
Deterministic, Error-Correcting

Combinator Parsers

S. Doaitse Swierstra and Luc Duponcheel

Dept. of Computer Science, Utrecht University
P.O.Box 80.089, 3508 TB Utrecht, The Netherlands

e-mail swierstra@cs.ruu.nl and luc@cs.ruu.nl

Abstract. We show how error-correcting, deterministic, combinator par-
sers can be constructed for grammars which have the LL(1) property.
The normal disadvantages of conventional combinator parsers, such as
their lack of speed and their poor error reporting, are remedied. Par-
sers constructed with these combinators are implicitly specialised for the
grammar they describe. Because of this property the combinators act as
a parser generator for LL(1) grammars. The techniques used to construct
the combinators illustrate how partial parametrisation and careful order-
ing of computations can be used to achieve implicit partial evaluation in
a lazy language.

1 Introduction

Somewhere along the road, everyone who is introduced to the use of recursion in
imperative languages gets introduced to recursive descent parsers. In a similar
fashion everyone who gets introduced to functional programming gets introduced
to combinator parsers. In both cases one is impressed by the elegant formulation
of the underlying ideas. When compared to the expressive power of recursive
descent parsers, combinator parsers are even more expressive. What they allow
in addition is the elegant formulation of parsers corresponding to the conven-
tional regular extensions of grammatical formalisms. For an introduction to such
combinator based parsers one may consult [1, 2]. In this paper we will follow the
line taken by Fokker[1], and stick to his notation as closely as possible.

As soon as one starts to use normal combinator based parsers, disappoint-
ments arise. The parsers constructed may be unexpectedly slow, and since com-
binators are usually used to describe non-deterministic parsers, they do not
perform any form of error-reporting, let alone error-recovery. Even the smallest
mistake in the input may lead to a lengthy parsing process which finally produces
an empty list of successful parses, with no clue as to where where the mistake is
located. Although it is possible to extend the parsers in such a way that they re-
port the furthest point in the input reached during the backtracking process([8,
5]), it is still a nuisance to have to run the parser over and over again in order
to discover all the mistakes in the source. Furthermore no other information is
usually given about the nature of the error.

For recursive descent parsing, techniques have been developed to incorporate
forms of error recovery. For example, in the original Pascal compiler a simple
error recovery mechanism was introduced in an ad hoc fashion. In this paper,
based on the concept of deterministic top-down parsers (i.e. based on grammars
which have the so-called LL(1) property), we will develop an new set of combi-
nators which will construct parsers which repair the input, produce useful error
messages, and continue to parse the rest of the input.

An interesting feature of our approach is that we only redefine the basic
combinators for sequencing, choice, and the parsers which recognise a single
symbol and the empty string. All the other combinators, which are expressed in
terms of these basic combinators, can thus be used without any further change.
As a result of this approach there is no need for a separate parser generator,
which performs an elaborate analysis of the grammar, and then generates code,
which later has to be either incorporated in a program as text or has to be linked
as a separate module.

We will develop the new combinators in a stepwise fashion, starting from
the conventional combinators. In order to do this we will rely on the use of
constructor classes. Thus all our programs will be given in Gofer, a language
which closely resembles Haskell, which supports this abstraction feature. Our
use of constructor classes is relatively self-contained. The interested reader can
see [3] for a more detailed description of constructor classes.

This paper can also be used as a literal program (all the lines prefixed with
> together form a program).

In the conclusion we will elaborate on the general strategy which we apply
in the paper and argue that it is much more widely applicable.

2 Conventional Combinator Parsers

We start with a quick review of conventional combinator parsers and point out
some of their problems.

A functional parser is a function which takes as input a sequence of symbols,
and returns a list of successes, i.e. a list of pairs in which the first component
of the pair represents the semantic value corresponding to the segment of input
which has been consumed by the parser, and the second component of the pair
represents the part of the input which was not used, and should thus be consumed
by subsequent parses. If the list contains more than one pair, this indicates that
the input can be parsed in several possible ways.

We will not be very specific about the exact type of input which we will be
able to parse. We must be able to compare symbols, and to use them as an index
in a data structure, thus an equality on symbols is needed. For reasons of effi-
ciency we require an ordering on symbols, and we also require that symbols have
a textual representation for error reporting. We start with a class-definition
which captures the requirements above.
> class Symbol s
> instance (Ord s, Text s) => Symbol s

Parsers can be combined into new parsers using combinators. The basic parsers
are: empty for recognising the empty string and symbol for recognising a single
symbol. The basic combinators for constructing new parsers from existing ones
are: <*> for sequencing and <|> for choice (the combinator <?> will be explained
later on). We group these combinators together in a class-definition. In each
step we develop ever more complicated instance’s of this class.
> infixl 2 <?> ; infixl 3 <|> ; infixl 4 <*>

> class Parsing p where
> empty :: Symbol s => a -> p s a
> symbol :: Symbol s => s -> p s s
>
> (<?>) :: Symbol s => p s a -> (a,String) -> p s a
> (<|>) :: Symbol s => p s a -> p s a -> p s a
> (<*>) :: Symbol s => p s (b->a) -> p s b -> p s a
Traditionally the result of a parser combinator expression for sequencing: p <*>
q is the Cartesian product of the results of parsers p and q. Note that we have
taken a slightly different approach, following Rojemo[8], in which the p-parser
returns a function which is applied to the result of the q-parser. Note further-
more that we have chosen the <*> combinator to be left associative, so that
associativity corresponds to associativity of application (i.e. f x y = (f x) y).

