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1 Introduction

1.1 Defining Languages

Ever since the Computer Science community has discovered the concept of a
programming language there has been a continuous quest for the ideal, all-
encompassing programming language; despite this we have been overwhelmed
by an everlasting flow of all kinds of special purpose programming languages.
Attempts to bridge this gap between a single language and infinitely many caused
research into so-called extensible programming languages.

In a certain sense every programming language with a binding construct
is extensible. In these lectures we will show that it is the unique combination
of higher order functions, an advanced type system (polymorphism and type
classes) and the availability of lazy evaluation that makes Haskell one of the
most promising candidates for the “ideal extensible language”.

Before we start with giving many examples and guidelines of how to use
the features just mentioned, we want to spend some time on explaining what
actually constitutes a programming language. A proper programming language
description contains at least:
• a concrete context-free grammar, describing the appearance of the language
• an abstract context-free grammar, describing the structure of the language
• context sensitive conditions that capture the constraints that are not easily

expressed at the context-free level, like correct name introduction and use
and type checking; usually such context conditions can either be directly
expressed in a compositional way, or in terms of a fixed-point of a function
that itself may be computed in a compositional way; with compositional
we mean here that a property of a construct can be expressed in terms of
properties of its constituents.

• a mechanism of assigning a “meaning” to a program; one of the most common
ways of doing so is by giving a denotational semantics, which boils down to
describing how a function representing the meaning of that program can be
derived from the abstract program structure.

Of course one can design a new language by defining all the above components
from scratch. Languages, however, do have a lot in common like definitions, type
systems, abstraction mechanism, IO-systems etc. It would be a lot of work to
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implement this anew for every new language and it would be nice if we could
borrow this from some existing language.

1.2 Extending Languages

There are many ways in which one can extend an existing language:
• By far the most common way to extend a language is by including some form

of macro preprocessor. Such extensions are almost all syntactic and do not
use any form of global analysis to steer their behavior. An exception to this
is the C++ template mechanism, in which the programmer also gets access
to the types of the manipulated expressions.

• By incorporating a term-rewriting system, which makes it in principle pos-
sible to acquire information about parts of the program and to move this
information to other places where it may be used. The disadvantage of this
approach is that on the one hand the method is very elaborate, and on the
other hand it is hard to keep track of what happens if two independently de-
signed term rewriting systems are used to transform the same program text:
composition of two confluent term-rewriting systems is usually not confluent.

• By giving access to an underlying interpreter, providing reflection. In this
way an almost endless world of possibilities appears. Unfortunately there is
a price to be paid: as a consequence of constructs being analyzed dynami-
cally one can in general not guarantee that the program will not terminate
erroneously, and especially strong typing is easily lost.

Besides these approaches there is a fourth one, that we call embedding, described
in the next subsection.

1.3 Embedding languages

When we embed a language in another language we are not so much extending
that other language, but we make it look as if this were the case. It is here
that the concept of a combinator language shows up: we use the already avail-
able mechanisms in the language for describing the components mentioned in
subsection 1.1:
• for describing the concrete representation (or syntax if you prefer that term)

of our extension we introduce new operators and functions. It would be nice if
we had an underlying language with distfix operators (like if..then..else..fi)
available, but in practice we can do quite well with a sufficient number of
operator priorities and the possibility to define new infix operators.

• for the representation of the abstract syntax we may use Haskell data types,
that nicely correspond to abstract syntax trees.

• for describing context sensitive restrictions we will use catamorphisms (see
the chapter on Generic Programming of these lecture notes and [7]), since
they capture the notion of exploiting the compositional nature of our restric-
tions.

• for describing the semantic domains we will again use Haskell types. The way
they are composed is again by using catamorphisms. It is here that the fact
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that we can use higher order functions plays a crucial role. For the domains
and co-domains of the functions denoting the semantics we may use Haskell
types again.

We want to emphasize that this approach has been very fruitful and has already
led to several nice combinator libraries[1,10,2,15]. The main advantage of this
approach is that when extending a language through the definition of a set of
combinators, we get the naming, abstraction and typing mechanism for free,
since this was already part of the underlying language.

There are two important aspects of the Haskell tping system that makes this
approach even more attractive:
• polymorphism allows the language extension to be conservative. I.e. it may

be possible to manipulate values of the original programs and at the same
time we may guarantee that this is done in a safe way. We will see an example
of this when we introduce the parser combinators.

• type classes allow us to link the new constructs to existing types, and to ma-
nipulate existing kind of values in a type-safe way without limiting ourselves
to a fixed set of predefined types.
As we will see, it is not always attractive to explicitly code the catamorphisms

needed, and thus we introduce a special notation for them based on attribute
grammars: they can be seen as a way of defining catamorphisms in a more
“programmer friendly” way.

Attribute grammars have traditionally been used for describing implemen-
tations of programming languages, and their use in describing programming
language extensions should thus not come as a surprise. Using attribute gram-
mars has always been limited by the need to choose a specific language for
describing the semantic functions and a specific target language. Fortunately,
as we will show, it is quite straightforward to use the attribute grammar based
way of thinking when programming in the setting of a modern, lazily evaluated
functional language: it is the declarative way of thinking in both formalisms that
bridges the gap, and when using Haskell you get an attribute grammar evaluator
almost for free [4,6].

Thinking in terms of attribute grammars is useful when writing complicated
functions and their associated calls. By explicitly naming argument and result
positions (by the introduction of attribute names), we are no longer restricted
to the implicit positional argument passing enforced by conventional function
definitions.

1.4 Overview

In section 2 we will describe a number of so-called circular programs. This intro-
duction serves to make you more familiar with lazy evaluation, what can be done
with it, and how to exploit it in a systematic way. It also serves to make you once
more familiar with the algebraic approach to programming [14,8], and with how
to design programs by way of defining algebras and combining them. Although
this all works nicely when done in a systematic way, we will also show why this
approach is extremely cumbersome if things are getting more complicated: soon
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one needs to be a book-keeping genius to keep track of what you are writing,
calculating and combining. In the course of this discussion it will become clear
that an approach that solely relies on monads in attacking these problems will
not work out as expected.

In section 3 we will solve the same example problems again, but now by
taking an attribute grammar based approach.

Section 4 forms a large case study in which we attack the pretty printing
problem as described in [2]. Hughes defines a set of operators that may be used
to describe the two-dimensional layout of documents, and especially documents
that contain structured text that is to be formatted according to that structure.
Designing this language has been a long standing testbed for program design
techniques and we hope to show that when such problems are attacked in a step-
wise fashion and with proper administrative support one may easily generate
quite complicated programs, which many would not dare to write by hand.

Next we will show some of the consequences of our techniques when it is
taken in its simplest form, and describe some program transformations, that
finally may result in a large set of relatively small strict, pure functions. So even
ML-programmers should be happy in the end. Finally we will summarise the
approach taken.

2 Compositional Programs

We start by developing a somewhat unconventional way of looking at functional
programs, and especially those programs that make heavy use of functions that
recursively descend over data structures. In our case one may think about such
data structures as abstract syntax trees. When computing a property of such
a recursive object (i.e. the representation of a program in a new language) we
define two kinds of functions: those for describing how to recursively visit the
nodes of a tree (the catamorphisms), and those used in forming algebras that
describes what to compute at each visited node.

One of the most important steps in this process is deciding what the carrier
type of such algebras is to be. Once this step has been taken, these types will be
a guideline for further design steps. We will see that such carrier types may be
functions themselves, and that deciding on the type of such functions may not
always be simple. In this section we will present a view on recursive computations
that will enable us to “design” the carrier type in an incremental way. We will
do so by constructing algebras out of other algebras. In this way we define the
meaning of a language in a semantically compositional way. We will give three
examples of the techniques involved, followed by a conclusion about the strengths
and weaknesses of this approach.

2.1 The Rep Min problem

One of the famous examples in which the power of lazy evaluation is demon-
strated is the so-called Rep Min problem ([13]). Many have wondered how this
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data Tree = Leaf Int

| Bin Tree Tree

type Tree_Algebra a = (Int -> a, a -> a -> a)

5

cata_Tree :: Tree_Algebra a -> Tree -> a

cata_Tree alg@(leaf, _ ) (Leaf i) = leaf i

cata_Tree alg@(_ , bin) (Bin l r) = bin (cata_Tree alg l)

10 (cata_Tree alg r)

Listing 1: rm.start

program achieves its goal, since at first sight it seems that it is impossible to
compute anything with this program. We will use this problem, and a sequence of
different solutions, to build up understanding of a whole class of such programs.

In listing 1 we present the data type of interest, i.e. a Tree, which in this
case stands for simple binary trees, together with their associated signature. The
carrier type of an algebra is that type describing the objects of the algebra. We
represent it by a type parameter to the signature type Tree\_Algebra:

type Tree_Algebra a = (Int -> a, a -> a -> a)

The associated evaluation function cata Tree systematically replaces the con-
structors Leaf and Bin by their corresponding operations from the algebra alg
that is passed as an argument.1

We now want to construct a function rep min :: Tree -> Tree that returns
a Tree with the same “shape” as its argument Tree, but with the values in its
leaves replaced by the minimal value occurring in the original tree. In figure 1
an example of an argument with its result is given.

Bin

BinLeaf 3 

Leaf 4 Leaf 5

Bin

BinLeaf 3 

Leaf 3 Leaf 3

Fig. 1. The function rep min

1 Note that this function could have been defined using the language PolyP from the
second lecture of this volume.
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min_alg = (id, min::(Int->Int->Int))

replace_min :: Tree -> Tree

replace_min t = cata_Tree rep_alg t

where m = cata_Tree min_alg t

5 rep_alg = (const (Leaf m), Bin)

Listing 2: rm.sol1

Straightforward Solution The straightforward solution to the Rep Min prob-
lem consists of a function in which cata Tree is called twice: once for computing
the minimal leaf value, and once for constructing the resulting Tree. The func-
tion replace min that solves the problem in this way is given in listing 2. Notice
that the variable m is used as a global variable in the rep algebra, that in its
turn is an argument to the tree constructing call of cata Tree. In figure 2 we
have shown the flow of the data in a recursive call of cata Tree, when comput-
ing the minimal value. One of the disadvantages of this solution is that, since

Bin

Leaf 

min

3 4Bin

Leaf

min

4 5Leaf

3

3

4 5

Fig. 2. Computing the minimum value

we call cata Tree twice, in the course of the computation the pattern matching
associated with the inspection of the tree nodes is performed twice for each node
in the tree. Although this is not a real problem in this solution we will try to con-
struct a solution that calls cata Tree only once. We will do so by transforming
the current program in a number of steps.
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rep_alg = (\ _ -> \m -> Leaf m

,\lfun rfun -> \m -> let lt = lfun m

rt = rfun m

in Bin lt rt

5 )

replace_min’ t = (cata_Tree rep_alg t) (cata_Tree min_alg t)

Listing 3: rm.sol2

Lambda Lifting Our first step results in listing 3. In this program the global
variable m has been removed. The second call of cata Tree now does not
construct a Tree anymore, but instead a tree constructing function of type
Int -> Tree, that takes the computed minimal value as an argument. Notice
how we have emphasized the fact that a function is returned through some su-
perfluous notation: the first lambda in the lambda expressions constituting the
algebra rep alg is there because of the signature of the algebra requires so, the
second lambda is there because the carrier set of the algebra contains functions of
type Int -> Tree. This process is done routinely by functional compilers and
is known as lambda-lifting. In figure 3 we have shown the flow of information
when this function is called. The down-arrows to the left of the non-terminals
correspond to the parameters of the constructed function, and the up-arrows
to the right correspond to the results of the constructed functions. When we
look at the top level node we see that the final value is a function that takes
one argument (down-arrow), in our case the minimum value, and that returns a
Tree (up-arrow). The call of cata Tree constructs this final function by using
the small functions from the rep alg algebra as building blocks. These small
functions can be identified with the small data flow graphs in figure 4.

