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ABSTRACT: Sevt,ral methods are presented for adaptive, 
invertible data complression in the style of Lempel’s and 
Ziv’s first textual substitution proposal. For the first two 
methods, the article describes modifications of McCreight’s 
suffix tree data strut ture that support cyclic maintenance of 
a window on the most recent source characters. A 
percolating update i:; used to keep node positions within the 
window, and the updating process is shown to have constant 
amortized cost. Other methods explore the tradeoffs between 
compression time, expansion time, data structure size, and 
amount of compression achieved. The article includes a 
graph-theoretic analysis of the compression penalty incurred 
by our codeword selt’ction policy in comparison with an 
optimal policy, and It includes empirical studies of the 
performance of various adaptive compressors from the 
literature. 

1. INTRODUCTION 
Compression is the coding of data to minimize its repre- 
sentation. In this al,ticle, we are concerned with fast, 
one-pass, adaptive, invertible (or lossless) methods of 
digital compression which have reasonable memory 
requirements. SUCK. methods can be used, for example, 
to reduce the storal;e requirements for files, to increase 
the communication rate over a channel, or to reduce 
redundancy prior 11) e.ncryption for greater security. 

By “adaptive” WE mean that a compression method 
should be widely a:,plicable to different kinds of source 
data. Ideally, it sho,lld adapt rapidly to the source to 
achieve significant compression on small files, and it 
should adapt to an]’ subsequent internal changes in the 
nature of the SOUKI?. In addition, it should achieve very 
high compression asymptotically on large regions with 
stationary statistics 

All the compression methods developed in this article 
are substitutional. T:rpically, a substitutional compressor 
functions by replac: ng large blocks of text with shorter 
references to earlie:, occurrences of identical text [3, 5, 
29, 34, 36, 39, 41-4:]. (This is often called Ziv-Lempel 
compression, in ret Jgnition of their pioneering ideas. 
Ziv and Lempel, in fact, proposed two methods. The 
unqualified use of the phrase “Ziv-Lempel compres- 
sion” usually refers to their second proposal [43]. In this 
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article, we will be primarily concerned with. their first 
proposal [42].) A popular alternative to a substitutional 
compressor is a statistical compressor. A symbolwise 
statistical compressor functions by accurately predict- 
ing the probability of individual symbols, an.d then en- 
coding these symbols with space close to -log, of the 
predicted probabilities. The encoding is accomplished 
with either Huffman compression [17] which has re- 
cently been made one-pass and adaptive [ll, 22, 371, 
or with arithmetic coding, as described in [l, 14, 20, 25, 
26, 31-331. The major challenge of a statistical com- 
pressor is to predict the symbol probabilities. Simple 
strategies, such as keeping zero-order (single symbol) or 
first-order (symbol pair) statistics of the input, do not 
compress English text very well. Several authors have 
had success gathering higher-order statistics, but this 
necessarily involves higher memory costs an.d addi- 
tional mechanisms for dealing with situations where 
higher-order statistics are not available [6, 7: 261. 

It is hard to give a rigorous foundation to the substi- 
tutional vs. statistical distinction described above. Sev- 
eral authors have observed that statistical methods can 
be used to simulate textual substitution, suggesting that 
the statistical category includes the substitutional cate- 
gory [4, 241. However, this takes no account of the sim- 
plicity of mechanism; the virtue of textual substitution 
is that it recognizes and removes coherence on a large 
scale, oftentimes ignoring the smaller scale statistics. As 
a result, most textual substitution compressors pro- 
cess their compressed representation in larger blocks 
than their statistical counterparts, thereby gaining a sig- 
nificant speed advantage. It was previously believed 
that the speed gained by textual substitution would 
necessarily cost something in compression achieved. 
We were surprised to discover that with careful atten- 
tion to coding, textual substitution compressors can 
mat’ch the compression performance of the best statisti- 
cal methods. 

Consider the following scheme, which we will im- 
prove later in the article. Compressed files contain two 
types of codewords: 

literal x pass the next x characters direc-tly into the 
uncompressed output 

copy x, -y go back y characters in the output and copy 
x characters forward to the current position. 
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So, for example, the following piece of literature: 

IT WAS THE BEST OF TIMES, 
IT WAS THE WORST OF TIMES 

would compress to 

(literal26)IT WAS THE BEST OF TIMES, 

A Trie is a tree structure where the branching occurs 
according to “digits” of the keys, rather than according 
to comparisons of the keys. In English, for example, the 
most natural “digits” are individual letters, with the Zth 
level of the tree branching according to the Ith letter of 
the words in the tree. 

(copy 11-26)(literal 3)WOR(copy 11-27) 

The compression achieved depends on the space re- 
quired for the copy and literal codewords. Our simplest 
scheme, hereafter denoted Al, uses 8 bits for a literal 
codeword and 16 for a copy codeword. If the first 4 bits 
are 0, then the codeword is a literal; the next 4 bits 
encode a length x in the range [l . . 161 and the follow- 
ing x characters are literal (one byte per character). 
Otherwise, the codeword is a copy; the first 4 bits 
encode a length x in the range [2 . . 161 and the next 
12 bits are a displacement y in the range [l . .4096]. At 
each step, the policy by which the compressor chooses 
between a literal and a copy is as follows: If the com- 
pressor is idle (just finished a copy, or terminated a 
literal because of the 16-character limit), then the long- 
est copy of length 2 or more is issued; otherwise, if the 
longest copy is less than 2 long, a literal is started. Once 
started, a literal is extended across subsequent charac- 
ters until a copy of length 3 or more can be issued or 
until the length limit is reached. 

In Figure 1, many internal nodes are superfluous, 
having only one descendant. If we are building an 
index for a file, we can save space by eliminating the 
superfluous nodes and putting pointers to the file into 
the nodes rather than including characters in the data 
structure. In Figure 2, the characters in parentheses are 
not actually represented in the data structure, but they 
can be recovered from the (position, level) pairs in the 
nodes. Figure 2 also shows a suffix pointer (as a dark 
right arrow) that will be explained later. 

Al would break the first literal in the above example 
into two literals and compress the source from 51 bytes 
down to 36. Al is close to Ziv and Lempel’s first textual 
substitution proposal 1421. One difference is that Al 
uses a separate literal codeword, while Ziv and Lempel 
combine each copy codeword with a single literal char- 
acter. We have found it useful to have longer literals 
during the startup transient; after the startup, it is bet- 
ter to have no literals consuming space in the copy 
codewords. 

Figure 2 represents some, but not all, of the innova- 
tions in Morrison’s PATRICIA trees. He builds the trees 
with binary “digits” rather than full characters, and this 
allows him to save more space by folding the leaves 
into the internal nodes. Our “digits” are bytes, so the 
branching factor can be as large as 256. Since there are 
rarely 256 descendants of a node, we do not reserve 
that much space in each node, but instead hash the 
arcs. There is also a question about when the strings in 
parentheses are checked in the searching process. In 
what follows, we usually check characters immediately 
when we cross an arc. Morrison’s scheme can avoid file 
access by skipping the characters on the arcs, and doing 
only one file access and comparison at the end of the 
search. However, our files will be in main memory, so 
this consideration is unimportant. We will use the sim- 
plified tree depicted in Figure 2. 