Using the basic parsers and the combinators other parsers and combinators
can be constructed. The combinator <$> takes a function and a parser and applies
the function to the result of the parse; in this way a meaning can be given to
the recognised structure, avoiding the explicit construction of a parse tree, which
usually would be inspected later on in a syntax directed translation process. The
combinator <$> is defined in terms of (<*>) and empty. A combinator opt for
optional input can be defined in a similar way in terms of (<|>) and empty.
> infixl 4 <$> ; infixl 2 ‘opt‘

> (<$>) :: (Parsing p, Symbol s) => (b->a) -> p s b -> p s a
> f <$> p = empty f <*> p

> opt :: (Parsing p, Symbol s) => p s a -> a -> p s a
> p ‘opt‘ v = p <|> empty v

Recursion can be used to construct more involved parsers and combinators,
like the combinator for recognising the same structure many times or the com-
binator for recognising a chain of operands separated by operators:
> many p = (\a as -> a:as) <$> p <*> many p ‘opt‘ []

> chainr x op = (\x f -> f x) <$> x <*> f where
> f = (\op x -> (‘op‘ x)) <$> op <*> chainr x op ‘opt‘ id

Exercise 1. What are the types of many and chainr? The chainr combinator is
used for right associative operators. Define a chainl combinator which is used
for left associative operators.

Exercise 2. Write a simple combinator parser which can be used to test the
correctness of chainr and chainl.

Finally we give an example grammar for statements which is described us-
ing the Parsing class. The grammar just returns the parsed input string. The
grammar makes use of a parser sym which is a variant of the parser symbol.

> sym :: (Parsing p, Symbol s) => s -> p s [s]
> sym s = (\x -> [x]) <$> symbol s

In this grammar statements are separated by semicolons. To keep things simple
we consider only two compound statements: if-statements and while-statements.
Since we wish to avoid lengthy explanations about lexical issues in this example
we assume that reserved words are just single upper case characters. The other
basic structures, conditions and assignments, are single lower case characters.

> stats :: Parsing p => p Char String
> stats = chainr stat ((\s x y ->x++s++y) <$> sym ’;’)

> stat :: Parsing p => p Char String
> stat = if_stat
> <|> while_stat
> <|> assignment
> <?> ("<stat>",inserted "<stat>")

> if_stat :: Parsing p => p Char String
> if_stat
> = (\i c tp ep f -> i++c++tp++ep++f) <$>
> sym ’I’ <*> cond <*> then_part <*> else_part <*> sym ’F’

> then_part :: Parsing p => p Char String
> then_part = (\t ss -> t++ss) <$> sym ’T’ <*> stats

> else_part :: Parsing p => p Char String
> else_part = (\e ss -> e++ss) <$> sym ’E’ <*> stats ‘opt‘ []

> while_stat :: Parsing p => p Char String
> while_stat
> = (\w c d ss o -> w++c++d++ss++o) <$>
> sym ’W’ <*> cond <*> sym ’D’ <*> stats <*> sym ’O’

> assignment :: Parsing p => p Char String
> assignment = sym ’a’

> cond :: Parsing p => p Char String
> cond = sym ’c’

The <?> combinator is used for repairing the input and describing what error
messages should be constructed when a statement cannot be recognised in the

input. We will see the details of this later on. Before going on we illustrate the
general form of the output we are aiming for. By invoking the parser stats
in different ways we obtain different results. The function invokeEmpty tests if
the parser can recognise the empty string (see 3.1). The function invokeFirst
computes the set of symbols the parser is willing to accept as the first symbol
of the input sequence (see 3.2). The function invokeDet invokes the parser in a
deterministic way. This function does not deal with errors yet (see 3.3). Finally,
the function invokeErr invokes the parser that deals with error recovery.
? invokeEmpty stats
False

? invokeFirst stats
IWa

? invokeDet stats "WcDaO"
WcDaO

? invokeDet stats "WcDaE"

Program error: Illegal input symbol: ’E’

? display (invokeErr stats "WcDaE")
"WcDaO"
’E’ deleted
’O’ inserted

? display (invokeErr stats "WcDIcTEaO")
"WcDIcT<stat>EaFO"
"<stat>" inserted
’F’ inserted

Note how the error messages indicate in a clean fashion what went wrong. The
following two auxiliary functions are useful for generating the error messages
above.
> inserted s = show s ++ " inserted\n"
> deleted s = show s ++ " deleted\n"

Exercise 3. Define a small grammar for your own favorite language using com-
binator parsers.

2.1 Non-Deterministic Parsing

The fact that combinator parsers are non-deterministic has several unfortunate
consequences. In the first place it implies that even though a successful alterna-
tive has been recognised, all other alternatives must also be tried, thus leading
to a slow parsing process. Worse however is the fact that because backtracking

may take us back to the very beginning of the parsing process, usually leading
to no further interesting results, the whole input has to be kept, and cannot be
discarded before parsing has been completed. Some attempts have been made
to adapt the parsing process to give preference to longer parses, but this does
not solve the problem in all cases [8].

Since we are interested in top-down deterministic parsing we turn to the
theory of LL(k) grammars: for such grammars it is always possible to determine
what alternative to take, based on inspecting at most the first k input symbols.
We will show how the information necessary for making such a choice in case
of an LL(1) grammar can be computed and used in the construction of such
deterministic parsers.

2.2 No Error Recovery

A further disadvantage of brute force non-deterministic parsing is it is cumber-
some to find the latest point where an error has occurred. In addition since this
discovery is usually made only after all other alternatives have been tried, (most
of which do not reach as far into the input) we must somehow bring back the
parser back to the state where it was when reaching the ultimate point before
performing some sort of error correction on the input in order to continue from
that point on with the parsing process. This is not so easily done, and when
done, will be costly.

So we reach the conclusion that it is a good idea to shy away from non-
deterministic parsers whenever possible, and to make good use of the fact that
one knows that the underlying grammar has some useful properties.

In the next section we will derive the deterministic parser combinators in a
sequence of steps. In the section following that error recovery will be added.

3 Deterministic parsing

To find out if a grammar is LL(1) we must determine several things about that
grammar. First we must be able to compute whether a parser based upon that
grammar can accept the empty string. Second we must be able to compute the
first sets which contain for each alternative the symbols it is prepared to accept
first, and third we must be able to compute the follow sets which contain for each
nonterminal the symbols which may follow that nonterminal in a derivation.