Tupling Computations In the next formulation of our solution cata Tree is
called only once. Note that in the last solution the two calls of cata Tree don’t
interfere with each other. As a consequence we may perform both computation of
the tree constructing function and the minimal value in one traversal, by tupling
the results of the computations. The solution is given in listing 4. First a function
tuple tree is defined. This function takes two Tree Algebras as arguments and
constructs a third Tree Algebra, that has as its carrier tuples of the carriers of
the original algebra’s. The resulting computation is shown in figure 5.

Merging Tupled Functions In the next step we transform the type of the
carrier set in the previous example, i.e. (Int, Int -> Tree), into a, for this
purpose equivalent, type Int -> (Int, Tree). This transformation is not es-
sential here, but we use it to demonstrate that if we compute a cartesian product
of functions, we may transform that type into a new type in which we compute
a single function, that takes as its arguments the cartesian product of all the
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Bin

Bin

Bin

Bin

Leaf

Leaf

3

Leaf

Leaf

4

Leafm

Leaf

5

Fig. 3. The flow of information when building the result

m
Leaf

Leaf

_

Bin

rfunlfun 

m

m m

Bin

lt rt

Fig. 4. The building blocks

Bin

rl 

m

m m

min

lm rm

Bin

lt rt

Fig. 5. Tupling the computations
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infix 9 ‘tuple_tree‘

tuple_tree :: Tree_Algebra a -> Tree_Algebra b -> Tree_Algebra (a,b)

(leaf1, bin1) ‘tuple_tree‘ (leaf2, bin2)

5 = (\i -> ( leaf1 i , leaf2 i )

,\l r -> ( bin1 (fst l) (fst r), bin2 (snd l) (snd r) )

)

min_tup_rep :: Tree_Algebra (Int, Int -> Tree)

10 min_tup_rep = (min_alg ‘tuple_tree‘ rep_alg)

replace_min’’ t = r m

where (m, r) = cata_Tree min_tup_rep t

Listing 4: rm.sol3

arguments of the functions in the tuple, and returns as its result the cartesian
product of the result types. In our example the computation of the minimal value
may be seen as a function of type () -> Int. As a consequence the argument of
the new type is ((), Int), that is isomorphic to just Int, and the result type
becomes (Int, Tree), so as the carrier we get the type Int -> (Int, Tree).2

We want to mention here too that the reverse is in general not true; given
a function of type (a, b) -> (c, d), it is in general not possible to split this
function into two functions of type a -> c and b -> d, that together achieve
the same effect. The new version of our program is given in listing 5.

Notice how we have again introduced extra lambdas in the definition of the
functions making up the algebra, in an attempt to make the different rôles of the
parameters explicit. The parameters after the second lambda are there because
we construct values in a higher order carrier set. The parameters after the first
lambda are there because we deal with a Tree Algebra. A curious step taken
here is that part of the result, in our case the value m, is passed back as an
argument to the result of (cata Tree merged alg t). Lazy evaluation makes
this work!

That such programs were possible came originally as a great surprise to many
functional programmers, and especially to those who used to program in LISP or
ML, languages that require arguments to be evaluated completely before the call
is evaluated (so-called strict evaluation in contrast to lazy evaluation). Because
of this surprising behavior this class of programs became known as circular
programs. Notice however that there is nothing circular in this program. Each
value is defined in terms of other values, and no value is even defined in terms
of itself (as in ones=1:ones), although this would not have been a problem.

2 Notice that the first component of the result does not depend on the Int-argument; it
is just computed “at the same time” as the Tree that does depend on the argument.
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merged_alg :: Tree_Algebra (Int -> (Int,Tree))

merged_alg = (\i -> \m -> ( i , Leaf m )

,\lfun rfun -> \m -> let (lm,lt) = lfun m

(rm,rt) = rfun m

5 in ( lm ‘min‘ rm, Bin lt rt )

)

replace_min’’’ t = r

where (m, r) = (cata_Tree merged_alg t) m

Listing 5: rm.sol4

replace_min’’’’ t = r

where (m, r) = tree t m

tree (Leaf i) = \m -> (i, Leaf m)

tree (Bin l r) = \m -> let (lm, lt) = tree l m

5 (rm, rt) = tree r m

in (lm ‘min‘ rm, Bin lt rt)

Listing 6: rm.sol5

Finally we give in listing 6 the version of this program in which the func-
tion cata Tree has been unfolded, thus obtaining the original solution given in
Bird[13].

Recapulating we have systematically transformed a program that inspects
each node twice into an equivalent program that inspects each node only once.
In doing so we were forced to pass part of the result of a call as an argument to
that very same call. Lazy evaluation made this possible.

2.2 Table Formatting

In this section we will treat a more complicated example, in which we show how
to systematically design the algebra’s involved. Our goal is to develop a program
that recognizes and formats (possibly nested) HTML style tables, as described
by the following grammar:

table → <TABLE> rows </TABLE>
rows → row∗

row → <TR> elems </TR>
elems → elem∗

elem → <TD> string | table </TD>

An example of accepted input and the associated output is given in figure 6.
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<TABLE>

<TR><TD>the</TD>

<TD>table</TD>

</TR>

<TR><TD><TABLE>

<TR><TD>formatter</TD>

<TD>in </TD>

</TR>

<TR> <TD>functional</TD>

<TD>polytypic </TD>

</TR>

</TABLE>

</TD>

<TD>style</TD>

</TR>

</TABLE>

(a) HTML input

|----------------------------|

|the |table|

|----------------------------|

||--------------------||style|

||formatter |in || |

||--------------------|| |

||functional|polytypic|| |

||--------------------|| |

|----------------------------|

(b) Output

Fig. 6. Table formatting

A Parser for Tables We start defining the parser for the input language. As
we will see the parser actually is a combination of the parsing process and the
computation of a catamorphism over the abstract syntax tree constructed by
the parsing process.

The parser is written with so-called parser combinators [15] – here mostly
defined as infix operators: functions that construct parsers out of more elemen-
tary parsers, completely analogous to the well-known recursive descent parsing
technique. An example of the advantages of embedding a formalism (in our
case context-free grammars) in a language that provides powerful abstraction
techniques is that this automatically gives us an abstraction mechanism for the
embedded language (in our case the context-free grammars). Although it is not
the main purpose of this paper to treat combinator parsers we have incorporated
this part for the sake of completeness, and to show how to link the semantics of
a language to recognized program structures.

Parsing with combinators: discovering structure In the first section we have men-
tioned that, when defining a programming language, we may want to distinguish
the concrete syntax from the abstract syntax. In this paper we will assume the
availability of a set of parsing combinators, that enables us to construct such a
mapping without almost any effort.

Before we describe the structure of the combinator taggedwith that will
be used to construct a parser for recognizing HTML-tagged structures, we will
briefly discuss the basic combinators used in its construction.

The types of the basic combinators used in this example are:
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<*> :: Eq s => Parser s (a -> b) -> Parser s a -> Parser s b
<|> :: Eq s => Parser s a -> Parser s a -> Parser s a
succeed :: a -> Parser s a
sym :: Eq s => s -> Parser s s
--
<$> :: Eq s => (a -> b) -> Parser s a -> Parser s b
<*-> :: Eq s => Parser s a -> Parser s b -> Parser s a
<-*> :: Eq s => Parser s b -> Parser s a -> Praser s a
<$-> :: Eq s => (a -> b) -> Parser s c -> Parser s (a -> b)

The type Parser is rather complicated and has been taken from [15]. Here it
suffices to know that a Parser s a will recognize a sequence of tokens ([s])
and return a value of type a as the result of the parsing process. The sequence
combinator <*>, composes two parsers sequentially. The meaning of the com-
bined result is computed by applying the result of the first component to the
result of the second. The choice combinator <|> constructs a new parser that
may perform the role of either argument parser. The parser combinator succeed
creates a parser that always succeeds (recognizes the empty string) and returns
the argument of succeed as its semantic value. The parser combinator sym re-
turns a parser that recognizes the terminal symbol represented by its argument.
Sequence, choice, succeed and sym form the basic constructors for parsers for
context-free languages. In our example we will assume that we have a scanner
that maps the input onto a sequence of Tokens, and that such tokens may be
recognized by elementary parsers for keywords (constructed with pKey), and for
lower case identifiers (pVarid).

One of the things to notice here is that the type of the parsers is completely
polymorphic in the result of the parsers, and that the definitions of the parser
combinators only allow us to combine partial results to the results of complete
trees in a type safe manner. Furthermore we have introduced a context Eq s to
precisely contrain the kind of token sequences we are able to parse.

A fifth combinator is defined for describing further processing of the semantic
values returned by the parsers. It is the application defined as:

f <$> p = succeed f <*> p

Thus, it applies the function f, the so called semantic function, to the result of
parser p. We will see how, by a careful combination of such semantic functions
and parser combinators, we can prevent a parse tree from coming into existence
at all [16,11].

Now let us take a look at the program in listing 7, and take the combina-
tor taggedwith. This combinator takes two arguments: a String providing the
text of the tag and the Parser for the structure enclosed between the tags. Its
semantics are: recognize the ‘open’ tag s, then (combinator <*>) recognize the
structure p, then (again <*>) parse the ‘close’ tag. The combinators <*->, <$->
and <-*> combine parsers, but throw away the result at the side of the --symbol
in their name. As a result of this the result of a call taggedwith s p returns
only the result recognized by the call of p in its body.
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type Alg_List a b = ( a -> b -> b, b )

type Alg_Table table rows row elems elem

= ( rows -> table, Alg_List row rows

5 , elems -> row , Alg_List elem elems

, (String -> elem, table -> elem) )

taggedwith :: Eval a

=> String -> Parser Token a -> Parser Token a

10 taggedwith s p = topen s <-*> p <*-> tclose s

where topen s = pKey ("<") <*-> pKey s <*-> pSym ’>’

tclose s = pKey ("</") <*-> pKey s <*-> pSym ’>’

format_table :: Alg_Table table rows row elems elem

15 -> Parser Token table

format_table ( sem_table, sem_rows, sem_row

, sem_elems, (sem_selem,sem_telem) ) = pTable

where

pTable = sem_table <$> taggedwith "TABLE"

20 (pFoldr sem_rows (taggedwith "TR"

( sem_row <$>

pFoldr sem_elems (taggedwith "TD"

( sem_selem <$> pVarid

<|> sem_telem <$> pTable

25 ) ) )) )

Listing 7: Parsing tables

pFoldr :: Eq s => Alg_List a b -> Parser s a -> Parser s b

pFoldr alg@(op,zero) p = pfm

where pfm = op <$> p <*> pfm <|> succeed zero

5 -- Some useful algebras

init_list = ((:), [])

max_alg = (max, 0) -- Take the max element; sizes are positive

sum_alg = ((+), 0) -- Sum all elements

Listing 8: List manipulation
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The Kleene ∗ in two grammar rules of our Table Formatting problem are re-
alized by the combinator pFoldr (see listing 8). The first argument of pFoldr is
a tuple of two values: (zero,op) :: Alg_List, an algebra that uniquely defines
the homomorphism from the carrier set of the initial algebra to the carrier set of
the argument algebra (in our case the type b). The second argument of pFoldr is
a parser for p-structures. A parser pFoldr (op,zero) p recognises a sequence
of p-structures, and foldrs the results using the binary operator op to com-
bine results and using zero as its unit element; so pFoldr sum_alg p_Integer
recognises a sequence of integers and returns their sum as a result, provided that
pInteger recognises a single integer.

