
Automatic Isolation of Compiler Errors

DAVID B. WHALLEY

Florida State University

This paper describes a tool called upozso that was developed to Isolate errors automatically m the

upo compder system. The two general types of compder errors isolated by this tool are optimiza-

tion and nonoptlmlzatlon errors. When molatmg optimization errors, VPOZSO rehes on the UPO

Optimizer to identify sequences of changes, referred to as transformations, that result m

semantically eqmvalent code and to provide the ability to stop performing lmprouzng (or

unnecessary) transformations after a specified number have been performed. A compdation of a

typical program by upo often results m thousands of zmprouzng transformations being per-

formed. The upowo tool can automatically isolate the first improuing transformation that causes

incorrect output of the execution of the compiled programs by using a binary search that varies

the number of zmprouzng transformations performed. Not only M the dlegal transformation

automatically Isolated, but upo~so also Identifies the location and instant the transformation M

performed m upo. Nonoptlmlzatlon errors occur from problems m the front end, code generator,

and necessary transformations m the optlmlzer. If another compiler 1s avadable that can produce

correct (but perhaps more inefficient) code, then UPOISO can isolate nonoptimlzatlon errors to a

single function. Automatic usolation of compder errors faclhtates retargeting a compiler to a new

machme, maintenance of the compder, and supporting experimentation with new optimlzatlons.

Categories and Subject Descriptors D 25 [Software Engineering] Testing and Debug~ng

debugging ads, D.3 4 [Programming Languages] Processors—compilers, optimizatmn

General Terms Algorithms, Languages

Additional Key Words and Phrases Automatic error isolation, diagnosis procedures, nonoptl-

mlzatlon errors, optlmlzatlon errors

1. INTRODUCTION

To increase portability, compilers are often split into two parts, a front end

and a back end. The front end processes a high-level language program and

emits intermediate code. The back end processes the intermediate code and

generates instructions for a target machine. Thus, the front end is dependent

on the source language and the back end is dependent on the instruction set

A prehm,nary vers]on of the error Isolator was described m Proceedings of the ACM SIGPLAN

’93 Conference of Pi-ogrammmg Language Deszgn and Implementatmn under the title “Isolatlon

and Analysls of Optlmlzatlon Errors “

Author’s address Department of Computer Science, Florlda State University, Tallahassee, FL

3’2306-4019, emad whalley@cs.fsu.edu

Permlsslon to copy without fee all or part of thm material m granted provided that the copies are

not made or distributed for du-ect commercial advantage, the ACM copyright notice and the title

of the pubhcatlon and Its date appear, and notice M green that copying M by permission of the

Assoclatlon for Computmg Machinery. To copy otherwise, or to repubhsh, reqmres a fee and/or

specific permission.

01994 ACM 0164-0925/94/0900-1648 $0350

ACM TranSact,on6 on Programmmg Languageh and Sy.kn.,Vol 16, N. 5, September 1994, Pages 1648-1859

Automatic lsolatlon of Compiler Errors . 1649

for the target machine. Retargeting such a compiler for a new machine

requires the creation of a new back end.

Much of the effort required to retarget a back end occurs during testing.

Often, much time is spent determining why code generated by a compiler for

a program does not execute correctly. Determining the reason has typically

been accomplished in two steps. First, the compiler writer attempts to isolate

the instructions generated by the compiler that cause incorrect execution.

The next step is to determine why the compiler generated these incorrect

instructions. Both steps can require much time and effort. The resolution of a

compiler error may easily require hours or even days.

This paper describes a tool that automatically isolates compiler errors. For

optimization errors, the tool can automatically determine the first transfor-

mation during the optimization of a program that causes the output of the

execution to be incorrect. Nonoptimization errors occur from problems in the

front end, code generator, and necessary transformations in the optimizer. If

another compiler is available that can produce correct (but perhaps more

inefficient) code, then the first nonoptimization error can be isolated to a

single function.