Based on this information we can predict whether a deterministic choice
can always be made. Since we are constructing our parsers as functions we do
not have an explicit representation of the grammar available. This will make
it impossible for us to compute the follow sets, so we cannot guarantee that
when actually parsing there will never be more than one alternative which may
be chosen. We will however compute dynamic follow sets, which contain the
symbols which can actually follow the non-terminal at hand, given the parsing
history thus far.

In a sequence of steps we will now start to construct such parsers.

3.1 Computing the Emptyness of Parsers

The basic idea we follow is that we do not compute parsers, but parsers tupled
with some of the properties of the corresponding grammatical construct. The im-
portant data type we will use (which will store both the actual parsers and their
properties) is always of the abstract form P s a. Although in this subsection
this type looks more complicated than needed, (i.e. we have incorporated some
type parameters s and a without motivating why) this will allow us, later on,
to avoid having to repeatedly change the type definitions of the basic functions.
We will always construct parsers by defining functions pempty, psymbol, perr,
palt and pseq: they implement the members empty, symbol, (<?>), (<|>) and
(<*>) of the Parsing class.

In this section we will illustrate how to compute whether a parser can accept
the empty string or not. We do this by constructing the first instance of our
Parsing class. In this instance the type constructor Empty plays the role of the
abstract P above. For the purpose of using this parser instance (used in the
function invokeEmpty) we do not need any input sequence or for that matter
any value to be returned by the parser. The instance performs a static analysis
of the grammar. The types of the abstract type parameters for symbols, s, and
values, a, are ignored. Here we go,
> type Empty s a = Bool in
> eempty, esymbol, eerr, ealt, eseq,
> invokeEmpty,
> dpalt, dpseq,
> combine

> instance Parsing Empty where
> empty = eempty
> symbol = esymbol
>
> (<?>) = eerr
> (<|>) = ealt
> (<*>) = eseq

> eempty :: a -> Empty s a
> esymbol :: s -> Empty s s
>
> eerr :: Empty s a -> (a,String) -> Empty s a
> ealt :: Empty s a -> Empty s a -> Empty s a
> eseq :: Empty s (b->a) -> Empty s b -> Empty s a

> eempty _ = True
> esymbol _ = False
>
> eerr _ _ = False
> ealt = (||)

> eseq = (&&)

> invokeEmpty :: Empty s a -> Bool
> invokeEmpty p = p

Apart from all the type declarations (which are needed to turn Empty s a
into an abstract data type) all we have actually said is that a sequence accepts the
empty string if both of its components do, and that a choice accepts the empty
string if at least one of the components does. So far nothing very complicated.

One might even wonder whether it is really that simple, so we spend some
time to see why this definition works. Both conventional combinator parsers and
our parsers only work for grammars which are neither directly nor indirectly
left-recursive. For the function stat it holds that before reaching a recursive
invocation of stat always at least one symbol will be accepted, e.g. an I or a W.
Now because && does not evaluate its second argument when its first argument
evaluates to False we avoid an infinite recursion. Our definition is well-defined,
exactly when the grammar it implements is not left-recursive! We are thus saved
by the lazy semantics of our programming language.

3.2 Computing First Sets

As explained earlier the first set of a parser is the set of symbols which it is
prepared to accept as the first symbol of the input. We tuple this computation
with the computation of the emptyness which we described before since we need
this information in the function fseq for computing the first set of a sequential
composition. If the first component is empty the second component can actually
be the one which accepts the first input symbol (this idea is encoded in the
function combine).

> combine :: Symbol s => Empty s a -> [s] -> [s] -> [s]
> combine e s1 s2 = s1 ‘union‘ (if e then s2 else [])

None of the other functions dealing with first sets need the emptyness infor-
mation. The type constructor First plays the role of the abstract P. For the
purpose of using this parser instance (used in the function invokeFirst) we
again do not need any input sequence or any value to be returned by the parser.
The instance performs a static analysis of the grammar. The type of values, a,
is thus ignored.
> type First s a = [s]

> fempty _ = []
> fsymbol s = [s]
>
> ss ‘ferr‘ _ = ss
> ss ‘falt‘ ss’ = ss ‘union‘ ss’

We are now ready to construct the second instance of our Parsing class:

> type EmpFir s a = (Empty s a, First s a) in

> efempty, efsymbol, eferr, efalt, efseq,
> invokeFirst,
> dpalt, dpseq

> instance Parsing EmpFir where
> empty = efempty
> symbol = efsymbol
>
> (<?>) = eferr
> (<|>) = efalt
> (<*>) = efseq

> efempty :: Symbol s => a -> EmpFir s a
> efsymbol :: Symbol s => s -> EmpFir s s
>
> eferr :: Symbol s => EmpFir s a -> (a,String) -> EmpFir s a
> efalt :: Symbol s => EmpFir s a -> EmpFir s a -> EmpFir s a
> efseq :: Symbol s => EmpFir s (b->a) -> EmpFir s b -> EmpFir s a

> efempty v = (eempty v, fempty v)
> efsymbol s = (esymbol s, fsymbol s)
>
> (e, f) ‘eferr‘ x = (e ‘eerr‘ x, f ‘ferr‘ x)
> (e1, f1) ‘efalt‘ (e2, f2) = (e1 ‘ealt‘ e2, f1 ‘falt‘ f2)
> (e1, f1) ‘efseq‘ ~(e2, f2) = (e1 ‘eseq‘ e2, f1 ‘fseq‘ f2)
> where fseq = combine e1

> invokeFirst :: Symbol s => EmpFir s a -> First s a
> invokeFirst (_,f) = f
There is a subtlety in this example we want to point out. Notice that when
straightforwardly defining the efseq operator, pattern matching is performed
on both arguments. Due to the fact that matching against an undefined value
diverges we have to take counter measures: hence the irrefutable pattern in the
right hand side of the definition of the infix function efseq. Normally even if
we do not use any of the information from either of the fields e2 or f2, some
computation is still being done when calling the function. In order to construct
the cartesian product pattern matching is needed for the nested calls, and thus
our computation ends up in an indefinite recursion as soon as the grammar is in
some way recursive, even if it is not left-recursive.

