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Abstract

We present a type theory for higher-order modules that accounts
for many central issues in module system design, including translu-
cency, applicativity, generativity, and modules as first-class values.
Our type system harmonizes design elements from previous work,
resulting in a simple, economical account of modular programming.
The main unifying principle is the treatment of abstraction mecha-
nisms as computational effects. Our language is the first to provide
a complete and practical formalization of all of these critical issues
in module system design.
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ings of Programs]: Studies of Program Constructs—Type structure
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1 Introduction

The design of languages for modular programming is surprisingly
delicate and complex. There is a fundamental tension between
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the desire to separate program components into relatively indepen-
dent parts and the need to integrate these parts to form a coher-
ent whole. To some extent the design of modularity mechanisms
is independent of the underlying language [17], but to a large ex-
tent the two are inseparable. For example, languages with poly-
morphism, generics, or type abstraction require far more complex
module mechanisms than those without them.

Much work has been devoted to the design of modular program-
ming languages. Early work on CLU [19] and the Modula family
of languages [34, 2] has been particularly influential. Much effort
has gone into the design of modular programming mechanisms for
the ML family of languages, notably Standard ML [23] and Ob-
jective Caml [27]. Numerous extensions and variations of these
designs have been considered in the literature [21, 18, 28, 31, 5].

Despite (or perhaps because of) these substantial efforts, the field
has remained somewhat fragmented, with no clear unifying theory
of modularity having yet emerged. Several competing designs have
been proposed, often seemingly at odds with one another. These
decisions are as often motivated by pragmatic considerations, such
as engineering a useful implementation, as by more fundamental
considerations, such as the semantics of type abstraction. The rela-
tionship between these design decisions is not completely clear, nor
is there a clear account of the trade-offs between them, or whether
they can be coherently combined into a single design.

The goal of this paper is to provide a simple, unified formalism
for modular programming that consolidates and elucidates much of
the work mentioned above. Building on a substantial and growing
body of work on type-theoretic accounts of language structure, we
propose a type theory for higher-order program modules that har-
monizes and enriches these designs and that would be suitable as a
foundation for the next generation of modular languages.

1.1 Design Issues

Before describing the main technical features of our language, it is
useful to review some of the central issues in the design of module
systems for ML. These issues extend to any language of similar
expressive power, though some of the trade-offs may be different
for different languages.

Controlled Abstraction Modularity is achieved by using signa-
tures (interfaces) to mediate access between program components.
The role of a signature is to allow the programmer to “hide” type
information selectively. The mechanism for controlling type prop-
agation is translucency [11, 14], with transparency and opacity as
limiting cases.



Phase Separation ML-like module systems enjoy a phase sep-
aration property [12] stating that every module is separable into a
static part, consisting of type information, and a dynamic part, con-
sisting of executable code. To obtain fully expressive higher-order
modules and to support abstraction, it is essential to build this phase
separation principle into the definition of type equivalence.

Generativity MacQueen coined the term generativity for the
creation of “new” types corresponding to run-time instances of
an abstraction. For example, we may wish to define a functor
SymbolTable that, given some parameters, creates a new symbol
table. It is natural for the symbol table module to export an abstract
type of symbols that are dynamically created by insertion and used
for subsequent retrieval. To preclude using the symbols from one
symbol table to index another, generativity is essential—each in-
stance of the hash table must yield a “new” symbol type, distinct
from all others, even when applied twice to the same parameters.

Separate Compilation One goal of module system design is to
support separate compilation [14]. This is achieved by ensuring
that all interactions among modules are mediated by interfaces that
capture all of the information known to the clients of separately-
compiled modules.

Principal Signatures The principal, or most expressive, signa-
ture for a module captures all that is known about that module dur-
ing type checking. It may be used as a proxy for that module for
purposes of separate compilation. Many type checking algorithms,
including the one given in this paper, compute principal signatures
for modules.

Modules as First-Class Values Modules in ML are “second-
class” in the sense that they cannot be computed as the results of
ordinary run-time computation. It can be useful to treat a mod-
ule as a first-class value that can be stored into a data structure, or
passed as an ordinary function argument or result [11, 24].

Hidden Types Introducing a local, or “hidden”, abstract type
within a scope requires that the types of the externally visible com-
ponents avoid mention of the abstract type. This avoidance problem
is often a stumbling block for module system design, since in most
expressive languages there is no “best” way to avoid a type vari-
able [9, 18].

1.2 A Type System for Modules

The type system proposed here takes into account all of these design
issues. It consolidates and harmonizes design elements that were
previously seen as disparate into a single framework. For example,
rather than regard generativity of abstract types as an alternative to
non-generative types, we make both mechanisms available in the
language. We support both generative and applicative functors, ad-
mit translucent signatures, support separate compilation, and are
able to accommodate modules as first-class values [24, 29].

Generality is achieved not by a simple accumulation of features,
but rather by isolating a few key mechanisms that, when com-
bined, yield a flexible, expressive, and implementable type system
for modules. Specifically, the following mechanisms are crucial.

Singletons Propagation of type sharing is handled by singleton
signatures, a variant of Aspinall’s and Stone and Harper’s singleton
kinds [33, 32, 1]. Singletons provide a simple, orthogonal treat-
ment of sharing that captures the full equational theory of types in

a higher-order module system with subtyping. No previous module
system has provided both abstraction and the full equational the-
ory supported by singletons,1 and consequently none has provided
optimal propagation of type information.

Static Module Equivalence The semantics of singleton signa-
tures is dependent on a (compile-time) notion of equivalence of
modules. To ensure that the phase distinction is respected, we
define module equivalence to mean “equivalence of static compo-
nents,” ignoring all run-time aspects.

Subtyping Signature subtyping is used to model “forgetting”
type sharing, an essential part of signature matching. The coercive
aspects of signature matching (dropping of fields and specialization
of polymorphic values) are omitted here, since the required coer-
cions are definable in the language.

Purity and Impurity Our type system classifies module expres-
sions into pure (effect-free) and impure (effectful) forms. To ensure
proper enforcement of abstraction, impure modules are incompa-
rable (may not be compared for equality with any other module)
and non-projectible (may not have type components projected from
them). It follows that impure modules are also non-substitutable
(may not be substituted for a module variable in a signature).

Abstraction and Sealing Modules that are sealed with a signa-
ture to impose type abstraction [11] are regarded as impure. In other
words, sealing is regarded as a pro forma computational effect. This
is consistent with the informal idea that generativity involves the
generation of new types at run time. Moreover, this ensures that
sealed modules are incomparable and non-projectible, which is suf-
ficient to ensure the proper semantics of type abstraction.

Totality and Partiality Functors are λ-abstractions at the level of
modules. A functor whose body is pure is said to be total; otherwise
it is partial. It follows that the application of a pure, total functor to
a pure argument is pure, whereas the application of a pure, partial
functor to a pure argument is impure. Partial functors are naturally
generative, meaning that the abstract types in its result are “new”
for each instance; total functors are applicative, meaning that equal
arguments yield equal types in the result. Generative functors are
obtained without resort to “generative stamps” [23, 21].

Weak and Strong Sealing Since sealing induces a compu-
tational effect, only partial functors may contain sealed sub-
structures; this significantly weakens the utility of total functors.
To overcome this limitation we distinguish two forms of effect,
static and dynamic, and two forms of sealing, weak and strong.
Weak sealing induces a static effect, which we think of as occur-
ring once during type checking; strong sealing induces a dynamic
effect, which we think of as occurring during execution. Dynamic
effects induce partiality, static effects preserve totality.

Existential Signatures In a manner similar to Shao [31], our
type system is carefully crafted to circumvent the avoidance prob-
lem, so that every module enjoys a principal signature. However,
this requires imposing restrictions on the programmer. To lift these
restrictions, we propose the use of existential signatures to provide
principal signatures where none would otherwise exist. We show
that these existential signatures are type-theoretically ill-behaved in

1Typically the omitted equations are not missed because restric-
tions to named form or valuability prevent programmers from writ-
ing code whose typeability would depend on those equations in the
first place [4].



types τ ::= Typ M |Πs:σ.τ | τ1× τ2
terms e ::= Val M | 〈e1,e2〉 | πie | eM |

fix f (s:σ):τ.e | let s = M in (e : τ)
signatures σ ::= 1 | [[T ]] | [[τ]] |Πtots:σ1.σ2 |Πpars:σ1.σ2 |

Σs:σ1.σ2 | s(M)
modules M ::= s | 〈〉 | [τ] | [e : τ] | λs:σ.M |M1M2 |

〈s = M1,M2〉 | πiM |
let s = M1 in (M2 : σ) |
M:>σ |M::σ

contexts Γ ::= • | Γ,s:σ

Figure 1. Syntax

general, so, we restrict their use to a well-behaved setting. In the
style of Harper and Stone [13], we propose the use of an elaboration
algorithm from an external language that may incur the avoidance
problem, into our type system, which does not.

