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ABSTRACT
Mixin modules are proposed as an extension of a class-based
programming language. Mixin modules combine parallel ex-
tension of classes, including extension of the self types for
those classes, with mixin-based inheritance. For soundness
of subtyping purposes, they require an explicit distinction
between mixin-based objects and class-based objects. Appli-
cations of mixin modules are in statically type-safe monad-
based aspect-oriented programming, and in modular mixin-
based Internet programming.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory—Semantics; D.3.3 [Programming Languages]:
Language Constructs and Features—Data Types and Struc-
tures

General Terms
Languages

Keywords
Mixin-Based Inheritance, Application Frameworks, Modu-
larity

1. INTRODUCTION
Component-based programming has become the central part
of a paradigm shift in software development, moving pro-
gramming away from “from-the-ground-up” application de-
velopment and towards a model of plugging together off-the-
shelf components. Application frameworks have emerged
in the object-oriented programming community as a ba-
sis for facilitating component-based programming. In its
most rudimentary form an application framework is a library
of classes, that are intended to be specialized by applica-
tion programmers with application semantics. Specification

techniques such as formal methods and pattern languages
may be used to facilitate the use of such libraries.

While component-based programming at the class level has
had some success, there is a growing recognition of the lim-
itations of such a low-level view in developing large appli-
cations from off-the-shelf components. While module lan-
guages have been known at least since the days of languages
such as Mesa, Modula and Ada [29, 26, 32, 22, 25, 30],
there is now growing interest in developing module lan-
guages specifically for composing class libraries in object-
oriented languages. Since Java is now a popular object-
oriented language for both practitioners and researchers,
some of this work has at least implicitly been aimed at the
Java language.

It can be argued that the essence of class-based object-
oriented languages is the incremental extension of recursive
definitions via inheritance. This was the motivation for the
fixed point semantics of inheritance by Cook et al, that in
turn gave rise to research on self types that allowed method
types to be specialized in subclasses derived via inheritance.
The types being extended are object interfaces, which can
be considered as a form of record type. So object interfaces
can be viewed as recursively defined record types, and inher-
itance allows the incremental extension both of these types
and of object implementations.

New applications suggest another view of recursive defini-
tions, that of recursively defined labelled trees. This per-
spective is popularized by XML, which (at the risk of gross
oversimpification) can be viewed as a language for defining
recursive tree types. Recursive tree types can be viewed
as dual to recursive record types; indeed, the former corre-
spond to variant types and discriminated union types in the
terminology of programming language types.

The ultimate application of our work is in developing a
framework for type-safe mixin-based inheritance for compo-
nents of XML applications. In designing this framework we
assume that processors for XML applications will be writ-
ten in class-based languages such as Java or C#, since such
processors will be easily downloadable over the Web. Pre-
sumably some, perhaps even many, XML processors will be
written in XML-specific dialects such as XDuce and XML-
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SQL, but it appears safe to assume that some large number
will be written in class-based languages.

Variant types can be represented using only object types
and subtyping: the tree type is defined as an abstract class
or interface, and specific node types of this tree type are
represented as concrete classes that subclass this abstract
class. However this agglomeration of recursive record types
and recursive variant types into the single concept of object
types confuses two concepts, and this confusion becomes
problematic when we consider extensions.

There are three extensions that we consider useful for the
kind of reuse of XML applications that we are interested in
supporting:

1. Mixin-based inheritance: Traditional inheritance in-
volves the incremental extension of an existing applica-
tion. Mixin-based inheritance, popularized by CLOS,
allows fragments of applications to be modularly com-
posed into complete applications. We envision an en-
vironment for XML applications where schema frag-
ments, and processors for those fragments, are defined
in a modular fashion and then combined as necessary
for particular applications. A central design problem
with mixin-based inheritance is that of choosing field
names. For example unless care is taken it may be dif-
ficult to combine two mixins, only because they have
unrelated fields with the same name. A facility for re-
naming fields in mixins could avoid this problem; how-
ever this approach breaks with subtyping, since renam-
ing prevents the derivative class from being a subclass
of the original class. Approaches based on distinguish-
ing “internal” and “external” field names [31] become
problematic with parallel extensions of classes, and it
is also not clear how fields can be shared between mix-
ins with this approach.

2. Parallel extensions: Traditional inheritance, and
method type specialization, focus on the extension of
a single class. XML schemas typically involve the def-
inition of several mutually recursive document types,
and processors for such document types will also in-
volve mutually recursive methods recursing over XML
data structures. In the style of processor definition
envisioned for our framework, the inputs and outputs
of these methods would be represented as objects (to
support mixin-based combination of processors [12]).
Therefore support for modular XML applications must
be able to support the incremental extension and com-
bination of collections of mutually recursive types and
processors.

3. Method type specialization: To be useful, our frame-
work for combining XML applications should ensure
type safety. Method type specialization is a useful tool
towards this end, perhaps even essential with parallel
extensions of types and processors. A standard exam-
ple is given by abstract classes for the subject-observer
pattern:

abstract class Subject {
void notify (Observer x); }

abstract class Observer {
void register (Subject x); }

class WindowSubject extends Subject { ... }
class WindowObserver extends Observer { ... }

It would be very useful in the derivative classes to have
the instance variables specialized to types
WindowObserver and WindowSubject, respectively. Oth-
erwise objects of the derived classes must use down-
casting at runtime to coerce objects to the required
types, potentially reducing the reliability of the re-
sulting applications. On the other hand, allowing the
types to be specialized in this case leads to a loss of
type safety: subtyping is incompatible with method
type specialization in scenarios such as this.

Our vehicle for adding these extensions to a class-based lan-
guage is mixin modules. A mixin module is a collection
of mutually recursive type and implementation definitions.
One might expect that a mixin module is then a collec-
tion of mutually recursive class definitions, similar to the
approach advocated by Bruce et al for a statically safe al-
ternative to virtual types [7]. However because of issues (1)
and (3) described above, it is advantageous to break with the
traditional confusion of record and variant types in object-
oriented languages:

1. We retain classes in the traditional sense. Classes sup-
port extensions and overriding via inheritance, and an
object of a class is also an object of any superclass;
there is subtyping based on class extensions. However
classes do not support field renaming or method type
specialization, since these are incompatible with sub-
typing. In effect classes are the mechanism by which
we define variant types, and so class-based objects
are the basis for representing XML data structures as
trees.

2. We add mixins, as an alternative to classes, for defin-
ing object types and object implementations. Mixins
can be combined in a modular fashion; however unlike
the traditional approach to mixin-based combination,
this combination is done at the level of modules rather
than at the level of mixins. Mixins support both ex-
plicit field renaming, to avoid field name conflicts, and
also method type specialization. The difficulties de-
scribed earlier are avoided by not allowing subtyping
for mixins; it is unnecessary, since the applications of
subtyping are already handled by class-based objects,
and it avoids the aforesaid problems.