3.3 Parsers

Now by using the first sets, deterministic parsers can be constructed. We again
define a new type DetPar, which now contains a parser which parses the input
deterministically upto the first error. This parser incorporates both empty and
first information.

> type Input s = [s]
> type Follow s = [s]
> type DetParFun s a = Input s -> Follow s -> (a,Input s)

> type DetPar s a = (EmpFir s a, DetParFun s a) in
> dpempty, dpsymbol, dperr, dpalt, dpseq,
> invokeDet

> instance Parsing DetPar where
> empty = dpempty
> symbol = dpsymbol
>
> (<?>) = dperr
> (<|>) = dpalt
> (<*>) = dpseq

> dpempty :: Symbol s => a -> DetPar s a
> dpsymbol :: Symbol s => s -> DetPar s s
>
> dperr :: Symbol s => DetPar s a -> (a,String) -> DetPar s a
> dpalt :: Symbol s => DetPar s a -> DetPar s a -> DetPar s a
> dpseq :: Symbol s => DetPar s (b->a) -> DetPar s b -> DetPar s a
Notice that the parser now takes a second parameter of type Follow s in addi-
tion to the input sequence. When parsing, this will be the possible set of sym-
bols, with which parsing can continue after this parser has succeeded. When the
parser may accept the empty string, these symbols are used to decide whether
this empty alternative should be taken. If the current input symbol is not in
this set, apparently there is no reason to take this empty alternative. This will
be especially important when we add error correction in the next section. We
should not be too eager here to try to make some progress with parsing, without
accepting an input symbol. Taking this empty alternative without justification
lessens our possibilities for proper error correction.

The functions dpempty and dpsymbol are easy. Since we will assure elsewhere
that a parser is only called in a situation where the first symbol on the input is
indeed one of the symbols of its first set, or belongs to the dynamic follow set,
there is no reason for dpsymbol s to test if the first symbol is s.
> pempty v = \inp _ -> (v,inp)
> psymbol s = \(_:inp) _ -> (s,inp)

> dpempty v = (efempty v, pempty v)
> dpsymbol s = (efsymbol s, psymbol s)
The parser returned by dperr still does not do anything useful, but is included
for reasons of consistency with the other declarations in this paper.
> dp ‘dperr‘ (v,_) = dp ‘dpalt‘ (efempty v, pempty v)

The parser returned by the combinator dpalt is the first parser for which the
first and follow information is used. When the input sequence has become empty,
empty parsers may still succeed, and finally lead to a succesful complete parse.
If there are still symbols present a sequence of tests is being made to see if one of
the constituents can be called, with progess of the parsing process guaranteed;
when all alternatives fail apparently the furthest point in the input from which
parsing cannot be continued has been reached. Notice that this can be done
safely because the grammar is assumed to be LL(1).

> (ef1@(e1, f1), p1) ‘dpalt‘ (ef2@(e2, f2), p2)
> = (ef1 ‘efalt‘ ef2, p1 ‘palt‘ p2) where
> p1 ‘palt‘ p2 = p where
> p [] follow =
> if e1 then p1 [] follow
> else if e2 then p2 [] follow
> else error "Unexpected Eof"
> p inp@(s:_) follow =
> if s ‘elem‘ f1 then p1 inp follow
> else if s ‘elem‘ f2 then p2 inp follow
> else if e1 && s ‘elem‘ follow then p1 inp follow
> else if e2 && s ‘elem‘ follow then p2 inp follow
> else error ("Illegal input symbol: " ++ show s)

Notice however also that the process of making the choice is, albeit extremely
simple, also rather expensive. It may take many evaluations of the function elem,
before actually a choice has been made for a parser which accepts a symbol.

Exercise 4. Try to find a better approach for associating parsers with their first
sets.

The definition of dpseq is surprisingly similar to previous sequence combi-
nators. Its only interesting part is the computation of the follow set of the first
parser p1, which depends on the follow set of the combined parser, the first set
of p2, and the possible emptyness of p2:

> (ef1, p1) ‘dpseq‘ ~(ef2@(e2, f2), p2)
> = (ef1 ‘efseq‘ ef2, p1 ‘pseq‘ p2) where
> p1 ‘pseq‘ p2
> = \inp follow ->
> let comb = combine e2
> (v1, inp1) = p1 inp (f2 ‘comb‘ follow)
> (v2, inp2) = p2 inp1 follow
> in (v1 v2, inp2)

The function invokeDet returns the result of the deterministic parser.

> invokeDet :: Symbol s => DetPar s a -> Input s -> a
> invokeDet (_,p) inp = case p inp [] of (a,_) -> a

Exercise 5. When some of the first sets are not disjoint the parsing process
is apparently ambiguous at this point. Although a choice will be made due
to the non-deterministic semantics of the programming language, this may be
undesirable. Change the program in such a way that a useful error message
will be produced. These error conditions can be computed statically, i.e. before
parsing actually has begun. Be careful: since many combinators may have been
introduced to construct new parsers it is very likely that the generated error
message is not very helpful to the writer of the grammar since it comes from
somewhere hidden in those combinators. A suggestion is to build up its path
to the root symbol of the grammar, which will point out where the problem is
located.

We may wonder why we cannot compute the union of all possible follow
sets, so that we may statically decide if parsing will always be deterministic. In
order to be able to compute this set however, we need access to all the places
in the code where the function corresponding to this non-terminal is called.
Unfortunately this information can be neither directly nor indirectly computed
from the functional parsers since we do not have an explicit representation of
the parsers at hand. The programs we write may look like a grammar, but keep
in mind that they actually are function definitions. The fact that at a specific
location we call a specific function, which corresponds to the use of a specific
non-terminal in the right hand side of production, is information which is not
available to us explicitly. For this we would need a language with some form of
reflection.