Finally we have a look at the function format_table. We see that it takes
for each nonterminal of the describing grammar an algebra consisting of func-
tions that describe how to construct the semantic value for a production out
of the semantic values of the elements in its right hand side. From the type of
Alg_Table we see that it takes a set of carrier types as argument. As a result
the whole parser is polymorphic in all these domains: all it does is recognizing
the structure of a table and composing the recognized elements once it is told
how to compose them by the argument of type Alg_Table.

Exercise 1. A more traditional solution to linking the parsing phase with the
semantic phase would have been to construct a tree first, that is subsequently
mapped onto a final semantic domain using a catamorphism. Define appropriate
data types, and the associated catamorphisms. How should the Alg_Table show
up in your program?

Simulating structure walks: adding semantics By providing different definitions
for the algebras passed to the pFoldr-calls and for the sem_antic functions we
may compute quite different results. The set of definitions:

type Table = Rows
type Rows = [ Row ]
type Row = Elems
type Elems = [ Elem ]
data Elem = SElem String | TElem Table

table = format_table (id,init_list,id,init_list,(SElem,TElem))

describes the data structure holding the table as the result of the parsing process.
The type of the element to be returned by table is Table. It is already possible
in the previous functions to see the role played by the semantic functions and the
list algebras – figure 7(a). The latter apply functions to the collected elements,
and the former provide intermediate computations such as transforming data
types, collecting intermediate values and computing new values. In the following
sections we will focus on the systematic description of these functions.

Walks, trees: where are they? In the previous section we have seen how we
can define an algebra that describes the computation of the abstract syntax tree
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sem_telem

sem_selem

Table

RowsRow

Elem

Elem

sem_elems

sem_rows

sem_row

sem_table

Rows

Elems

Elems

nil

(a) Building the AST

sum_alg

max r1 + max r2 + ...

id

1

Table

RowsRow

Elem

Elem

max_alg

id

id

Rows

Elems

Elems

nil

(b) Computing the heights

Fig. 7. Computations over trees
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itself: the initial algebra. For defining the semantics of such a tree we now have
to define the catamorphism from the initial algebra (the abstract syntax trees)
to some other algebra (the meaning). An interesting consequence of trees being
initial is that this function is completely defined by the target-algebra. Expressed
in computer science terms this is just saying that the structure of the recursion
follows directly from the data type definition; a fact well known to (functional)
programmers and attribute grammar system users.

A direct consequence of this is that it is possible to compute the meaning of
a structure directly, without going through an explicit tree-form representation:
instead of referring to the initial algebra (constructed from the data type con-
structors) we use the meaning-algebra (constructed from the semantic functions)
whenever we are performing a reduction (i.e. would construct a tree-node) in the
parsing process. The construction of the abstract syntax tree is fused with the
catamophism giving a meaning to this tree, and thus the actual tree never comes
into existence.

Computing Heights As a first step to a solution to the Table Formatting
problem we will focus on computing the height of the elements, the rows and
the table itself. We will ignore the sizes taken by the dividing lines for a while.
Figure 7(b) depicts an attribute grammar view of the solution. The height of an
element is the height of a simple element, 1, or the height of a nested table. The
height of a row is the maximum of the heights of the elements of the row, and
the height of a table is the sum of the heights of all the rows. This computational
structure is actually what pFoldr is capturing: roll over the elements of the list,
taking every element into account, accumulating a result. Thus the list algebra,
in the parser known as sem_elems, for computing the height of a row is max_alg.

The height of the table is the sum of the heights of the rows. Again we can use
a list algebra to express that computation, thus for sem_rows we use sum_alg.
The complete algebra for computing heights now is:

height_table = (id, sum_alg, id, max_alg, (const 1, id))

Note that sem_table and sem_row do not need special attention in this case:
they only pass on their argument.

We observe the following relation between the set of functions defined and an
attribute grammar: (a) the results of applying the semantic functions to the chil-
dren nodes correspond to synthesized attributes and, (b) attribute computations
are nicely described by algebras.

Computing theWidths At the table level, the computation of widths deserves
a bit of attention. We will not be able to deduce any width of a column until we
have recognized the last row of the table. But instead of keeping the widths of all
the elements, we maintain a list with the maximum width found for each column.
Whenever a complete new row has been recognized, the width of each element has
to be compared with the thus far computed width of its corresponding column.
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width_table = (sum, star max_alg, id, init_list, (length, id))

star :: Alg_List a b -> Alg_List [a] [b]

star (op, zero) = (zipWith op, repeat zero)

5

hw_table = ( id ‘x‘ sum, sum_alg ‘tuple_list‘ star max_alg

, id ‘x‘ id , max_alg ‘tuple_list‘ init_list

, ( (const 1) ‘split‘ length , id ‘x‘ id ) )

10 f ‘x‘ g = h where h (u,v) = (f u, g v)

f ‘split‘ g = h where h u = (f u, g u)

tuple_list :: Alg_List b a -> Alg_List b’ a’ -> Alg_List (b,b’) (a,a’)

(f, e) ‘tuple_list‘ (f’, e’)

15 = (\(x, x’) (xs, xs’) -> (f x xs, f’ x’ xs’), (e, e’))

Listing 9: Computing heights and widths

For this purpose we introduce the star combinator that lifts an algebra to the
corresponding algebra on lists:

star :: Alg_List a b -> Alg_List [a] [b]
star (op, zero) = (zipWith op, repeat zero)

The combinator star takes an algebra, and returns an algebra that has as carrier
set lists of elements of the original algebra. In this way, once we have defined
the algebra for computing a maximum, max_alg, we can define an algebra for
computing the pairwise maxima of two lists: star max_alg and this is what we
need to compute the widths at the table level.

Now we want to combine the computations of the height and the width.
Again, thinking in an attribute grammar style, we need another synthesized
attribute. Because functions can only return a single value, we have to pair both
results (height and widths), and deliver them together. With a row we have
associated the list of the widths of all its the elements: init_list.

Following our algebraic style of programming we define a tupling combinator
that takes two algebras and returns an algebra that computes a pair of values.
In this way it is possible to structure the computations even more. Note that
the composition is at the semantic level and not only syntactic.

infixr ‘tuple_list‘
tuple_list :: Alg_List b a -> Alg_List b’ a’

-> Alg_List (b,b’) (a,a’)
(f, e) ‘tuple_list‘ (f’, e’)
= (\(x, x’) (xs, xs’) -> (f x xs, f’ x’ xs’), (e, e’))

Thus we use max_alg ‘tuple_list‘ list_init for synthesizing the height
of the row paired with the list of widths of the elements of the
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row. We do the same at the table level and obtain the algebra
sum_alg ‘tuple_list‘ star max_alg.

Finally, the result of the computation for a table must be a pair, but we obtain
a list of widths from the application of pFoldr. Thus we need a further transfor-
mation id ‘x‘ sum. The product combinator x applies its argument functions
to the corresponding left and right elements of the pair. The new version of the
program is shown in listing 9.

Let us note that:
• we can compute several properties of a tree at the same time by tupling

them
• computations for such tuples can be constructed out of computations for the

elements of the tuples (tuple_list, star, split and x)
• the operators on algebras: composition and star, and split and product are

independent of the problem at hand and could have been taken from a library
• these operators could have been automatically derived using the language

PolyP

Exercise 2. Can you provide a tupling operator for table algebras?

Formatting Once we have computed the widths of all columns and the heights
of all rows we can start to work on the formatting of the table. The approach
will be very similar to the one taken in the Rep Min problem. Instead of com-
puting the formatted table directly we will compute a function that, once it gets
passed the widths of the columns, builds the formatted table. Furthermore the
computation of these functions will again be tupled with the computation for
the widths and the heights. These table building functions will be constructed
out of row-building functions that will construct a formatted row, once they get
passed the height of that row and the widths of the columns.

To format the table we do the following: elements are made to be the top-left
element of a quarter plane (we call them Boxes), extending to the east and the
south, see figure 8. The table layout is constructed by placing these boxes beside
and on top of each other. The code for the semantic functions and the algebras
is shown in figure listing 10.

To simplify, we always place the element in the upper left corner of the
box. Additional horizontal and vertical glue – blank text lines – are padded to
the elements to fit in their actual layout space. All elements are furthermore
equipped with a nice top left corner frame – delineating the quarter plane – as
you can see in figure 8.

At the row level, elements are h_composed, laying out one row of the table.
The composition is done as follows: concatenate the next text line from each
element, until there are no more lines. Because all the elements in the row have
been filled with vertical glue at the end, this process also creates blank spaces if
the element is not large enough to fill the vertical space.

When the processing of a row has finished we shape the row hori-
zontally. This is possible because the final height of the row is known,
and can be passed on to all the boxes. This surgery is performed by
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layout_table

= ( bot_right . mk_table

, v_compose ‘tuple_list‘ sum_alg ‘tuple_list‘ star max_alg

, \(fmtrow, hwds@(h, wds)) -> (fmtrow h, hwds)

5 , h_compose ‘tuple_list‘ max_alg ‘tuple_list‘ init_list

, ( mk_box . ((:[]) ‘split‘ (const 1) ‘split‘ length)

, mk_box

)

)

Listing 10: Computing the formatted table
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Fig. 8. Superposition of boxes
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mk_box = to_box ‘x‘ (+1) ‘x‘ (+1)

to_box t rh rw = map (take rw) . take rh . top_left . add_glue $ t

top_left t = map (’|’:) (h_line:t)

5 mk_table = \(fmttable, (h, wds)) -> (fmttable wds, (h, sum wds))

bot_right (t,(h,w)) = (close_grid, (h + 1, w + 1))

where close_grid = map (++"|") (t ++ [take w (’|’:h_line)])

h_compose = ( fork <||> decons <=>> zipWith (++), nil_table )

10 v_compose = ( lift (++) , nil_row )

nil_table _ _ = repeat ""

nil_row _ = []

15 h_glue = repeat ’ ’

v_glue = repeat h_glue

add_glue t = map (++ h_glue) t ++ v_glue

h_line = repeat ’-’

Listing 11: Functions for manipulating boxes

\(fmtrow, hwds@(h, wds)) -> (fmtrow h, hwds). We have written this
function in a pointwise style, in order to show how the flow of data proceeds.