As an example of the approach, assume we have two XML
schemas foo and bar, defining tags t1 and t2 respectively
as components of the tag t. We want to modularly combine
these schemas into a single schema that defines a single tag t

that can contain either a t1 tag or a t2 tag as its component.
We represent this by two mixin modules foo and bar. The
intended union tag t is defined as an abstract class, with t1
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and t2 as subclasses of this class. We also attach a processor
method proc to objects of the t class. We represent this in
our framework by two mixin modules:

module foo {
abstract class t { Output proc (Input x); };
class t1 extends t { ... };
mixin Input { ... };
mixin Output { ... };

}
module bar {

abstract class t { Output proc (Input x); };
class t2 extends t { ... };
mixin Input { ... };
mixin Output { ... };

}

Then the intended union of these schemas is obtained by
combination of mixin modules:

module baz combines foo, bar;

The resulting combination module has an abstract class t,
and two subclasses t1 and t2. The module also has two
mixins, Input and Output, corresponding to the input and
output of the processor application. The reason for defining
these inputs and outputs as mixins is to support the mixin-
based combination of the processor definitions. So the input
arguments to the processor for the t1 tag are combined with
the input arguments to the processor for the t2 tag, and
similarly for the outputs. If one thinks of XML documents
as abstract syntax trees, and processors as attribute gram-
mars, the inputs can be thought of as inherited attributes
and the outputs as synthesized attributes. So this can be
viewed as a mixin-based approach to modularly combining
attribute grammars. This can be generalized to a monadic
approach to aspect-oriented programming described in [12],
where modules include “plugging” code for weaving together
inputs and outputs for each modular processor fragment.
Each module provides an “aspect” of the XML application,
and mixin module combination uses the monadic definition
of processor fragments to combine these aspects.

As can be seen by example, names are an important part of
combination. It is important that the base class have the
same name (t) in both modules, that the input and output
mixins, Input and Output respectively, are called the same
in both modules, and that the processor method proc have
the same name in both modules. Therefore mixin modules
support renaming of both classes and mixins, and also of
field names in mixins.

In the next section we give an informal overview of a mini-
language demonstrating the extension of a class-based lan-
guage with mixin modules. In Sect. 3 we provide the key
parts of the type system, while in Sect. 4 we provide the
operational semantics. We consider related work in Sect. 5,
while Sect. 6 provides conclusions.

2. INFORMAL DESCRIPTION
In describing the extension of a class-based language with
mixin modules, we adopt the approach of FJ [23], a small
and economical kernel language that describes the essential
core of Java. We provide an operational semantics that can
be viewed as an abstract interpreter for a class-based object-
oriented language extended with mixin modules. We avoid
basing mixin modules on Java inner classes, because the lat-
ter introduce some rather frightening complications [24]. We
assume a collection of program variables x, y, z, w, . . . , and a
collection of class, mixin and module names X,Y, Z,W, . . . .
This latter class includes a special module name This, a ref-
erence in a class or mixin definition to the final form of the
module (after extensions and combinations) in which that
definition occurs. The abstract syntax of our mini-language
is defined in Fig. 1.

A module definition P specifies a collection of classes C and
mixinsM . Each class and mixin definition includes the spec-
ification of fields, methods and a single constructor. A class
or mixin is defined by extending an existing class or mixin
that is defined in the same module. To reuse definitions from
other mixin modules, we allow a module to extend another
module, which introduces all of the (class and mixin) defi-
nitions in the latter module into the former module. So we
have single inheritance for modules, class and mixins. In-
heritance for modules and mixins serves a dual purpose: in
addition to reusing definitions, it is also the operation for
renaming classes and mixins (for modules) and renaming
fields and methods (for mixins)

Since all class and mixin definitions are relative to a module,
a type has the formX.Y , whereX is a module name and Y is
the name of a class or mixin defined in that module (directly
or indirectly via inheritance). A type of the form This.Y
may be used to refer to the final module of the class or mixin
Y when an object of this class or mixin is instantiated. For
example1:

module X extends Root {} {} {
class Y extends Object {

This.Y self () { return this; }
}

}
module Z extends X {} {} { ... }
Z.Y y1 = new Z.Y();

Z.Y y2 = y1.self();

There are two forms of mixin module definitions. An atomic
mixin module has the form

module X extends Y ρ θ { C; M ; }

The mixin module named X includes all of the definitions
from the mixin module named Y , and extends it with new
class definitions C and new mixin definitions M . There is
no notion of override; the additional classes and mixins must

1We assume a special module named Root from which all
other modules inherit. This module defines a root class
Object and a root mixin MObject, analogous to the Object
class in Java.
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e ∈ Expression ::= new A(e1, . . . , ek) Object

| e.x Class-based variable access

| e.x(e1, . . . , ek) Class-based method invoke

| A::e.x Mixin-based variable access

| A::e.x = e′ Mixin-based variable update

| A::e.x(e1, . . . , ek) Mixin-based method invoke

| this This or self

| x Variable

| null Null

| A::super.x(e1, . . . , ek) Mixin super

| A::inner.x(e1, . . . , ek) Mixin inner

| return e Method return

A,B ∈ Type ::= X.Y Type

| This.Y Self Type

K ∈ Constructor ::= X (A x, B y) { super(x); this.y = y; } Class constructor

| X () { super(); this.xm = em; } Mixin constructor

C ∈ Class ::= class X extends Y { A x; K; F } Class definition

M ∈ Mixin ::= mixin X extends Y { A x; K; F } Mixin definition

F ∈ Method ::= A f(B x) { return (e); } Method definition

P ∈ Module ::= module X extends Y ρ θ { C; M ; } Module definition

| module X combines Y, Z Module combination

ρ ::= {X1 7→ Y1, . . . ,Xk 7→ Yk} Definition Renaming

θ ::= {X1.x1 7→ y1, . . . ,Xk.xk 7→ yk} Label Renaming

Figure 1: Abstract Syntax

not share names with the existing classes and mixins in Y .
To ensure flexibility, extending a mixin module allows class
and mixin names in the old module to be renamed in the
new extended module, where this renaming is specified by
the definition renaming ρ. For example in the code fragment:

module X extends Root {} {} { class Z ... }
module Y extends X {Z7→W} {} { class Z ... }

Then the module Y contains two classes2: one named Y.W

and one named Y.Z. The class named Y.W is actually a re-
naming of X.Z, however there is no relationship between
objects of the classes of X and objects of the classes of Y.
There is no subtyping relation between X.Z and Y.W. Even
if the class Y.Z inherits from Y.W, there is no subtype rela-
tion between Y.Z and X.Z (although there is between Y.Z

and Y.W). It is not possible for Y.Z to be defined via inheri-
tance from X.Z. This restriction is enforced simply because
it would be unsound to do otherwise; well-typed programs
could encounter run-time failure due to invalid method calls
without this restriction. The source of the unsoundness is
that it is possible to specialize the types of mixins as a result
of inheritance, as shown on the next page. So each mixin
module defines a collection of mutually recursive classes and
mixins, with subtype relations between classes only valid

2From now on, we ignore the root class and mixin.

within that module. This is compatible with the stated ob-
jective of mixin modules: to provide support for building
safe reusable application frameworks, based on specializing
classes “in parallel.” As an example of the allowable subtype
relations, we have:

module X extends Root {} {} {
class Y extends Object { void foo (This.Y y); }

}
module Z extends X {} {} {

class W extends Y { void bar (); }
}
Z.W w = new Z.W();

w.foo (new X.Y()); // type error

w.foo (new Z.Y()); // type-checks

w.foo (w); // type-checks

The second form of mixin module allows a new form of mod-
ule to be defined using module combination

module X combines Y, Z

This generalizes the combination of individual mixins, as in
other approaches to mixin-based inheritance, to allow the
simultaneous combination of collections of mixins. In this
combination similarly named classes must be identical. Such
classes arise from a common parent module W that the com-
bined modules Y and Z extend, and in the expected usage of
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a mixin module the combined modules contribute extensions
of this common base class. Module combination is defined
as a binary operation for simplicity; it is straightforward to
extend it to an n-ary operation for n ≥ 0.