Our empirical studies showed that, for source code 
and English text, the field size choices for Al are good; 
reducing the size of the literal length field by 1 bit 
increases compression slightly but gives up the byte- 
alignment property of the Al codewords. In short, if 
one desires a simple method based upon the copy and 
literal idea, Al is a good choice. 

For Al, we wish to find the longest (up to 16 charac- 
ter] match to the current string beginning anywhere in 
the preceding 4096 positions. If all preceding 4096 
strings were stored in a PATRICIA tree with depth 
d = 16, then finding this match would be straightfor- 
ward. Unfortunately, the cost of inserting these strings 
can be prohibitive, for if we have just descended d 
levels in the tree to insert the string starting at position 
i then we will descend at least d - 1 levels inserting the 
string at i + 1. In the worst case this can lead to O(nd) 

Al was designed for &bit per character text or pro- 
gram sources, but, as we will see shortly, it achieves 
good compression on other kinds of source data, such as 
compiled code and images, where the word model does 
not match the source data particularly well, or where 
no model of the source is easily perceived. Al is, in 
fact, an excellent approach to general purpose data 
compression. In the remainder of this article, we will 
study Al and several more powerful variations. 

2. OVERVIEW OF THE DATA STRUCTURE 
The fixed window suffix tree of this article is a modifi- 
cation of McCreight’s suffix tree [28] (see also [21, 34, 
38]), which is itself a modification of Morrison’s PATRI- 
CIA tree [30], and Morrison’s tree is ultimately based on 
a Trie data structure [22, page 4811. We will review 
each of these data structures briefly. 

ASTRAY ASTRIDE 

FIGURE 1. A Trie 
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insertion time for a file of size n. Since later encodings 
will use much larger values for d than 16, it is impor- 
tant to eliminate 11 from the running time. 

To insert the strings in O(n) time, McCreight added 
additional suffix pointers to the tree. Each internal 
node, representing the string aX on the path from the 
root to the internal node, has a pointer to the node 
representing X, th: string obtained by stripping a single 
letter from the beginning of ax. If a string starting at i 
has just been inse:.ted at level d we do not need to 
return to the root to insert the string at i + 1; instead, 
a nearby suffix po .nter will lead us to the relevant 
branch of the tree. 

Figure 3 shows how suffix links are created and used. 
On the previous it oration, we have matched the string 
aXY, where a is a single character, X and Y are strings, 
and b is the first u nmatched character after Y. Figure 3 
shows a complicat sd case where a new internal node, 
(Y, has been added to the tree, and the suffix link of (Y 
must be computed. We insert the next string XYb by 
going up the tree tl, node ,f3, representing the string ax, 
and crossing its su:fix link to y, representing X. Once 
we have crossed t1.e suffix link, we descend again in 
the tree, first by “rsscanning” the string Y, and then by 
“scanning” from 6 -rntil the new string is inserted. The 
first part is called ‘ rescanning” because it covers a por- 
tion of the string that was covered by the previous 
insert, and so it dol?s not require checking the internal 
strings on the arcs. (In fact, avoiding these checks is 
essential to the linear time functioning of the algo- 
rithm.) The rescan either ends at an existing node 6, or 
6 is created to insermt the new string XYb; either way we 
have the destination for the suffix link of LY. We have 
restored the invariant that every internal node, except 
possibly the one ju:;t cfreated, has a suffix link. 

For the Al compressor, with a 4096-byte fixed win- 
dow, we need a way to delete and reclaim the storage 
for portions of the I uffix tree representing strings fur- 
ther back than 4096 in the file. Several things must be 
added to the suffix tree data structure. The leaves of 
the tree are placed in a circular buffer, so that the 
oldest leaf can be identified and reclaimed, and the 
internal nodes are given “son count” fields. When an 
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File: ZTRI DE ASTRAY 
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FIGURE 2. A DATRICIA Tree with a Suffix Pointer 

R 
aX 1 \ x I \ \ 

FIGURE 3. Building a Suffix Tree 

internal “son count” falls to one, the node is deleted 
and two consecutive arcs are combined. In Section 3, it 
is shown that this approach will never leave a “dan- 
gling” suffix link pointing to deleted nodes. .Unfortu- 
nately, this is not the only problem in maintaining a 
valid suffix tree. The modifications that avo:ided a re- 
turn to the root for each new insertion create havoc for 
deletions. Since we have not always returned to the 
root, we may have consistently entered a branch of the 
tree sideways. The pointers (to strings in the 4096-byte 
win.dow) in the higher levels of such a branc:h can be- 
come out-of-date. However, traversing the b:ranch and 
updating the pointers would destroy any advantage 
gained by using the suffix links. 

We can keep valid pointers and avoid extensive up- 
dating by partially updating according to a percolating 
update. Each internal node has a single “update” bit. If 
the update bit is true when we are updating a node, 
then we set the bit false and propagate the update re- 
cursively to the node’s parent. Otherwise, we set the bit 
true and stop the propagation. In the worst case, a long 
string of true updates can cause the update to propagate 
to the root. However, when amortized over all new 
leaves, the cost of updating is constant, and the effect of 
upd,ating is to keep all internal pointers on positions 
within the last 4096 positions of the file. These facts 
will be shown in Section 3. 

We can now summarize the operation of the inner 
loop, using Figure 3 again. If we have just created node 
LY, then we use (Y’S parent’s suffix link to find y. From y 
we move down in the tree, first rescanning, a.nd then 
scanning. At the end of the scan, we percolate an up- 
date from the leaf, moving toward the root, setting the 
posnion fields equal to the current position, and setting 
the update bits false, until we find a node wit-h an 
update bit that is already false, whereupon we set that 
node’s update bit true and stop the percolation. Finally, 
we go to the circular buffer of leaves and replace the 
oldest leaf with the new leaf. If the oldest leaf’s parent 
has only one remaining son, then it must also be de- 
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leted; in this case, the remaining son is attached to its 
grandparent, and the deleted node‘s position is perco- 
lated upward as before, only at each step the position 
being percolated and the position already in the node 
must be compared and the more recent of these sent 
upward in the tree. 

3. THEORETICAL CONSIDERATIONS 
The correctness and linearity of suffix tree construction 
follows from McCreight’s original paper [28]. Here we 
will concern ourselves with the correctness and the 
linearity of suffix tree destruction-questions raised in 
Section 2. 

THEOREM 1. Delefing leaves in FIFO order and delefing 
infernal nodes with single sons will never leave dangling 
suffix pointers. 

PROOF. Assume the contrary. We have a node a! 
with a suffix pointer to a node 6 that has just been 
deleted. The existence of (Y means that there are at 
least two strings that agree for 1 positions and then 
differ at 1 + 1. Assuming that these two strings start at 
positions i and j, where both i and j are within the 
window of recently scanned strings and are not equal 
to the current position, then there are are two even 
younger strings at i + 1 and j + 1 that differ first at 1. 
This contradicts the assumption that 6 has one son. (If 
either i or j are equal to the current position, then (r is 
a new node, and can temporarily be without a suffix 
pointer.) 

There are two issues related to the percolating update: 
its cost and its effectiveness. 