At the table level, the rows already formatted are v_composed. This task is
reduced to concatenating text lines. Finally, once all rows have been processed,
the actual width of each column is known and thus, the table can be shaped
vertically. This is done in mk_table. Finally the grid is closed, with bot_right
placing the bottom and right lines, and correcting the actual size of the table.
The implementation of box manipulation functions is given in listing 11.

Observe that the size of the boxes is flexible, but once we know the corre-
sponding height and width, it is possible to actually obtain the nicely formatted
table. Even without noticing, we also put the grid in the table, placing the el-
ements besides and on top of each other. We only need to take care of closing
the grid, and providing each element with a top-left grid.

The simplicity of h_compose and v_compose is suspicious. Let us take a look
inside h_compose. In terms of text elements it’s only string manipulation, but
let us take the attribute grammar view. At the Elems level we have the situation
depicted in figure 9(a): an Elems cons node takes two arguments, the height and
a list of widths, and returns a formatted row, the layout of the element. The
arguments are passed down to its children: the height is distributed as it is (it is
a global value for the row), but the widths have to be split element by element.
The synthesized attributes are combined together using the zipWith (++) (but
in general any f). Thus the dataflow pattern in the leftmost graph in figure 9(a)
is composed of three subgraphs: pass down a global value (fork), pass down and
split a composed value (decons if the value is a list and we want to decompose a
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list into its head and tail), combine those subcomputations (<||>) and combine
this with the upflowing part of the dataflow graph (<=>>), see figure 9(b).

(w:ws)

w ws

decons<||>

rsr

nrs

zipWith (++)
<=>>

h

h h

 fork

(w:ws)

Elem Elems

Elems

r rs

nrs

w ws

h

h h

(a) (b)

Fig. 9. Attribute computation: (a) example and (b) combining patterns

Once more, thanks to the abstraction and higher orderness of the language,
these patterns can be abstracted and used in a compositional way to express a
computation of h_compose. The code of these combinators is shown in listing 12.

We believe that this program clearly captures the notion of attribute gram-
mar: a context-free grammar is represented by the use of parser combinators,
while attributes and attribute computations are expressed in terms of algebras
and parameterized functions. Note that there are no inherited attributes as such.
We create partially parameterized functions and once we know the dependent
value, we apply the function(s) to the value(s). Thus some attributes play a
double role: they are synthesized (like the height of a row), but once their value
has been computed they can be used in a subsequent computation; thus acting
as inherited attributes.

Furthermore, the program can be generalized rather straightforwardly to a
polytypic function [3] because the constructors are general. Although not pre-
sented here, the tupling operator tuple_list can be defined for any arbitrary
data type constructor f.

As a final remark we notice that probably the hardest part of the derivation
was the design of the combinators <||>, <=>>, fork and decons, and using them
to construct the data-flow patterns of figure 9(a). On the one hand it is nice that
we can define such patterns of passing values around by the introduction of extra
combinators; on the other hand it is quite cumbersome to have to keep track of
which element in the tuples represent what values.

2.3 Defining Catamorphisms

In previous subsections we have defined the catamorphisms needed for the data
types involved explicitly. The question arises whether this can be done in a more
generic way.

In the chapter on generic programming it has been shown how we can, given
a functor, define the initial data type, corresponding to that functor. How to
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lift op f g = \x -> (f x) ‘op‘ (g x)

fork = id ‘split‘ id

decons = head ‘split‘ tail

5 (<||>) :: (a->(b,c)) -> (d->(e,f)) -> a -> d -> ((b,e),(c,f))

forkl <||> forkr

= \inh_l inh_r -> let (inh_ll,inh_lr) = forkl inh_l

(inh_rl,inh_rr) = forkr inh_r

in ((inh_ll,inh_rl),(inh_lr,inh_rr))

10

(<=>>) :: (a -> d -> ((b,e),(c,f)))

-> (g -> h -> k) -> (b -> e -> g) -> (c -> f -> h)

-> a -> d -> k

fork <=>> merge_op

15 = \fsyn_l fsyn_r -> \inh_l inh_r

-> let ((inh_ll,inh_rl),(inh_lr,inh_rr)) = fork inh_l inh_r

syn_l = fsyn_l inh_ll inh_rl

syn_r = fsyn_r inh_lr inh_rr

in merge_op syn_l syn_r

Listing 12: Attribute computation combinators

define the catamophism corresponding to that functor in Haskell is by now well
known: in listing 13 we provide the definitions taken from [5]. Note that if we
take this approach we still have to indicate that a specific data type constructor
is a functor, by defining the appropriate class instance. In the language PolyP
it is no longer necessary to do this last step explicitly since there we can define
the function cata once and for all as a polytypic function.

Unfortunately these approaches do not readily extend to the case where
we have to deal with several mutually recursive data types, like the Ta-
ble Formatting problem. Although this is not a problem at all from a theoretical
point of view, the actual coding is quite elaborate. In the next subsection we will
show how to define two mutually recursive data types and we hope that from
that it will be clear how to proceed in the general case.

Mutually Recursive Data Types As the running example we will take the
definition of and the code generation for a small block-structured language. The
language has two nonterminals: Expr and Decls. Since our language has two
nonterminals, we want to define two mutually recursive data types and thus we
start with the definition of a class Functor_2 for bi-functors (see listing 14).
For getting hold of the joint fixpoint of two functors we define the data type
constructor Rec_2, a straightforward extension of the Rec we have seen before.
In listing 14 we have used two arguments, but in the most general case we would
have n arguments, and by rotating the arguments one step at each next element
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data Rec f = In (f (Rec f))

out :: Rec f -> f (Rec f)

out (In o) = o

5

class Functor f where

map :: (a -> b) -> (f a -> f b)

cata :: Functor f => (f a -> a) -> Rec f -> a

10 cata phi = phi . map (cata phi) . out

Listing 13: Catamorphisms for a single recursive data type

data Rec_2 f1 f2 = In_2 (f1 (Rec_2 f1 f2) (Rec_2 f2 f1))

out_2 :: Rec_2 f -> f (Rec_2 f)

out_2 (In_2 t) = t

5

class Functor_2 f where

map_2 :: (a1 -> b1, a2 -> b2) -> (f a1 a2 -> f b1 b2)

cata_2 :: (Functor_2 f, Functor_2 g)

10 => ( f e d -> e, g d e -> d)

-> ( Rec_2 f g -> e, Rec_2 g f -> d)

cata_2 phis@(phi1, phi2) = (r1, r2)

where r1 = phi1 . map_2 (r1, r2) . out_2

r2 = phi2 . map_2 (r2, r1) . out_2

Listing 14: Catamorphisms for two recursive data types
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data Expr e d = Con_Int Int

| Var String

| If e e e

| Apply e e

5 | Where e d

data Decls d e = Dec d String e

| None

type Expr_Algebra e d = ( Int -> e -- integer constant

10 , String -> e -- variable

, e -> e -> e -> e -- conditional expr.

, e -> e -> e -- application

, e -> d -> e -- where clause

)

15 type Decls_Algebra d e = ( d -> String -> e -> d

, d

)

Listing 15: Bi-functors and its associated algebras

in the right and side of Rec_n they would all make it once to the first place in
the argument list of Rec_n.

Finally in listing 14 we define the corresponding mutually recursive bi-
catamorphism cata_2.

The Block-Structured Language Since our language has two nonterminals
we need two recursive data types, and thus define two bi-functors Expr and
Decls in listing 15. Having done this we may define the associated algebras
Expr_Algebra and Decls_Algebra.

Since we have taken a slightly different shape of our algebras in our def-
inition of cata_2 we also introduce two functions that transform such a tu-
pled representation of an algebra into functions with type Expr e d -> e and
Decls d e -> d:

expr_choose :: Expr_Algebra e d -> (Expr e d -> e)
expr_choose (f_Con_Int, f_Var, f_If, f_Apply, f_Where) e

= case e of
Con_Int i -> f_Con_Int i
Var s -> f_Var s
If ce te ee -> f_If ce te ee
Apply e1 e2 -> f_Apply e1 e2
Where e d -> f_Where e d

decls_choose :: Decls_Algebra d e -> (Decls d e -> d)
decl_choose (f_Dec, f_None) d
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instance Functor_2 Expr where

map_2 (ef, df) e = case e of

Con_Int i -> Con_Int i

Var s -> Var s

5 If ce te ee -> If (ef ce) (ef te) (ef ee)

Apply f arg -> Apply (ef f) (ef arg)

Where body decl -> Where (ef body)

(df decl)

10 instance Functor_2 Decls where

map_2 (df, ef) d = case d of

Dec decls s e -> Dec (df decls) s (ef e)

None -> None

Listing 16: Functor 2 instances

= case d of
Dec d s e -> f_Dec d s e
None -> f_None

When taking the combined fix-point of these functors the parameter e is going
to be replaced by the type of an expression tree, and the parameter d by the list
of declarations.

Having done this our next step is to make make the bi-functors Expr and
Decls instance of the class Functor2. The definitions are shown in listing 16.

Code Generation Having set up all the above machinery all we have to do is
to define the appropriate algebras. We will not go deeply into the kind of code
to generate. The following should serve as a good enough description of what we
want to achieve:

expression | generated code
-----------------------|-----------------------------------------
if 3 then x else y | Enter 2, Loadint 4, Store (1,0),
where x = 4 | Loadint 5, Store (1,1),

y = 5 | Loadint 3, Brfalse 0,
| Load (1,0), Bralways 1,
| Label 0, Load (1,1),
| Label 1,
| Leave 2

Notice that we need to introduce an environment that for each declared identifier
keeps track of its lexical level and its displacement, and besides that we have to
keep track of a label counter for compiling the conditional expressions. We first
provide some auxiliary declarations:
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type Index = Int
type Lex_level = Int
type Address = (Lex_level, Index)
type Env = String -> Address
type Lab = Int

data Code = Loadint Int | Loadbool Bool
| Enter Int | Leave Int
| Brfalse Lab | Bralways Lab
| Label Lab
| Load Address | Store Address
| Call
deriving Show

Having done all this we can now define the two algebras. As the carrier set for the
expressions we take functions mapping the cartesian product of an environment
and a lexical level and a label counter onto the generated code and an updated
label counter, whereas for the declarations we take functions mapping an envi-
ronment/level pair and a label counter onto generated code, an integer counting
the number of declarations contained in the list processed and an updated la-
bel counter. Now, once we have defined two appropriate algebras sl_expl and
sl_decls (see listing 17) we can define our compiler by:

compile_expr = code
where
(exprf, declf) = cata_2 (expr_choose sl_expr,decl_choose sl_decl)
(code, _) = exprf (null_env, 0) 0

2.4 Discussion

In this section we have treated three different algorithms: the Rep Min problem,
the Table Formatting problem, and the definition of a small compiler for expres-
sions. In the Rep Min problem we have shown how we may construct circular
programs. In the Table Formatting problem we have shown how we may de-
fine algebra’s in a step wise fashion and define special combinators to construct
new algebra’s out of other algebra’s. Finally we have shown that we may define
the concept of a catamorphism once and for all once we know with how many
mutually recursive data types we have to deal with.