2. OVERVIEW OF THE COMPILER

The tool described in this paper supports automatic isolation of errors in the

upo compiler system [Benitez and Davidson 1988]. The optimizer, upo, re-

places the traditional code generator used in many compilers and has been

used to build C, Pascal, and Ada compilers. The back end is retargeted by

supplying a description of the target machine. Using the diagrammatic

notation of Wulf et al. [1975], Figure 1 shows the overall structure of a set of

compilers constructed using upo. Vertical columns within a box represent

logical phases that operate serially. Columns divided horizontally into rows

indicate that the subphases of the column may be executed in an arbitrary

order. IL is the Intermediate Language generated by a front end. Register

transfers or register transfer lists (RTLs) describe the effects of legal machine

instructions and have the form of conventional expressions and assignments

over the hardware’s storage cells. For example, the RTL

r[l]=r[l]+r [2]; cc=r[l]+r[21?O;

represents a register-to-register integer add on many machines. While any

particular RTL is machine-specific, the form of the RTL is machine-indepen-

dent.

All phases of the optimizer manipulate RTLs. One advantage of using RTLs

is that optimizations can be performed on machine-specific instructions in a

machine-independent manner. Another advantage is that many phase-order-

ing problems are eliminated since optimizations are only performed on RTLs.

Most optimizations can be invoked in any order and are allowed to iterate

until no more improvements can be found.

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No 5, September 1994

1650 . David B. Whalley

(source la.gusges)

PascsJ c Ada

Intel 80386~

L

MacJune

Mc68020~

vu-li~ Descnpion

MC88100---+-

MIPs~ process-

sPARc~

Basic

Block

Opls

IL IL IL

code Cede Code

Expanders Expaoders Expanders

I
Branch OptIrmzdIons I
InsEwtion Selectm I

Ewduation OrderDeterrrunuion \

Common Subexpesslon

GlobsJ EllrrunatJon

Dataflow Dead Vmable Ehrmnauon

Analysis Code Motion

I Recurrences
I

Instruction

Scheduling

Fill

Delay

slots

t
Object Fde

Flg 1. Compder structure.

The RTLs are stored in a data structure in upo that also contains informa-

tion about the order and control-flow of the RTLs within a function. The vpo

optimizer was modified to identify each change to this data structure and to

denote each serial sequence of changes that preserves the meaning of the

compiled program. In this paper, these sequences of changes are referred to

as transformations.

3. ISOLATION OF OPTIMIZATION ERRORS

Testing is often the most time-consuming component of retargeting a back

end of an optimizing compiler to a new machine. Much of the time spent

during testing involves isolating errors in an optimizer to determine why

specific programs do not execute correctly. One must not only determine what

was produced incorrectly in the erroneous program, but also at what point it

was produced within the compiler.

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No 5, September 1994

Automatic Isolation of Compiler Errors . 1651

3.1 Traditional Isolation of Optimization Errors

Traditionally, the compiler writer initially attempts to determine the specific

instruction (or instructions) generated by the compiler that causes the com-

piled program to execute incorrectly. One could first isolate a function that

contains incorrect instructions. This is accomplished by compiling some func-

tions with optimizations and other functions without optimizations, and

executing the program. If the program executes correctly, then the compiler

writer knows the problem is in the set of functions that were not compiled

with optimization, Otherwise, the compiler writer assumes the problem is in

the set of functions that were compiled with optimizations. The compiler

writer continues to narrow down the set of functions that could contain an

error until the function with incorrect code is isolated.

The compiler writer can then compile the isolated function with and

without various optimizations until finding the additional optimization being

applied to the function that causes the compiled program to execute incor-

rectly. At this point the compiler writer can visually inspect the differences

between the two assembly versions of the functions in an attempt to deter-

mine the instruction or instructions that appear to cause incorrect behavior.

Given that the compiler writer is able to conclude that a specific instruction

within a function causes the compiled program to produce incorrect results,

finding the reason why the compiler produced this instruction is the next

task. One approach is to successively turn off compiler optimizations until the

offending instruction is no longer produced in an effort to identify the specific

optimization that has caused the problem.