THEOREM 2. Each percolated update has constant amor- 
tized cost. 

PROOF. We assume that the data structure contains 
a “credit” on each internal node where the “update” 
flag is true. A new leaf can be added with two “credits.” 
One is spent immediately to update the parent, and the 
other is combined with any credits remaining at the 
parent to either: 1) obtain one credit to leave at the 
parent and terminate the algorithm or 2) obtain two 
credits to apply the algorithm recursively at the parent. 
This gives an amortized cost of two updates for each 
new leaf. 

For the next theorem, define the “span” of a suffix tree 
to be equal to the size of its fixed window. So far we 
have used examples with “span” equal to 4096, but the 
value is flexible. 

THEOREM 3. Using the percolating update, every infer- 
nal node will be updated at least once during every period of 
length “span .” 

PROOF. It is useful to prove the slightly stronger re- 
sult that every internal node (that remains for an entire 
period) will be updated twice during a period, and thus 
propagate at least one update to its parent. To show a 
contradiction, we find the earliest period and the node 

p farthest from the root that does not propagate an 
update to its parent. If /3 has at least two children that 
have remained for the entire period, then p must have 
received updates from these nodes: they are farther 
from the root. If B has only one remaining child, then 
it must have a new child, and so it will still get 
two updates. (Every newly created arc causes a son 
to update a parent, percolating if necessary.) Similarly, 
two new children also cause two updates. By every 
accounting, p will receive two updates during the 
period, and thus propagate an update-contradicting 
our assumption of /3’s failure to update its parent. 

There is some flexibility on how updating is handled. 
We could propagate the current position upward before 
rescanning, and then write the current position into 
those nodes passed during the rescan and scan; in this 
case, the proof of Theorem 3 is conservative. Alterna- 
tively, a similar, symmetric proof can be used to show 
that updating can be omitted when new arcs are added 
so long as we propagate an update after every arc is 
deleted. The choice is primarily a matter of implemen- 
tation convenience, although the method used above is 
slightly faster. 

The last major theoretical consideration is the effec- 
tiveness of the Al policy in choosing between literal 
and copy codewords. We have chosen the following 
one-pass policy for Al: When the encoder is idle, issue 
a copy if it is possible to copy two or more characters; 
otherwise, start a literal. If the encoder has previously 
started a literal, then terminate the literal and issue a 
copy only if the copy is of length three or greater. 

Notice that this policy can sometimes go astray. For 
example, suppose that the compressor is idle at position 
i and has the following copy lengths available at subse- 
quent positions: 

i i+l i+2 i+3 i+4 i+5 
1 3 16 15 14 13 (1) 

Under the policy, the compressor encodes position i 
with a literal codeword, then takes the copy of length 3, 
and finally takes a copy of length 14 at position i + 4. It 
uses 6 bytes in the encoding: 

(literal l)X(copy 3 - y)(copy 14 - y) 

If the compressor had foresight it could avoid the 
copy of length 3, compressing the same material into 
5 bytes: 

[literal 2)XX(copy 16 - y) 

The optimal solution can be computed by dynamic 
programming [36]. One forward pass records the length 
of the longest possible copy at each position (as in equa- 
tion 1) and the displacement for the copy (not shown in 
equation 1). A second backward pass computes the 
optimal way to finish compressing the file from each 
position by recording the best codeword to use and the 
length to the end-of-file. Finally, another forward pass 
reads off the solution and outputs the compressed file. 
However, one would probably never want to use dy- 
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namic programming since the one-pass heuristic is a lot 
faster, and we estimated for several typical files that 
the heuristically compressed output was only about 
1 percent larger than the optimum. Furthermore, we 
will show in the Iemiainder of this section that the size 
of the compressed file is never worse than % the size of 
the optimal solution for the specific Al encoding. 
This will require ,leveloping some analytic tools, so the 
non-mathematics. re!ader should feel free to skip to 
Section 4. 

The following def nitions are useful: 

Definition. F(i) is the longest feasible copy at position i 
in the file. 

Sample F(i)‘s were, given above in equation 1. They are 
dependent on the encoding used. For now, we are as- 
suming that they iire limited in magnitude to 16, and 
must correspond t3 copy sources within the last 4096 
characters. 

Definition. B(i 1 is the size of the best way to compress 
the remainder of thl, file, starting at position i. 

B(i)‘s would be computed in the reverse pass of the 
optimal algorithm outlined above. 

The following T neorems are given without proof: 

THEOREM. F(i t 1) 1 F(i) - 1. 

THEOREM. Then? exists an optimal solution where copies 
are longest possible (i.e., only copies corresponding to F(i)‘s 
are used). 

THEOREM. B(i) IS monotone decreasing. 

THEOREM. Any :;olution can be modified, without affect- 
ing length, so that (literal x1) followed immediately by 
(literal x2) implies lhaf x1 is maximum (in this case 26). 

We could continue to reason in this vein, but there is 
an abstract way of looking at the problem that is both 
clearer and more general. Suppose we have a non- 
deterministic finite! automaton where each transition is 
given a cost. A simple example is shown in Figure 4. 
The machine accepts (a + b)*, with costs as shown in 
parentheses. 

The total cost of accepting a string is the sum of the 

Start 

FIGURE 4. A Nondeierministic Automaton with Transition Costs 

transition costs for each character. (While it is not 
important to our problem, the optimal solution can be 
computed by forming a transition matrix for each let- 
te:r, using the costs shown in parentheses, and then 
multiplying the matrices for a given string, treating the 
coefficients as elements of the closed semiring with op- 
erations of addition and minimization.) We can obtain a 
solution that approximates the minimum by deleting 
transitions in the original machine until it becomes a 
deterministic machine. This corresponds to choosing a 
policy in our original data compression pro’blem. A pol- 
icy for the machine in Figure 4 is shown in Figure 5. 

We now wish to compare, in the worst case, the dif- 
ference between optimally accepting a string with the 
non-deterministic machine, and deterministically ac- 
cepting the same string with the “policy” machine. This 
is (done by taking a cross product of the two machines, 
as shown in Figure 6. 

In Figure 6 there are now two weights on each transi- 
tion; the first is the cost in the non-deterministic graph, 
and the second is the cost in the policy graph. Asymp- 
totically, the relationship of the optimal solution to the 
policy solution is dominated by the smallest ratio on a 
cycle in this graph. In the case of Figure 6, there is a 
cycle from 1, 1’ to 1, 2' and back that has cost in the 
no:n-deterministic graph of 2 + 1 = 3, and cost in the 
policy graph of 3 + 3 = 6, giving a ratio of Vi. That is, 

a (1) 

> 

FIGURE 5. A Deterministic “Policy” Automaton for Figure 4 

the policy solution can be twice as bad as the optimum 
on t.he string ababababab. , . . 