Packaged Modules Modules in our system are “second-class” in
the sense that the language of modules is separate from the language
of terms. However, following Mitchell et al. [24] and Russo [29],
we provide a way of packaging a module as a first-class value. In
prior work, such packaged modules are typically given an existen-
tial type, whose closed-scope elimination construct can make for
awkward programming. Instead, our account of type generativity
allows us to employ a more natural, open-scope elimination con-
struct, whereby unpackaging a packaged module engenders a dy-
namic effect.

While these features combine naturally to form a very general lan-
guage for modular programming, they would be of little use in
the absence of a practical implementation strategy. Some previ-
ous attempts have encountered difficulties with undecidability [11]
or incompleteness of type checking [27]. In contrast, our formalism
leads to a practical, implementable programming language.

The rest of this paper is structured as follows: In Section 2 we
present our core type system for higher-order modules, including
the intuition behind its design and a brief description of the de-
cidable typechecking algorithm. In Section 3 we discuss the pro-
gramming importance of having both weak and strong forms of
sealing. In Section 4 we explain the avoidance problem and how
it can be circumvented using an elaboration algorithm. In Section 5
we present a very simple, orthogonal extension of our core system
to provide support for packaging modules as first-class values. Fi-
nally, in Section 6 we compare our system with related work and in
Section 7 we conclude.

2 Technical Development

We begin our technical development by presenting the syntax of
our language in Figure 1. Our language consists of four syntac-
tic classes: terms, types, modules, and signatures (which serve as
the types of modules). The language does not explicitly include
higher-order type constructors or kinds (which ordinarily serve as
constructors’ types); in our language the roles of constructors and
kinds are subsumed by modules and signatures. Contexts bind mod-
ule variables (s) to signatures.

As usual, we consider alpha-equivalent expressions to be identical.
We write the capture-avoiding substitution of M for s in an expres-
sion E as E[M/s].

Types There are three basic types in our language. The product
type (τ1× τ2) is standard. The function type, Πs:σ.τ, is the type of
functions that accept a module argument s of signature σ and return
a value of type τ (possibly containing s). As usual, if s does not
appear free in τ, we write Πs:σ.τ as σ→τ. (This convention is used
for the dependent products in the signature class as well.) Finally,
when M is a module containing exactly one type (which is to say
that M has the signature [[T ]]), that type is extracted by Typ M. A
full-featured language would support a variety of additional types
as well.

Terms The term language contains the natural introduction and
elimination constructs for recursive functions and products. In ad-
dition, when M is a module containing exactly one value (which is
to say that M has the signature [[τ]], for some type τ), that value is
extracted by Val M. When f does not appear free in e, we write
fix f (s:σ):τ.e as Λs:σ.e.

The conventional forms of functions and polymorphic function are
built from module functions. Ordinary functions are built using
modules containing a single value:

τ1→ τ2
def
= [[τ1]]→ τ2

λx:τ.e(x) def
= Λs:[[τ]].e(Val s)

e1e2
def
= e1[e2]

and polymorphic functions are built using modules containing a sin-
gle type:

∀α.τ(α)
def
= Πs:[[T ]].τ(Typ s)

Λα.e(α)
def
= Λs:[[T ]].e(Typ s)

eτ def
= e[τ]

Signatures There are seven basic signatures in our language. The
atomic signature [[T ]] is the type of an atomic module containing a
single type, and the atomic signature [[τ]] is the type of an atomic
module containing a single term. The atomic modules are written
[τ] and [e : τ], respectively. (We omit the type label “: τ” from atomic
term modules when it is clear from context.) The trivial atomic
signature 1 is the type of the trivial atomic module 〈〉.

The functor signatures Πtots:σ1.σ2 and Πpars:σ1.σ2 express the
type of functors that accept an argument of signature σ1 and return
a result of signature σ2 (possibly containing s). The reason for two
different Π signatures is to distinguish between total and partial
functors, which we discuss in detail below. For convenience, we
will take Π (without a superscript) to be synonymous with Πtot.
When s does not appear free in σ2, we write Πs:σ1.σ2 as σ1→σ2.

The structure signature Σs:σ1.σ2 is the type of a pair of modules
where the left-hand component has signature σ1 and the right-hand
component has signature σ2, in which s refers to the left-hand com-
ponent. As usual, when s does not appear free in σ2, we write
Σs:σ1.σ2 as σ1×σ2.

The singleton signature s(M) is used to express type sharing infor-
mation. It classifies modules that have signature [[T ]] and are stati-
cally equivalent to M. Two modules are considered statically equiv-
alent if they are equal modulo term components; that is, type fields
must agree but term fields may differ. Singletons at signatures other
than [[T ]] are not provided primitively because they can be defined
using the basic singleton, as described by Stone and Harper [33].
The definition of sσ(M) (the signature containing only modules
equal to M at signature σ) is given in Figure 5.



signature SIG =
sig
type s
type t = s * int

structure S : sig
type u
val f : u -> s

end

val g : t -> S.u
end

. . . is compiled as . . .

Σs:[[T ]].
Σt:s([Typ s×int]).

ΣS:(Σu:[[T ]].Σ f :[[Typ u→Typ s]].1).
Σg:[[Typ t→Typ(π1S)]].1

Figure 2. ML Signature Example

Modules The module syntax contains module variables (s), the
atomic modules, and the usual introduction and elimination con-
structs for Π and Σ signatures, except that Σ modules are introduced
by 〈s = M1,M2〉, in which s stands for M1 and may appear free in
M2. (When s does not appear free in M2, the “s =” is omitted.)
No introduction or elimination constructs are provided for single-
ton signatures. Singletons are introduced and eliminated by rules in
the static semantics; if M is judged equivalent to M′ in σ, then M
belongs to sσ(M′), and vice versa.

The remaining module constructs are strong sealing, written
M:>σ, and weak sealing, written M::σ. When a module is sealed
either strongly or weakly, the result is opaque. By opaque we mean
that no client of the module may depend on any details of the imple-
mentation of M other than what is exposed by the signature σ. The
distinction between strong and weak sealing is discussed in detail
below.

Although higher-order type constructors do not appear explicitly
in our language, they are faithfully represented in our language by
unsealed modules containing only type components. For example,
the kind (T→T )→T is represented by the signature ([[T ]]→ [[T ]])→
[[T ]]; and the constructor λα:(T →T ).(int×αint) is represented
by the module λs:([[T ]]→ [[T ]]).[int×Typ(s [int])].

Examples of how ML-style signatures and structures may be ex-
pressed in our language appear in Figures 2 and 3.

Comparability and Projectibility Two closely related issues are
crucial to the design of a module system supporting type abstrac-
tion:

1. When can a module be compared for equivalence with another
module?

2. When can a type component be projected from a module and
used as a type?

We say that a module is comparable iff it can be compared for
equivalence with another module, and that a module is projectible
iff its type components may be projected and used as type expres-
sions. (In the literature most presentations emphasize projectibil-
ity [11, 14, 15].)

structure S1 =
struct
type s = bool
type t = bool * int

structure S = struct
type u = string
val f = (fn y:u => true)

end

val g = (fn y:t => "hello world")
end

. . . is compiled as . . .

〈s = [bool],
〈t = [bool×int],

〈S = 〈u = [string],〈 f = [λy:Typ u.true],〈〉〉〉,
〈g = [λy:Typ t."hello world"],〈〉〉〉〉〉

Figure 3. ML Structure Example

A simple analysis of the properties of comparability and projectibil-
ity suggests that they are closely related. Suppose that M is a pro-
jectible module with signature [[T ]], so that Typ M is a type. Since
type equality is an equivalence relation, this type may be compared
with any other, in particular, Typ M′ for another projectible mod-
ule M′ of the same signature. But since Typ M and Typ M′ fully
determine M, we are, in effect, comparing M with M′ for equiva-
lence. This suggests that projectible modules be regarded as compa-
rable for type checking purposes. Conversely, if M is a comparable
module, then by extensionality M should be equivalent to [Typ M],
which is only sensible if M is also projectible.

Purity and Impurity The design of our module system rests on
the semantic notions of purity and impurity induced by computa-
tional effects. To motivate the design, first recall that in a first-class
module system such as Harper and Lillibridge’s [11] there can be
“impure” module expressions that yield distinct type components
each time they are evaluated. For example, a module expression
M might consult the state of the world, yielding a different mod-
ule for each outcome of the test. The type components of such a
module are not statically well-determined, and hence should not be
admitted as type expressions at all, much less compared for equiv-
alence. On the other hand, even in such a general framework, pure
(effect-free) modules may be safely regarded as both comparable
and projectible.

In a second-class module system such examples are not, in fact,
expressible, but we will nevertheless find it useful to classify mod-
ules according to their purity.2 This classification is semantic, in
the sense of being defined by judgments of the calculus, rather than
syntactic, in the sense of being determined solely by the form of
expression. Such a semantic approach is important for a correct
account of type abstraction in a full-featured module language.