While these techniques may sometimes be effective, they are also quite

tedious. Furthermore, some compiler optimizations that reduce execution

time while increasing code size are becoming more popular. These optimiza-

tion include subprogram inlining [Davidson and Holler 1988], loop unrolling

[Hennessy and Patterson 1990], and replicating code to avoid unconditional

jumps [Mueller and Whalley 1993]. When these types of optimizations are

applied, a single function may expand into several thousand lines of assembly

code. Visual inspection of such functions to discover incorrect instructions is

impractical. Using traditional methods to identify the point in the compiler

that causes an invalid instruction to be produced in these functions may also

be unrealistic. Identifying the optimization that produces the problem maybe

difficult since the instruction may only be produced when a specific combina-

tion of optimizations is performed. Even if the compiler writer happens to

identify correctly the optimization that produces the problem, the point in the

compiler when the incorrect transformation occurs still has to be found. A

specific optimization in upo may be applied in hundreds of transformations

on RTLs when compiling a single function.

3.2 Automatic Isolation of Optimization Errors

A tool, called upoiso, has been developed to isolate errors automatically in the

upo compiler system, This tool isolates optimization errors by determining
the first transformation that causes incorrect output from the execution of

the compiled program. First, the optimization phases applied by vpo are

ACM Transact~ons on Programmmg Languages and Systems, Vol. 16, No. 5, September 1994.

1652 . David B Whalley

classified as one of two types, necessary or improving. A necessary phase is

required to produce code that can be compiled and executed. These phases,

which are usually regarded as code generation activities, include assigning

pseudoregisters to hardware registers and fixing the entry and exit points of

a function to manage the run-time stack. All phases within the optimizer that

are not required are referred to as improving. Only improving transforma-

tions that cause incorrect output can be isolated by vpoiso.

The upoiso tool perform a binary search that relies on the ability to limit

the number of improving transformations applied to a specified function.

Preceding and following each transformation, vpo invokes functions called

start trans and endtrans respectively. In the endtrans function, which is

invoked when the end of a transformation is identified, upo checks a counter

to determine if the specified limit to the number of improuing transforma-

tions has been reached. Unfortunately, upo can be in quite deeply nested

routines and logic at a point when a transformation has been completed. To

check a status flag at each of the points after returning from the endt rans

function to prevent further improving transformations would have required

significant modifications to upo. To minimize the updates to the optimizer,

the UNIX set Imp and I ong j mp functions were used to back out of code

within upo when the last transformation was performed. Execution then

resumes within a high-level routine, and only the remaining necessary

transformations are applied.

The upoiso tool is a C program with uses the C system function to invoke

various UNIX shell commands. First, upoiso reads in a file of information

indicating how to isolate an error within a program. This information in-

cludes the basenames of the files that are output from the code expander (or

input to vpo), link and execute commands, maximum cpu time in seconds

allowed for execution (i.e., in case an error does not cause the program to

terminate), desired and actual output filenames, compilation flags (the user

can specify any combination of optimizations to be performed), and strings

indicating lines to disregard (i.e., the output contains information dependent

on time). For instance, a manufactured error was inserted during the compi-

lation of the program yacc. To isolate the error, the following information

was input to vpoiso.

cexfllcs : yl Y2 y3 y4 #

l~nk command: cc –o yacc yl. o y2.0y3 .0y4. o

execute command: yacc cgram. y

maximum time : 15

desired output fllc: yacc out

actual output file: y.tab. c

Compllatlon flags: LVGOCMSFA

disregard strings :

After reading this information upoiso has to determine if an incorrect

transformation can be isolated. Thus, upoiso invokes upo for each file to be

compiled with an option set to record for each function the basename of the

file in which the function resides, the function name, and the number of

improving transformations required. The upoiso tool then links and executes

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No 5, September 1994

Automatic Isolation of Compiler Errors . 1653

the program using the specified commands. If the actual output is the same

as the desired output, then vpoiso quits after informing the user that it could

find no error when all optimizations were applied to each function in the

program. Otherwise, vpoiso reads the information generated during the

previous compilation and invokes upo for each file to be compiled, indicating

that no improving transformations are to be performed. Again, vpoiso issues

commands to link and execute the program. If the actual output is the same

as the desired output, then upoiso has determined that the problem is an

optimization error, and it performs a binary search to isolate the first

incorrect improving transformation. The binary search is depicted in the

following pseudocode.