In general, we can find the cycle with the smallest 
ratio mechanically, using well known techni.ques [8, 
271. The idea is to conjecture a ratio r and th.en reduce 
the pairs of weights (x, y) on the arcs to single weights 
x - ry. Under this reduction, a cycle with zero weight 
has ratio exactly r. If a cycle has negative weight, then r 
is too large. The ratio on the negative cycle is used as a 
new conjecture, and the process is iterated. (Negative 
cycl.es are detected by running a shortest path algo- 
rithm and checking for convergence.) Once we have 
found the minimum ratio cycle, we can create a worst 
case string in the original automata problem by finding 
a path from the start state to the cycle and then repeat- 
ing .the cycle indefinitely. The ratio of the costs of ac- 
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FIGURE 6. The Cross Product 

cepting the string non-deterministically and determin- 
istically will converge to the ratio of the cycle. (The 
path taken in the cross product graph will not necessar- 
ily bring us to the same cycle, due to the initial path 
fragment; we will, nevertheless, do at least as well.) 
Conversely, if we have a sufficiently long string with 
non-deterministic to deterministic ratio r, then the 
string will eventually loop in the cross product graph. If 
we remove loops with ratio greater than r we only im- 
prove the ratio of the string, so we must eventually find 
a loop with ratio at least as small as r. 

The above discussion gives us an algorithmic way of 
analyzing our original data compression problem. The 
possible values of F(i) are encoded in a 17 character 
alphabet pO . . . p16, representing the length of copy 
available at each position. The compression algorithm 
is described by a non-deterministic machine that ac- 
cepts strings of pi; this machine has costs equal to the 
lengths of the codewords used by the algorithm. There 
are two parameterized states in this machine: 1, means 
that there is a literal codeword under construction with 
x spaces still available; cY means that a copy is in prog- 
ress with y characters remaining to copy. The idle state 
is IO = co. In the non-deterministic machine, the possi- 
ble transitions are: 

lo 
Pm 
- 115 start a literal 

1, 
P.(l) 
+ I,-, 

l Pi@) 
continue a literal (x 2 1) 

* ---* Ci-I start a copy (2) 
P*W 

c, --* c,-, continue a copy 

(An asterisk is used as a wild card to denote any state.) 
Based on the theorems above we have already elimi- 
nated some transitions to simplify what follows. For 
example, 

c, “3 115 start a literal from inside a copy (y 2 1) (3) 

is unnecessary. The deterministic machine, given 
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below, eliminates many more transitions: 

lo ‘2 115 start a literal if i 5 1 

1, “3 l,-, continue a literal if x 2 1 and i I z 

I, “3 ci-I start a copy if i 5 3 or x = 0 and i = 2 
Pm cf + cYml continue a copy 

Finally, we add one more machine to guarantee that 
the strings of pi are realistic. In this machine, state si 
means that the previous character was pi, so the index 
of the next character must be at least pi-l: 

Si -% S, (j 2 i - 1) (51 

The cross product of these three machines has ap- 
proximately 17K states and was analyzed mechanically 
to prove a minimum ratio cycle of VS. Thus the policy 
we have chosen is never off by more than 25 percent, 
and the worst case is realized on a string that repeats a 
pi pattern as follows: 

1 2 3 4 5 6 7 

PI0 PI0 Pg Pa P7 Ps P5 

(6) 
8 9 10 11 12 13 14 15 

p4 p3 pz p1 p2 p10 p10 p9 *. . 

(There is nothing special about 10; it was chosen to 
illustrate a long copy and to match the example in 
Appendix A.) The deterministic algorithm takes a copy 
of length 10 in the first position, and then switches to a 
literal for positions 11 and 12. Five bytes are used in 
each repetition of the pattern. The optimal solution is 
one position out of phase. It takes a copy of length 10 in 
the second position, and then finds a copy of length 2 at 
position 12, for a total of four bytes on each iteration. 

We have abstracted the problem so that the possible 
copy operations are described by a string of pi, and we 
have shown a pathological pattern of p, that results in 
% of the optimal encoding. There might still be some 
doubt that such a string exists, since the condition that 
our third machine (5) guarantees, F(i + 1) 1 F(i) - 1, is 
a necessary but not sufficient condition. Nevertheless, 
the details of an actual pathological string can be found 
in Appendix A. 

4. A SIMPLER DATA STRUCTURE 
Although the quantity of code associated with Al is not 
enormous, it is complicated, and the data structures are 
fairly large. In this section, we present simpler methods 
for finding the suffix and for propagating the window 
position. 

The alternative to a percolating update is to update 
the positions in all nodes back to the root whenever a 
new leaf is inserted. Then no updates are needed when 
nodes are deleted. The update flags can be eliminated. 

The alternative to suffix pointers is more compli- 
cated. The cost of movement in a tree is not uniform; 
moving deeper requires a hash table lookup, which is 
more expensive than following a parent pointer. So we 
can determine the suffix by starting at the suffix leaf 
and following parent pointers back toward the root un- 
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til the suffix node is reached. The suffix leaf is known 
because the strin,; at i matched the string at some ear- 
lier window position j; the suffix leaf j + 1 is the next 
entry in the leaf array. With this change, the suffix 
pointers can be e: iminated. 

tage of a simple hardware implementation. We will 
return to the unary code in more detail shortly. 

From a theoretical perspective, these modifications, 
which have O(nd I worst case performance for a file of 
size n and cut-off depth d, are inferior to the O(n) per- 
formance of the suffix tree. For Al, with a cutoff of 16, 
these modifications improve average performance, but 
the A2 method discussed in the next section has such a 
deep cut-off that : uffix pointers and percolated updates 
are preferable. 

5. A MORE POWERFUL ENCODING 
The 4,096-byte window of Al is roughly optimal for 
fixed size copy and literal codewords. Longer copies 
would, on average, be found in a larger window, but a 
larger displacement field would be required to encode 
them. To exploit a larger window, we must use a 
variable-width em:od.ing statistically sensitive to the 
fact that recent window positions are more likely to be 
used by copy codewords than those positions further 
back. Similarly, it is advantageous to use variable- 
width encodings for copy and literal lengths. 

Fixed Huffman. Ideally, a fixed Huffman encoder 
should be applied to source consisting of the copy 
length and displacement concatenated together (to cap- 
ture the correlation of these two fields). However, since 
we wish to expand window size to 16384 and maxi- 
mum copy length to 2000, the realities of gathering 
sta.tistics and constructing an implementation dictate 
that we restrict the input of the fixed Huffman com- 
pressor to a size much smaller than 2000 X 16384 by 
grouping together codes with nearly equal copy lengths 
and displacements. To improve speed we use tables to 
encode and decode a byte at a time. Nevertheless, the 
fixed Huffman approach is the most complex and slow- 
est of the three options compared here. 

There are severid approaches we might use for vari- 
able-length encoding. We could use fixed or adaptive 
Huffman coding, arithmetic encoding, a variable-length 
encoding of the inegers, or a manageable set of hand- 
designed codewords. We eliminated from consideration 
adaptive Huffman and arithmetic coding because they 
are slow. Moreove.:, we felt they would provide (at best) 
a secondary adaptive advantage since the “front end” 
textual substitution is itself adapting to the input. We 
experimented witf. a fixed Huffman encoding, a hand- 
designed family of codewords, and a variable-length 
encoding of the integers, so we will compare these 
options briefly: 

To decide how much compression could be increased 
with a Fixed Huffman approach, we experimented with 
several groupings of nearly equal copy lengths and dis- 
placements, using a finer granularity for small values, 
so that the input to the Fixed Huffman compressor had 
only about 30,000 states, and we computed the entropy 
to give a theoretical bound on the compression. The 
smallest entropy we obtained was only 4 percent more 
cornpact than the actual compression achieved with the 
unary encoding described below; and any real imple- 
mentation would do worse than an entropy bound. 
Consequently, because the Fixed Huffman approach 
did not achieve significantly higher compression, we 
favor the simpler unary code, though this is not an 
overwhelmingly clear choice. 