As an example of module combination, fragments of an ab-
stract syntax tree can be represented as:

module Interp extends Root {} {} {
class AST {...} ...

}
module FuncInterp extends Interp {} {} {

class Var extends AST { String x; }
class Abs extends AST { String fml; AST body; }
class App extends AST { AST rator; AST rand; }

}
module ImperativeInterp extends Interp {} {} {

class Assign extends AST { AST lhs; AST rhs; }
class Deref extends AST { AST exp; }

}
module FuncImpInterp

combines FuncInterp, ImperativeInterp;

Since our claim (and that of others [36]) is that XML schemas
correspond in some sense to AST definitions, this exam-
ple demonstrates how XML schemas can be combined using
mixin module combination.

On the other hand, in mixin module combination, similarly
named mixins are regarded as fragments that should be coa-
lesced in the combination of the modules. In this coalescing,
similarly named instance variables must have the same type
and are merged, so instance variables may be shared be-
tween mixins. Similarly named methods must also have the
same type. In their coalescence, the method implementation
in the left-hand combinand is executed when the method is
invoked on a mixin object. It is possible for this method
implementation to delegate to the implementation in the
right-hand combinand; this is done using the inner construct
described below. For example:

module Interp extends Root {} {} {
mixin Input extends MObject ... { }
mixin Output extends MObject ... { }
class AST extends Object {Output eval(Input x);}

}
module FuncInterp extends Interp {} {} {

class Env extends Object {...}
mixin Input extends Input { Env env; }

}
module ImperativeInterp extends Interp {} {} {

class Store extends Object {...}
mixin Input extends Input { Store store; }

}
module FuncImpInterp

combines FuncInterp, ImperativeInterp;

In the resulting combination mixin module, an object of the
mixin Input contains both an env field and a store field.

The class renaming operation that is part of mixin mod-
ule extension appears to be essential to make this approach
workable. Since part of our claim is that mixins can be used
to define “attributes” for evaluators that walk over abstract
syntax trees, this example demonstrates how such attribute
definitions can be combined using mixin module combina-
tion. An approach to modularly combining attribute evalu-
ators, supported by our minilanguage, is described in [12].

A class definition has the form

class X extends Y { A x; K; F }

This is exactly the same as a class definition in FJ. The
definition introduces new instance variables x, and new and
overriding method definitions F , and also defines a construc-
tor K. Every class extends another class; we assume a spe-
cial root class analogous to Object in Java (although each
module has its own version of Object, since subtyping is lo-
cal to a module). The class being extended must either be
defined in the current mixin module, or else have already
been defined in the mixin module that the current module
extends.

A mixin definition has the form

mixin X extends Y { A x; K; F }

As with class definitions, a mixin definition extends an ex-
isting mixin, contributing new instance variables, and new
and overriding method definitions. Unlike with classes, only
two forms of mixin extension are allowed:

mixin X extends MObject . . .

mixin X extends X . . .

The first form defines a new mixin, while the second form
defines the extension of an already-defined mixin (inherited
from another module).

A mixin extension must carry the same name as the mixin
being extended. This restriction is in order to ensure that
references to the original mixin in a module being extended
should rebind to the new mixin. As a result, mixins pro-
vide support for method type specialization. For example,
a module defining the interfaces for subjects and observers
could be specified as follows:

module SubjObs extends Root {} {} {
mixin Subject extends MObject {

void register (This.Observer x) { ... }
}
mixin Observer extends MObject {

void notify (This.Subject x) { ... }
}

}
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A windowing version of this module is defined by:

module WindowSubjObs extends SubjObs {} {} {
mixin Subject extends Subject {
void notify (This.Observer x)

{ ... This.Observer::x.windowMeth() ... }
}
mixin Observer extends Observer {
void register (This.Subject x) {...}
void windowMeth () {...}
}

}

The annotations for accessing (and updating) mixin object
fields (This.Observer::x.windowMeth() in this example)
are explained below. This results in a module WindowSubjObs
with two mixins: Subject and Observer (and also the de-
fault MObject mixin). Then we can create objects of these
mixins:

WindowSubjObs.Subject ws =

new WindowSubjObs.Subject(...);

WindowSubjObs.Observer wo =

new WindowSubjObs.Observer(...);

WindowSubjObs.Subject::ws.register(wo);

This example demonstrates method type specialization, since
for example an object from the WindowSubjObs.Subject

mixin has fields contributed by both the base mixin and
the derivative mixin, while the argument type of the notify

method of an observer object has rebound to the new ex-
tended Subject type. We disallow a subtype relation be-
tween mixins in order to avoid unsoundness due to method
type specialization. For example with such subtyping the
following erroneous example would type-check:

void bad (SubjObs.Subject s, SubjObs.Observer o)

{ SubjObs.Subject::s.register(o); }
WindowSubjObs.Subject ws =

new WindowSubjObs.Subject();

SubjObs.Observer o = new SubjObs.Observer();

bad (ws, o);

It is because of method type specialization for mixins that
we do not allow a subtype relation between a class in one
mixin module and a class in a derivative mixin module. The
following example demonstrates the unsoundness that would
result otherwise:

module X extends Root {} {} {
mixin foo { int x; }
class bar {
void g (This.foo f) { This.foo::f.x=3; }
}
}

module Y extends X {} {} {
mixin foo extends foo { int y; }
class baz extends bar {
void g (This.foo f) { This.foo::f.y=4; }
}
}
void bad (X.bar b, X.foo f) { X.bar::b.g(f); }
bad (new Y.baz(), new X.foo());

Field names are fundamentally important in mixins, because
they are the basis for coalescing mixin definitions during
module combination. Therefore module extension allows
fields to be renamed in the mixins of the module being ex-
tended, using the field renaming θ. For example:

module X extends Root {} {} { mixin Z { int x; } }
module Y extends X {Z7→W} {Z.x 7→y} {

mixin W extends W { String x; }
}

After these definitions, the module Y has a single mixin, Y.W,
with two fields, a field x of type String and a field y of type
int.

In summary we have three forms of extensions:

1. Module extension allows the definitions of one mod-
ule to be included in another module. This operation
also supports the renaming of definitions in the orig-
inal module, and the relabelling of fields in mixins.
This latter renaming is useful to support mixin combi-
nation, where it may not always be possible to ensure
that two mixins have the same name for a field that
they are expected to share.

2. Class extension is used to define a variant or union
type, where a base abstract class defines a union type
and concrete subclasses define the variants of the union
type. Therefore subtyping between subclass and base
class are a fundamental part of class extensions. For
this reason, class extension does not support method
type specialization or any renaming.

