5c4: jump 0x140
0x5c8:

x| maps old addresses to new:
0x100 —= 0x140
0x188 —= 0x22c
0x428 —= 0x5c0
0x42c —= 0x5c8

mngnnan Western Research Laboratory
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How do we get new resources?

Registers
e save/restore them, or

e emulate them, or
e allocate them
Memory
e allocate on top of stack at program start

e copy program arguments to new location

mnanau Western Research Laboratory #
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Don’t forget data addresses

Making code bigger may change data addresses
e with relocation tables, no problem

e leaving lots of room in code segment in the first
place helps

e leave entire image at original address and put
translation elsewhere

e worst case: dynamic translation at loads and
stores

SR

.

i

—_

.

G
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Deducing the control structure

Finding basic blocks
e see next slide

Finding control paths
e recognize code generation patterns

e is symbol table useful?

e can code generator help?

e what about assembly code?

mnﬂnnan Western Research Laboratory !
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Finding basic block boundaries

Find:
e branch destinations
e jump destinations
e Joad-addresses of text address
e text addresses in data
e (text addresses in symbol table)

Relocation tables guarantee answers

Without them, must be conservative

ﬂngnnan Western Research Laboratory
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R,

Subroutine return

Machine may have explicit RETURN instruction
Machine may encourage use of one return register

Symbol table may declare proc’s return register

MIPS codegen always uses r31 as return register

Post-Ce

iler Code Tr: 5 December 1994 31 of 69
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Recognizing code patterns

Main goal is to understand indirect jumps
e allows flow graph construction

e allows more static address translation
Where do indirect jumps come from?
e subroutine return
e case statement
e calling a procedure variable
e FORTRAN assigned goto (yecch)

ﬂﬂaﬂnau Western Research Laboratory #
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Case statement

Canonical code for case jump:

bge t6,CaseCount, L
s1l t6,t6,2

1w t6,Table(t6)
jr té6

--if not in range, skip
--conv. to byte offset
--1d destination addr
--jump to selected case

=

_ Tells us address and size of table

ffgi More validity checks:

§ e table is in read-only memory

| e addresses in table are in current procedure

e table not referenced elsewhere in code

Post-Compiler Code Transformation 5 December 1994 32 of 69



FORTRAN assigned goto

assign 99 to X

goto X, (99,100,4,29)
oo "

Destination list invisible at machine level

Compiles to a jr with little context

Can symbol table tell you if you’re looking at
FORTRAN code?

Can compiler tell you where these occur?

Fortunately, nearly obsolete

s
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There’s still assembly code

Mainly in standard libraries

Mainly follows the usual conventions

Things you can do
e treat (bad) assembler routines as black boxes

e rewrite to adopt standard conventions

e recognize problem library routines personally

e augment assembler to document violations

e raise assembler to exclude violations

mngnan Western Research Laborator
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Calling a procedure variable

Main tipoff: jump is jalr instruction

But jr might be used for rail-call

Putting it together

If exactly one pattern matches, great
Treat any unmatched jr as a tail-call

Treat any address taken as an entry point

ﬂannau Western Research Laboratory
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Patterns help address translation

If we can split off a set of
e (guaranteed) address specifications

® jumps

such that
e the jumps go only to those addresses

e no other jumps go to those addresses

Then we can translate these statically

Examples:
e (trivially) branches and direct jumps

e jump via address table for case statement

e procedure call/return for non-addressed
procedures

%mngnﬂan Western Research Laboratory
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Typical phases Outline

Break code into basic blocks

Categorize the jumps What is it?7  Why do it?