Define a (start, step, stop) unary code of the integers 
as follows: The n th codeword has n ones followed by a 
zero followed by a field of size start + n . step. If the 
fiehl size is equal to stop then the preceding zero can 
be omitted. The integers are laid out sequentially 
through these codewords. For example, (3, 2, 9) would 
look like: 

Hand-Designed Coc3ewords. This is a direct generaliza- 
tion of Al, with shllrt copies that use fewer bits but 
cannot address the full window, and longer copies that 
can address larger ‘,locks further back in the window. 
With a few codewords, this is fast and relatively easy to 
implement. However, some care must be taken in the 
choice of codewords to maximize compression. 

Codeword Range 
oxxx o-7 
10 xxxxx 8-39 
110 xxxxxxx 40-167 
111 xxxxxxxxx 168-679 

Appendix B contains a simple procedure that gener- 
ates unary codes. 

Variable-Length Integers. The simplest method we The A2 textual substitution method encodes copy 
tried uses a unary code to specify field width, followed length with a (2, 1, 10) code, leading to a maximum 
by the field itself. C:opy length and displacement fields copy length of 2044. A copy length of zero signals a 
are coded indepenc ently via this technique, so any cor- literal, for which literal length is then encoded with a 
relations are ignored. There are more elaborate codings (0, 1, 5) code, leading to a maximum literal length of 63 
of the integers (such as [9], [lo], or [13]), that have been bytes. If copy length is non-zero, then copy displace- 
used by [Is], and [:4] in their implementations of men.t is encoded with a (10, 2,14) code. The exact 
Lempel-Ziv compression. These encodings have nice maximum copy and literal lengths are chosen to avoid 
asymptotic properties :for very large integers, but the wasted states in the unary progressions; a ma.ximum 
unary code is best far our purposes since, as we will see copy length of 2044 is sufficient for the kinds of data 
shortly, it can be tuned easily to the statistics of the studied in Section 8. The Al policy for choosing be- 
application. The unlry code has the additional advan- tween copy and literal codewords is used. 
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Three refinements are used to increase A2’s 
compression by approximately 1 to 2 percent. First, 
since neither another literal nor a copy of length 2 can 
immediately follow a literal of less than maximum lit- 
eral length, in this situation, we shift copy length codes 
down by 2. In other words, in the (2, 1, 10) code for 
copy length, 0 usually means literal, 1 means copy 
length 2, etc.; but after a literal of less than maximum 
literal length, 0 means copy length 3, 1 means copy 
length 4, etc. 

Secondly, we phase-in the copy displacement encod- 
ing for small files, using a (10 - X, 2, 14 - x) code, 
where x starts at 10 and descends to 0 as the number of 
window positions grows; for example, x = 10 allows 
2’ + 2’ + 24 = 21 values to be coded, so when the 
number of window positions exceeds 21, x is reduced to 
9; and so forth. 

Finally, to eliminate wasted states in the copy dis- 
placement encoding, the largest field in the (10 - x, 
2, 14 - X) progression is shrunk until it is just large 
enough to hold all values that must be represented; that 
is, if v values remain to be encoded in the largest field 
then smaller values are encoded with Llog,vJ bits and 
larger values with rlog,vl bits rather than 14 - x bits. 
This trick increases compression during startup, and, if 
the window size is chosen smaller than the number of 
values in the displacement progression, it continues to 
be useful thereafter. For example, the compression 
studies in Section 8 use an A2 window size of 16,384 
characters, so the (10, 2, 14) code would waste 5,120 
states in the 14-bit field without this trick. 

Percolating update seems preferable for the imple- 
mentation of A2 because of the large maximum copy 
length; with update-to-root, pathological input could 
slow the compressor by a factor of 20. Unfortunately, 
the percolating update does not guarantee that the suf- 
fix tree will report the nearest position for a match, so 
longer codewords than necessary may sometimes be 
used. This problem is not serious because the tree is 
often shallow, and nodes near the root usually have 
many sons, so updates propagate much more rapidly 
than assumed in the analysis of Section 3. On typical 
files, compression with percolated update is 0.4 percent 
less than with update-to-root. 

6. A FASTER COMPRESSOR 
A2 has very fast expansion with a small storage re- 
quirement, but, even though compression has constant 
amortized time, it is 5 times slower than expansion. Al 
and A2 are most appropriate in applications where 
compression speed is not critical and where the per- 
formance of the expander needs to be optimized, such 
as the mass release of software on floppy disks. How- 
ever, in applications such as file archiving, faster 
compression is needed. For this reason, we have devel- 
oped the Bl and B2 methods described here, which use 
the same encodings as Al and AZ, respectively, but 
compute window displacement differently. Copy code- 
words are restricted to start at the beginning of the yth 
previous codeword or literal character emitted; they 

can no longer address every earlier character, but only 
those where literal characters occurred or copy code- 
words started; we refer to displacements computed this 
way as “compressed displacements” throughout. Copy 
length is still measured in characters, like Al. By in- 
serting this level of indirection during window access, 
compression speed typically triples, though expansion 
and the rate of adaptation are somewhat slower. 

With “compressed displacements,” suffix pointers 
and update propagation are unnecessary and a simpler 
PATRICIA tree can be used for the dictionary. Entries are 
made in the tree only on codeword boundaries, and 
this can be done in linear time by starting at the root 
on each iteration. It is useful to create an array of per- 
manent nodes for all characters at depth 1. Since copy 
codewords of length 1 are never issued, it doesn’t mat- 
ter that some permanent nodes don’t correspond to any 
window character. Each iteration begins by indexing 
into this node array with the next character. Then hash 
table lookups and arc character comparisons are used 
to descend deeper, as in Al. The new window position 
is written into nodes passed on the way down, so up- 
date propagation is unnecessary. 

In short, the complications necessary to achieve con- 
stant average time per source character with A2 are 
eliminated. However, one new complication is intro- 
duced. In the worst case, the 16,384 window positions 
of B2 could require millions of characters, so we impose 
a limit of 12 X 16,384 characters; if the full window 
exceeds this limit, leaves for the oldest window posi- 
tions are purged from the tree. 

Because of slower adaptation, B2 usually compresses 
slightly less than A2 on small files. But on text and 
program source files, it surpasses A2 by 6 to 8 percent 
asymptotically: the crossover from lower compression 
to higher occurs after about 70,000 characters! A2 code- 
words find all the near-term context, while B2 is re- 
stricted to start on previous codeword boundaries but 
can consequently reach further back in the file. This 
gives B2 an advantage on files with a natural word 
structure, such as text, and a disadvantage on files 
where nearby context is especially important, such as 
scanned images. 