The axiomatization of purity and impurity in our system is based on
a set of rules that takes account of the types of expressions, as well
as their syntactic forms. The type system is conservative in that
it “assumes the worst” of an impure module expression, ruling it

2Moreover, in Section 5 we will introduce the means to re-create
these examples in our setting, making essential use of the same clas-
sification system.



incomparable and non-projectible, even when its type components
are in fact statically well-determined. As we will see shortly, this is
important for enforcing type abstraction, as well as ensuring sound-
ness in the presence of first-class modules. In addition, since it is
sound to do so, we deem all pure module expressions to be compa-
rable and projectible. That is, to be as permissive as possible with-
out violating soundness or abstraction, we identify comparability
and projectibility with purity. Finally, note that a module is judged
pure based on whether its type components are well-determined,
which is independent of whether any term components have com-
putational effects.

In the literature different accounts of higher-order modules provide
different classes of pure modules. For example, in Harper and Lil-
libridge’s first-class module system [11], only syntactic values are
considered pure. In Leroy’s second-class module calculi [14, 15],
purity is limited to the syntactic category of paths. In Harper et al.’s
early “phase-distinction” calculus [12] all modules are deemed to
be pure, but no means of abstraction is provided.

Abstraction via Sealing The principal means for defining ab-
stract types is sealing, written M:>σ. Sealing M with σ pre-
vents any client of M from depending on the identities of any type
components specified opaquely—with signature [[T ]] rather than
s[[T ]](M)—inside σ. From the point of view of module equivalence,
this means that a sealed module should be considered incompara-
ble. To see this, suppose that M = ([int]:>[[T ]]) is regarded as
comparable. Presumably, M could not be deemed equivalent to
M′ = ([bool]:>[[T ]]) since their underlying type components are
different. However, since module equivalence is reflexive, if M
is comparable, then M must be deemed equivalent to itself. This
would mean that the type system would distinguish two opaque
modules based on their underlying implementation, a violation of
type abstraction.

A significant advantage of our judgmental approach to purity is that
it affords a natural means of ensuring that a sealed module is in-
comparable, namely to judge it impure. This amounts to regarding
sealing as a pro forma run-time effect, even though no actual effect
occurs at execution time. Not only does this ensure that abstraction
violations such as the one just illustrated are ruled out, but we will
also show in Section 3 that doing so allows the type system to track
the run-time “generation” of “new” types.

Applicative and Generative Functors Functors in Standard ML
are generative in the sense that each abstract type in the result of
the functor is “generated afresh” for each instance of the functor,
regardless of whether or not the arguments in each instance are
equivalent. Functors in Objective Caml, however, are applicative
in the sense that they preserve equivalence: if applied to equivalent
arguments, they yield equivalent results. In particular, the abstract
types in the result of a functor are the same for any two applications
to the same argument.

Continuing the analogy with computational effects, we will deem
any functor whose body is pure to be total, otherwise partial. The
application of a pure, total functor to a pure argument is pure, and
hence comparable. Total functors are applicative in the sense that
the application of a pure total functor to two equivalent pure mod-
ules yields equivalent pure modules, because the applications are
pure, and hence comparable. Partial functors, on the other hand,
always yield impure modules when applied. Therefore they do not
respect equivalence of arguments (because the results, being im-
pure, are not even comparable), ensuring that each instance yields
a distinct result.

We distinguish the signatures of total (applicative) and partial (gen-
erative) functors. Total functors have Π signatures, whereas partial
functors have Πpar signatures. The subtyping relation is defined so
that every total functor may be regarded (degenerately) as a partial
functor.

Weak and Strong Sealing In our system we identify applicative
functors with total ones, and generative functors with partial ones.
To make this work, however, we must refine the notion of effect.
For if sealing is regarded as inducing a run-time effect, then it is
impossible to employ abstraction within the body of a total func-
tor, for to do so renders the body impure. (We may seal the entire
functor with a total functor signature to impose abstraction, but this
only ensures that the exported types of the functor are held abstract
in any clients of that functor. It does not permit a substructure in
the body of the functor to be held abstract in both the clients of the
functor and in the remainder of the functor body.)

The solution is to distinguish two forms of sealing—strong, written
M:>σ as before, and weak, written M::σ. Both impose abstrac-
tion in the sense of limiting type propagation to what is explicitly
specified in the ascribed signature by regarding both forms of seal-
ing as inducing impurity. However, to support a useful class of
applicative functors, we further distinguish between static and dy-
namic effects. Weak sealing induces a static effect, whereas strong
sealing induces dynamic effect.

The significance of this distinction lies in the definition of total and
partial functors. A functor whose body involves a dynamic effect
(i.e., is dynamically impure), is ruled partial, and hence generative.
Thus strong sealing within a functor body induces generativity of
that functor. A functor whose body is either pure, or involves only
a static effect (i.e., is dynamically pure), is ruled total, and hence
applicative. This ensures that applicative functors may use abstrac-
tion within their bodies without incurring generative behavior. The
methodological importance of this distinction is discussed in Sec-
tion 3.

A dynamic effect may be thought of as one that occurs during exe-
cution, whereas a static effect is one that occurs during type check-
ing. Dynamic effects are suspended inside of a λ-abstraction, so
functor abstractions are dynamically pure. However, when applied,
the dynamic effects inside the functor are released, so that the ap-
plication is dynamically impure. On the other hand, static effects
occur during type checking, and hence are not suspended by λ-
abstraction, nor released by application.

Formalization The typing judgment for our system is written
Γ `κ M : σ, where κ indicates M’s purity. The classifier κ is drawn
from the following four-point lattice:

W
/ \
D S
\ /
P

The point P indicates that M is pure (and hence comparable and pro-
jectible), D indicates dynamic purity, S indicates static purity, and
W indicates well-formedness only (no purity information). Hence,
Γ `P M : σ is our purity judgment. It will prove to be convenient
in our typing rules to exploit the ordering (written v), meets (u),
and joins (t) of this lattice, where P is taken as the bottom and W
is taken as the top. We also sometimes find it convenient to use
the notation Πδs:σ1.σ2 for a functor signature that is either total or
partial depending on whether δ = tot or δ = par, respectively.



Γ `κ M : σ κv κ′

Γ `κ′ M : σ
(1)

Γ `κ M : σ
Γ `W (M:>σ) : σ

(2)
Γ `κ M : σ

Γ `κtD (M::σ) : σ
(3)

Γ ` ok
Γ `P s : Γ(s)

(4)

Γ,s:σ1 `κ M : σ2 κv D

Γ `κ λs:σ1.M : Πtots:σ1.σ2
(5)

Γ,s:σ1 `κ M : σ2

Γ `κuD λs:σ1.M : Πpars:σ1.σ2
(6)

Γ,s:σ1 ` σ2 sig

Γ `Πtots:σ1.σ2 ≤Πpars:σ1.σ2
(7)

Γ `κ M1 : Πtots:σ1.σ2 Γ `P M2 : σ1

Γ `κ M1M2 : σ2[M2/s]
(8)

Γ `κ M1 : Πpars:σ1.σ2 Γ `P M2 : σ1

Γ `κtS M1M2 : σ2[M2/s]
(9)

Γ `κ M : Σs:σ1.σ2

Γ `κ π1M : σ1
(10)

Γ `P M : Σs:σ1.σ2

Γ `P π2M : σ2[π1M/s]
(11)

Γ `κ M : σ Γ ` σ≤ σ′

Γ `κ M : σ′
(12)

Figure 4. Key Typing Rules

Some key rules are summarized in Figure 4. Pure modules are dy-
namically pure and statically pure, and each of those are at least
well-formed (rule 1). Strongly sealed modules are neither statically
nor dynamically pure (2); weakly sealed modules are not statically
pure, but are dynamically pure if their body is (3). Applicative
functors must have dynamically pure bodies (5); generative func-
tors have no restriction (6). Applicative functors may be used as
generative ones (7). Variables are pure (4), and lambdas are dy-
namically pure (5 and 6). The application of an applicative functor
is as pure as the functor itself (8), but the application of a generative
functor is at best statically pure (9). Finally, the purity of a module
is preserved by signature subsumption (12). The complete set of
typing rules is given in Appendix A.

The rules for functor application (rules 8 and 9) require that the
functor argument be pure. This is because the functor argument is
substituted into the functor’s codomain to produce the result signa-
ture, and the substitution of impure modules for variables (which
are always pure) can turn well-formed signatures into ill-formed
ones (for example, [Typ s] becomes ill-formed if an impure mod-
ule is substituted for s). (An alternative rule proposed by Harper
and Lillibridge [11] resolves this issue, but induces the avoidance
problem, as we discuss in Section 4.) Therefore, when a functor
is to be applied to an impure argument, that argument must first be
bound to a variable, which is pure. Similarly, projection of the sec-
ond component of a pair is restricted to pure pairs (rule 11), but no
such restriction need be made for projection of the first component
(rule 10), since no substitution is involved.