Link blocks into flow graph The building blocks

Generate preface code The general technique

Build new version of code [and code relocation table], System overviews
one block at a time ’

) Pitfalls
Compute mapping from old addresses to new

. . . Applications
Adjust destinations of branches and jumps where

needed

[Adjust code addresses marked for relocation in code
or data]

Adjust addresses in loader symbol table

mnaﬂau Western Research Laboratory mﬂ@nnan Western Research Laboratory
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| |
Mahler % Pixie (and kin)
source files f_ source and
assembly files
HLL :ompilers-l E% .
r . § compilers
) L | . and
intermediate files | %g
i [ % % ; -
Mahler compiler . object files
object files executable
modified executable
executable

mﬂﬁnnan Western Research Laboratory &
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Johnson’s postloader

source and
assembly files

cémpilers
and
.assemblers

object files

extended executable

modified executable

mﬂaﬂan Western Research Laboratory
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Outline

What 15 it?  Why do it?
The building blocks
The general technique
System overviews
Pitfalls
Applications

mngﬂuan Western Research Laboratory !
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source and
assembly files

object files

giant object file

modified giant object

modified executable

ﬂngnnan Western Research Laboratory
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Pitfalls

Code in data segment
Data in code segment
Delayed branches
System calls

Signals

mnﬂnnan Western Research Laboratory
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Code in data segment

How does it arise?
e constructed instructions

e ‘‘compiled’’ arguments

e trampolines to dynamically-linkable code
Getting there

e static address translation works fine

e dynamic translation dies

e include range test in dynamic translation
Modifying it

e if you can recognize it, maybe no problem

e but why is it in data at all?

Post-Compiler Code Transformation

Delayed branches

Eﬂgﬂan Western Research Laboratory
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Data in code segment

Literal constants and jump tables

Don’t hurt it:
e don’t “‘correct’’ it

e don’t instrument it
Find it:
e symbol table?

e reachability analysis?

Make sure it’s accessible!

e with relocation: even data references to code
segment get fixed

e without relocation: include unmodified code
segment in new segment

wamﬂgnnan Western Research Laboratory
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How do slots get filled?

N

condbr
nop

condbr
Telnop

slot filled from a
successor block,
if safe

slot filled from
same basic block

Engﬂnan Western Research Laboratory
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The solution Branches to branch slots

rev-br
nop
slotl
slot2
slot3
branch L:
nop
slotl
slot2
slot3

slotl or or
slot2 slotl nop

slot3 slot2 slotl
condbr [—=L: condbr Lz slot2
slot3 slot3

mﬂgnan Western Research Laboratory ﬂngnnan Western Research Laboratory
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Outline

System calls and signal handling

Identifying a system call is probably easy

loadimm r2,NNN
syscall

What is 117 Why do it?

The butlding blocks

Some registers may be officially damageable

Code addresses may be passed, e.g. for signal The general technique

handling
e techniques using relocation work fine

System overviews

Pitfalls

e other techniques must recognize system call

Emulated registers not seen by kernel Applications

May want to recognize exit system call

Hﬂﬁnnan Western Research Laboratory mwmﬂannan Western Research Laboratory
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Applications Pixie: Basic block counting

Instruction-level instrumentation Break program into basic blocks

Precede each block with

load rx,N(rz)
addimm rx,rx,1l
store rx,N(rz)

Address tracing

Source-level profiling

Pipeline scheduling

Intermodule register allocation where N is the index of this block

Architecture translation How do you count labeled branch slots?

o

S

| |
m&éﬂﬂgﬂnan Western Research Laboratory @i mwmmnﬁnﬂau Western Research Laboratory &
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Why do you want basic block counts? Qp: Edge counting

Combine with static info about the blocks Break program into basic blocks

Count loads, stores, or other instructions Insert counting code for each edge.

And (symbol table permitting)
e count uses of variables or procedures

e count executions of source lines

N@

.
|
]
.
.

mﬂgﬂnan Western Research Laboratory prm——
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|
Advantages of edge counting

Block counts can be derived from edge counts
Edge counts tell you more
e count branches taken

e count pipeline stalls
Most program graphs are planar, so IEl ~ VI

Permits an interesting optimization:
e estimate execution counts of edges
e find maximum spanning tree of edge graph

e don’t count those edges

Eﬂgnnan Western Research Laboratory

Post-Compiler Code Transformation 5 December 1994 57 of 69

Source-level profiling

Procedure entry counts are easy
e basic block counts

e procedure entry points from symbol table

T
SRS

Approximate procedure call edge counts are easy, too
e basic block counts

i

e identify calls and see where they come from and
go to

e doesn’t count calls via procedure variable
Instrument procedure entry with code that examines
return address

e gprof uses such a traceback inserted by
compiler

e easy to insert it post-compiler

En@nnan Western Research Laboratory
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Address tracing