3. Mixin extension allows a new mixin to be defined via
derivation from a base mixin. To understand the rela-
tionship between this and mixin combination, consider
the example of the Input mixin defined above:
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combines

FuncImpInterp.Input

FuncInterp.Input ImpInterp.Input

Interp.Input

combines

extends extends

So mixin extension is intended to be used to derive a
concrete mixin from an abstract mixin or mixin inter-
face, while mixin combination is intended to modularly
combine mixin implementations.

Mixin module combination combines both classes and mix-
ins:

1. An abstract base class and its subclasses define a union
type in a module. If both of the combined modules
have the same base class, then combination forms the
union of the corresponding union types in the two
modules, since all variants (derivative classes) will be
subclasses of the base class in the combination module.

2. If the same mixin is defined in both modules, then
module combination combines the two mixins into one.
Similarly named fields and mehtods must have the
same types. Fields are shared between the mixins,
and methods are combined using the inner construct,
as explained below.

New objects are created by new. We follow the example
of FJ and assume a stylized form of constructor definitions,
where each class has a single constructor and that construc-
tor has an argument for each instance variable of the class.
This restriction is only required for a simplified description
of the state of an object. Lifting the restriction is straight-
forward but leads to a tedious complication of the semantics.
With this restriction, the state of an object is represented
by an expression of the from

new X.Y (e1, . . . , ek)

where the expressions e1, . . . , ek denote the values of the
k instance variables of an object of class or mixin X.Y .
We assume some canonical ordering of the instance variable
names.

The form of a class constructor is required to be

X(A x, B y) { super(x); this.y = y; }

where {x} are the fields defined in the superclass, and {y}
are the fields added by the current class definition. With
this stylized constructor definition, the state of a class-based
object can be represented as explained above.

For mixin constructors, matters are complicated by the fact
that not all fields are known when a constructor is defined;
fields may be contributed by another mixin with which the
current mixin is subsequently combined. Therefore the form
of a mixin constructor is

X() { super(); this.y = e; }

where {y} are the fields contributed by the current mixin
definition. The expressions {e} are the default initial values
for these fields. An uninitialized object is one of the form

This.Y ()

where Y is a mixin in the current module X. This object is
initialized when it “evolves” to one of the form

X.Y (e1, . . . , ek)

where the mixin X.Y has k fields, and ei is the default initial
value for the ith field. Therefore constructors for mixins
are always nullary; they set the values of instance variables
to default values, and rely on field update to provide more
specialized values.

For objects from classes, there are the usual operations for
accessing variables and invoking methods. For objects from
mixins, there are these operations and in addition there is a
field update operation. This field update operation is essen-
tial because (as explained) we cannot rely on the constructor
to initalize the variables. We make this update operation
functional (it returns a new object with the updated field)
only to simplify the operational semantics in Sect. 4, other-
wise it would be necessary to provide a semantics involving
stores etc.

For mixins, the operations for field access and update, and
for method invocation, are annotated with the mixin type
of the object on which the operation is being invoked. This
is not necessary either for typing programs or for the oper-
ational semantics. It is only necessary because mixin exten-
sion allows some of the fields of a mixin to be renamed, and
the names used in the mixin code must then be relabelled in
the derivative mixin. The type annotation identifies those
places in the code where the renaming must be done. For
example:

module X extends Root {} {} {
mixin Y extends MObject {

int x;

int get() { return This.Y::this.x; }
}

}
module Z extends X {} {Y.x 7→z} { }
Z.Y w = new Z.Y();

Z.Y::w.get();

When Z.Y is derived from X.Y, the field x is renamed to
z. The get method that is inherited from X.Y accesses the
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field using the old name of x. Therefore when the method is
invoked from a Z.Y object, the attempted access to the x field
is translated to an access to the z field. The type annotations
on field access and update and method invocation for mixin-
based objects serve to delineate the places in method code
where this renaming is necessary.

Besides variable access and update, and method invocation,
there are two other operations that may be formed on mixin-
based objects. The super construct allows a method imple-
mentation to delegate to the implementation in the par-
ent mixin. On the other hand the inner construct allows a
method implementation in a mixin to delegate to the im-
plementation in a similarly named mixin with which it is
combined, as a result of module combination. For example:

module X extends Root {} {} {
mixin foo extends MObject {

void f() { print("X "); }
}

}
module Y extends X {} {} {

mixin foo extends foo {
void f() { print("Y "); super.f(); inner.f(); }

}
}
module Z extends X {} {} {

mixin foo extends foo {
void f() { print("Z "); super.f(); }

}
}
module W combines Y, Z;

W.foo x = new W.foo();

W.foo::x.f();

The output is Y X Z X. The chain of delegations is described
by this diagram:

supersuper

inner

print("Y")

Z.foo
print("Z")

X.foo
print("X") print("X")

X.foo

Y.foo

For simplicity we do not track when it is valid to invoke
inner in a mixin method implementation. So it would be
type-correct to add a call to inner.f() to Z above, and this
would fail at run-time. We can fix this by extending mixins
to specify an interface they expect of any mixins with which
they are combined, to ensure that calls to inner do not fail.
We omit this check for simplicity.

CT (X) = (module X extends Y ρ θ { C; M ; })
ME = {(defname(M) 7→M) |M ∈M}
(C′,ME ′) = defins(Y ) C′′ = ρ(θ(C′))

ME ′′ = {(ρ(X) 7→ ρ(θ(ME ′(X)))) | X ∈ dom(ME ′)}
defins(X) = ((C,C′), INH (ME ,ME ′′))

(Classes Extends)

CT (X) = (module X combines Y, Z)

(C,ME) = defins(Y ) (C′,ME ′) = defins(Z)

defins(X) = ((C,C′),COMB(ME ,ME ′))
(Classes Combines)

Figure 2: Flattened Inheritance Hierarchy

3. TYPE SYSTEM
Both the static and dynamic semantics make use of various
metafunctions. In both of these semantics we assume a fixed
global module table CT , analogous to the global class table
CT in the FJ semantics. The most important of the meta-
functions is the function defins(X), where X is a module
name. This metafunction essentially flattens the inheritance
hierarchy for a mixin module (arising both from extension
and from combination) into a pair of a sequence of classes
and a mapping ME from each mixin name to a tree of the
inherited and combined definitions for that mixin. The in-
heritance hierarchy for a mixin is described by the following
data structure:

m ::= inh(M,m)

| comb(m,m′)

| mobj

| M

The case of m ::= M is only included as a convenience
for the Classes Extends rule in Fig. 2. This figure gives
the definition of the defins metafunction, that performs the
flattening of the inheritance hierarchy for a mixin module.
This operation combines mixin environments using the INH
and COMB metafunctions defined in Fig. 3.

In the case of Classes Extends, where we compute the
classes and mixins defined in the base module Y , the defini-
tion renaming ρ and label renaming θ are applied to these
classes and mixins before they are combined with the new
classes and mixins defined in the extension X. Some repre-
sentative cases in the definition of the application of a defi-
nition renaming and a label renaming are given in Fig. 3.