We also tried variations where the tree is updated 
more frequently than on every codeword boundary and 
literal character. All variations up to and including A2 
can be implemented within the general framework of 
this method, if speed is not an issue. For example, we 
found that about 1 percent higher compression can be 
achieved by inserting another compressed position be- 
tween the two characters represented by each length 2 
copy codeword and another 0.5 percent by also insert- 
ing compressed positions after each character repre- 
sented by length 3 copy codewords. However, because 
these changes slow compression and expansion we 
haven’t used them. 

7. IMPROVING THE COMPRESSION RATIO 
In Section 6 we considered ways to speed up compres- 
sion at the cost of slower adaptation and expansion. In 
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this section we will explore the other direction: im- 
proving the compression ratio with a slight cost to the 
running time of the algorithm. 

When a string 3cc:urs frequently in a file, all the 
methods we havt! considered so far waste space in their 
encoding; when ihe,y are encoding the repeating string, 
they are capable of specifying the copy displacement to 
multiple previou:: occurrences of the string, yet only 
one string needs ‘:o be copied. By contrast, the data 
structures we have used do not waste space. The re- 
peating strings share a common path near the root. If 
we base the copy codewords directly on the data struc- 
ture of the dictionary, we can improve the compression 
ratio significantly. (This brings us closer to the second 
style of Ziv and L3mpel’s textual substitution work [19, 
29, 431, where a dictionary is maintained by both the 
compressor and e.cpander. However, since we still use a 
window and an e:cplicit copy length coding, it is natural 
to view this as a modification of our earlier compres- 
sors, in the style cf Ziv and Lempel’s first textual sub- 
stitution work.) 

The C2 method uses the same PATRICIA tree data 
structures as B2 tcl store its dictionary. Thus it takes 
two pieces of info] mation to specify a word in the dic- 
tionary: a node, and a location along the arc between 
the node and its parent (since PATRICIA tree arcs may 
correspond to strings with more than one character). 
We will distinguis 1 two cases for a copy: if the arc is at 
a leaf of the tree, then we will use a LeafCopy code- 
word, while if the arc: is internal to the tree we will use 
a NodeCopy codew 3rd.. Essentially, those strings appear- 
ing two or more times in the window are coded with 
NodeCopies, avoidi:lg the redundancy of A2 or B2 in 
these cases. 

The C2 encoding; begins with a single prefix bit that 
is 0 for a NodeCopy, 1 for a LeafCopy or Literal. 

For NodeCopy co jewords, the prefix is followed by a 
node number in [0 . . maxNodeNo], where maxNodeNo is 
the largest node nc.mber used since initialization; for 
most files tested, maxNodeNo is about 50 percent the 
number of leaves. Following the node number, a dis- 
placement along the arc from the node to its parent is 
encoded; for most lJodeCopy codewords the incoming 
arc is of length 1, so no length field is required. If a 
length field is requ..red, 0 denotes a match exactly at 
the node, 1 a displacement 1 down the arc from the 
parent node, etc. Rilrely is the length field longer than 
one or two bits becimse the arc lengths are usually 
short, so all possible: displacements can be enumerated 
with only a few bit!;. For both the node number and the 
incoming arc displacement, the trick described in Sec- 
tion 5 is used to eliminate wasted states in the field; 
that is: if z, values must be encoded, then the smaller 
values are encoded with Llog,vJ bits and larger values 
with rlog,vl bits. 

LeafCopies are coc.ed with unary progressions like 
those of A2 or B2. A (1, 1, 11) progression is used to 
specify the distance of the longest match down the leaf 
arc from its parent node, with 0 denoting a literal; this 

progression leads to a maximum copy leng,th of 4094 
bytes. Since another literal never occurs immediately 
after a literal of less than maximum literal length, the 
LeafCopy arc distance progression is shifted down by 1 
when the preceding codeword was a literal (i.e., arc 
displacement 1 is coded as 0, 2 as 1, etc.). On a cross 
section of files from the data sets discussed. later, dis- 
tance down the leaf arc was highly skewed, with about 
half the arc displacements occurring one character 
down the leaf arc. Because of this probabil.ity spike at 1 
and the rapid drop off at larger distances, the average 
length field is small. Following the length field, the 
window position is coded by gradually phasing in 
a (10, 2, 14) unary progression exactly like B2’s. 

Literals are coded by first coding a LeafCopy arc dis- 
placement of 0 and then using a (0, 1, 5) un.ary progres- 
sion for the literal length exactly like B2. 

Unlike A2 and B2, the expander for C2 must main- 
tain a dictionary tree exactly like the compressor’s tree 
to permit decoding. Notice that this is not as onerous as 
it :might seem. During compression, the algorithm must 
search the tree downward (root toward leaves) to find 
the longest match, and this requires a hash table access 
at each node. By contrast, the expander is told which 
node was matched, and can recover the length and 
window position of the match from the node. No hash 
table is required, but the encoding is restricted: a copy 
codeword must always represent the longest match 
found in the tree, in particular, the superior heuristic 
used by B2 to choose between Literal and Copy code- 
words must be discarded; instead, when the longest 
match is of length 2 or more, a copy codeword must 
always be produced. With this restriction, the expander 
cart reconstruct the tree during decoding sirnply by 
hanging each new leaf from the node or arc indicated 
by the NodeCopy or LeafCopy codeword, or in the case of 
literals, by hanging the leaf from the permanent depth 
1 node for each literal character. 

8. EMPIRICAL STUDIES 
In this section, we compare the five compression meth- 
ods we have developed with other one-pass, adaptive 
methods. For most other methods, we do not have well- 
tun’ed implementations and report only compression 
results. For implementations we have tuned for effi- 
ciency, speed is also estimated (for our 3 MIP, Is-bit 
word size, 8 megabyte workstations). The execution 
times used to determine speed include the time to 
open, read, and write files on the local disk (which has 
a relatively slow, maximum transfer rate of .‘j megabits 
per second); the speed is computed by dividi-ng the un- 
compressed file size by the execution time for a large 
file. 

We tested file types important in our working envi- 
ronment. Each number in Table I is the sum of the 
compressed file sizes for all files in the group divided 
by the sum of the original file sizes. Charts l--3 show 
the dependency of compression on file size for all of the 
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Chart 1. Compression vs. File Size,Data Set SC 

compression methods tested on the source code (SC) 
data set. 