Useful to simulate cache/memory/IO hierarchies

Precede
load rl,d(r2)

by code to compute
r2+d
and append it to a log

Same for stores

Instrument basic blocks for instruction addresses
e but log the old code address, not the new one

Periodically do something with the accumulated logs

mﬂﬂgnnan Western Research Laboratory
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Goldberg’s bottleneck profiling

How can we identify performance losses due to cache %
thrashing, multiprocess synchronization, etc?

e instrument program to count basic blocks, and
predict a run time g

s

e instrument program to time basic blocks

e compare the two
Except you can’t really time basic blocks

Analyze structure of program to find candidate chunks

W»mﬁmnﬂﬂnan Western Research Laboratory
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Purify: Detecting memory use errors

Modify object modules to detect
e reads of uninitialized locations

e references to unallocated locations

e allocated but unreachable locations

Maintain a big table telling what bytes have been
assigned and allocated

Insert code at stores, mallocs, and frees to change state
of bytes

Insert code at loads and stores to check for illegal state

Insert dbx-callable procedure to do mark-and-sweep
garbage detection

mnannau Western Research Laboratory
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Pipeline scheduling

Bunch of work on the problem:

e scheduling within a basic block
[HennessyGross83,GibbonsMuchnick86]

e speculative scheduling across a branch

[WallPowell87, e.g.]
e flow-based global scheduling .
[BernsteinRodeh91]

e scheduling vs register allocation
[GoodmanHsu88,Bradlee+91]

Reasons to do it so late:
e interaction with very global register allocator

e scheduler itself may be very global

Don’t do this using a technique with overhead

Bngﬂnan Western Research Laboratory
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Intermodule register allocation

Call-return discipline can guide allocation of locals

-

R

Analyzing whole program tells which globals are safe
Remove loads and stores, and rename registers used

May require cooperation from compiler

5 December 1994 62 of 69
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Architectural translation

Hardware bug workarounds
e alter code to avoid pipeline bugs

Fast simulation of new hardware
e moxie: from MIPS to VAX

Translation to new hardware

§ o VEST: from VAX to Alpha

§ Translation has to somehow be complete
|

|

mmnannan Western Research Laboratory
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The big finish

There’s a lot you can do with late code modification
Help from compiler/loader makes it easier
Instrumentation < optimization < translation

It’s amazing how some people will spend their time

)

7
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Moxie: backward translation

Wanted to test MIPS compilers before hardware exists
Simulation is too slow for thorough testing

Moxie translates:
e MIPS code into VAX code
e MIPS Unix calls into VAX Unix calls
e MIPS loader format to VAX loader format

Like using VAX instruction set to microcode a very
slow ‘‘MIPS processor’’

i

This approach led directly to pixie

TEm

e

Hnanau Western Research Laboratory
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Vintage Environment Software Translator

Find entry points from header and symbol table (if
present)

Follow threads of control (incl. idiomatic jumps)
Separate into basic blocks and build flow graph
Push context information around flow graph

Generate Alpha code for each basic block

mn@nnan Western Research Laboratory
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VEST: forward translation

Translate VAX (user-mode) executables without
sources to Alpha

Programs should never slow down

Problems:
e nobody planned for this fifteen years ago

ﬁ e CISC architecture not conducive to translation
e different length instructions

%%; * a lot of state (condition codes, stack top,
etc.) that may not be relevant ‘

e VAX executables not necessarily well-behaved
e code and data interspersed (or overlap)

e branches to middle of instructions (!)
e self-modifying code

Hﬂgnnan Western Research Laboratory
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Details and consequences

Original VAX image is included in translation
Full VAX instruction interpreter is also included

Jumps to unknown location are translated as calls to
interpreter

Interpreter runs much slower, but usually needs to do
only a few instructions

Interpreter provides feedback for a later translation

Profiling original VAX code also provides feedback

Recompiling to native makes it 2x or 3x faster, but...

RISC/CISC speed difference means no loss of
performance

mnﬁnnan Western Research Laboratory
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