The flattened inheritance hierarchy is used in the definition
of metafunctions for computing method bodies and method
types in Fig. 4. For a method defined in a class, we search
for its definition in a class and then in the base class from
which that class is derived. This corresponds to the two
cases Method Class Base and Method Class Extend

in Fig. 4. For a method defined in a mixin, there are three
cases: either the method is defined in a mixin definition
(Method Mixin InhL), or it is defined in a mixin from
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INH (ME ,ME ′) = {(X 7→ inh(ME(X),ME ′(X))) | X ∈ dom(ME) ∩ dom(ME ′)}
∪{(X 7→ inh(ME(X),mobj )) | X ∈ dom(ME)− dom(ME ′)}
∪{(X 7→ ME ′(X)) | X ∈ dom(ME ′)− dom(ME)}

COMB(ME ,ME ′) = {(X 7→ comb(ME(X),ME ′(X))) | X ∈ dom(ME) ∩ dom(ME ′)}
∪{(X 7→ ME(X)) | X ∈ dom(ME)− dom(ME ′)}
∪{(X 7→ ME ′(X)) | X ∈ dom(ME ′)− dom(ME)}

θX(x) =

{
y if (X.x 7→ y) ∈ θ
x otherwise

θ(C) = class X extends Y {A x; θ(K); θ(F )}
if C ≡ (class X extends Y {A x; K; F})

θ(F ) = (A f(B x){return(θ(e))})
if F ≡ (A f(B x){return(e)})

θ(M) = mixin X extends Y {A θX(x); θ(K); θX(F )}
if M ≡ (mixin X extends Y {A x; K; F})

θX(F ) = (A θX(f)(B x){return(θ(e))})
if F ≡ (A f(B x){return(e)})

θ(W.Y ::e.x) =

{
W.Y ::θ(e).θY (x) if W ≡ This
W.Y ::θ(e).x otherwise

ρ(C) = class ρ(X) extends ρ(Y ) {ρ(A) x; ρ(K); ρ(F )}
if C ≡ (class X extends Y {A x; K; F})

ρ(M) = mixin ρ(X) extends ρ(Y ) {ρ(A) x; ρ(K); ρ(F )}
if M ≡ (mixin X extends Y {A x; K; F})

ρ(F ) = (ρ(A) f(ρ(B) x){return(ρ(e))})
if F ≡ (A f(B x){return(e)})

ρ(W.Y ::e.x) =

{
W.ρ(Y )::ρ(e).x if W ≡ This
W.Y ::ρ(e).x otherwise

Figure 3: Metafunctions
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classMeth(X.Y, f) = (A f(B x){. . . }, m)

classMethTy(X.Y, f) = B → A
(Method CType)

(C,ME) = defins(X) (class Y extends Z { A x; K; F }) ∈ C
F ≡ (A f(B x) { return (e); }) ∈ F

classMeth(X.Y, f) = F
(Method Class Base)

(C,ME) = defins(X) (class Y extends Z { A x; K; F }) ∈ C
f /∈ methnames(F )

classMeth(X.Y, f) = classMeth(X.Z, f)
(Method Class Extend)

mixinMeth(X.Y, f) = (A f(B x){. . . }, m)

mixinMethTy(X.Y, f) = B → A
(Method MType)

(C,ME) = defins(X) Y ∈ dom(ME)

mixinMeth(X.Y, f) = mixinMeth(f,ME(X))
(Method Mixin)

m ≡ inh(M,m′) M ≡ (mixin X extends Y { A x; K; F })
F ≡ (A f(B x) { return (e); }) ∈ F

mixinMeth(f,m) = (F,m′, ())
(Method Mixin InhL)

m ≡ inh(M,m′)

M ≡ (mixin X extends Y { A x; K; F }) f /∈ methnames(F )

mixinMeth(f,m) = mixinMeth(f,m′)
(Method Mixin InhR)

m ≡ comb(m1,m2) mixinMeth(f,m1) = (F,m′, (m′′))

mixinMeth(f,m) = (F,m′, (m′′,m2))
(Method Mixin CombL)

m ≡ comb(m1,m2) mixinMeth(f,m1) undefined

mixinMeth(f,m2) = (F,m′, (m′′))

mixinMeth(f,m) = (F,m′, (m′′))
(Method Mixin CombR)

mixinMeth(f,m) = (F,m′′, (m′′′))

mixinMeth(f, (m,m′)) = (F,m′′, (m′′′,m′))
(Method Mixin SeqH)

mixinMeth(f,m) undefined

mixinMeth(f,m′) = (F,m′′, (m′′′))

mixinMeth(f, (m,m′)) = (F,m′′, (m′′′))
(Method Mixin SeqT)

Figure 4: Method Body and Method Type
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(C,ME) = defins(X) (class Y extends Z { A x; K; F }) ∈ C
(B y) = classVars(X.Z)

classVars(X.Y ) = (A x, B y)
(Vars Class)

(C,ME) = defins(X) Y ∈ dom(ME)

mixinVars(X.Y ) = removeDups(mixinVars(ME(Y )))
(Vars Mixin)

(B y = e) = mixinVars(m) K ≡ (Y (){super(); this.x = e′})
M ≡ (mixin Y extends Z { A x; K; F })

mixinVars(inh(M,m)) = (A x = e′, B y = e)
(Vars Mixin Inh)

(A x = e) = mixinVars(m) (B y = e′) = mixinVars(m′)

mixinVars(comb(m,m′)) = (A x = e, B y = e′)
(Vars Mixin Comb)

mixinVars(mobj ) = () (Vars Mixin MObject)

classVars(X.Y ) = (A x)

varType(X.Y, xi) = Ai
(Var Class Type)

mixinVars(X.Y ) = (A x = e)

varType(X.Y, xi) = Ai
(Var Mixin Type)

Figure 5: Instance Variables and Instance Variable Type

TE ;A;W ;P;M ` e : B

TE ;A,A;W,W ; (m,P); ((m),M) ` return(e) : B
(Val Return)

TE ;A;W ;P;M ` �
TE ; (A,A);W ;P;M ` this : A

(Val This)

TE ;A;W ;P;M ` �
TE ;A;W ;P;M ` x : TE(x)

(Val Var)

TE ;A;W ;P;M ` �
TE ;A;W ;P;M ` null : B

(Val Null)

TE ;A;W,W ;P;M ` e : A W ` A ≤ B
TE ;A;W,W ;P;M ` e : B

(Val Subsumption)

Figure 7: Expression Type Rules

which that mixin is derived by inheritance (Method Mixin

InhR), or it is defined in another mixin (of the same name)
with which it is combined by module combination (Method

Mixin CombL or Method Mixin CombR). Computing a
method type B → A is defined in terms of the operation

W ` A ≤ A (Sub Refl)

W ` A ≤ B W ` B ≤ C
W ` A ≤ C

(Sub Trans)

(C,ME) = defins(X)

(class Y extends Z {. . . }) ∈ C
W ` X.Y ≤ X.Z

(Sub Class)

(C,ME) = defins(W )

(class Y extends Z {. . . }) ∈ C
W ` This.Y ≤ This.Z

(Sub This)

Figure 8: Subtype Rules

for computing a method body (Method CType for class
methods, Method MType for mixin methods).