Data Sets 
SC Source Code. All 8-bit Ascii source files from 
which the boot file for our programming environment 
is built. Files include some English comments, and a 
densely-coded collection of formatting information at 
the end of each file reduces compressibility. The files 
themselves are written in the Cedar language. (1185 
files, average size 11 Kbytes, total size 13.4 Mybtes) 

TM Technical Memoranda. All files from a directory 
where computer science technical memoranda and 
reports are filed, excluding those containing images. 
These files are s-bit Ascii text with densely-coded for- 
matting information at the end (like the source code). 
(134 files, average size 22 Kbytes, total size 2.9 Mbytes) 

NS News Service. One file for each work day of a 
week from a major wire service; these files are 8-bit 
Ascii with no formatting information. Using textual 
substitution methods, these do not compress as well as 
the technical memoranda of the previous study group, 
even though they are much larger and should be less 
impacted by startup transient; inspection suggests that 
the larger vocabulary and extensive use of proper 
names might be responsible for this. (5 files, average 
size 459 Kbytes, total size 2.3 Mbytes) 

CC Compiled Code. The compiled-code files produced 
from the SC data set. Each file contains several differ- 
ent regions: symbol names, pointers to the symbols, 
statement boundaries and source positions for the de- 
bugger, and executable code. Because each region is 
small and the regions have different characteristics, 
these files severely test an adaptive compressor. (1220 
files, average size 13 Kbytes, total size 16.5 Mbytes) 

BF Boot File. The boot file for our programming envi- 
ronment, basically a core image and memory map. 
(1 file, size 525 Kbytes) 

SF Spline Fonts. Spline-described character fonts used 
to generate the bitmaps for character sets at a variety of 
resolutions. (94 files, average size 39 Kbytes, total size 
3.6 Mbytes) 

RCF Run-coded Fonts. High-resolution character 
fdnts, where the original bitmaps have been replaced 
by a run-coded representation. (68 files, average size 47 
Kbytes, total size 3.2 Mbytes) 

SNI Synthetic Images. All 8 bit/pixel synthetic image 
files from the directory of an imaging researcher. The 
44 files are the red, green, and blue color separations 
for 12 color images, 2 of which also have an extra file to 
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encode backgrour d transparency; in addition, there are 
6 other grey scale images. (44 files, average size 328 
Kbytes, total size 1L4.4 Mbytes) 

SC1 Scanned Images. The red separations for all 8 
bit/pixel scanned in color images from the directory of 
an imaging researcher. The low-order one or two bits of 
each pixel are probably noise, reducing compressibility. 
(12 files, average size 683 Kbytes, total size 8.2 Mbytes) 

BI Binary Images. CCITT standard images used to 
evaluate binary facsimile compression methods. Each 
file consists of a lll8-byte header followed by a binary 
scan of 1 page (17;:8 pixels/scan line X 2376 scan lines/ 
page). Some images have blocks of zeros more than 
30,000 bytes long. Because these files are composed of 
l-bit rather than 8-bit items, the general-purpose com- 
pressors do worse tha.n they otherwise might. (8 files, 
average size 513 Kbytes, total size 4.1 Mbytes) 

The special-purpose CCITT 1D and 2D compression 
methods reported 1.n (181 achieve, respectively, 0.112 
and 0.064 compression ratios on these standard images 
when the extranecas end-of-line codes required by the 
facsimile standard are removed and when the extra- 
neous 148-byte header is removed. The special-purpose 
CCITT 2D result is significantly more compact than any 
general purpose mathod we tested, and only CW and 
C2 surpassed the 1 D result. 

Measurements and Compression Methods 

HO and Hl. These are entropy calculatio:ns made on a 
per file basis according to: 

n-1 
HO = -C P(X = Ci)lO&P(X = Ci), (7) 

i=O 

n-1 

HI = - 2 P(X = Ci)P(Ij = Cj 1 X '= Ci) 
i,j=O 

’ lO&P(y = Cj 1 X = Ci) 

631 

where x is a random symbol of the source, xy is a 
randomly chosen pair of adjacent source characters, 
and ci ranges over all possible symbols. Because of the 
small file size, the curves in Charts 1 to 3 drop off to 
th.e left. In theory, this small sampling problem can be 
corrected according to [2], but we have found it diffi- 
cult to estimate the total character set size in order to 
apply these corrections. Nevertheless, Chart 1 shows 
that HO is a good estimator for how well a memoryless 
(zfero-order) compressor can do when file size is a large 
multiple of 256 bytes, and Hl bounds the c:ompression 
for a first-order Markov method. (None of our files were 
large enough for Hl to be an accurate estimator.) 

KG and V. These adaptive methods maintain a Huff- 
man tree based on the frequency of characters seen 
so far in a file. The compressor and expander have 
roughly equal performance. The theory behind the 
KG approach appears in [ll] and [23]. The similar V 
method, discussed in [37] should get better compression 
during the startup transient at the expense of being 
about 18 percent slower. It is also possible to bound the 
performance of Vitter’s scheme closely to tbat of a fixed 
non-adaptive compressor. Except on the highly com- 
prlessible CCITT images, these methods ach.ieve 
compression slightly worse than HO, as expected. But 
because of bit quantization, the compression of the 
CCITT images is poor-arithmetic coding would com- 
press close to HO even on these highly compressible 
sources. 

CW. Based on [6], this method gathers higher-order 
statistics than KG or V above (which we ran only on 
zeroth-order statistics). The method that Cleary and 
Witten describe keeps statistics to some order o and 
encodes each new character based on the context of the 
o preceding characters. (We’ve used o = 3, because any 
higher order exhausts storage on most of our data sets.) 
If the new character has never before appeared in the 
same context, then an escape mechanism is used to 
back down to smaller contexts to encode the character 
using those statistics. (We’ve used their escape mecha- 
nism A with exclusion of counts from higher-order con- 
tex.ts.) Because of high event probabilities in some 
higher-ordered contexts and the possibility of multiple 
escapes before a character is encoded, the fractional bit 
loss of Huffman encoding is a concern, so [6] uses arith- 
metic encoding. We have used the arithmetic encoder 
in 11401. 
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TABLE I. Comparison of Compression Methods 

HO .732 .612 ,590 .780 
Hl .401 ,424 .467 540 
KG .751 .625 .595 .804 
V .749 .624 .595 .802 
cw .369 ,358 .326 .768 

MWl .508 .470 ,487 
MW2 .458 .449 .458 
uw .521 .476 .442 
BSTW .426 .434 .465 

.770 

.784 

.796 
- .684 

Al .430 .461 .520 .741 
A2 .366 .395 .436 .676 
Bl .449 .458 .501 .753 
B2 .372 .403 .410 .681 
c2 .360 .376 .375 .688 

.752 

.756 

.756 

.544 

.538 
,616 
.547 
.527 

.626 .756 .397 ,845 .148 

.380 .597 .I81 ,510 .lOl 

.637 ,767 .415 .850 .205 

.637 ,766 .414 .850 .205 

.516 ,649 .233 .608 .106 

.558 

.526 
561 

.705 .259 .728 

.692 .270 .774 

.728 .255 .697 
,581 - - 

.117 

.117 
,118 
- 

.502 

.460 

.505 

.459 

.445 

.657 .351 .766 .215 
,588 ,259 .709 .123 
,676 .349 .777 .213 
.603 .255 .714 .117 
.578 .238 .662 .105 

As Table I shows, CW achieves excellent compres- 
sion. Its chief drawbacks are its space and time per- 
formance. Its space requirement can grow in proportion 
to file size; for example, statistics for o = 3 on random 
input could require a tree with 2564 leaves, though 
English text requires much less. The space (and conse- 
quently time) performance of CW degrades dramati- 
cally on “more random” data sets like SNI and SCI. A 
practical implementation would have to limit storage 
somehow. Even on English, Bell, Cleary, and Witten 
estimate that Moffat’s tuned implementation of CW 
is 3 times slower compressing and 5 times slower ex- 
panding than C2 [4]. 