lastmln= O;

lastmax . total number of improving transformations

while (lastmax - lastmln > O) {

mldnum= (lastmin+ lastmax) / 2 ;

recompile program with only the first mldnum transformations performed

remove actual output file

link and execute program
~ f (actual output file = = desired output file)

lastmin=mldnum+ 1;

else

lastmax=mldnum;

}
1 f (last result was incorrect)

badtrans = mldnum;
else

badtrans = midnum+ 1;

At this point vpoiso prints the name of the function containing the first

incorrect transformation and the incorrect transformation number within

that functional The user can then set a breakpoint in a source-level debugger

executing upo that will stop when the transformation with that number is

encountered. The s tart t rans function in vpo that is invoked when the start

of a transformation is identified contains the following portion of code.

If (opttransnum== breakopttransnum)

fprlntf (stderr, “ lmprovlng trans breakpoint encountered\ n“) ;

. .

The user assigns the displayed transformation number to be the breakopt-

t ransnum variable, sets a breakpoint at the line where the message is
printed, and executes upo. Thus, using this feature, the compiler writer can

quickly access the point during the compilation that precedes the incorrect

improuing transformation.

1The UPOMO tool IS only guaranteed to find the first Improumg transformation that causes

incorrect output It is possible that a previous transformation was invalid and that the isolated

transformation was the first transformation that moves mvahd instructions mto a path that was

executed. This situation has not occurred when testing UPOLSO with manufactured or actual

errors.

ACM Transactions on Programmmg Languages and Systems, Vol 16, No 5, September 1994

1654 . David B. Whalley

3.3 Decreasing the Isolation Time

The potentially most time-consuming component of the execution of upoiso

when isolating an optimization error is the recompilation of each instance of

the compiled program during the binary search performed. A naive imple-

mentation of vpoiso would recompile the entire program before each execu-

tion. In a previous implementation of upoiso [Boyd and Whalley 1993],

recompilation was limited to the files that were within the current search

range. If the transformations on functions in a file were not within the

current search range that could contain the first incorrect transformation,

then the file was not recompiled. Recompilation of a file was also unnecessary

when all the functions in the file were compiled with the same number of

transformations as in the previous compilation, In addition, if a function was

in a file that needed to be compiled and it was not within the current search

range, then the function was compiled with no optimizations to decrease the

compilation time.

The current implementation of upoiso further decreases isolation time by

substituting file merging for recompilation when possible. Even recompiling a

function with no optimizations requires much more time than simply copying

the function from a file. Some necessary transformations, such as assigning

pseudoregisters to hardware registers and parsing each RTL using the

machine description to translate it to an assembly code instruction, are

expensive operations. As mentioned previously, vpoiso first compiles the

program with all improving transformations applied and then no improving

transformations applied. This determines if there is an error and if it is the

result of an improving transformation. The vpoiso tool saves the assembly

and object code files from both of these compilations. An assembly comment

was also inserted between functions to facilitate the identification of the start

and end of a function. The algorithm for performing the binary search was

slightly modified. The mi dnum value, which represents the middle of the

current range of improving transformations that could contain the error, gets

adjusted to the closest function boundary, Instead of having vpo process the

code expander files, the assembly file that is to contain both optimized and

unoptimized functions is created by merging these functions from the corre-

sponding assembly files produced by the two initial compilations. At the point

that the error is isolated to a single function, the portion of the code expander

file containing information for that function is extracted. The binary search

that is performed on the transformations within that function only requires

recompilation of this single function. The preceding functions in the file are

merged in from the corresponding optimized assembly file, and the subse-

quent functions are merged from the unoptimized assembly file.