There is however also a somewhat sobering conclusion: although everything
can be done in a very systematic way, it is still a lot of work. We identify the
following problems:

1. when moving to higher order domains and composite results we have to keep
track of which value is at which parameter position, or at which position in
the resulting cartesian products.

2. extending the nonterminals with an extra alternative makes us go through
all the data types, algebra’s and instance declarations.
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sl_expr = ( \ i -> \_ -> \lc -> ([Loadint i ], lc)

, \ s -> \(env,_) -> \lc -> ([Load (env s)], lc)

, \ ce te ee -> \ el -> \lc

-> let (cc, clc) = ce el (lc + 2)

5 (tc, tlc) = te el clc

(ec, elc) = ee el tlc

in ( cc

++ [Brfalse lc]

++ tc

10 ++ [Bralways (lc + 1)]

++ [Label lc]

++ ec

++ [Label (lc + 1)]

, elc )

15 , \ e1 e2 -> \el -> \lc -> let (e1c, lc1) = e1 el lc

(e2c, lc2) = e2 el lc1

in (e2c++e1c++[Call],lc2)

, \ e d -> \(env,lev) lc ->

let (ec,elc) = e (denv, lev+1) lc

20 (dc,dnum,denv,dlc) = d (env , lev+1) elc

in ( [Enter dnum]++dc ++ ec++[Leave dnum]

, dlc

)

)

25 sl_decl = (\ d s e -> \el@(env,lev) lc

-> let (dc,dnum,denv,dlc) = d el lc

(ec, elc) = e (denv,lev) dlc

nenv = \ss -> if s == ss

then (lev,dnum)

30 else denv ss

in ( dc++ec++[Store (nenv s)]

, dnum+1

, nenv

, elc

35 )

, \(env,_) lc -> ([], 0, env, lc)

)

Listing 17: Algebras for compiling the expression language



Designing and Implementing Combinator Languages 177

3. the construction of the related catamorphisms is cumbersome, especially
when we add another related data type. Furthermore the approach taken is
unnecessarily complicated since it in principle deals with the case that each
data type is reachable from all others in a set of mutually recursive data
types. In general this will not be the case.

In the next section we will introduce special syntax in order to cope with these
three problems. Unfortunately we will have to leave the semantic composition-
ality, and replace it with a syntactic one.

3 Attribute Grammars

In the previous section we have developed programs for the Rep Min and Ta-
ble Formatting problems. In both cases we computed a tuple of values as the
result of a catamorphism and at least one of the elements of those tuples was a
function that at some point was applied to another element of the tuple. In the
Rep Min example the tree constructing function was applied to the computed
minimal value, and in the Table Formatting example we had two occurrences of
this phenomenon: the row-constructing function was applied to the computed
maximum height of the row, and the table constructing function was applied to
the list of computed row widths.

Since this pattern is quite common and the composition and invention of all
the algebras was not so straightforward, we will introduce an attribute grammar
based notation, out of which we may easily generate equivalent Haskell code.
The conclusion will be that we can design programs like the ones in the previous
section by drawing pictures like the ones presented in the Rep Min example.
The price to be paid is that instead of having semantic compositionality, we
have to fall back on syntactic compositionality provided by a preprocessor. Our
current opinion however is that the advantages of our approach for developing
combinator libraries by using a separate attribute grammar formalism allows
transformations and ease of formulation that are hard to beat by an approach
completely based on semantic composition.

We also hope to show that by taking the attribute grammar approach it will
become much easier to extend the library or to make efficiency improvements.
The next section, in which we develop a set of pretty printing combinators in
a sequence of steps, is an example of the allowed flexibility. Since we anticipate
that people will want to experiment with different implementations and designs
we have tried to design our attribute grammar formalism in such a way that
definitions can easily be changed and expanded without having to change the
original program texts.

3.1 The Rep Min Problem

In listing 18 we show the formulation of the Rep Min problem, using our attribute
grammar notation.
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DATA Tree

| Leaf int: Int

| Bin left, right: Tree

5 DATA Root | Root tree: Tree

-- Computation of the minimum value

ATTR Tree [ -> m: Int ]

10 SEM Tree

| Leaf LHS .m = int

| Bin LHS .m = "left_m ‘min‘ right_m"

ATTR Tree [ minval: Int <- ]

15 SEM Tree

| Bin left .minval = lhs_minval

right.minval = lhs_minval

-- Computation of the resulting tree

20

ATTR Tree [ -> res: Tree ]

SEM Tree

| Leaf LHS .res = "Leaf lhs_minval"

| Bin LHS .res = "Bin left_res right_res"

25

-- Use the computed minimal value

ATTR Root [ -> res: Tree ]

SEM Root

30 | Root tree .minval = tree_m

LHS .res = tree_res

Listing 18: RepMin1.ag
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The first two DATA declarations introduce the grammar corresponding to
the structure of our problem. The ATTR declarations specify the inherited and
synthesized attributes of the nonterminals. Attributes occurring before a <- are
inherited attributes, corresponding to downward arrows in the pictures we have
seen, and attributes following a -> are synthesized attributes, corresponding to
the upgoing arrows in the pictures. Declarations between <- and -> introduce
two attributes of the same name, one inherited and one synthesized. In the
SEM parts we specify the way attributes are computed out of other attributes.
The actual definitions are pieces of Haskell text, that are neither parsed nor
typechecked, and are copied literally into the generated program. References to
other attributes in such rules follow a naming convention: a synthesized attribute
res of a child left is referred to as left_res, whereas an inherited attribute
minval is referred to as lhs_minval, since it is an attribute of the nonterminal
at the left hand side of the production. In each semantic rule we have to specify
what nonterminal (SEM Tree), what alternative (|Leaf), what component of the
production (LHS or left) and what attribute (.res) is specified by the rule.

If we put this text through our small system the code in listing 19 is generated.

Exercise 3. Use the parser combinators together with the generated file to con-
struct a solution for the Rep Min problem, that reads a tree from a file, and
writes the result into another file.

One might wonder what progress has been made since both the input and the
generated program are much longer than the original program in the previous
section.

In the first place we have presented the input in the most elaborate form
of our notation, thus making explicit all different components of the definition.
Many abbreviations exist in order to cope with often occurring patterns of at-
tribute use. A completely equivalent input is given in listing 20. Here we see that
attributes may be declared together with the introduction of a new nonterminal,
a new alternative or a new semantic rule. Furthermore many straightforward
so-called copy rules can easily be inferred by the system. It is the extension
of the notation that makes things really work well. So is the attribute minval
automatically made available in all nodes of the tree by the rule that if both
a child and a father node have an inherited attribute with the same name, it
is automatically passed on from the father to the child if no semantic rule has
been defined (actually the rules for doing so are a bit more complicated, but this
description will do for the time being). This rule captures the pattern that is
normally associated with a reader monad. This approach has the advantage that
if we have several attributes following this pattern we do not have to introduce
a new monad describing this joint passing around of values.

Furthermore there are a lot of small but convenient conventions; if an ele-
ment in the right hand side of a production is not explicitly named, its name
is constructed from the type by converting the first letter to lower case. As a
consequence we do not have to be creative in inventing a name for the value at
a Leaf, it is just called int.
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module RepMin where

---------------------- Tree -------------------------

data Tree = Tree_Leaf Int| Tree_Bin Tree Tree

deriving Show

5 -- semantic domains

type T_Tree = Int ->(Tree,Int)

-- catas

sem_Tree (Tree_Leaf i) = sem_Tree_Leaf i

sem_Tree (Tree_Bin left right)

10 = sem_Tree_Bin (sem_Tree left) (sem_Tree right)

-- funcs

sem_Tree_Leaf i lhs_minval = ( (Leaf lhs_minval), int )

sem_Tree_Bin left right lhs_minval

= let{ ( left_res, left_m ) = left lhs_minval

15 ; ( right_res, right_m ) = right lhs_minval

}in ( (Bin left_res right_res), (left_m ‘min‘ righth_m) )

---------------------- Root -------------------------

data Root = Root_Root Tree

deriving Show

20 -- semantic domains

type T_Root = Tree

-- catas

sem_Root (Root_Root tree) = sem_Root_Root (sem_Tree tree)

-- funcs

25 sem_Root_Root tree = let{ (tree_res, tree_m) = tree tree_m}in tree_res

Listing 19: RepMin

DATA Tree

| Leaf Int

| Bin left, right: Tree

5 SEM Tree [ minval: Int <- -> m: Int res: Tree ]

| Leaf LHS.m = int

.res = "Leaf lhs_minval"

| Bin LHS.m = "left_m ‘min‘ righth_m"

.res = "Bin left_res right_res"

10

DATA Root [ -> res: Tree ] | Root Tree

SEM Root | Root tree.minval = tree_m

Listing 20: RepMin2.ag
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DATA Table | Table Rows

DATA Rows | Nil

| Cons Row Rows

DATA Row | Row Elems

5 DATA Elems | Nil

| Cons Elem Elems

DATA Elem | Str String

| Tab Table

Listing 21: TableData.ag

--< TableData.ag

ATTR Table Row Elem [ -> mh : Int ]

SEM Table

5 | Table LHS . mh = "rows_mh + 1"

ATTR Rows [ -> mh USE "+" "0": Int ]

ATTR Elems [ -> mh USE "‘max‘" "0": Int ]

SEM Elem

| Str LHS . mh = "2"

10 | Tab LHS . mh = "table_mh + 1"

Listing 22: TableHeight.ag

3.2 The Table Formatting Problem

In this section we will treat the Table Formatting problem again, and do so
again in a number of steps. Remember that in the previous section, by combining
algebras we really had semantic compositionality: the algebras could be defined
and compiled separately only to be composed at the very last moment.

Since we are dealing with the generation of Haskell code (i.e. we use Haskell
instead of C++ as our “assembly” language), we do not have to adhere strictly to
the typing, naming and lexical rules of the language: we have much more freedom
in designing the attribute grammar formalism in such a way that we may express
ourselves in the most convenient way. To emphasize the compositional nature of
our approach we split up the attribute grammar in many separate pieces of text
that are to be combined by the system.

We start with the grammar in listing 21 that directly corresponds to the
type of the abstract syntax trees presented before. In the program in listing 22
we import the previous file (the line --< TableData.ag) and introduce for each
nonterminal a synthesized attribute containing its minimal height in the format-
ted table. In listing 23 this version is extended further with the attributes and
semantic functions for computing the minimal widths; note how the tupling is
now done implicitly by the system, and that we do not have to introduce special
combinators to merge the height and the widths algebras into a combined one.
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--< TableHeight.ag

SEM Table [ -> mws: Int ]

| Table LHS .mws = "lmw + 1"

5 LOC .lmw = "sum rows_mws"

SEM Rows [ -> mws: Rowwidths ]

| Nil LHS .mws = "repeat zero"

| Cons LHS .mws = "zipWith max row_mws rows_mws"

ATTR Row [ -> mws: Rowwidths ]

10 ATTR Elems [ -> mws USE ":" "[]" : Rowwidths ]

SEM Elem [ -> mws: Int ]

| Str LHS .mws = "length string + 1"

| Tab LHS .mws = "table_mws + 1"

-->type Rowwidths = [Int]

Listing 23: TableWidths.ag

In listing 23 we see some other language elements. Lines preceded with --> are
literally copied into the generated file. In this way additional Haskell functions
and type definitions can be passed on to the generated program, thus obviating
the need to edit the generated file to contain import .. lines. The semantic rule
LOC.lmw = ... introduces a local attribute, that in the generated semantic
function results in the declaration of a local variable lmw.