The Method Mixin rules in Fig. 4 for looking up methods
in mixins return a triple as their result. The first element
of this triple is the method definition. The second element
of this triple is an inheritance hierarchy for the parent of
the mixin in which the method definition is found; refer-
ences to super in the method body are resolved using this
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(B y) = classVars(X.Y ) X 6≡ This

TE ;A;W ;P;M ` e : {X/This}B
TE ;A;W ;P;M ` new X.Y (e) : X.Y

(Val New Conc)

(B y) = mixinVars(X.Y ) X 6≡ This

TE ;A;W ;P;M ` e : {X/This}B
TE ;A;W ;P;M ` new X.Y (e) : X.Y

(Val New Conc)

(B y) = classVars(W.Y ) TE ;A;W,W ;P;M ` e : B

TE ;A;W,W ;P;M ` new This.Y (e) : This.Y
(Val New Class)

(C′,ME) = defins(W ) Y ∈ dom(ME) TE ;A;W,W ;P;M ` �
TE ;A;W,W ;P;M ` new This.Y () : This.Y

(Val New Mixin)

TE ;A;W,W ;P;M ` e : X.Y Z ≡W if X ≡ This, Z ≡ X otherwise

varType(Z.Y, x) = B

TE ;A;W,W ;P;M ` e.x : {X/This}B
(Val Access)

TE ;A;W,W ;P;M ` e : X.Y Z ≡W if X ≡ This, Z ≡ X otherwise

classMethTy(Z.Y, x) = B → B TE ;A;W,W ;P;M ` e : {X/This}B
TE ;A;W,W ;P;M ` e.x(e) : {X/This}B

(Val Invoke)

TE ;A;W,W ;P;M ` e : X.Y Z ≡W if X ≡ This, Z ≡ X otherwise

varType(Z.Y, x) = B

TE ;A;W,W ;P;M ` (X.Y ::e.x) : {X/This}B
(Val MAccess)

TE ;A;W,W ;P;M ` e : X.Y Z ≡W if X ≡ This, Z ≡ X otherwise

varType(Z.Y, x) = B TE ;A;W,W ;P;M ` e′ : {X/This}B
TE ;A;W,W ;P;M ` (X.Y ::e.x = e′) : X.Y

(Val MUpdate)

TE ;A;W,W ;P;M ` e : X.Y Z ≡W if X ≡ This, Z ≡ X otherwise

mixinMethTy(Z.Y, x) = B → B

TE ;A;W,W ;P;M ` e : {X/This}B
TE ;A;W,W ;P;M ` (X.Y ::e.x(e)) : {X/This}B

(Val MInvoke)

P ≡ (m,m) mixinMeth(x,m) = (B′ x(B y){return(e)})
TE ;A,A;W,W ;P;M ` e : B

TE ;A,A;W,W ;P;M ` A::super.x(e) : B′
(Val Super)

A ≡ X.Y
mixinMethTy(W.Y, x) = B → B′ TE ;A,A;W,W ;P;M ` e : B

TE ;A,A;W,W ;P;M ` A::inner.x(e) : B′
(Val Inner)

Figure 6: Expression Type Rules
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hierarchy. The third element of the triple is a sequence of
inheritance hierarchies, corresponding to mixins with which
the mixin containing the method definition has been com-
bined on the left. The latter sequence is used to resolve
references to inner in the method body, in the operational
semantics though not in the type system because not all
of these combinands may be known at compile-time. This
sequence of inheritance hierarchies while the inheritance hi-
erarchy is searched for a method definition; if the defini-
tion is found in the left combinand of a mixin combination
(Rule (Method Mixin CombL)), then the right combinand
is added to this sequence of inheritance hierarchies.

Fig. 5 defines metafunctions for computing the set of all
(unique) instance variables defined in a class or mixin, and
the type of an instance variable. The rule Vars Class com-
putes the instance variables for a class by chasing up the
inheritance hierarchy. The rule Vars Mixin computes the
instance variables for a mixin by forming the sequence of all
instance variables declared for all mixins with that name,
and then removing duplicates. We omit the obvious defini-
tion of the metafunction removeDups.

We omit type rules for modules, classes and mixins for lack
of space; they are reasonably straightforward. We concen-
trate instead on the type rules for the core language, pro-
vided in Fig. 6 and Fig. 7. Here it is important to state
that the type rules are intended to be used to type method
bodies, but they are also intended to be used to type config-
urations of the operational semantics provided in the next
section. In the operational semantics, a program evaluates
relative to several stacks, required because of the new, super
and inner constructs:

1. Evaluation of new This.Y () for creating a mixin ob-
ject requires knowledge of the “current” module, the
module in which the currently running code is defined
(perhaps by inheritance or combination from another
module). Therefore the operational semantics main-
tains a stack of module names, where the top of the
stack gives the current module name.

2. Evaluation of A::super.x(e) and A::inner.x(e) require
access to the “next” appropriate mixin in the inher-
itance hierarchy. For super the operational seman-
tics maintains a stack of inheritance hierarchies, each
hierarchy corresponding to the parent mixin of the
mixin in which the current method was defined. For
inner the operational semantics maintains a stack of
sequences of inheritance hierarchies, each sequence cor-
responding to the mixins with which the mixin con-
taining the current method definition has been com-
bined. It is also useful to have a stack of class/mixin
names, where the top of the stack identifies the current
class or mixin.

Stacks are required because, on each method call, the old
module name, class name and remaining inheritance hierar-
chy must be saved until the method call terminates. The
return construct is added to the language only as a place-
holder for a pending method call that has not yet returned.

If we give a type for an expression with stacks of size k+ 1,
then there must be a surrounding context that contains
return expressions nested to a depth of k. This is enforced
by the type system in Fig. 6 and Fig. 7. These type rules
use sequents of the form

TE ;A;W ;P;M ` e : B

where TE is a type environment, a mapping from program
variables (method parameters) to types. The sequence A
is the sequence of class and mixin names, one per pending
method call. The sequence W is the sequence of module
names, while P is the stack of inheritance hierarchies for
super andM is the stack of sequences of inheritance hierar-
chies for inner.

4. OPERATIONAL SEMANTICS
The operational semantics are provided in Fig. 9. The se-
mantics is defined using “small-step” semantics, based on
rewrite rules that map between 6-tuples

(e, v, B, W, P, M)

In this 6-tuple, e is an expression representing a running pro-
gram, the sequence of values v is a stack of objects (each such
object corresponds to the this parameter to a suspended
method invocation), the sequence B is a stack of class and
mixin names (each such name is the type of the correspond-
ing this parameter) and W a stack of module names, P is a
stack of inheritance hierarchies (a sequence (m1, . . . ,mk))
andM a stack of sequences of inheritance hierarchies (a se-
quence of sequences
((m1,1, . . . ,m1,n1), . . . , (mm,1, . . . ,mm,nm)), as described in
the previous section. The stacks grow from the right. As
method invocation is commenced, the return construct is
used to save a “return point.” The Red Ret Ctxt allows
evaluation within a return (evaluation inside a method that
has not yet returned). This rule ensures that only the tops
of the various stacks are visible in the evaluation of a method
body. When evaluation of the expression reduces to a value,
a “return” is effected by popping the stacks (Red Return).
Values are defined as a subset of expressions for which no
further evaluation is possible:

v ::= null

| new X.Y (v1, . . . , vk), X 6≡ This

The stacks are pushed whenever a new method invocation
is executed: Red Invoke, Red MInvoke, Red Super

and Red Inner, corresponding to invocation of class ob-
ject method, invocation of mixin object method, invocation
via super and invocation via inner. When a class object
method is invoked (Red Invoke), dummy entries are placed
on the super and inner stacks, since neither super nor inner
are available within the body of a class method. The Red

MInvoke rule for invoking a mixin method pushes a new
parent hierarchy m for super and a new sequence of hierar-
chies for inner m′, both of them obtained from the method
lookup.