Static Equivalence In the foregoing discussion we have fre-
quently made reference to a notion of module equivalence, without
specifying what this means. A key design decision for a module cal-
culus is to define when two comparable modules are to be deemed
equivalent. Different module systems arise from different notions
of equivalence.

If a pure module has signature [[T ]], it is possible to extract the
type component from it. Type checking depends essentially on
the matter of which types are equal, so we must consider when
Typ M is equal to Typ M′. The simplest answer would be to regard
Typ M = Typ M′ exactly when the modules M and M′ are equal.
But this is too naive because we cannot in general determine when
two modules are equal. Suppose F : [[int]]→σ and e,e′ : int. Then
F [e] = F [e′] if and only if e = e′, but the latter equality is undecid-
able in general.

A characteristic feature of second class module systems is that they
respect the phase distinction [12] between compile-time and run-
time computation. This property of a module system states that type
equivalence must be decidable independently of term equivalence.
This should be intuitively plausible, since a second-class module
system provides no means by which a type component of a module
can depend on a term component. (This is not happenstance, but
the result of careful design. We will see in Section 5 that the matter
is more subtle than it appears.)

Based on this principle, we define module equivalence to be “equiv-
alence for type checking purposes”, or static equivalence. Roughly
speaking, two modules are deemed to be equivalent whenever they
agree on their corresponding type components.3

We write our module equivalence judgment as Γ ` M ∼= M′ : σ.
The rules for static equivalence of atomic modules are the expected
ones. Atomic type components must be equal, but atomic term
components need not be:

Γ ` τ≡ τ′

Γ ` [τ]∼= [τ′] : [[T ]]

Γ `P M : [[τ]] Γ `P M′ : [[τ]]
Γ `M ∼= M′ : [[τ]]

Since the generative production of new types in a generative functor
is notionally a dynamic operation, generative functors have no static
components to compare. Thus, pure generative functors are always
statically equivalent, just as atomic term modules are:

Γ `P M : Πpars:σ1.σ2 Γ `P M′ : Πpars:σ1.σ2

Γ `M ∼= M′ : Πpars:σ1.σ2

The complete set of equivalence rules is given in Appendix A.

As an aside, this discussion of module equivalence refutes the mis-
conception that first-class modules are more general than second-
class modules. In fact, the expressiveness of first- and second-class
modules is incomparable. First-class modules have the obvious ad-
vantage that they are first-class. However, since the type compo-
nents of a first-class module can depend on run-time computations,
it is impossible to get by with static module equivalence and one

3The phase distinction calculus of Harper, et al. [12] includes
“non-standard” equality rules for phase-splitting modules M into
structures 〈Mstat,Mdyn〉 consisting of a static component Mstat and a
dynamic component Mdyn. Our static equivalence M ∼= M′ amounts
to saying Mstat = M′

stat in their system. However, we do not identify
functors with structures, as they do.



must use dynamic equivalence instead (in other words, one can-
not phase-split modules as in Harper et al. [12]). Consequently,
first-class modules cannot propagate as much type information as
second-class modules can.

Singleton Signatures Type sharing information is expressed in
our language using singleton signatures [33], a derivative of translu-
cent sums [11, 14, 18]. (An illustration of the use of singleton
signatures to express type sharing appears in Figure 2.) The type
system allows the deduction of equivalences from membership in
singleton signatures, and vice versa, and also allows the forgetting
of singleton information using the subsignature relation:

Γ `P M : sσ(M′) Γ `P M′ : σ
Γ `M ∼= M′ : σ

Γ ` M ∼= M′ : σ
Γ `P M : sσ(M′)

Γ `P M : σ
Γ ` sσ(M)≤ σ

Γ `M ∼= M′ : σ
Γ ` sσ(M)≤ sσ(M′)

When σ = [[T ]], these deductions follow using primitive rules of the
type system (since s[[T ]](M) = s(M) is primitive). At other signa-
tures, they follow from the definitions given in Figure 5.

Beyond expressing sharing, singletons are useful for “selfifica-
tion” [11]. For instance, if s is a variable bound with the signature
[[T ]], s can be given the fully transparent signature s(s). This fact is
essential to the existence of principal signatures in our type check-
ing algorithm. Note that since singleton signatures express static
equivalence information, the formation of singleton signatures is
restricted to pure modules. Thus, only pure modules can be selfi-
fied (as in Harper and Lillibridge [11] and Leroy [14]).

Singleton signatures complicate equivalence checking, since equiv-
alence can depend on context. For example, λs:[[T ]].[int] and
λs:[[T ]].s are obviously inequivalent at signature [[T ]]→ [[T ]]. How-
ever, using subsignatures, they can also be given the signature
s([int])→ [[T ]] and at that signature they are equivalent, since they
return the same result when given the only permissible argument,
[int].

As this example illustrates, the context sensitivity of equivalence
provides more type equalities than would hold if equivalence were
strictly context insensitive, thereby allowing the propagation of ad-
ditional type information. For example, if F : (s([int])→ [[T ]])→
[[T ]], then the types Typ(F(λs:[[T ]].[int])) and Typ(F(λs:[[T ]].s))
are equal, which could not be the case under a context-insensitive
regime.

A subtle technical point arises in the use of the higher-order
singletons defined in Figure 5. Suppose F : [[T ]]→ [[T ]]. Then
s[[T ]]→[[T ]](F) = Πs:[[T ]].s(F s), which intuitively contains the mod-
ules equivalent to F: those that take members of F’s domain and
return the same thing that F does. Formally speaking, however, the
canonical member of this signature is not F but its eta-expansion
λs:[[T ]].Fs. In fact, it is not obvious that F belongs to s[[T ]]→[[T ]](F).

To ensure that F belongs to its singleton signature, our type system
(following Stone and Harper [33]) includes the extensional typing
rule:

Γ `P M : Πs:σ1.σ′
2 Γ,s:σ1 `P M s : σ2

Γ `P M : Πs:σ1.σ2

Using this rule, F belongs to Πs:[[T ]].s(F s) because it is a function
and because Fs belongs to s(F s). A similar extensional typing
rule is provided for products. It is possible that the need for these

s[[T ]](M)
def
= s(M)

s[[τ]](M)
def
= [[τ]]

s1(M)
def
= 1

sΠtots:σ1.σ2(M)
def
= Πtots:σ1.sσ2(Ms)

sΠpars:σ1.σ2(M)
def
= Πpars:σ1.σ2

sΣs:σ1.σ2(M)
def
= sσ1(π1M)×

sσ2[π1M/s](π2M)

s
s(M′)

(M)
def
= s(M)

Figure 5. Singletons at Higher Signatures

rules could be avoided by making higher-order singletons primitive,
but we have not explored the meta-theoretic implications of such a
change.

Since a module with a (higher-order) singleton signature is fully
transparent, it is obviously projectible and comparable, and hence
could be judged to be pure, even if it would otherwise be classified
as impure. This is an instance of the general problem of recognizing
that “benign effects” need not disturb purity. Since purity is a judg-
ment in our framework, we could readily incorporate extensions to
capture such situations, but we do not pursue the matter here.

Type Checking Our type system enjoys a sound, complete, and
effective type checking algorithm. Our algorithm comes in three
main parts: first, an algorithm for synthesizing the principal (i.e.,
minimal) signature of a module; second, an algorithm for check-
ing subsignature relationships; and third, an algorithm for deciding
equivalence of modules and of types.

Module typechecking then proceeds in the usual manner, by syn-
thesizing the principal signature of a module and then checking
that it is a subsignature of the intended signature. The signature
synthesis algorithm is given in Appendix B, and its correctness the-
orems are stated below. The main judgment of signature synthesis
is Γ `κ M ⇒ σ, which states that M’s principal signature is σ and
M’s purity is inferred to be κ.

Subsignature checking is syntax-directed and easy to do, given an
algorithm for checking module equivalence; module equivalence
arises when two singleton signatures are compared for the subsigna-
ture relation. The equivalence algorithm is closely based on Stone
and Harper’s algorithm [33] for type constructor equivalence in the
presence of singleton kinds. Space considerations preclude further
discussion of this algorithm here. Full details of all these algorithms
and proofs appear in the companion technical report [7].

THEOREM 2.1 (SOUNDNESS). If Γ `κ M ⇒ σ then Γ `κ M : σ.

THEOREM 2.2 (COMPLETENESS). If Γ `κ M : σ then Γ `κ′

M ⇒ σ′ and Γ ` σ′ ≤ σ and κ′ v κ.