Furthermore it is possible to provide a binary operator and a unit element,
together with the introduction of a synthesized attribute (see the USE ":" "[]"
phrase in the introduction of attribute mws). If no semantic rule is given for this
attribute the attributes of the children with the same name are combined using
the binary operator, and if no such attributes exist the unit element is taken as
its value. We go however a step beyond the kind of polytypism in PolyP since
the composition here depends on the name of a part of the result of a child;
something that cannot be expressed in the current version of PolyP.

In the next step the downwards distribution of the computed final heights and
widths to the individual elements is described, so each element can be formatted
according to the actual size it occupies in the formatted table (listing 24). Here
the advantages of the attribute grammar based formulation show up most clearly:
we do not have to invent combinators for combining subcomputations and all we
have to do is to indicate how the computed heights and widths flow back into
the abstract syntax tree. Finally we add the computation of the final formats,
i.e. sequences of lines in listing 25.

In listing 25 we see another extension of the formalism: the EXT clause.
The effect of this clause here is to extend the alternative Cons of nonterminal
Elems with an extra element: top_Left : Top_Left. Although the nonterminal
Top_Left has been introduced, it was not given productions and thus is inter-
preted as an external nonterminal. It does not show up as a parameter referring
to a child in the generated semantic functions, but nevertheless a call is gen-
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--< TableWidths.ag

ATTR Elems [ ah : Int <- ]

SEM Row

5 | Row elems . ah = elems_mh

ATTR Rows Row Elems [ aws : Rowwidths <- ]

SEM Table

| Table rows . aws = rows_mws

10 SEM Elems

| Cons elems . aws = "tail lhs_aws"

Listing 24: TableDistr.ag

--< TableDistr.ag

SEM Table [ -> lines : Lines]

| Table LHS .lines = "bot_right lmw rows_lines"

5 ATTR Rows [ -> lines USE "++" "[]" : Lines]

ATTR Row [ -> lines : Lines]

SEM Elems [ -> lines : Lines]

| Nil LHS .lines = "repeat []"

| Cons LHS .lines = "zipWith (++) top_Left_ls elems_lines"

10 LOC .haws = "head lhs_aws"

SEM Elem [ -> lines : Lines]

| Str LHS .lines = "[string]"

-->type Lines = [String]

15

DATA Top_Left [ haws elem_mws lhs_ah elem_mh elem_lines <- -> ls ]

EXT Elems

| Cons Top_Left

Listing 25: TableFormats.ag
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--< TableFormats.ag

-->

-->-- ---------------------------------------------------------

-->-- Additional layout functions -----------------------------

5 -->

-->sem_top_Left lines mh ah mw aw

--> = ("|" ++ hor_line (aw - 1))

--> : ["|" ++ l ++ hor_glue (aw-mw) | l <- lines]

--> ++ ["|" ++ vg | vg <- ver_glue (aw - 1) (ah-mh)]

10 -->

-->bot_right mw lines = [ l ++ "|"

--> | l <- lines ++ ["|" ++ hor_line (mw - 1)]

--> ]

-->

15 -->hor_glue h = take h (repeat ’ ’)

-->ver_glue h v = take v (repeat (hor_glue h))

-->hor_line n = take n (repeat ’-’)

-->

-->-- ---------------------------------------------------------

20 -->

Listing 26: TableFinal.ag

erated. In this way we may incorporate calls to external computations in the
generated semantic functions.

We now come to a final convention: if an inherited attribute has been declared
and in the rule an attribute with that name would be allowed as a semantic
function such semantic functions are generated automatically. So in listing 25
we actually have inserted a call to an external function, passing on some of the
available attributes. The final addition of some glue is given in listing 26.

3.3 Comparison with Monadic Approach

As mentioned before many have tried to employ monads for capturing often
occurring patterns of parameter passing and use. Unfortunately monads do not
compose well. Recognizing this problem we have, in our formalism, taken a purely
syntactic approach.

Reader Monads correspond in our formalism to an inherited attribute that
is automatically passed on to all the elements in the tree by the copy rule gen-
eration process, provided they have indicated their interest in that value by
declaring an inherited attribute, and provided all their parent types have done
so too. Thus parameterizing a whole computation by a global value is easily
done. Furthermore this can be repeated as often as needed, so the effort for the
programmer is almost nothing.

State Monads correspond to so-called chained attributes, i.e. pairs of an in-
herited and a synthesized attribute, that have the same name. In order to support
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the generation of the copy rules here too, we now explain the complete process
underlying the copy rule generation. Each element in the right hand side of the
production has a context that steers the generation of non-specified semantic
functions. For each attribute at for which no function is defined we first check
whether there exists an element elem that defines a synthesized attribute def
such that at = elem_def; this includes the inherited attributes of the parent too
(lhs_def). If this is the case, that value is taken. If not it is checked whether its
left hand side neighbor l has a synthesized attribute with name at. If it does
l_at is taken, and if not, the element one step further left is checked and so on.
If nothing appropriate is found during this search finally the inherited attributes
are checked. This rule also applies to the synthesized attributes of the left hand
side, in which case the searching process starts at the last element of the right
hand side.

So if we want to maintain e.g. a label counter, supplying new label numbers
when generating code, we define the attribute labels to be both inherited and
synthesized:

DATA Expr[<-labels: Int ->]
| If ce,te,ee: Expr

SEM Expr
| If ce. labels = "lhs_labels +2"

In the generated code we now find:

sem_Expr_If ce te ee lhs_labels
= let{ (ce_code, ce_labels) = ce (lhs_labels +2)

; (te_code, te_labels) = te ce_labels
; (ee_code, ee_labels) = ee te_labels
}in ((ite_code ce_code te_code ee_code lhs_labels), ee_labels)

and we see that the Labels-value is nicely passed on. Again this can be done for
many attributes at the same time, without having to worry about the composi-
tion of those instances.

Writer Monads somehow correspond to synthesized attributes that are com-
posed with the USE clause.

4 Pretty Printing

In this section we attack the pretty-printing problem as described in [2,12].
Pretty-printing deals with representing tree-based structures in a width-bounded
area in a top-down, left to right order, and in such a way that the logical structure
of the tree is clearly represented in the layout. In this chapter we develop a set
of combinators for describing such layouts.

Suppose we want to pretty-print an IF-THEN-ELSE-FI structure. We may
display it with different layouts as depicted in figure 10(a). The layout chosen
will normally depend on the page width. Thus, with page width at least 31,
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layout a. is preferred, between 30 and 17 b. is chosen and in the range from 16 to
10 c. wins. Any attempt however to display inside a page less than 10 characters
wide is bound to fail.

a. IF c THEN t ELSE e FI

b. IF c THEN t

ELSE e

FI

c. IF c

THEN t

ELSE e

FI

(a) Possible layouts

pp_ites c t e

= ifc >|< thent >|< elsee >|< fi

>^< ifc >|< (thent >-< elsee) >-< fi

>^< ifc >-< thent >-< elsee >-< fi

where ifc = text "if" >|< c

thent = text "then" >|< t

elsee = text "else" >|< e

fi = text "fi"

(b) Specification

Fig. 10. Pretty-printing an IF-THEN-ELSE-FI structure

We define a layout to be optimal (nicest or prettiest) if it takes the least
number of lines, while still not overflowing the right page margin. The examples
in figure 10(a) are optimal for page widths 40, 28, and 15 respectively. Taking
the layout b. with respect to a page width of 35 is thus considered non optimal.

Our approach is based on the relation between the height and the width of a
layout: higher when elements cannot be placed next to each other horizontally
because of the limited page width and wider otherwise. We prefer the wider
solutions, since they will lead to a smaller overall height, as is evident in the
examples of figure 10(a).

Since potentially many solutions have to be taken into account, this can be
a cause of gross inefficiency. Fortunately we are saved by the fact that not all
possible combinations have to be inspected. Of all the possible solutions with the
same height, only a limited number of candidates has to be taken into account.
Many combinations can be discarded from the overall computation by selecting
only the narrowest solution for each height, and inspect only those candidate
solutions that have at most the height of the final solution.

A possible description of the possible layouts is shown in figure 10(b).
A possible description of the possible layouts is shown in figure 10(b). The

function text converts strings into layouts, >|< places its two arguments beside
each other, >-< places them above each other and >^< combines two possible
layouts. In addition to these combinators we also have indent that inserts a
specific amount of white space in front of its argument and empty that repre-
sents the empty document and is a unit element for >-< and >|<. The effect of
operations >|< and >-< is sketched in figure 11(a).
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l

r

u

l

l >|< r u >-< l

(a) Specification

l

r

lw

rw

rl

ll

(b) Implementation of
>|<

Fig. 11. Pretty-printing operations

Before going into implementation details we want to fix the interface (or the
concrete grammar if you prefer) and the semantic domains involved:

infixr 2 >|<
infixr 1 >-<
infixr 0 >^<

empty :: Formats
text :: String -> Formats
indent :: Int -> Formats -> Formats
(>|<) :: Formats -> Formats -> Formats
(>-<) :: Formats -> Formats -> Formats
(>^<) :: Formats -> Formats -> Formats

In the next sections we will, by improving on our search process, develop in-
creasingly sophisticated versions of these combinators.

4.1 The general Approach

We start out by defining a basic set of combinators based on the context-free
grammar of listing 27. We rely on the existence of a set of basic combinators that
generate alternative layouts as lists sorted by decreasing width and increasing
height, assuming that their arguments are sorted lists too. Take for example the
>|< combinator and assume

type Formats = [ Format ]

The combined solution is found by merging all lists that are obtained by putting
an element from the left argument list besides all elements of the right argument
list. Since we work in a lazy language the resulting list will be generated in an
incremental way as need arises. The other operations are implemented in an
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analogous way. A detailed description of the implementation of the underlying
basic machinery can be found in [9].

In the attribute grammar of listing 27 the specification of the pretty-printing
operations is thus reduced to producing the appropriate basic function calls.

4.2 Improving Filtering

Since many potential candidates are taken into account, and every new choice
point doubles the amount of work to be done, detecting solutions wider than the
page width as early as possible will improve the efficiency of the process.

Filtering on the page width Our first filter is based in the idea of com-
municating to each node the page width, preventing candidates wider than the
page width to be constructed. Adding this filter to our first program is trivial:
declaring an extra inherited attribute for all nonterminals introduced thus far
(i.e. including the pseudo nonterminals that stand for external function calls),
as you can see in listing 28. 3

Since we want to be able to work with many different versions of our basic
combinators we indicate the system to prefix all generated calls with pw_ using
the directive PRE pw.