The Red Super rule for invoking a method via super uses
the top m of the super stack to search for the method defini-
tion in the parent mixin of the currently executing method’s
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mixin. This returns a new parent inheritance hierarchy m′

and a new sequence of hierarchies m′′ for inner. The former
is pushed onto the super stack, the latter is appended to the
top of the current inner stack and the result then pushed
onto the inner stack. The motivation for the latter is that
a mixin found in the parent hierarchy has been combined
with the same mixins as the current mixin on the right, and
in addition may have been combined with other mixins in
the parent inheritance hierarchy.

The Red Inner rule for invoking a method via inner searches
the sequence of hierarchies m at the top of the inner stack.
Method lookup returns a new parent hierarchy m′ that is
pushed onto the super stack, and a new sequence of hierar-
chies m′′ that is pushed onto the inner stack.

The Red Context rule allows evaluation within an evalu-
ation context, defined by:

E[ ] ::= [ ]

| new A(. . . , E[ ], . . . )

| E[ ].x

| E[ ].x(e1, . . . , ek)

| v.x(. . . , E[ ], . . . )

| A :: E[ ].x

| A :: E[ ].x = e

| A :: v.x = E[ ]

| A :: E[ ].x(e1, . . . , ek)

| A :: v.x(. . . , E[ ], . . . )

| A :: super.x(. . . , E[ ], . . . )

| A :: inner.x(. . . , E[ ], . . . )

We deliberately omit return from this definition, so the Red

Ret Ctxt rule must be used to evaluate inside a return.

There is an auxiliary evaluation relation

X ` e =⇒ e′

that is used to instantiate any occurrences of This. The
most important rule in this relation, Rule CRed New This,
is provided in Fig. 9.

Theorem 1. Suppose e does not have any subexpressions
involving return. If

{}; (A); (W );P;M ` e : B

and

W ` e =⇒ e′

then

{}; (A); (W );P;M ` e′ : {W/This}B.

Theorem 2 (Subject Reduction). Suppose B does
not have any occurrences of This and

{};A;W ;P;M ` e : B

and

{}; (); (); (); () ` v : A

and

(e, v, A,W,P,M) −→ (e′, v′, A′,W ′,P ′,M′)

then

{}; (); (); (); () ` v′ : A′

and

{};A′;W ′;P ′;M′ ` e′ : B.

Both theorems are verified by induction on type derivations.
For subject reduction, the interesting cases are for method
invocations (Red Invoke, Red MInvoke, Red Inner and
Red Super). For these we require a simple substitution
lemma, and a lemma that verifies that if a method (in a class
or mixin) has a particular type in a module, then it has the
same type in any derivative of that module. Method types
are parametric in This, the type of the module in which
they are defined, and the auxiliary evaluation relation allows
method bodies and their types to be instantiated appropri-
ately at the point where they are used.

5. RELATED WORK
A great deal of work in module languages has been done in
the last few years in the functional programming community,
specifically in the context of the ML functional language [21,
20, 27, 28, 34, 14, 16]. ML provides a rich module structure
where implementations are separated from interfaces (sim-
ilarly to Modula-3), and where modules can parameterize
over their imports. Such parameterized modules can then
be instantiated by applying them to a collection of imports
matching the required interface. So ML follows the model
of programming-in-the-large as functional programming: a
module that imports other modules is represented by a pa-
rameterized module, mapping from imports to exports, and
linking is represented by the application of a parameterized
module to its imports. This work builds on earlier work in
algebraic specifications, where module interfaces are alge-
braic theories, module implementations are models of such
theories, and modules are matched to interfaces by “view
morphisms” from theory to model [19].

A weakness of the ML module system is that it does not
handle circular imports, where a parameterized module may
export some definitions that are required by its imports. So
for example two mutually recursive types, or two mutually
recursive functions, must be defined in the same module
and cannot be defined in separate modules. This lack can be
seen as symptomatic of a more general ability that would be
desirable in a module language: to not only allow mutually
recursive definitions to be split into separate modules, but to
actually allow a recursive definition itself to be fragmented
and the fragments to be defined in separate modules.

Duggan and Sourelis [14] proposed mixin modules as an
extension of the ML module system that allowed exactly
this kind of decomposition to be performed. In ML types
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mixinVars(X.Y ) = (B x = e)

X ` (new This.Y ()) =⇒ (new X.Y (e))
(CRed New This)

(this, (v), (B), (W ), P, M) −→ (v, (v), (B), (W ), P, M) (Red This)

(B x) = classVars(X.Y )

((new X.Y (v)).xi, (vthis), (B), (W ), P, M) −→ (vi, (vthis), (B), (W ), P, M)
(Red Access)

classMeth(X.Y, f) = (B f(B x){return(e)})
v ≡ (new X.Y (v)) X ` e =⇒ e′ e′′ ≡ (return({v′/x}e′))

(v.f(v′), (vthis), (B), (W ), P, M) −→ (e′′, (vthis , v), (B,X.Y ), (W,X), (P,mobj ), (M, ()))
(Red Invoke)

(B x = e) = mixinVars(X.Y )

(A::(new X.Y (v)).xi, (vthis), (B), (W ), P, M) −→ (vi, (vthis), (B), (W ), P, M)
(Red MAccess)

v ≡ new X.Y (v1, . . . , vi, . . . , vk) (B x = e) = mixinVars(X.Y )

(A::v.xi = v′, (vthis), (B), (W ), P, M) −→ (new X.Y (v1, . . . , v
′, . . . , vk)), (vthis), (B), (W ), P, M)

(Red MUpdate)

mixinMeth(X.Y, f) = (A f(A x){return(e)}, m, m′)
v ≡ (new X.Y (v)) X ` e =⇒ e′ e′′ ≡ (return({v′/x}e′))

(A::v.f(v′), (vthis), (B), (W ), P, M) −→ (e′′, (vthis , v), (B,X.Y ), (W,X), (P,m), (M, (m′)))
(Red MInvoke)

P ≡ (m) mixinMeth(f,m) = (A f(A x){return(e)}, m′, (m′′)) P ′ ≡ (m,m′)

X ` e =⇒ e′ e′′ ≡ return({v/x}e′) M≡ ((m′′′))) M′ ≡ ((m′′′), (m′′,m′′′)))

(A::super.f(v, v), (vthis), (B), (X), P, M) −→ (e′′, (vthis , vthis), (B,B), (X,X), P ′, M′)
(Red Super)

M≡ ((m)) mixinMeth(f,m) = (A f(A x){return(e)}, m′, (m′′)) M′ ≡ ((m), (m′′))

X ` e =⇒ e′ e′′ ≡ return({v/x}e′) P ≡ (m′′′) P ′ ≡ (m′′′,m′))

(A::inner.f(v), (vthis), (B), (X), P, M) −→ (e′′, (vthis , vthis), (B,B), (X,X), P ′, M′)
(Red Inner)

e0 ≡ return(e) (e, v, A, W, P, M) −→ (e′, v′, A′, W ′, P ′, M′) e′0 ≡ return(e′)