Note that since the synthesis algorithm is deterministic, it follows
from Theorem 2.2 that principal signatures exist. Finally, since our
synthesis algorithm, for convenience, is presented in terms of in-
ference rules, we require one more result stating that it really is an
algorithm:

THEOREM 2.3 (EFFECTIVENESS). For any Γ and M, it is decid-
able whether there exist σ and κ such that Γ `κ M ⇒ σ.



signature SYMBOL TABLE =
sig
type symbol
val string to symbol : string -> symbol
val symbol to string : symbol -> string
val eq : symbol * symbol -> bool

end

functor SymbolTableFun () :> SYMBOL TABLE =
struct
type symbol = int

val table : string array =
(* allocate internal hash table *)
Array.array (initial size, NONE)

fun string to symbol x =
(* lookup (or insert) x *) ...

fun symbol to string n =
(case Array.sub (table, n) of

SOME x => x
| NONE => raise (Fail "bad symbol"))

fun eq (n1, n2) = (n1 = n2)
end

structure SymbolTable = SymbolTableFun ()

Figure 6. Strong Sealing Example

3 Strong and Weak Sealing

Generativity is essential for providing the necessary degree of ab-
straction in the presence of effects. When a module has side-effects,
such as the allocation of storage, abstraction may demand that types
be generated in correspondence to storage allocation, in order to en-
sure that elements of those types relate to the local store and not the
store of another instance.

Consider, for example, the symbol table example given in Figure 6.
A symbol table contains an abstract type symbol, operations for in-
terconverting symbols and strings, and an equality test (presumably
faster than that available for strings). The implementation creates
an internal hash table and defines symbols to be indices into that
internal table.

The intention of this implementation is that the Fail exception
never be raised. However, this depends on the generativity of
the symbol type. If another instance, SymbolTable2, is created,
and the types SymbolTable.symbol and SymbolTable2.symbol
are considered equal, then SymbolTable could be asked to
interpret indices into SymbolTable2’s table, thereby causing
failure. Thus, it is essential that SymbolTable.symbol and
SymbolTable2.symbol be considered unequal.

The symbol table example demonstrates the importance of strong
sealing for encoding generative abstract types in stateful modules.
Generativity is not necessary, however, for purely functional mod-
ules. Leroy [15] gives several examples of such modules as moti-
vation for the adoption of applicative functors. For instance, one
may wish to implement persistent sets using ordered lists. Figure 7

signature ORD =
sig
type elem
val compare : elem * elem -> order

end
signature SET = (* persistent sets *)
sig
type elem
type set
val empty : set
val insert : elem * set -> set
...

end

functor SetFun (Elem : ORD)
:: SET where type elem = Elem.elem =

struct
type elem = Elem.elem
type set = elem list
...

end

structure IntOrd = struct
type elem = int
val compare = Int.compare

end
structure IntSet1 = SetFun(IntOrd)
structure IntSet2 = SetFun(IntOrd)

Figure 7. Weak Sealing Example

exhibits a purely functional SetFun functor, which is parameter-
ized over an ordered element type, and whose implementation of
the abstract set type is sealed. When SetFun is instantiated multi-
ple times—e.g., in different client modules—with the same element
type, it is useful for the resulting abstract set types to be seen as
interchangeable.

In our system, SetFun is made applicative, but still opaque,
by weakly sealing its body. Specifically, IntSet1.set and
IntSet2.set are both equivalent to SetFun(IntOrd).set. This
type is well-formed because SetFun has an applicative functor sig-
nature, and SetFun and IntOrd, being variables, are both pure.
Recall that a functor containing weak sealing is impure and must
be bound to a variable before it can be used applicatively.

The astute reader may notice that weak sealing is not truly neces-
sary in the SetFun example. In fact, one can achieve the same effect
as the code in Figure 7 by leaving the body of the functor unsealed
and (strongly) sealing the functor itself with an applicative functor
signature before binding it to SetFun. This is the technique em-
ployed by Shao [31] for encoding applicative functors, as his sys-
tem lacks an analogue of weak sealing. A failing of this approach
is that it only works if the functor body is fully transparent—in the
absence of weak sealing, any opaque substructures would have to
be strongly sealed, preventing the functor from being given an ap-
plicative signature.

The best examples of the need for opaque substructures in applica-
tive functors are provided by the interpretation of ML datatype’s
as abstract types [13]. In both Standard ML and Caml, datatype’s
are opaque in the sense that their representation as recursive sum



types is not exposed, and thus distinct instances of the same
datatype declaration create distinct types. Standard ML and
Caml differ, however, on whether datatype’s are generative. In
the presence of applicative functors (which are absent from Stan-
dard ML) there is excellent reason for datatype’s not to be
generative—namely, that a generative interpretation would prevent
datatype’s from appearing in the bodies of applicative functors.
This would severely diminish the utility of applicative functors, par-
ticularly since in ML recursive types are provided only through the
datatype mechanism. For example, an implementation of SetFun
with splay trees, using a datatype declaration to define the tree
type, would require the use of weak sealing.

For these reasons, strong sealing is no substitute for weak sealing.
Neither is weak sealing a substitute for strong. As Leroy [15] ob-
served, in functor-free code, generativity can be simulated by what
we call weak sealing. (This can be seen in our framework by ob-
serving that dynamic purity provides no extra privileges in the ab-
sence of functors.) With functors, however, strong sealing is nec-
essary to provide true generativity. Nevertheless, it is worth noting
that strong sealing is definable in terms of other constructs in our
language, while weak sealing is not. In particular, we can define
strong sealing, using a combination of weak sealing and generative
functor application, as follows:

M:>σ def
= ((λ :1.M)::(Πpar :1.σ))〈〉

The existence of this encoding does not diminish the importance
of strong sealing, which we have made primitive in our language
regardless.

4 The Avoidance Problem

The rules of our type system (particularly rules 8, 9, and 11 from
Figure 4) are careful to ensure that substituted modules are always
pure, at the expense of requiring that functor and second-projection
arguments are pure. This is necessary because the result of substi-
tuting an impure module into a well-formed signature can be ill-
formed. Thus, to apply a functor to an impure argument, one must
let-bind the argument and apply the functor to the resulting (pure)
variable.

A similar restriction is imposed by Shao [31], but Harper and Lillib-
ridge [11] propose an alternative that softens the restriction. Harper
and Lillibridge’s proposal (expressed in our terms) is to include a
non-dependent typing rule without a purity restriction:

Γ `κ M1 : σ1→σ2 Γ `κ M2 : σ1

Γ `κ M1M2 : σ2

When M2 is pure, this rule carries the same force as our dependent
rule, by exploiting singleton signatures and the contravariance of
functor signatures:

Πs:σ1.σ2 ≤ Πs:sσ1(M2).σ2
≡ Πs:sσ1(M2).σ2[M2/s]
= sσ1(M2)→σ2[M2/s]

When M2 is impure, this rule is more expressive than our typing
rule, because the application can still occur. However, to exploit
this rule, the type checker must find a non-dependent supersignature
that is suitable for application to M2.

The avoidance problem [9, 18] is that there is no “best” way to do
so. For example, consider the signature:

σ = ([[T ]]→s(s))×s(s)

To obtain a supersignature of σ avoiding the variable s, we must
forget that the first component is a constant function, and therefore
we can only say that the second component is equal to the first
component’s result on some particular argument. Thus, for any type
τ, we may promote σ to the supersignature:

ΣF :([[T ]]→ [[T ]]).s(F[τ])

This gives us an infinite array of choices. Any of these choices is
superior to the obvious ([[T ]]→ [[T ]])× [[T ]], but none of them is com-
parable to any other, since F is abstract. Thus, there is no minimal
supersignature of σ avoiding s. The absence of minimal signatures
is a problem, because it means that there is no obvious way to per-
form type checking.

In our type system, we circumvent the avoidance problem by requir-
ing that the arguments of functor application and second-projection
be pure (thereby eliminating any need to find non-dependent super-
signatures), and provide a let construct so that such operations can
still be applied to impure modules. We have shown that, as a result,
our type theory does enjoy principal signatures.

To achieve this, however, our let construct must be labeled with its
result signature (not mentioning the variable being bound), for oth-
erwise the avoidance problem re-arises. This essentially requires
that every functor application or projection involving an impure ar-
gument be labelled with its result signature as well, leading to po-
tentially unacceptable syntactic overhead in practice. Fortunately,
programs can be systematically rewritten to avoid this problem, as
we describe next.

4.1 Elaboration and Existential Signatures

Consider the unannotated let expression let s = M1 in M2, where
M1 : σ1 and M2 : σ2(s). If M1 is pure, then the let expression can
be given the minimal signature σ2(M1). Otherwise, we are left with
the variable s leaving scope, but no minimal supersignature of σ2(s)
not mentioning s. However, if we rewrite the let expression as the
pair 〈s = M1,M2〉, then we may give it the signature Σs:σ1.σ2(s)
and no avoidance problem arises. Similarly, the functor application
F(M) with F : Πs:σ1.σ2 and impure M : σ1 can be rewritten as
〈s = M,F(s)〉 and given signature Σs:σ1.σ2.