A change in the underlying machinery is necessary because we now need to
pass the width to be filtered on to the basic combinators, in which the actual
combination process takes place. Take again the >|< operation depicted in fig-
ure 11(b). We now construct new solutions only when the width of the resulting
layout (computed as ll + rw, where ll is the length of the last line of l and rw
is the width of r) is less than the “global” page width pw.

Narrowing the Estimates Further Actually the page width may be seen as
an upper bound on the space available to all nodes. We want to improve on this
bound by taking the context of the node into account. Once we know for two
nodes to be placed besides each other how much space each of them will take at
least, and how much is available to both of them together, we may compute an
estimate of how much space is at most available to each of them. The bound on
the available space replaces the attribute pw and is called the frame. A frame
contains two values: one describing the total width available for representing the
text in the tree it is associated with and one for describing how much space is
at most available to the last line of that text.

Now have a look at the example in figure 12, and assume a page width of
20. At the root node we start with (20, 20), that is the bound on the total width
and the length of the last line of the formats generated by that node.

Let us compute the frame of its left subtree b. Since the minimal width
of the subtree c is 9, b has to fit inside a frame (20,11) (see figure 11(b)).
3 One might compare this with the effort to convert the program into monadic form
in order to use a reader monad.
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-- Context-free grammar

DATA PP [ -> fmts : Formats ]

| Empty

| Text String

5 | Indent Int PP

| Beside left, right : PP

| Above upper, lower : PP

| Choice opta, optb : PP

10 -- Calling external functions

EXT PP

| Empty Empty_fmts | Text Text_fmts

| Indent Indent_fmts | Beside Beside_fmts

| Above Above_fmts | Choice Choice_fmts

15

-- Introducing external functions

DATA Empty_fmts [ -> fmts ]

DATA Text_fmts [ string <- -> fmts ]

DATA Indent_fmts [ pP_fmts, int <- -> fmts ]

20 DATA Beside_fmts [ right_fmts, left_fmts <- -> fmts ]

DATA Above_fmts [ lower_fmts, upper_fmts <- -> fmts ]

DATA Choice_fmts [ optb_fmts, opta_fmts <- -> fmts ]

PRE sim

25 -- Display the solution found

DATA Root [ -> fmts : Output ]

| Best PP

SEM Root

30 | Best LHS.fmts = "putStr . display best $ pP_fmts"

-->type Output = IO ()

Listing 27: Simple pretty-printer (SPP.ag)

--< SPP.ag

ATTR PP Root [ pw : T_PW <- ]

5 ATTR Empty_fmts Text_fmts Indent_fmts

Beside_fmts Above_fmts Choice_fmts [ lhs_pw <- ]

PRE pw

Listing 28: Filtering with page width
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Similar, since the end of the last line of the subtree b is at least 7 units from
the left, the frame for the subtree c is (13,13). Since the frame (13,13) cannot
accommodate the string set of functions the left alternative of the choice
node c can be discarded locally, and thus will not be combined elsewhere with
other candidates, only to be discarded as part of an impossible solution at the
top of the computation.

>|<

>|< >^<

s1

s2 s3

t

pretty

set of functions set of 
functions

this is 
a

b c

20

20 13

20
19

9
16

6

1

Fig. 12. The frame limit

In listing 29 we show how to compute the minimal space used by a node, that
is needed to compute the frames for its fellow nodes. In figure 13(a) we depict
the attribute computations involved in the operation >|<.

In listing 30 the semantic functions for passing frames downwards are shown,
and an illustration of the data flow for the operation >|< is shown in figure 13(b).
Recall that we do not have to code all data flows, only the relevant computations
are made explicit. Copy rules involving passing information around are generated
automatically as explained in chapter 3. Also note that at the top level we are
initiating the attribute computations with the frame (lhs_pw,lhs_pw). Finally
in listing 31 we add the synthesis of the formats and an attribute for handling
error conditions.

Exercise 4. Note that up to now we do not need to compute the height of the
document. Can you anticipate a situation where it is needed? Modify the pro-
gram FRPP.ag so that the computation of heights is included.

Before starting to read the next section it is useful if you try to solve the
following problem. The combinator hv :: Formats -> Formats -> Formats
has the following behavior:
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--< SPP.ag

SEM PP [ -> minw USE " ‘max‘ " "0" : Int

minll USE " ‘max‘ " "0" : Int ]

5 | Text LOC.minw = "length string"

LHS.minll = "minw"

| Indent LHS.minw = "int + pP_minw"

.minll = "int + pP_minll"

| Beside LHS.minw = "left_minw ‘max‘ (left_minll + right_minw)"

10 .minll = "left_minll + right_minll"

| Above LHS.minll = "lower_minll"

| Choice LHS.minw = "opta_minw ‘min‘ optb_minw"

.minll = "opta_minll ‘min‘ optb_minll"

Listing 29: Computing min bounds: FRPP.ag

>|<

rl 

minwminll minllminw

minwminll

max+

+

(a) Min limits for >|<

>|<

rl 

minwminll minllminw

(w,ll)

(wl,lll) (wr,llr)

narrow_ll
narrow_frame

(b) Frame limits for >|<

Fig. 13. Computing the frame
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SEM PP [ frame : T_Frame <- ]

| Indent pP .frame = "narrow_frame int lhs_frame"

| Beside left .frame = "narrow_ll right_minw lhs_frame"

right.frame = "narrow_frame left_minll lhs_frame"

5

SEM Root [ pw : T_PW <- ]

| Best pP.frame = "(lhs_pw,lhs_pw)"

-->narrow_frame i (s,l) = (s-i, l-i)

10 -->narrow_ll i (s,l) = (s , l-i)

Listing 30: Computing and communicating the frame: FRPP.ag(cont)

ATTR Empty_fmts Text_fmts Indent_fmts

Beside_fmts Above_fmts Choice_fmts [ lhs_frame <- ]

PRE frame

5 -- Display the solution found

SEM Root

| Best LHS.fmts

:= "putStr (if null pP_error then display best pP_fmts

else pP_error)"

10

-- Error handling

SEM PP [ -> error USE "++" "[]": T_Error ]

| Indent LHS.error = "err (int < 0) 1"

15 TXT err

-->type T_Error = String

-->err cond message

--> | not cond = ""

--> | cond = case message of

20 --> 1 -> "negative indentation"

Listing 31: Error and formats: FRPP.ag(end)
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? render (hv (text "aaaa") (text "bbbb")) 15
aaaabbbb
? render (hv (text "aaaa") (text "bbbb")) 7
aaaa
bbbb
?

The combinator places its arguments either vertically or horizontally, depending
on the available frame.

Note that the type of Formats in our latest version of the combinators is:

type T_Formats = (Int, Int) -> (Error,Minw,Minll,OrigFormats)
type Minw = Int
type Minll = Int
type Error = String

where OrigFormats is the type of the elements manipulated by the underlying
machinery.

Exercise 5. Write the combinator hv.

4.3 Loss of Sharing in Computations

You may have given the following solution in the last exercise:

hv a b = a >|< b >^< a >-< b

Unfortunately you have in this way given an very inefficient solution too. Why
the previous definition of hv does not solve our problem? Because the arguments,
a and b, of the expression are not plain values, but functions to which secretly
a frame is passed. Thus each occurrence of a and b in the body of hv leads to a
separate computation. We have thus lost sharing as an unfortunate consequence
of moving to a higher order domain.

In order to get back the situation in which the computations are shared we
have now to collect all the arguments that are passed at the different occurrences
of the same expression. Fortunately we have a pleasant property of the filters and
the generators: the program is thus far constructed in such a way that if we filter
at some place with a value v and elsewhere with a value w, and v<w, then the
solutions generated at the call with w may also be used at the place where the
call with v is occurring. So if we manage to collect all the arguments of places
where the same expression is occurring, we may compute the maximal value of
the argument, and perform the call only once.

The problem is solved with the introduction of the following two new com-
binators:

par acts as placeholder for a shared expression
apply binds the shared expression to their placetakers as a form of β-reduction

Given the new combinators we have to write the previous definition as:
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--< FRPP.ag

DATA PPC [ -> fmts : Formats ]

| Indent Int PPC

5 | Beside left , right: PPC

| Above upper, lower: PPC

| Choice opta , optb : PPC

| Par

10 DATA PP

| Apply PPC PPList

DATA PPList

| Nil

15 | Cons PP PPList

Listing 32: Extending the PP to PPC

hv a b = (par >|< par >^< par >-< par) ‘app‘ [a, b]
example = hv (text "hello") (text "world!")

Now, not even knowing the actual values of a or b, we can still construct efficient
combinators for pretty-printing structures.

Extending the grammar with Par and Apply We introduce a different non-
terminal in the grammar for those “complicated formats” as shown in listing 32.
text and empty nodes are excluded since they can not contain placeholders.

For the implementation of the par and app we proceed as follows:
• Compute for each >-< and >|< nodes the number (numpars) of par occur-
rences in both its subtrees (figure 14(a) and listing 33)

• Compute the minimal sizes of the arguments (fillmins) and distribute
this information over the tree, using the numpars computed in the first step
(figure 14(b) and listing 34)

• Now all sizes of all leaves have become available, we may compute the
minimal sizes (minll and minw) of all nodes (in listing 35), that in their
turn may be used to

• Compute the frames for all nodes, that also will provide a frame to all the
par nodes (in listing 35), which information (reqs) can be

• Collected, and compared on the way up (figure 15(a) and listing 33), and
• Be used at the right argument list of the app node to filter the list of
solutions of the shared arguments, which

• Lists have to be passed down (fillfmts) and distributed over the tree
(figure 15(b) and listing 34)

• When these solutions have reached their final destinations the original com-
putation can take place (figure 16 and listing 36).
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app
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par par par par
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(b) Collect fillmins and distribute them

Fig. 14. Attribute computations with par and app
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SEM PPC [ -> reqs : T_Reqs numpars : Int ]

| Beside LHS.reqs = "left_reqs ++ right_reqs"

.numpars = "left_numpars + right_numpars"

| Above LHS.reqs = "upper_reqs ++ lower_reqs"

5 .numpars = "upper_numpars + lower_numpars"

| Choice LHS.reqs = "zipWith max opta_reqs optb_reqs"

.numpars = "opta_numpars"

| Par LHS.reqs = "[lhs_frame]"

.numpars = "1"

10

TXT

-->type T_Reqs = [T_Frame]

Listing 33: Collecting placeholders

Note that because we keep track of the number of placeholders at each node it
is possible to detect ill formed expressions: insufficient (or too many) arguments
in the rhs of an app node, i.e. when the shape of the required argument does not
match the shape of the actual argument.