Fortunately in parser generators for LL(1) grammars the follow sets are only
used to issue warning messages at parser construction time, indicating that no
deterministic choice might be made at a specific point when parsing, so we are
not completely lost.

4 Error Correcting Parsers

We now come to the last instance of our Parsing class, which will contain the
error-correcting parsers.

4.1 The Basic Idea

When encountering an unexpected symbol in the input there are two possibilities:
• it is superfluous
• there are symbols missing

In the first case the action to be taken is simple: delete the symbol from the
input sequence and construct an error message. In the second case the missing
symbols can be inserted. The only problem now is to decide which of these two
alternatives we should take, and in case it is the second one which symbols to
insert.

Our choice will be based on the usefulness of the unexpected symbol. If we
foresee that, using our parsing history thus far, this symbol can be of use in

the future, we decide to keep it and to insert a piece of input which brings us
to the point where the useful symbol will actually be used, and parsing can
continue normally. Suppose now, that the parsing of a while_stat has started.
This occurs in the body of a parse in which the parsing of an if_stat has
also started. Assume that parsing has reached the point indicated by the ^ in
WcDIc^aEa;aF

Since the T-symbol is missing from the input, apparently the important sym-
bols not to be skipped are the first symbols of an assignment, i.e. the E-, the
F- and O- symbols, which are the first symbols of the tails of the currently ac-
tive parsers. These are the first symbols of the stack of parsers which are still
pending to accept their parts of the input, i.e. the tails of the entered while-
and if-statements. We will call this set the noskip set. The set computed in this
way is a superset of the follow set, in the sense that it not only contains the
directly following symbols, but also future symbols, which have become visible
by belonging to the first set of a pending parser. The strategy is based upon the
assumption that it is unlikely that someone forgets to include in the input the
first symbol of an alternative.

The recovery strategy is now as follows: if the next input symbol is part of
this noskip set then the symbols which are occurring in front of this symbol
are inserted in the input sequence (i.e. we take actions as if they were present),
otherwise the current input symbol is deleted since there is no easy way to
decide what to do with it. Since we do not always want to insert a complete set
of symbols, which may be a highly artificial choice, we provide for the possibility
to insert also non-terminal symbols in the input.

Exercise 6. The associativity of the sequential composition plays an important
role here. Fortunately it is left associative. Can you indicate why this is fortu-
nate?

4.2 Inserting Symbols

A non-terminal which accepts the empty string will never have to be inserted,
because the parser can be pretend that it accepted the empty string. For those
parsers for which this is not the case a pseudo alternative is introduced, which
is taken when the corresponding non-terminal symbol is inserted. Furthermore
provisions are made for error messages. The accumulated error messages are
tupled with the remaining input, to form together the state of the parser.

Instead of computing a Boolean value indicating the possible emptiness we
compute a value of the type defined in the data definition EmptyDescr below. The
IsEmpty alternative of the definition contains the semantic value of an empty
parser. The Insert alternative contains the semantic value of a nonempty parser
that is inserted, and the error message which will be returned in the list of error
messages when this parser is inserted. Here are all the relevant definitions:
> data EmptyDescr s a
> = IsEmpty a
> | Insert a String

> edempty v = IsEmpty v
> edsymbol s = Insert s (inserted s)

> ederr (v,msg) = Insert v msg

> edp ‘edalt‘ edq =
> case edp of
> IsEmpty _ -> edp
> Insert _ _ -> edq

> edp ‘edseq‘ edq =
> case edp of
> IsEmpty pv
> -> case edq of
> IsEmpty qv -> IsEmpty (pv qv)
> Insert qv sq -> Insert (pv qv) sq
> Insert pv sp ->
> Insert (case edq of
> IsEmpty qv -> pv qv
> Insert qv _ -> pv qv
>)
> (case edq of
> IsEmpty _ -> sp
> Insert _ sq -> sp++sq
>)
Notice that, when combining two of these values in a sequential composition,
attention again has been paid to the laziness of the definition. The definition of
edseq may look a bit clumsy, but notice now that our requirement, which states
that in the case that edp indicates that the first parser will never accept the
empty sequence edq will not be evaluated, does not trivially hold. This problem
can be solved by making the second alternative of the outer case expression more
lazy. In the way it has been coded the Insert-constructor can be returned as
soon as it has been decided that the first component is non-empty. Since we do
not need the components of the second parser yet, using irrefutable patterns will
again save us.

The combined values are statically computed as far as possible, which may
add something to the efficiency of the generated parsers; again some form of
partial evaluation is taking place here.

Notice that when a non-terminal is inserted in the input stream there is some
liberty in choosing which alternative of that non-terminal should be chosen to
represent the corresponding semantic action. We have deliberately chosen to give
preference to the last one. A necessary condition for this to work well is that
all possibly recursive non-terminals have as their last alternative a non-recursive
production; if this is not the case an infinite sequence of insertions would take
place. In order to avoid this we make use of the <?> combinator which points

out the alternative to be taken when error recovery is taking place. The <?>
combinator is used as the last alternative in a sequence of alternatives. The
first component of its right hand side parameter represents the semantic value
corresponding to this alternative, and its second component is a text which will
be used in generating the message that this non-terminal has been inserted.

Exercise 7. Can you change the types in such a way that it is guaranteed by the
type checker that there is always such an alternative constructed using <?>?

4.3 Using Parser Tables

As was indicated in exercise 4, the process of selecting a parser from a set of
alternatives is rather cumbersome, since the current input symbol is repeatedly
being sought for in an ever decreasing set. In this subsection some improvements
are presented in order to cure this problem.