Following Harper and Stone [13], we propose the use of an elabora-
tion algorithm to systematize these rewritings. This elaborator takes
code written in an external language that supports unannotated let’s,
as well as impure functor application and second-projection, and
produces code written in our type system. Since the elaborator
rewrites modules in a manner that changes their signatures, it also
must take responsibility for converting those modules back to their
expected signature wherever required. This means that the elabora-
tor must track which pairs are “real” and which have been invented
by the elaborator to circumvent the avoidance problem.

The elaborator does so using the types. When the elaborator invents
a pair to circumvent the avoidance problem, it gives its signature us-
ing an existential ∃ rather than Σ. In the internal language, ∃s:σ1.σ2
means the same thing as Σs:σ1.σ2, but the elaborator treats the two
signatures differently: When the elaborator expects (say) a functor
and encounters a Σs:σ1.σ2, it generates a type error. However, when
it encounters an ∃s:σ1.σ2, it extracts the σ2 component (the elab-
orator’s invariants ensure that it always can do so), looking for the
expected functor. Space considerations preclude further details of
the elaboration algorithm, which appear in the companion technical
report [7].



In a sense, the elaborator solves the avoidance problem by intro-
ducing existential signatures to serve in place of the non-existent
minimal supersignatures not mentioning a variable. In light of this,
a natural question is whether the need for an elaborator could be
eliminated by making existential signatures primitive to the type
system.

One natural way to govern primitive existentials is with the intro-
duction and elimination rules:

Γ `P M : σ1 Γ ` σ≤ σ2[M/s] Γ,s:σ1 ` σ2 sig
Γ ` σ≤ ∃s:σ1.σ2

and
Γ,s:σ1 ` σ2 ≤ σ Γ ` σ1 sig Γ ` σ sig

Γ ` ∃s:σ1.σ2 ≤ σ

With these rules, the avoidance problem could be solved: The least
supersignature of σ2(s) not mentioning s:σ1 would be ∃s:σ1.σ2(s).

Unfortunately, these rules (particularly the first) make type check-
ing undecidable. For example, each of the queries

Πs:σ.[[τ]]
?
≤ ∃s′:σ.Πs:sσ(s′).[[τ′]]

and

(λs:σ.[τ])
?
∼= (λs:σ.[τ′]) : ∃s′:σ.Πs:sσ(s′).[[T ]]

holds if and only if there exists pure M : σ such that the types τ[M/s]
and τ′[M/s] are equal. Thus, deciding subsignature or equivalence
queries in the presence of existentials would be as hard as higher-
order unification, which is known to be undecidable [10].

4.2 Syntactic Principal Signatures

It has been argued for reasons related to separate compilation that
principal signatures should be expressible in the syntax available to
the programmer. This provides the strongest support for separate
compilation, because a programmer can break a program at any
point and write an interface that expresses all the information the
compiler could have determined at that point. Such strong support
does not appear to be vital in practice, since systems such as Objec-
tive Caml and Standard ML of New Jersey’s higher-order modules
have been used successfully for some time without principal signa-
tures at all, but it is nevertheless a desirable property.

Our type system (i.e., the internal language) does provide syntac-
tic principal signatures, since principal signatures exist, and all the
syntax is available to the programmer. However, the elaborator’s
external language does not provide syntax for the existential sig-
natures that can appear in elaborator signatures, which should be
thought of as the principal signatures of external modules. Thus,
we can say that our basic type system provides syntactic principal
signatures, but our external language does not.

In an external language where the programmer is permitted to write
existential signatures, elaborating code such as:

(λs′:(∃s:σ1.σ2) . . .)M

requires the elaborator to decide whether M can be coerced to be-
long to ∃s:σ1.σ2, which in turn requires the elaborator to produce a
M′ : σ1 such that M : σ2[M′/s]. Determining whether any such M′

exists requires the elaborator to solve an undecidable higher-order
unification problem: if σ2 = s([τ])→s([τ′]) and M = λt:[[T ]].t,
then M : σ2[M′/s] if and only if τ[M′/s] and τ′[M′/s] are equal.

Thus, to allow programmer-specified existential signatures in the
greatest possible generality would make elaboration undecidable.
Partial measures may be possible, but we will not discuss any here.

5 Packaging Modules as First-Class Values

It is desirable for modules to be usable as first-class values. This is
useful to make it possible to choose at run time the most efficient
implementation of a signature for a particular data set (for example,
sparse or dense representations of arrays). However, fully general
first-class modules present difficulties for static typing [18].

One practical approach to modules as first-class values was sug-
gested by Mitchell, et al. [24], who propose that second-class mod-
ules automatically be wrapped as existential packages [25] to obtain
first-class values. A similar approach to modules as first-class val-
ues is described by Russo and implemented in Moscow ML [29].

This existential-packaging approach to modules as first-class values
is built into our language. We write the type of a packaged module
as 〈|σ|〉 and the packaging construct as pack M as 〈|σ|〉. Elimina-
tion of packaged modules (as for existentials) is performed using
a closed-scope unpacking construct. These may be defined as fol-
lows:

〈|σ|〉 def
= ∀α.(σ→α)→α

pack M as 〈|σ|〉 def
= Λα.λ f :(σ→α). f M

unpack e as s:σ in (e′ : τ) def
= eτ(Λs:σ.e′)

(Compare the definition of 〈|σ|〉 with the standard encoding of the
existential type ∃β.τ as ∀α.(∀β.τ→α)→α.)

The main limitation of existentially-packaged modules is the
closed-scope elimination construct. It has been observed repeatedly
in the literature [20, 3, 18] that this construct is too restrictive to be
very useful. For one, in “unpack e as s:σ in (e′ : τ)”, the result type
τ may not mention s. As a consequence, functions over packaged
modules may not be dependent; that is, the result type may not men-
tion the argument. This deficiency is mitigated in our language by
the ability to write functions over unpackaged, second-class mod-
ules, which can be given the dependent type Πs:σ.τ(s) instead of
〈|σ|〉→ τ.

Another problem with the closed-scope elimination construct is
that a term of package type cannot be unpacked into a stand-alone
second-class module; it can only be unpacked inside an enclosing
term. As each unpacking of a packaged module creates an abstract
type in a separate scope, packages must be unpacked at a very early
stage to ensure coherence among their clients, leading to “scope
inversions” that are awkward to manage in practice.

What we desire, therefore, is a new module construct of the form
“unpack e as σ”, which coerces a first-class package e of type 〈|σ|〉
back into a second-class module of signature σ. The following ex-
ample illustrates how adding such a construct carelessly can lead to
unsoundness:

module F = λs:[[〈|σ|〉]].(unpack (Val s) as σ)
module X1 = F [pack M1 as 〈|σ|〉]
module X2 = F [pack M2 as 〈|σ|〉]

Note that the argument of the functor F is an atomic term module,
so all arguments to F are statically equivalent. If F is given an
applicative signature, then X1 and X2 will be deemed equivalent,
even if the original modules M1 and M2 are not! Thus, F must be



types τ ::= · · · | 〈|σ|〉
terms e ::= · · · | pack M as 〈|σ|〉
modules M ::= · · · | unpack e as σ

Γ ` σ1 ≡ σ2

Γ ` 〈|σ1|〉 ≡ 〈|σ2|〉

Γ `κ M : σ
Γ ` pack M as 〈|σ|〉 : 〈|σ|〉

Γ ` e : 〈|σ|〉
Γ `S unpack e as σ : σ

Figure 8. Packaged Module Extension

deemed generative, which in turn requires that the unpack construct
induce a dynamic effect.

Packaged modules that admit this improved unpacking construct
are not definable in our core language, but they constitute a simple,
orthogonal extension to the type system that does not complicate
type checking. The syntax and typing rules for this extension are
given in Figure 8. Note that the closed-scope unpacking construct
is definable as

let s = (unpack e as σ) in (e′ : τ)

Intuitively, unpacking is generative because the module being un-
packed can be an arbitrary term, whose type components may de-
pend on run-time conditions. In the core system we presented in
Section 2, the generativity induced by strong sealing was merely a
pro forma effect—the language, supporting only second-class mod-
ules, provided no way for the type components of a module to be
actually generated at run time. The type system, however, treats
dynamic effects as if they are all truly dynamic, and thus it scales
easily to handle the real run-time type generation enabled by the
extension in Figure 8.

6 Related Work

Harper, Mitchell and Moggi [12] pioneered the theory of phase sep-
aration, which is fundamental to achieving maximal type propaga-
tion in higher-order module systems. Their non-standard equational
rules, which identify higher-order modules with primitive “phase-
split” ones, are similar in spirit to, though different in detail from,
our notion of static module equivalence. One may view their sys-
tem as a subsystem of ours in which there is no sealing mechanism
(and consequently all modules are pure).