4.4 Discussion

In this section we developed combinators for a language whose elements are not
taken from a flat domain: instead they depend on values that are not known
statically. By going to a higher-order domain not all the properties of first class
elements are available (in our case we lost sharing). We lost thus support from
the host language, having to reintroduce the mechanism to recover those proper-
ties. The presented mechanism is still incomplete, because we can have common
subexpressions that we may want to share. Back to the example of figure 10, we
now can write:

pp_ite c t e
= par >>|<< par >>|<< par >>|<< par
>>^<< par >>|<< (par >>-<< par) >>-<< par
>>^<< par >>-<< par >>-<< par >>-<< par
>>$< [ text "if" >|< c

, text "then" >|< t
, text "else" >|< e
, text "fi"
]

As we can see, there are still subexpressions that are combinations similar to the
previous hv structure and we may want to share. A solution of this problem is to
extend the combinator app to accept placeholders in the list of placetakers. This
extension together with a complete mechanism for error manipulation is used in
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SEM PPC [ fillfmts : T_Fills fillmins : T_Mins <- ]

| Beside LOC .e@(lfs,rfs) = "splitAt left_numpars lhs_fillfmts"

.m@(lfm,rfm) = "splitAt left_numpars lhs_fillmins"

left .fillfmts = "lfs"

5 .fillmins = "lfm"

right.fillfmts = "rfs"

.fillmins = "rfm"

| Above LOC .e@(ufs,lfs) = "splitAt upper_numpars lhs_fillfmts"

.m@(ufm,lfm) = "splitAt upper_numpars lhs_fillmins"

10 upper.fillfmts = "ufs"

.fillmins = "ufm"

lower.fillfmts = "lfs"

.fillmins = "lfm"

15 SEM PP

| Apply pPC . fillfmts = "pPList_fillfmts"

. fillmins = "pPList_fillmins"

SEM PPList [ reqs : T_Reqs <-

20 -> fillfmts : T_Fills fillmins : T_Mins len : Int ]

| Nil LHS . fillfmts = "[]"

. fillmins = "[]"

. len = "0"

| Cons pP . frame = "head lhs_reqs"

25 pPList . reqs = "tail lhs_reqs"

LHS . fillfmts = "(pP_error,pP_fmts ):pPList_fillfmts"

. fillmins = "(pP_minw ,pP_minll):pPList_fillmins"

. len = "pPList_len + 1"

30 TXT

-->type T_Fills = [(T_Error, Formats)]

-->type T_Mins = [(Int, Int)]

Listing 34: Collecting placetakers and distributing them
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SEM PPC [ frame: T_Frame <- ]

| Indent pPC . frame = "narrow_frame int lhs_frame"

| Beside left . frame = "narrow_ll right_minw lhs_frame"

right . frame = "narrow_frame left_minll lhs_frame"

5

SEM PPC [ -> minw, minll: Int ]

| Beside LHS . minw = "left_minw ‘max‘ (left_minll + right_minw)"

. minll = "left_minll + right_minll"

| Above LHS . minw = "upper_minw ‘max‘ lower_minw"

10 | Choice LHS . minw = "opta_minw ‘min‘ optb_minw"

. minll = "opta_minll ‘min‘ optb_minll"

SEM PPC

| Par LOC . m@(minw,minll) = "head lhs_fillmins"

Listing 35: Computing the minimal values

SEM PPC

| Indent LHS.fmts = "frame_indent_fmts lhs_frame int pPC_fmts"

| Beside LHS.fmts = "frame_beside_fmts lhs_frame left_fmts right_fmts"

| Above LHS.fmts = "frame_above_fmts lhs_frame upper_fmts lower_fmts"

5 | Choice LHS.fmts = "frame_choice_fmts lhs_frame opta_fmts optb_fmts"

| Par LOC.e@(error,fmts) = "head lhs_fillfmts"

SEM PPC [ -> error USE " ++ " "[]" : T_Error ]

| Indent LHS . error = "err (int < 0) 1"

10 | Choice LHS . error = "err (length opta_reqs /= length optb_reqs) 3

++ opta_error ++ optb_error"

SEM PP | Apply LHS . error = "err (pPList_len /= length pPC_reqs) 2"

15 TXT err

--> 2 -> "incomplete parameter list"

--> 3 -> "incomplete parameter list in choice"

Listing 36: Producing the final formats and error messages
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(b) Distribute frames and collect fillfmts

Fig. 15. Attribute computations with par and app (cont.)
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Fig. 16. Attribute computations with par and app (final)
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the actual version of our pretty printing combinator library.4 We think it is a
convincing example of the need of mechanical support for the implementation
of advanced combinator languages. The attribute grammar paradigm has been
indispensable in getting the correct implementation.

5 Strictification

5.1 Introduction

In a previous section we have remarked that it is always possible to com-
bine a function f:: a -> b and a function g:: c -> d into a single function
fg:: (a, c) -> (b, d) that has the combined effect. It is this fact that en-
ables our small system to generate one large catamorphism walking over the
tree “once”, taking as its argument all inherited attributes and returning as its
result all synthesized attributes. From a programmers point of view having this
merging of all the separate functionalities into a single function makes it quite
easy to refer in one computation to results computed in another computation.
However one may wonder whether also the reverse transformation is possible
and what it might be good for.

For attribute grammars there exists a long tradition in optimizing their im-
plementations in order to achieve efficiencies similar to hand written compilers.
In this section we will present some of the analyses and the results of these with
respect to our pretty printing combinators. The work we present here is well
known in the attribute grammar world, but translates nicely into a functional
setting. The overall effect will be that instead of having a single large function
that, lazily evaluated, manages to deal with dependencies from its results to its
arguments, we will now construct a set of smaller functions that do not exhibit
such behavior, and can thus be evaluated in a strict way. This implementation
technique was chosen in the course of a project in which we wanted to evaluate
attribute grammars in an incremental way, using function caching. For this func-
tion caching to work well we implemented the transformations needed to convert
the program into strict functions, since the memoisation of lazy functions, albeit
possible, is not what we want to use at a large scale.

5.2 Pretty Printing Combinators Strictified

If we look at the type of the Tree catamorphism generated for the Rep Min
problem we see that it returns as result a function that takes the computed
minimal value as an argument and returns a tuple containing the minimal value
and the new tree as a result, so its type is Int->(Int,Tree). When analyzing
the overall dependencies between the argument and the result of this function
however we may deduce that actually the first component of the result does not
depend on the argument in any computation higher up in the tree (only the
production Root in our case). If we augment the type with arrows indicating
this dependency we get its flow type, that we have given in figure 5.2.
4 See the combinator’s web site: http://www.cs.uu.nl/groups/ST/Software.
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Tree

minval: Int m: Int res: tree

Fig. 17. Flow type of Tree

With the dashed arrow we indicate the dependencies occurring in the context
in which the tree catamorphism is used. The trick in getting rid of these right-
to-left dependencies, that demand lazy evaluation, is to split the function into
two functions, as shown in figure 18. If we inspect the dependencies between the

Tree1

m: Int minval: Int

Tree2

res: Tree

Fig. 18. Flow types of Tree1 and Tree2

attributes in the pretty printing libraries (and this can be done automatically)
we find the dependencies for the complicated pretty printing type PPC as shown
in figure 19. Initially we may compute the number of par occurrences (numpars),
since this is a purely syntactical issue, and the number does not depend on any
other attribute value. Next we can use this number to split the list of minimal
sizes the fill-ins will have (fillmins) at the above and beside nodes. This con-
stitutes a “second pass”. Once all the sizes of the pars have become available we
may now return the minw and minll attributes. They can in their turn be used
to adjust the value with which the filtering has to be done (frame) when it is
passed down the tree. Now it has become possible to collect the maximal sizes
available for the corresponding par occurrences, that are collected, compared
and returned in the synthesized attribute reqs. This will be used in the appli-
cation node to compute the actual list of formats (fillfmts) to be used at the
par-occurrences, and having available this we may at last construct the sought
list of candidate formats for each node in the tree. Although the constructor
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fillmins

frame

fillfmts

PPC

numpars

minll, minw

reqs

fmtsvisit 2

visit 3

visit 4

visit 
1

Fig. 19. Flow type of PPC

at each node is only inspected once in this process, thanks to the deforestated
approach we have taken, we may say that the tree is “traversed” four times.

The code generated by the attribute grammar system LRC5 for the combi-
nator >-<, in the case children may contain par nodes, is given in listing 37.
Each of the generated functions takes three kinds of arguments:

• values computed in previous visits and still needed in this or one of the later
visits. These dependencies make the purely algebraic approach cumbersome
to use when more and more computations get intertwined.

• functions constructed at earlier visits that encompass the rest of the work
to be done at each of the children (if not completed). The subscripts refer
to the visit number they stand for.

• inherited attributes that became available since the previous visit and that
are enabling further computation in this visit.

6 Conclusions

In the beginning of this lecture we have argued that one should not take the step
to designing a new language too easily, and in one of the later chapters we have
introduced a new language ourselves for describing attribute grammars. The
question that thus arises immediately is whether it would have been possible to
describe this way of programming again by the introduction of a suitable set of
combinators. Recently steps have been taken in pursuing this direction by Oege
de Moor in Oxford based on the concept of extensible records. Although we think
that our notation still has a lot to offer we hope it will be feasible with future
versions of the Haskell type system to achieve the ease of formulation provided
by our small system. Wouldn’t it be nice if we could describe the threading
5 http://www.cs.uu.nl/groups/ST/Software
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lambda_BesideC_1 left_1 right_1

= ((lambda_BesideC_2 left_numpars right_numpars

left_2 right_2)

, numpars)

5 where

(right_2,right_numpars) = right_1

(left_2 ,left_numpars) = left_1

numpars = left_numpars + right_numpars

10 lambda_BesideC_2 left_numpars right_numpars

left_2 right_2

fillsmins

= ((lambda_BesideC_3 left_minll left_numpars right_minw right_numpars

left_3 right_3)

15 , minll , minw)

where

left_fillsmins = take left_numpars fillsmins

(left_3,left_minll , left_minw) = left_2 left_fillsmins

right_fillsmins = drop right_numpars fillsmins

20 (right_3, right_minll , right_minw) = right_2 right_fillsmins

minll = left_minll + right_minll

minw = max left_minw (left_minll + right_minw)

lambda_BesideC_3 left_minll left_numpars right_minw right_numpars

25 left_3 right_3

frame

= ((lambda_BesideC_4 frame left_numpars right_numpars

left_4 right_4) , reqs)

where

30 left_frame = narrow_ll right_minw frame

(left_4,left_reqs) = left_3 left_frame

right_frame = narrow_frame left_minll frame

(right_4,right_reqs) = right_3 right_frame

reqs = left_reqs + right_reqs

35

lambda_BesideC_4 frame left_numpars right_numpars

left_4 right_4

fillsfmts

= (fmts)

40 where

left_fillsfmts = take left_numpars fillsfmts

left_fmts = left_4 left_fillsfmts

right_fillsfmts = drop right_numpars fillsfmts

right_fmts = right_4 right_fillsfmts

45 fmts = beside_fmts frame left_fmts right_fmts

Listing 37: Code generated by LRC for the combinator >-<
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of an attribute by means of a function manipulating a grammatical structure,
and wouldn’t it even be nicer if we could have programs analyse themselves
and transform themselves into the strict form as shown in the previous section,
without having to go through a separate system.

For the time being we hope to have shown that thinking in terms of attribute
grammars allows one to design new combinator languages in an incremental way,
and to implement them in an efficient way. The pretty printing combinators have
been a joy to study and implement and we hope that you agree with us.
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