To illustrate the performance of vpoiso for finding optimization errors, the

results for finding a manufactured optimization error inserted into the compi-

lation of the yacc program is described. There were a total of 13,955 improv-

ing transformations applied with the complete optimization of yacc. Three

different versions of vpoiso were executed to illustrate the effect of attempt-

ing to avoid unnecessary recompilation. All three versions perform a binary

ACM Transactions on Programming Languages and Systems, Vol 16, No 5, September 1994

Automatic Isolation of Compiler Errors . 1655

Table I. Time Required to Isolate an Optimization Error in Yacc

Version Minutes :Seconds

1 17:41

2 9:56

3 6:08

search to isolate the first invalid improving transformation. However, the

level of recompilation at each point during the binary search varied with each

version. The first was the naive approach that processes all the files for each

recompilation. The second version was the previous implementation of vpoiso

[Boyd and Whalley 1993] that avoided unnecessary recompilation of files that

were outside the current search range or were processed the same as during

the previous compilation. The third version was the current implementation

that avoids recompilation by using file merging when possible. The r,poiso

tool required 16 compilations\ executions of yacc for each version to isolate

the erroneous transformation correctly on a Sun SPARC IPC.2 The time

required for each version is shown in Table I.

4. ISOLATION OF NONOPTIMIZATION ERRORS

If the execution of a program that was compiled with no optimizations by vpo

does not produce correct output, then the error must have been introduced by

the front end, code expander, or a necessary transformation in the optimizer.

Unlike improving transformations in the optimizer, actions performed by the

front end, code expander, or necessary transformations by the optimizer

cannot be selectively disabled to isolate an error. Yet mistakes in constructing

the code expander, which expands each intermediate operation to instruc-

tions for the machine, are typically encountered more frequently than prob-

lems in the coding of the optimizer when the upo compiler system is retar-

geted to a new machine.3 Invalid code expander operations often result in

nonoptimization errors. If another compiler is available that can produce

correct (but perhaps more inefficient) code, then upoiso can isolate nonopti-

mization errors to a single function.

The isolation of nonoptimization errors by vpoiso is accomplished in the

following manner. It is assumed that for each specified code expander file,

there exists a corresponding assembly file generated by a native compiler for

2Note that the first two executions were only performed to verify that an incorrect transforma-

tion could be isolated.

3Most optimizations are performed in machine-independent code within upo since the general

form of an RTL is machine-independent. Therefore, errors in the retargeting of the optimizer

occur relatively infrequently compared to nonoptimization errors since most of the errors have

already been diagnosed and corrected when upo was retargeted to other machines. It may be

that optimization errors are more frequently encountered during the maintenance of a compder

since most nonoptimization errors can be detected during the mltlal testing of the compiler. It

has been the experience of this author that optimization errors are typically more difficult to

isolate by hand than nonoptimization errors.

ACM Transactions m Programmmg Languages and Systems, Vol 16, No 5, September 1994

1656 . David B Whalley

the machine. For this paper the native compiler was pee (Portable C Com-

piler) [Johnson 1979]. After determining that incorrect output is still pro-

duced when no improving transformations are applied, vpoiso first modifies

the labels in the native assembly files to ensure they are different from the

labels in the nonoptimized assembly files generated by vpo. The vpoiso tool

then performs a binary search on the functions in the program. For instance,

in the yaw program there are 48 functions and they were associated with

numbers from O–47. Functions associated with a number less than or equal

to the mi dnum value, which now represents the middle of the current search

range of functions that could contain the error, are obtained from the

nonoptimized assembly files generated by upo. Functions associated with a

number greater than the mi dnum value are obtained from the native assem-

bly files.4 If a file is to contain both nonoptimized functions generated by vpo

and functions generated by the native compiler, then the file is created by

merging the appropriate functions from the upo and native compiler-gener-

ated files.5

Ideally, a compiler writer would like to obtain a finer level of isolation of

nonoptimization errors comparable to that when vpoiso isolates optimization

errors. One possibility is to isolate the error to a C statement since most front

ends, including the C front end for vpo called vpcc [Davidson and Whalley

1989], can identify the intermediate operations associated with each C state-

ment. One approach would be to attempt to merge the assembly code gener-

ated by the vpo and the native compiler within the function that was

identified as containing the nonoptimization error. While no user-allocable

registers are typically live across C statements when no optimizations are

performed, other problems may arise. For instance, the offset of local vari-

ables on the run-time stack or the amount of space allocated on the run-time

stack could differ. In addition, labels that are the target of goto statements

will have to be consistent with the labels referenced in the jump instructions

used to implement the gotos. While such an approach may be feasible, the

implementation would be very dependent on the code generation strategies

used by the native compiler.