In the first place we note that the operator <|> is associative, so there is
no reason to have the elem tests being performed in the same order as the
alternatives have been grouped and ordered in the program text. Only one al-
ternative should apply. Since the set of symbols in which the search starts is
known statically we adapt the program in such a way that instead of searching
through these sets, we construct a table in which each expected input symbol
is associated with its corresponding parser. As a consequence the combinators
do not construct parsers which make choices, but construct parser tables which
will be used to make choices later when actually parsing. The State of the pars-
ing process now no longer contains only the unconsumed part of the input, but
also the error messages generated thus far. Since the noskip-sets are dynamic
structures we take a simple approach to their implementation in which they
are implemented as a stack of sets, the union of which is actually the set of
non-skippable symbols. Since we will use this set only to see whether a specific
symbol is present, and the symbol being sought will most likely be contained
at or near the top of this stack, we prefer not to make this set into an actual
set, but just to search for its presence in a linear way, from the top down to the
bottom of the stack of sets.

> type State s = ([s],String)
> type Noskip s = [[s]]

> type ErrParFun s a = State s -> Noskip s -> (a, State s)

> data Look s a = Look s a
> type ParserTab s a = [Look s (ErrParFun s a)]

Here are the relevant definitions for dealing with parser tables. The table of the
parser for a single symbol contains only one alternative, and since it is guaranteed
that its contained parser will only be called when this symbol is indeed present,
there is no need for a test for its presence anymore.

> tempty _ = []

> tsymbol s = [Look s (\((_:inp), str) _ -> (s, (inp, str)))]

> talt = (++)

> mapParser tab f = [Look s (f p) | Look s p <- tab]

4.4 The Final Code

As usual we start with the type definition of the functions to be defined, in which
the ep stands for (deterministic), error (correcting) parser:
> type ErrPar s a = (EmptyDescr s a, First s a, ParserTab s a) in
> epempty, epsymbol, eperr, epalt, epseq,
> invokeErr

> instance Parsing ErrPar where
> empty = epempty
> symbol = epsymbol
>
> (<?>) = eperr
> (<*>) = epseq
> (<|>) = epalt

> epempty :: Symbol s => a -> ErrPar s a
> epsymbol :: Symbol s => s -> ErrPar s s
>
> eperr :: Symbol s => ErrPar s a -> (a,String) -> ErrPar s a
> epseq :: Symbol s => ErrPar s (b->a) -> ErrPar s b -> ErrPar s a
> epalt :: Symbol s => ErrPar s a -> ErrPar s a -> ErrPar s a

The last components of the results have now been converted into tables of par-
sers, each tagged with the symbol that they will accept first. For all parsers
tagged in this way it holds that they cannot accept any other symbol first, and
will indeed always accept the tag symbol when called.

The optimisation does not influence the definition of the empty parser, the
symbol parser and the error parser. In the first part of the symbol parser, text
is constructed which will report that this symbol was inserted in the input.
> epempty v = (edempty v, fempty v, tempty v)
> epsymbol s = (edsymbol s, fsymbol s, tsymbol s)
>
> ep ‘eperr‘ x = ep ‘epalt‘ (ederr x, fempty x, tempty x)
> (edp, fp, tp) ‘epalt‘ (edq, fq, tq)
> = (edp ‘edalt‘ edq, fp ‘falt‘ fq, tp ‘talt‘ tq)

For the choice combinator there is only a small change in the sense that the third
part of the result is now a composition of lookup tables. Note that the actual
choice is not being made here now, but later at the outermost choice level, i.e. at
the point where all the possible alternatives to choose from have been collected.

> (edp, fp, tp) ‘epalt‘ (edq, fq, tq)
> = (edp ‘edalt‘ edq, fp ‘falt‘ fq, tp ‘talt‘ tq)

Before presenting the function for sequential composition, one more function is
introduced: the function which actually makes a choice or, in case no choice is
possible, takes care of the error recovery. It takes as parameters the EmptyDescr
of a parser and a binary search tree containing the non-empty parsers. Before
choices have to be made the tables are converted into balanced binary search
trees, so that the right parser can be quickly located. The code for this can be
found in the appendix, since it is not an essential part of our line of reasoning.

First it is checked whether the end of the input has been reached. If so, and
if the parser can accept the empty string, there is no problem: we return the
semantic value corresponding to this parser; if not, the value corresponding to
the inserted non-terminal is returned and its corresponding error message is left
in the list of error messages.

If there is still an input symbol to be recognised and it can be found in the
binary search tree, then there is no problem either and the corresponding parser
is called. Otherwise, if the symbol is element of the noskip set, either the empty
string should be recognised or a (number of) inserts should take place to reach
the point where parsing can continue in a regular way. This is encoded in the
insorempty function below. If the symbol is not in the noskip set it is discarded,
and an error message is generated in the state.

> choose (edp,_) state@([],_) noskip = insorempty edp state
> choose x@(edp, ptree) state@((s:inp), errors) noskip
> = find s ptree
> (_ _
> -> if any (s ‘elem‘) noskip then insorempty edp state
> else choose x (inp, errors ++ deleted s) noskip
>) state noskip
> choose _ _ _ = error "no good alternative"

> insorempty edp state@(input,errors)
> = case edp of
> IsEmpty pv -> (pv, state)
> Insert pv error -> (pv, (input, errors ++ error))

Now we have finally reached the most complicated part of our derivation: the
point where the sequential composition can be defined in its final form. The
returned parser table consists of two parts:
• the first half consists of the parsers from the first operand, in which each

parser has been extended with a choose from the tree treeq, constructed
from the table of the second parser

• if the first parser can accept empty the second half consists of the second
table, in which each parser has been changed in such a way that its result is
subjected to the semantic value corresponding to the first empty parser

> (edp, fp, tp) ‘epseq‘ ~(edq, fq, tq)
> = (edp ‘edseq‘ edq, fp ‘fseq‘ fq, tp ‘tseq‘ tq)
> where
> treeq = tab2tree tq
> fp ‘fseq‘ fq
> = fp ‘union‘ case edp of IsEmpty _ -> fq ; Insert _ _ -> []
> tp ‘tseq‘ tq
> = mapParser tp
> (\p ss noskip ->
> let
> (pv,rs) = p ss (fq:noskip)
> (qv,rrs) = choose (edq, treeq) rs noskip
> in (pv qv, rrs)
>)
> ++ case edp of
> IsEmpty pv
> -> mapParser tq
> (\q ss noskip ->
> let (qv, rs) = q ss noskip
> in (pv qv, rs)
>)
> Insert _ _ -> []

Notice how the construction of the binary search tree treeq is done outside of
the actual parsers, and is thus only done once, instead of whenever the parser is
called.