MacQueen and Tofte [21] proposed a higher-order module exten-
sion to the original Definition of Standard ML [22], which was im-
plemented in the Standard ML of New Jersey compiler. Their se-
mantics involves a two-phase elaboration process, in which higher-
order functors are re-elaborated at each application to take advan-
tage of additional information about their arguments. This advan-
tage is balanced by the disadvantage of inhibiting type propagation
in the presence of separate compilation since functors that are com-
piled separately from their applications cannot be re-elaborated. A
more thorough comparison is difficult because MacQueen and Tofte
employ a stamp-based semantics, which is difficult to transfer to a
type-theoretic setting.

Focusing on controlled abstraction, but largely neglecting higher-
order modules, Harper and Lillibridge [11] and Leroy [14, 16] in-
troduced the closely related concepts of translucent sums and man-
ifest types. These mechanisms served as the basis of the module
system in the revised Definition of Standard ML 1997 [23], and
Harper and Stone [13] have formalized the elaboration of Stan-
dard ML 1997 programs into a translucent sums calculus. To deal
with the avoidance problem, Harper and Stone rely on elaborator
mechanisms similar to ours. The Harper and Stone language can be
viewed as a subsystem of ours in which all functors are generative
and only strong sealing is supported.

Leroy introduced the notion of an applicative functor [15], which
enables one to give fully transparent signatures for many higher-
order functors. Leroy’s formalism may be seen as defining purity
by a syntactic restriction that functor applications appearing in type
paths must be in named form. On one hand, this restriction provides
a weak form of structure sharing in the sense that the abstract type
F(X).t can only be the result of applying F to the module named X.
On the other hand, the restriction prevents the system from captur-
ing the full equational theory of higher-order functors, since not all
equations can be expressed in named form [4]. Together, manifest
types and applicative functors form the basis of the module sys-
tem of Objective Caml [27]. The manifest type formalism, like the
translucent sum formalism, does not address the avoidance prob-
lem, and consequently it lacks principal signatures.

More recently, Russo, in his thesis [28], formalized two separate
module languages: one being a close model of the SML module
system, the other being a higher-order module system with applica-
tive functors along the lines of O’Caml, but abandoning the named
form restriction as we do. Russo’s two languages can be viewed as
subsystems of ours, the first supporting only strong sealing, the sec-
ond supporting only weak sealing. We adopt his use of existential
signatures to address the avoidance problem, although Russo also
used existentials to model generativity, which we do not. Russo’s
thesis also describes an extension to SML for packaging modules as
first-class values. This extension is very similar to the existential-
packaging approach discussed in the beginning of Section 5, and
therefore suffers from the limitations of the closed-scope unpack-
ing construct.

While Russo defined these two languages separately, he imple-
mented the higher-order module system as an experimental exten-
sion to the Moscow ML compiler [26]. Combining the two lan-
guages without distinguishing between static and dynamic effects
has an unfortunate consequence. The Moscow ML higher-order
module system places no restrictions on the body of an applicative
functor; in particular, one can defeat the generativity of a generative
functor by eta-expanding it into an applicative one. Exploiting this
uncovers an unsoundness in the language [6], that, in retrospect, is
clear from our analysis: one cannot convert a partial into a total
functor.

Shao [31] has proposed a single type system for modules supporting
both applicative and generative functors. Roughly speaking, Shao’s
system may be viewed as a subsystem of ours based exclusively on
strong sealing and dynamic effects, but supporting both Π and Πpar

signatures. As we observed in Section 3, this means that the bodies
of applicative functors may not contain opaque substructures (such
as datatype’s). Shao’s system, like ours, circumvents the avoid-
ance problem (Section 4) by restricting functor application and pro-
jection to pure arguments (which must be paths in his system), and
by eliminating implicit subsumption, which amounts to requiring
that let expressions be annotated, as in our system. It seems likely



that our elaboration techniques could as well be applied to Shao’s
system to lift these restrictions, but at the expense of syntactic prin-
cipal signatures. Shao also observes that fully transparent functors
may be regarded as applicative; this is an instance of the general
problem of recognizing benign effects, as described in Section 2.

7 Conclusion

Type systems for first-order module systems are reasonably well
understood. In contrast, previous work on type-theoretic, higher-
order modules has left that field in a fragmented state, with various
competing designs and no clear statement of the trade-offs (if any)
between those designs. This state of the field has made it difficult
to choose one design over another, and has left the erroneous im-
pression of trade-offs that do not actually exist. For example, no
previous design supports both (sound) generative and applicative
functors with opaque subcomponents.

Our language seeks to unify the field by providing a practical type
system for higher-order modules that simultaneously supports the
key functionality of preceding module systems. In the process we
dispel some misconceptions, such as a trade-off between fully ex-
pressive generative and applicative functors, thereby eliminating
some dilemmas facing language designers.

Nevertheless, there are several important issues in modular pro-
gramming that go beyond the scope of our type theory. Chief
among these are:

• Structure Sharing. The original version of Standard ML [22]
included a notion of module equivalence that was sensitive to
the dynamic, as well as static, parts of the module. Although
such a notion would violate the phase distinction, it might be
possible to formulate a variation of our system that takes ac-
count of dynamic equivalence in some conservative fashion.
It is possible to simulate structure sharing by having the elab-
orator add an abstract type to each structure to serve as the
“compile-time name” of that structure. However, this would
be merely an elaboration convention, not an intrinsic account
of structure sharing within type theory.

• Recursive Modules. An important direction for future re-
search is to integrate recursive modules [8, 5, 30] into the
present framework. The chief difficulty is to achieve prac-
tical type checking in the presence of general recursively de-
pendent signatures, or to isolate a practical sub-language that
avoids these problems.
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Notes on Appendices

Appendix A gives the type system for our module calculus. Ap-
pendix B gives the module typechecking and principal signature
synthesis judgements that form the core of our typechecking algo-
rithm. We omit the judgments for term typechecking (Γ ` e ⇐ τ)
and unique type synthesis (Γ ` e ⇒ τ) for space reasons; they are
fully detailed in the companion technical report [7].

A Type System

Well-formed contexts: Γ ` ok

• ` ok
Γ ` σ sig s 6∈ dom(Γ)

Γ,s:σ ` ok

Well-formed types: Γ ` τ type

Γ `P M : [[T ]]

Γ ` Typ M type
Γ,s:σ ` τ type

Γ `Πs:σ.τ type

Γ ` τ′ type Γ ` τ′′ type

Γ ` τ′× τ′′ type

Γ ` σ sig

Γ ` 〈|σ|〉 type

Type equivalence: Γ ` τ1 ≡ τ2

Γ ` [τ1]∼= [τ2] : [[T ]]

Γ ` τ1 ≡ τ2

Γ ` σ1 ≡ σ2 Γ,s:σ1 ` τ1 ≡ τ2

Γ `Πs:σ1.τ1 ≡Πs:σ2.τ2

Γ ` τ′1 ≡ τ′2 Γ ` τ′′1 ≡ τ′′2
Γ ` τ′1× τ′′1 ≡ τ′2× τ′′2

Γ ` σ1 ≡ σ2

Γ ` 〈|σ1|〉 ≡ 〈|σ2|〉

Well-formed terms: Γ ` e : τ

Γ ` e : τ′ Γ ` τ′ ≡ τ
Γ ` e : τ

Γ `κ M : [[τ]]
Γ ` Val M : τ

Γ `κ M : σ Γ,s:σ ` e : τ Γ ` τ type

Γ ` let s = M in (e : τ) : τ
Γ `κ M : σ

Γ ` pack M as 〈|σ|〉 : 〈|σ|〉

Γ, f :[Πs:σ.τ],s:σ ` e : τ
Γ ` fix f (s:σ):τ.e : Πs:σ.τ

Γ ` e : Πs:σ.τ Γ `P M : σ
Γ ` eM : τ[M/s]

Γ ` e′ : τ′ Γ ` e′′ : τ′′

Γ ` 〈e′,e′′〉 : τ′× τ′′
Γ ` e : τ′× τ′′

Γ ` π1e : τ′
Γ ` e : τ′× τ′′

Γ ` π2e : τ′′

Well-formed signatures: Γ ` σ sig

Γ ` ok
Γ ` 1 sig

Γ ` ok
Γ ` [[T ]] sig

Γ ` τ type

Γ ` [[τ]] sig

Γ `P M : [[T ]]

Γ `s(M) sig

Γ,s:σ′ ` σ′′ sig

Γ `Πδs:σ′.σ′′ sig

Γ,s:σ′ ` σ′′ sig

Γ ` Σs:σ′.σ′′ sig

Signature equivalence: Γ ` σ1 ≡ σ2

Γ ` ok
Γ ` 1≡ 1

Γ ` ok
Γ ` [[T ]]≡ [[T ]]

Γ ` τ1 ≡ τ2

Γ ` [[τ1]]≡ [[τ2]]

Γ `M1 ∼= M2 : [[T ]]

Γ `s(M1)≡s(M2)