Another approach is to use a tool that separates each C statement within a

function into separate functions (i.e., each C statement would be replaced

with a function call). This tool could be applied to the function with the

nonoptimization error. A binary search could then occur on the newly gener-

ated functions to identify the first C statement with the error. Unfortunately,

access to local variables and parameters must somehow be permitted. Intro-

duction of new C statements to allow this access may introduce new nonopti-

mization errors, which would subvert the isolation process.

4Note that both upo and the natme compiler have to use similar calhng sequences since

functions compded by each of the compders wdl be intermixed,

51solation of nonoptimization errors introduced some machme dependencies m upozso since the

native assembly files were used This included machine-dependent functions to modify labels and

to Identify the start of a function.

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No 5, September 1994

Automatic Isolation of Compiler Errors . 1657

5. APPLYING THE TECHNIQUES TO OTHER OPTlMlZERS
There are certain features of vpo that simplified the development of the tool
to isolate optimization errors. Performing code generation before all optimiza-
tions allows vpoiso to determine accurately that a code generation error was
not caused by the optimizer. If code generation was performed after optimiza-
tions, then a code generation error may only occur when the intermediate
representation is in a specific form (e.g., a particular instance of a dag). When
the number of optimizations performed is reduced, this specific form may not
appear. In this situation, it would be difficult to have a tool determine
automatically that the error was not caused by the optimizer. The structure
of the vpo optimizer also made it easy to stop performing improving transfor-
mations a t any point during a compilation. This ability may not be as
straightforward to implement in other optimizers.

6. COMPARISON WITH RELATED WORK
A tool known as bugfind [Caron and Darnel1 19901 was developed to assist in
the debugging of optimizing compilers. The bugfind tool attempts to deter-
mine the highest optimization level a t which each file within a program can
be compiled and produce correct output. To isolate a function that was not
optimized correctly, one has to place each function within the program in a
separate file. The bugfind tool uses the make facility in UNM and is
generalized enough to work with different compilers.

While bugfind and vpoiso share some similar ideas, there are also consid-
erable differences. Both bugfind and vpoiso use a binary search technique to
isolate optimization errors. The vpoiso tool finds not only the failing module,
but also the first transformation within a function that causes incorrect
results. The transformation number can be used to access the point in vpo
when the transformation is about to be applied. This finer level of isolating
errors is important when optimization errors occur in large functions or when
code-size-increasing transformations are performed. The vpoiso tool also
isolates nonoptimization errors to the first function that causes incorrect
output. Unlike bugfind, vpoiso can only isolate errors within the vpo com-
piler system. However, the techniques vpoiso uses can be applied with many
other compilers.

7. CONCLUSIONS
The tool described in this paper provides several important benefits. Both the
isolation of optimization and nonoptimization errors are important when
retargeting the back end of a compiler. A tool with the ability to isolate
automatically the first function containing incorrect instructions will be very
valuable for finding many nonoptimization errors. For instance, a common
code generation error, when retargeting a compiler to a new machine, is to
implement the calling sequence incorrectly. An oversight when constructing
the code expander, such as an inappropriate indication of a dead register,
may result in an invalid improving transformation. Thus, isolation of opti-
mization errors may also be useful for finding problems not in the optimizer
itself.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 5, September 1994.