Exercise 8. When there is only one alternative for the second parser the con-
struct is rather cumbersome, because a tree is constructed, and an attempt is
made in choose to find the appropriate symbol. Change the program in such a
way that this situation is handled more efficiently.

Finally we can now define the function invokeErr. When starting to parse,
the parsing table of the root symbol must first be subjected to the choose
function, converting it into a real parser:
> invokeErr :: Symbol s => ErrPar s a -> Input s -> (a, String)
> invokeErr (edp, _, tp) input =
> let (a, (_, errors)) = choose (edp, tab2tree tp) (input, []) []
> in (a, errors)

> display (a, errors) = show a ++ "\n" ++ errors

Exercise 9. Is the computation of the first set still needed?

Exercise 10. The <?> instances have always been defined in terms of the <|>
instances. This implies that (for the purposes of the parsers considered in this

paper) we can do without the <?> combinator and use a fail parser as a last
alternative instead. Change the Parsing class and its instances to incorporate
this fact.

4.5 Discussion of Error Recovery Properties

Before starting the final discussion of what has been achieved we will briefly
discuss the error recovery technique which was chosen. The technique chosen is
very general, but it may be a bit too agressive. A famous example can be found
in the Pascal grammar, which at the outer level reads something like:

program := program ident ; declarations ; begin statements end.

When, using our recovery techniques, someone writes a superfluous dot (.) in a
record selection (e.g. a..b) then the parser will conclude that the second dot is
actually the dot terminating the program, and it will quickly insert all pending
non-terminals and think it is done. This can be prevented by a slight rewrite of
the grammar to contain an extra non-terminal:

program end ::= end.

Now the final dot no longer belongs to the first set of a pending parser, and the
superfluous dot will be deleted.

Exercise 11. Change the combinators in such a way that if too many symbols are
being inserted, an attempt is made to see whether a symbol should be deleted.
Many strategies are possible here.

Exercise 12. There is a situation where the naive application of the techniques
presented may lead to unexpected or undesired results. It is not uncommon to
forget to write a separator in a chainr construct. E.g. semicolons tend to be
forgotten. Due to the way our chainr combinator has been defined however
the first symbols of the element after the separator are not visible until the
separator has been recognised. This can be cured by spending some more effort
on the definition of chainr by explicitly adding the first symbols of the elements
to the table of the separator, making them in this way visible in the noskip sets.
Change the definition of chainr such that it becomes a member of the Parsing
class with a default definition and change this default definition for the ErrPar
instance.

5 Discussion

5.1 Partial Evaluation

We have now reached the end of the development. We want to point out some
important aspects of our approach:

• an attempt was made to move expressions which do not in some way depend
on the input out of the actual parsers. As a consequence they will only be
evaluated once. When running the ‘generated/described’ parsers more and
more parts of the grammar will become analysed and the parser will run
faster. What we have constructed, is a parser generator which is generating
parsers on demand.

• the technique presented can be applied in many other situations in which a
static and a dynamic computation are intricately intertwined. We reap the
benefits of partial evaluation [4], without having to resort to complicated
off-line techniques. In the figure a profile of the heap is given when using the
described parser. We see that after an initial startup phase there are no new
nodes being produced by the combinators.

a.out -c -i0.10 1,006 bytes x seconds Fri May 31 16:05:28 1996

seconds0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2

by
te

s

0

499

999

1,499

1,999

2,499

2,999

3,499

3,999

4,499

4,999

OTHER

Pcallmethod3

foldr

copy

Pcallmethod4

errorparser

qfk

(++)

empty

pqf

symbol

(,)

Ps2_2

(:)

parsealt

seq

parsec

combine

SYSTEM(C)

Ps2_1

Fig. 1. Incremental behaviour of described parsers

One may be suprised by the small number of nodes actually being used; usu-
ally combinator parsers use a huge amount of memory by hanging on to their
input. This problem has been solved by us, since we do not perform backtrack-
ing. There is however a second cause for this memory hungriness. When parsing,
the symbols which have been recognised are consumed somehow by the appli-
cation of the functions which have been inserted into the parsers using the <$>
combinator. The expressions which are implicitely constructed in this way how-
ever, are not evaluated until there actually is a need for the top-value, i.e. the
values corresponding to the synthesized attributes of the root, when expressing
ourselves in attribute grammar based terminology.

This can be cured by incorporating some strictness into our parsers. In the
Haskell library there exists a function seq, which forces the evaluation of its first
element as far as possible before actually returning its second parameter. When
applying the value pv to the value qv, we can better write this as:

let pvqv = pv qv in seq pvqv (state’’, (pvqv))

One might be tempted to write this function as:

seq a b = if a == a then b

but this necessitates that the parameter a is an instance of the class Eq, which
in our case will in general not be the case, since it is most likely a partially
parametrised function.