Γ ` σ′
2 ≡ σ′

1 Γ,s:σ′
2 ` σ′′

1 ≡ σ′′
2

Γ `Πδs:σ′
1.σ

′′
1 ≡Πδs:σ′

2.σ
′′
2

Γ ` σ′
1 ≡ σ′

2 Γ,s:σ′
1 ` σ′′

1 ≡ σ′′
2

Γ ` Σs:σ′
1.σ

′′
1 ≡ Σs:σ′

2.σ
′′
2

Signature subtyping: Γ ` σ1 ≤ σ2

Γ ` ok
Γ ` 1≤ 1

Γ ` ok
Γ ` [[T ]]≤ [[T ]]

Γ ` τ1 ≡ τ2

Γ ` [[τ1]]≤ [[τ2]]

Γ `P M : [[T ]]

Γ `s(M)≤ [[T ]]

Γ `M1 ∼= M2 : [[T ]]

Γ `s(M1)≤s(M2)

Γ ` σ′
2 ≤ σ′

1 Γ,s:σ′
2 ` σ′′

1 ≤ σ′′
2 Γ,s:σ′

1 ` σ′′
1 sig (δ1,δ2) 6= (par,tot)

Γ `Πδ1 s:σ′
1.σ

′′
1 ≤Πδ2 s:σ′

2.σ
′′
2

Γ ` σ′
1 ≤ σ′

2 Γ,s:σ′
1 ` σ′′

1 ≤ σ′′
2 Γ,s:σ′

2 ` σ′′
2 sig

Γ ` Σs:σ′
1.σ

′′
1 ≤ Σs:σ′

2.σ
′′
2



Well-formed modules: Γ `κ M : σ

Γ ` ok
Γ `P s : Γ(s)

Γ ` ok
Γ `P 〈〉 : 1

Γ ` τ type

Γ `P [τ] : [[T ]]

Γ ` e : τ Γ ` τ type

Γ `P [e : τ] : [[τ]]
Γ,s:σ′ `κ M : σ′′ κv D

Γ `κ λs:σ′.M : Πs:σ′.σ′′

Γ,s:σ′ `κ M : σ′′ Γ,s:σ′ ` σ′′ sig

Γ `κuD λs:σ′.M : Πpars:σ′.σ′′

Γ `κ F : Πs:σ′.σ′′ Γ `P M : σ′

Γ `κ FM : σ′′[M/s]
Γ `κ F : Πpars:σ′.σ′′ Γ `P M : σ′

Γ `κtS FM : σ′′[M/s]

Γ `κ M′ : σ′ Γ,s:σ′ `κ M′′ : σ′′

Γ `κ 〈s = M′,M′′〉 : Σs:σ′.σ′′

Γ `κ M : Σs:σ′.σ′′

Γ `κ π1M : σ′

Γ `P M : Σs:σ′.σ′′

Γ `P π2M : σ′′[π1M/s]

Γ `P M : [[T ]]

Γ `P M : s(M)

Γ `κ M : σ
Γ `κtD (M::σ) : σ

Γ `κ M : σ
Γ `W (M:>σ) : σ

Γ,s:σ′ `P Ms : σ′′ Γ `P M : Πs:σ′.ρ
Γ `P M : Πs:σ′.σ′′

Γ `P π1M : σ′ Γ `P π2M : σ′′

Γ `P M : σ′×σ′′

Γ `κ M′ : σ′ Γ,s:σ′ `κ M′′ : σ Γ ` σ sig

Γ `κ let s = M′ in (M′′ : σ) : σ
Γ ` e : 〈|σ|〉

Γ `S unpack e as σ : σ
Γ `κ′ M : σ′ Γ ` σ′ ≤ σ κ′ v κ

Γ `κ M : σ

Module equivalence: Γ `M1 ∼= M2 : σ

Γ `P M : σ
Γ `M ∼= M : σ

Γ `M2 ∼= M1 : σ
Γ `M1 ∼= M2 : σ

Γ `M1 ∼= M2 : σ Γ `M2 ∼= M3 : σ
Γ `M1 ∼= M3 : σ

Γ ` τ1 ≡ τ2

Γ ` [τ1]∼= [τ2] : [[T ]]

Γ `P M : [[T ]]

Γ ` [Typ M]∼= M : [[T ]]

Γ `P M1 : 1 Γ `P M2 : 1
Γ `M1 ∼= M2 : 1

Γ `P M1 : [[τ]] Γ `P M2 : [[τ]]
Γ `M1 ∼= M2 : [[τ]]

Γ `P M1 : Πpars:σ′.σ′′ Γ `P M2 : Πpars:σ′.σ′′

Γ `M1 ∼= M2 : Πpars:σ′.σ′′

Γ ` σ′
1 ≡ σ′

2 Γ,s:σ′
1 `M1 ∼= M2 : σ′′

Γ ` λs:σ′
1.M1 ∼= λs:σ′

2.M2 : Πs:σ′
1.σ

′′

Γ ` F1 ∼= F2 : Πs:σ′.σ′′ Γ `M1 ∼= M2 : σ′

Γ ` F1M1 ∼= F2M2 : σ′′[M1/s]

Γ `M′
1
∼= M′

2 : σ′ Γ,s:σ′ `M′′
1
∼= M′′

2 : σ′′

Γ ` 〈s = M′
1,M

′′
1 〉
∼= 〈s = M′

2,M
′′
2 〉 : Σs:σ′.σ′′

Γ `M1 ∼= M2 : Σs:σ′.σ′′

Γ ` π1M1 ∼= π1M2 : σ′

Γ `M1 ∼= M2 : Σs:σ′.σ′′

Γ ` π2M1 ∼= π2M2 : σ′′[π1M1/s]

Γ,s:σ′ `M1s∼= M2s : σ′′ Γ `P M1 : Πs:σ′.ρ1 Γ `P M2 : Πs:σ′.ρ2

Γ `M1 ∼= M2 : Πs:σ′.σ′′

Γ ` π1M1 ∼= π1M2 : σ′ Γ ` π2M1 ∼= π2M2 : σ′′

Γ `M1 ∼= M2 : σ′×σ′′

Γ `P M′ : σ′ Γ,s:σ′ `P M′′ : σ Γ ` σ sig

Γ ` let s = M′ in (M′′ : σ)∼= M′′[M′/s] : σ

Γ `P M1 : s(M2)

Γ `M1 ∼= M2 : s(M2)

Γ `M1 ∼= M2 : σ′ Γ ` σ′ ≤ σ
Γ `M1 ∼= M2 : σ

B Typechecking Algorithm

Module typechecking: Γ `κ M ⇐ σ
Γ `κ M ⇒ σ′ Γ ` σ′ ≤ σ

Γ `κ M ⇐ σ

Principal signature synthesis: Γ `κ M ⇒ σ

Γ ` ok
Γ `P s⇒sΓ(s)(s)

Γ ` ok
Γ `P 〈〉 ⇒ 1

Γ ` τ type

Γ `P [τ]⇒s([τ])
Γ ` e⇐ τ

Γ `P [e : τ]⇒ [[τ]]
Γ,s:σ′ `κ M ⇒ σ′′ κv D

Γ `κ λs:σ′.M ⇒Πs:σ′.σ′′

Γ,s:σ′ `κ M ⇒ σ′′
Sv κ

Γ `κuD λs:σ′.M ⇒Πpars:σ′.σ′′

Γ `κ F ⇒Πs:σ′.σ′′ Γ `P M ⇐ σ′

Γ `κ FM ⇒ σ′′[M/s]
Γ `κ F ⇒Πpars:σ′.σ′′ Γ `P M ⇐ σ′

Γ `κtS FM ⇒ σ′′[M/s]

Γ `P M′⇒ σ′ Γ,s:σ′ `P M′′⇒ σ′′

Γ `P 〈s = M′,M′′〉 ⇒ σ′×σ′′[M′/s]

Γ `κ′ M′⇒ σ′ Γ,s:σ′ `κ′′ M′′⇒ σ′′ κ′ tκ′′ 6= P

Γ `κ′tκ′′ 〈s = M′,M′′〉 ⇒ Σs:σ′.σ′′

Γ `κ M ⇒ Σs:σ′.σ′′

Γ `κ π1M ⇒ σ′

Γ `P M ⇒ σ′×σ′′

Γ `P π2M ⇒ σ′′

Γ `κ M ⇐ σ
Γ `κtD M::σ⇒ σ

Γ `κ M ⇐ σ
Γ `W M:>σ⇒ σ

Γ ` e⇐ 〈|σ|〉
Γ `S unpack e as σ⇒ σ

Γ `P M′⇒ σ′ Γ,s:σ′ `P M′′⇐ σ Γ ` σ sig

Γ `P let s = M′ in (M′′ : σ)⇒sσ(let s = M′ in (M′′ : σ))

Γ `κ′ M′⇒ σ′ Γ,s:σ′ `κ′′ M′′⇐ σ Γ ` σ sig κ′ tκ′′ 6= P

Γ `κ′tκ′′ let s = M′ in (M′′ : σ)⇒ σ