1658 . Dawd B. Whalley

The upoiso tool will also be useful when experimenting with new optimiza-

tion. While it may be obvious that the newly introduced optimization was

responsible for causing an error, manual isolation of the actual error can still

be quite challenging, particularly when employing code-size-increasing opti-

mization. For instance, a new loop optimization may be applied to 50

different loops in a given program. The upoiso tool not only isolates the illegal

improving transformations, but also identifies the location and instant the

transformation is performed in upo.

There are other benefits of using a tool that can automatically isolate

compiler errors. If a compiler is used as a commercial product, then it

typically has to be maintained for several years after its initial release. This

maintenance includes responding to bug reports from users. Automatic isola-

tion of compiler errors will ease this task. Compilers can also be used to guide

instruction set design to determine if proposed architectural features can be

exploited [Davidson and Whalley 1991]. Decreasing the time to retarget a

compiler to a proposed architecture would also decrease the time required to

design and develop a new machine.

The techniques described in this paper could perhaps also be used with

other applications in addition to compilers. The techniques of isolating opti-

mization errors could be applied to any application that performs a series of

optional transformations on its input. A technique similar to isolating nonop-

timization errors may be used with applications that are developed with a

configuration management tool. One could develop a system to determine

automatically the first set of changes to an application that causes incorrect

results. Testing and maintenance are expensive phases in the software

product life cycle. Tools that can automatically isolate programming errors

would have enormous potential benefits.

ACKNOWLEDGMENTS

The authors thank Jack Davidson for allowing upo to be used for this

research. The identification of each change and the sequences of changes that

comprised the transformation in vpo were simplified by the high quality of

coding of vpo, which in a very large part is due to the efforts of Manuel

Benitez. Also, Indrakshi Ray tested upoiso and made several suggestions that

resulted in an improved tool.

REFERENCES

BENITEZ, M. E. AND DAVIDSON, J. W 1988 A portable global optlmlzer and hnker. In Proceed-

ings of the SIGPLAN ’88 Symposium on Programmmg Language Design and Implementat~on

(June) ACM, New York, 329-338.
BOYD, M R. AND WHALLEY, D B. 1992. Isolatlon and analysm of optimization errors In

Proceedings of the SIGPLAN ’93 Conference on Programmmg Language Dewgn and Implemen-

tat~on (June). ACM, New York, 26–35
CARON, J. M. AND DARNELL, P. A. 1990. Bu~lnd: a tool for debugging optimizing compilers. In

SIGPLAN Not. 25, 1 (Jan), 17-22

DAVIDSON) J, ANU HOLLER, A 1988 A Study of a C function mimer. Soj%J. Prac. Exper. 18, 8

(Aug.), 775-790.

ACM Transactions on Programming Languages and Systems, Vol 16, No 5, September 1994

Automatic Isolation of Compiler Errors . 1659

DAVIDSON, J. AND WHALLEY, D. B. 1991. A design environment for addressing architecture and

compiler interactions. In Mtcroprocess. Afzcrosyst. 15, 9 (Nov.), 459–472.

DAVIDSON, J. W. AND WHALLEY, D. B. 1989. Quick compilers using peephole optirnizations.

Softw. Prac. Exper. 19, 1 (Jun.), 195-203.

HENNESSY, J. AND PATTERSON, D. 1990. Computer Architecture: A Quantitative Approach,

Morgan Kaufmann, San Mateo, Calif.

JOHNSON, S. C. 1979. A tour through the portable C compiler. In Urux Programmer’s Manual,

7th Echtzon 2B. Section 33 (Jan.).

MUELLER, F. AND WHALLEY, D. B. 1992. Avoiding unconditional jumps by code replication. In

Proceedings of the SIGPLAN ’92 Conference on Programmmg Language Deszgn and Implemen-

tation (June). ACM, New York, 322–330.

WULF, W., JOHNSSON, R. K., WEINSTOCK, C. B., HOBBS, S. O., AND GMCHKS, C. M. 1975. The

Design of an OptLmLzmg Cornpder. American Elsevier, New York.

Received June 1993; revised August 1993; accepted August 1993

ACM Transactions on Programmmg Languages and Systems, Vol. 16, No. 5, September 1994