5.2 Problems with Monad-based Formulations

Unfortunately the techniques which we have used do not easily extend to the
monad-based combinator parsers[9]. Due to the monadic formulation the dy-
namic and the static values are tupled together, and thus cause the evaluation
of the parser construction over and over again when parsing. To see what hap-
pens we inspect the following program:
f x = (a1 ‘expensive‘ b1, a2 ‘cheap‘ b2)

where (a1, a2) = g x
(b1, b2) = h x

g x = (5, x+x)
h x = (3, x*x)
z = f 7

On close inspection we see that the first component of the result of a call to
f does not depend on the parameter x at all, and thus is static. Nevertheless it
will be recomputed for each call of f again: an unfortunate situation. Of course
one might argue that this program should not have been written in this way
in the first place, but this is exactly what happens when one tries to write the
functions we have presented in a monadic style. Of course the program above
could easily be rewritten into:
f1 = (a1 ‘expensive‘ b1) where (a1, b1) = (g1 , h1)
f2 x = (a2 ‘cheap‘ b2) where (a2, b2) = (g2 x, h2 x)
g1 = 5
h1 = 3
g2 x = x+x
h2 x = x*x
(z1, z2) = (f1, f27)

but that is exactly what we have done in our parsing combinators. Using tech-
niques from the area of attribute grammars [7,?] such rewriting can be done
automatically in many situations. The techniques used imply however some form
of global analysis of the program, and are not easily added to existing imple-
mentations of functional languages.

Exercise 13. This exercise is a little (but non-trivial) programming project. You
are asked to write a code generator for a block structured language using the
parsers developed in the paper. For the purposes of the exercise a block is a
list of statements. A statement is a dummy statement, a variable declaration, a
variable usage or a nested block. The concrete representation of a block of the
block structured language looks as follows:
X;x;(Z;Y;;x;z;X);y;();Y

Statements are separated by semicolons. Nested blocks are surrounded by paren-
theses. The usage Z refers to the local declaration z. The usage Y refers to the
global declaration y. The local usage X refers to the local declaration x and the
global usage X refers to the global declaration x. Note that it is allowed to use
variables before they are declared. The generated code should look at follows
? compile "X;x;(Z;Y;;x;z;X);y;();Y"
Enter 2
Access (1,1)
Enter 2
Access (2,2)
Access (1,2)
Dummy
Access (2,1)
Leave 2
Enter 0
Dummy
Leave 0
Access (1,2)
Leave 2

– Write a combinator parser which returns the parsed input sequence.
– Write a combinator parser which generates code for the parsed input se-

quence. The recover action for an ill formed statement should be such that
it enables you to continue generating code. Do not write a parser which
directly generates code, write a parser which returns a function which gen-
erates code using appropriate inherited and synthesised attributes.

6 Acknowledgements

We want to thank Pablo Azero, Jeroen Fokker, and Erik Meijer for their extensive
comments on the paper. The first author wants to thank the computer science
department of Chalmers university and its personnel for their hospitality when
working on a preliminary version of this paper.

References

1. Jeroen Fokker. Functional parsers. In Johan Jeuring and Erik Meijer, editors,
Advanced functional programming, Baastad Summerschool Tutorial Text, volume
925 of LNCS, pages 1–23. Springer, 1995.

2. Graham Hutton. Higher-order functions for parsing. Journal of functional program-
ming, 2:323–343, 1992.

3. Mark P. Jones A System of Constructor Classes: Overloading and Implicit Higher-
Order Polymorphism Conference on Functional Programming Languages and Com-
puter Architecture, Copenhagen, Denmark, pages 52-64, ACM, 1993.

4. Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and Au-
tomatic Program generation. Prentice-Hall, 1993.

5. Andrew Partridge and David Wright. Parser combinators need four values to report
errors. Technical report, Department of Computer Science, Tasmania, 1994.

6. M. Pennings, S.D. Swierstra, and H.H. Vogt. Using cached functions and con-
structors for incremental attribute evaluation. In M. Bruynooghe and M. Wirsing,
editors, Programming Language Implementation and Logic Programming, volume
631 of LNCS, pages 130–144. Springer, 1992.

7. Maarten Pennings. Generating Incremental Attribute Evaluators. PhD thesis,
Utrecht University, Dept. of Computer Science, 1994. www.cs.ruu.nl.

8. Niklas Röjemo. Garbage collection, and memory efficiency, in lazy functional lan-
guages. PhD thesis, Chalmers, rojemo@cs.chalmers.se, 1995.

9. Philip Wadler. Monads for functional programming. In Johan Jeuring and Erik
Meijer, editors, Advanced functional programming, Baastad Summerschool Tutorial
Text, volume 925 of LNCS, pages 24–52. Springer, 1995.

7 Appendix: Utility Functions

For building the efficient mappings from first symbols to parsers we have used
binary search trees. For the sake of completeness we give here the code for
constructing such trees.
> data BinSearchTree a
> = Node (BinSearchTree a) a (BinSearchTree a)
> | Leaf a
> | Nil
>
> type ParserTree s a = BinSearchTree (Look s (ErrParFun s a))

> tab2tree :: Symbol s => ParserTab s a -> ParserTree s a
> tab2tree tab = tree
> where
> (tree,[]) = sl2bst (length tab) (qsort tab)
> qsort [] = []
> qsort (look@(Look s _):tab)
> = qsort [look | look@(Look t _) <- tab, t <= s]
> ++ [look] ++
> qsort [look | look@(Look t _) <- tab, t > s]
> sl2bst 0 list = (Nil , list)
> sl2bst 1 (v:rest) = (Leaf v, rest)
> sl2bst n list
> = let
> ll = (n - 1) ‘div‘ 2 ; rl = n - 1 - ll
> (lt,a:list1) = sl2bst ll list
> (rt, list2) = sl2bst rl list1
> in (Node lt a rt, list2)

The function find tries to find the parser indexed by a specific symbol; if the
symbol cannot be found in the tree the continuation notfound is returned.
> find i Nil notfound = notfound

> find i (Leaf (Look s p)) notfound
> = if i == s then p else notfound
> find i (Node left (Look s p) right) notfound
> | i==s = p
> | i<s = find i left notfound
> | i>s = find i right notfound

We end with the function union for computing the union of two sets.
> union :: Eq x => [x] -> [x] -> [x]
> xs ‘union‘ ys = nub(xs++ys)

Exercise 14. Can you write the function find without the argument notfound?