(e0, (v, v), (A,A), (W,W ), (m,P), ((m),M)) −→ (e′0, (v, v′), (A,A′), (W,W ′), (m,P ′), ((m),M′))
(Red Ret Ctxt)

(return(v′), (v, v), (A,A), (W,X), (P,m), (M, (m))) −→ (v′, v, A, W, P, M) (Red Return)

(e, v, A, W, P, M) −→ (e′, v, A′, W ′, P ′, M′)
(E[e], v, A, W, P, M) −→ (E[e′], v, A′, W ′, P ′, M′)

(Red Context)

Figure 9: Reduction Semantics
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are datatypes, essentially named variant (or discriminated
union) types. Mixin modules allowed a datatype, and a func-
tion defined over that datatype, to be fragmented into sep-
arate modules. A new module composition operation then
allowed the fragments of type and function definitions in two
modules to be coalesced into a new module. The semantics
of this were based on the semantics of mixin-based composi-
tion for object-oriented languages developed by Bracha and
Cook [5]. Bracha and Lindstrom [6] also developed a gen-
eralization of the notion of mixins, which they called “mod-
ules” and which were collections of mutually recursive func-
tions that could be combined via mixin composition with
other modules. The latter work did not consider modules
containing type components, nor did it consider the typing
aspects of the language.

The current form of mixin modules has at least one com-
pelling advantage over the functional approach: in the func-
tional approach it is difficult to ensure that a case statement
examining a value of a variant type will never fail for an un-
matched case, since the variant type may be extended by
mixin module combination. This is not a problem in the
object-oriented approach, since the branches of the case can
be distributed to the classes that provide the components
of such a union type (subclassing from a common abstract
base class).

The aspect that is in common with both Duggan and Sourelis’
mixin modules, and Bracha and Lindstrom’s modules, is
this: Inheritance is now understood semantically (thanks to
the work of Cook [10, 9]) as the incremental extension of
the fixed point of a recursive definition, The aforesaid work
generalizes this to a form of inheritance that incrementally
extends the fixed points of several mutually recursive defi-
nitions. In the work of Duggan and Sourelis, these are the
fixed points of recursive types and recursive functions over
values of those types. In the work of Bracha and Lindstrom,
these are the fixed points of mutually recursive object gen-
erators.

The need to consider inheritance over more than one class
has been recognized in the literature. A standard example is
that of the subject-observer pattern, where the subject has
a list of observers and each observer has a reference to the
subject. If a generic subject-observer pattern is provided as
an application framework, a user of this framework would
like to specialize both the subject and observer classes for
example to window subjects and window observers, and have
the classes specialized accordingly (a window observer object
can only observe a window subject). An informal proposal
for an extension to Java was given by Bruce, Odersky and
Wadler [7], and a formal semantics was given by Bruce [8].

Recursive modules have also been a focus of research [16,
18, 11, 2, 3, 37]. All of this work has been based on al-
lowing mutually recursive definitions (sometimes including
type definitions) to be defined in separate modules. This
work has not considered issues concerned with inheritance
and subtyping, and their interaction with the combination
of mutually recursive modular definitions. Although Ancona
and Zucca refer to their work as “mixin modules,” in fact

their mixin modules are collections of datatypes and func-
tions defined over values of those datatypes, rather than the
more general form of decomposition considered by Duggan
and Sourelis [14]. Recent work on component languages for
classes has been based on some of this work [33], with partic-
ular emphasis on dynamic loading. More recently Duggan
[13] has considered an algebra for manipulating recursive
modules, based on the operations of process algebras such
as CCS. So combining modules is a form of parallel com-
position, and there are also operations for renaming module
fields and for coercively hiding module fields. Analogous op-
erations are considered by Ancona and Zucca [3] and Wells
and Vestergaard [37]. The module calculus considered here
has parallel composition (module combination) and renam-
ing, but not coercive hiding, because the Java language has
no notion of package types separate from package imple-
mentations. While being a fundamental limitation of the
language, it also greatly simplifies the work presented here.

Besides the work of Bracha and Cook on mixin-based inher-
itance, more recent work has looked at flexible constructs
for combining mixins. A central problem is that, because
mixins are defined separately, it is difficult to avoid field
name conflicts when combining mixins. Flatt et al [17] solve
this problem by having every access to a mixin object be
made relative to an interface. However this approach does
not allow a field to be shared between different mixins, and
the aforesaid work on mixin-based definition of modular in-
terpreters makes critical use of shared fields. They also do
not consider the issues with specializing the field types of
mixins considered here. Findler and Flatt [15] consider the
combination of mixins with recursive modules. Their ap-
proach amounts to the form of modular decomposition of
variant types that was part of the motivation for Duggan
and Sourelis’ mixin modules. They do not consider the form
of mixin-based combination of record definitions and the at-
tendant issues of field type specialization that are a critical
consideration of this work (providing a motivation for the
distinction between classes and mixins that is not consid-
ered by others).

Ancona et al [1] have considered the addition of mixins (but
not mixin modules) to the full Java languages, although
there some critical issues regarding field name conflicts are
left unresolved.

Duggan [12] describes an approach to defining modular in-
terpreters in an object-oriented fashion, and speculates on
the form of language support required. Mixin modules, as
described here, are capable of representing that example.
Specifically the types of abstract syntax trees can be rep-
resented using classes (abstract base class and derivatives)
while the input and output types of the interpreter function
can be represented as mixins. Each interpreter fragment can
then be represented as a mixin module containing both class
and mixin definitions. Mixin module combination coalesces
the definitions in a type-safe manner.

Related to the latter work, the JTS project [4, 35] provides
support for reusing abstract syntax trees and operations on
those trees, with an emphasis on “hygienic” syntactic ma-
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nipulations of ASTs. An interesting point of comparison is
that the JTS project recognizes the importance of mixin-
based inheritance, at the granularity of collections of classes
rather than individual classes, for reusing DSLs. For exam-
ple, if a language syntax has nonterminals for expressions
and statements, then mixin-based inheritance for language
fragments must be able to simultaneously inherit from both
expression and statement classes. This is certainly a part of
the framework described in [12]; however the latter frame-
work goes beyond this, to considering inheritance for se-
mantic definitions and the proper composition mechanisms
that allow modular semantic definitions to be combined via
inheritance. The current work in addition shows that this
composition can be statically checked for type safety.

6. CONCLUSIONS
We have described a kernel language for an extension of a
class-based language with mixin modules. This extension
combines the parallel extension of classes via inheritance
(with method type specialization for static type safety) with
mixin-based inheritance. The intended application of this
approach is in supporting application framework develop-
ment and its use in a flexible and type-safe manner, using
the module combination and extension operations of mixin
modules. We are in the process of implementing this design
in a compiler for Java, and we are investigating its applica-
tion in a concrete application domain for which Java has a
good chance of being an application development language,
that of portable XML processors.

Regarding portability, it is certainly the case that our exten-
sions, if carried through to the JVM instruction set, would
make programs highly non-portable. However at runtime
only a finished mixin module would be downloaded. Be-
cause of the self-contained nature of a mixin module (for
example, all subtype relations are local), it is possible to
translate from a mixin module to a collection of Java classes:
class hierarchies are translated unchanged, while mixin hier-
archies are collapsed into a Java class without superclasses.
We are pursuing this approach in our implementation work.
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