MWl. This method, described in [29], is related to the 
second style of Lempel-Ziv compression, alluded to in 
the introduction. It uses a Trie data structure and 12-bit 
codes. Initially (and always) the dictionary contains 256 
one-character strings. New material is encoded by find- 
ing the longest match in the dictionary, outputting the 
associated code, and then inserting a new dictionary 
entry that is the longest match plus one more charac- 
ter. After the dictionary has filled, each iteration re- 
claims an old code from among dictionary leaves, fol- 
lowing a LRU discipline, and reuses that code for the 
new dictionary entry. The expander works the same 
way. MWl is simple to implement and is balanced in 
performance, with good speed both compressing and 
expanding (250,000 bits/set and 310 bits/set respec- 
tively). The original method used 12-bit codes through- 
out for simplicity and efficiency. However, our imple- 
mentation starts by using g-bit codewords, increasing to 
10, 11, and finally to 12 bits as the dictionary grows to 
its maximum size; this saves up to 352 bytes in the 
compressed file size. On text and source code, Miller 
and Wegman determined that the 12-bit codeword size 
is close to optimal for this method. 

abcdefghi appears frequently in a document, then ab 
will be in the dictionary after the first occurrence, abc 
after the second, and so on, with the full word present 
only after 8 occurrences (assuming no help from similar 
words in the document). Al below, for example, would 
be able to copy the whole word abcdefghi after the first 
occurrence, but it pays a penalty for the quick response 
by having a length field in its copy codeword. The idea 
of MW2 is to build dictionary entries faster by combin- 
ing adjacent codewords of the MWl scheme. Longer 
words like abcdefghi are built up at an exponential 
rather than linear rate. The chief disadvantage of MW2 
is its increased complexity and slow execution. Our 
implementation follows the description in [29] and uses 
an upper limit of 4096 dictionary entries (or 12-bit 
codewords). We did not implement the 9-12 bit phase- 
in that was used in MWl so the size-dependent charts 
underestimate MW2’s potential performance on small 
files. 

UW. This is the Compress utility found in the Berke- 
ley 4.3 Unix, which modifies a method described in a 
paper by Welch [39]; the authors of this method are 
S. Thomas, J. McKie, S. Davies, K. Turkowski, J. Woods, 
and J. Orost. It builds its dictionary like MWl, gradu- 
ally expanding the codeword size from 9 bits initially 
up to 16 bits. The dictionary is frozen after 65,536 en- 
tries, but if the compression ratio drops significantly, 
the dictionary is discarded and rebuilt from scratch. We 
used this compressor remotely on a Vax-785, so it is 
difficult to compare its running time and implementa- 
tion difficulties with the other methods we imple- 
mented. Nevertheless, because it does not use the LRU 
collection of codes, it should be faster than MWl. How- 
ever, it has a larger total storage requirement and gets 
worse compression than MWl on most data sets 
studied. 

MW2. One drawback of MWl is the slow rate of BSTW. This method first partitions the input into 
buildup of dictionary entries. If, for example, the word alphanumeric and non-alphanumeric “words,” so it is 
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specialized for text, though we were able to run it on 
some other kind!; of data as well. The core of the com- 
pressor is a mow+to-front heuristic. Within each class, 
the most recentllr seen words are kept on a list (we 
have used list si2 e 2156). If the next input word is al- 
ready in the word list, then the compressor simply 
encodes the posi..ion of the word in the list and then 
moves the word to the front of the list. The move-to- 
front heuristic means that frequently used words will 
be near the front of the list, so they can be encoded 
with fewer bits. If the next word in the input stream is 
not on the word ..ist, then the new word is added to the 
front of the list, while another word is removed from 
the end of the list, and the new word must be com- 
pressed character-by-character. 

Since the empiriccal results in [5] do not actually give 
an encoding for the positions of words in the list or for 
the characters in new words that are output, we have 
taken the liberty of using the V compressor as a subrou- 
tine to generate these encodings adaptively. (There are 
actually four cop:.es of Vitter’s algorithm running, one 
to encode positio:ls and one to encode characters in 
each of two parti:ions.) Using an adaptive Huffman is 
slow; a fixed encoding would run faster, but we expect 
that a fixed encoding would slightly reduce compres- 
sion on larger files while slightly improving compres- 
sion on small files. We could not run BSTW for all of 
the data sets, sine e the parsing mechanism assumes 
human-readable text and long “words” appear in the 
other data sets. M’hen the unreadable input parsed 
well, as in the case of run-coded fonts, the compression 
was very good. 

Al. This is our basic method described earlier. It has 
a fast and simple expander (560,000 bits/set) with a 
small storage requirement (10,000 bytes). However, the 
compressor is much slower and larger (73,000 bits/set, 
145,000 bytes using scan-from-leaf and update-to-root). 
The encoding has a :maximum compression to ‘/a = 12.5 
percent of the original file size because the best it can 
do is copy 16 cha:*acters with a 16-bit codeword. 

Caveat: As wz’ mentioned above, the running times 
reported include :he file system overhead for a rela- 
tively slow disk. Yo Iprovide a baseline, we timed a file 
copy without con.pression and obtained a rate of 
760,000 bits per second. Thus, some of the faster expan- 
sion rates we report are severely limited by the disk. 
For example, we l?stimate that without disk overhead 
the Al expander would be about twice as fast. On the 
other hand, remo-ring disk overhead would hardly af- 
fect the compress:.on speed of Al. 

AZ. This method, discussed in Section 5, enlarges the 
window to 16,384 characters and uses variable-width 
unary-coded copy and literal codewords to significantly 
increase compres!;ion. The running time and storage 
requirements are 410,000 bits/set and 21,000 bytes for 
expansion and 60 000 bits/set and 630,000 bytes for 
compression (using suffix pointers and percolated 
update). 

Bl. This method, discussed in Section 6, uses the Al 
encoding but triples compression speed by updating the 
tree only at codeword boundaries and literal charac- 
ters. The running time and storage requirements are 
4’70,000 bits/set and 45,000 bytes for expansion and 
2:30,000 bits/set and 187,000 bytes for compression. 

B2. This method, discussed in Section 6, uses the 
same encoding as A2 but triples compression speed by 
updating the tree only at codeword boundaries and lit- 
eral characters. The compressor and expander run at 
170,000 and 380,000 bits/set, respectively, and have 
storage requirements of 792,000 and 262,000 bytes. 

C2. This method, discussed in Section 7, uses the 
same data structures as B2 but a more powerful encod- 
ing based directly upon the structure of th’e dictionary 
tree. Compression is about the same and expansion 
about 25 percent slower than B2; the compressor uses 
about the same storage as B2, but the expander uses 
more (about 529,000 bytes). 

Table I highlights some differences between textual 
substitution methods like C2 and statistical methods 
like CW. (Time and space performance differences have 
been discussed earlier.) There are several data sets 
where these methods differ dramatically. On NS, CW is 
significantly better than C2. We believe that this is be- 
cause NS shows great diversity in vocabulary: a prop- 
erty that is troublesome for textual substitution, since it 
camnot copy new words easily from elsewhere in the 
document, but is benign for CW, since new words are 
likely to follow the existing English statistics. On CC, 
for example, C2 is significantly better than CW. We 
believe that this is because CC contains several radi- 
ca.lly different parts, e.g. symbol tables, and compiled 
code. C2 is able to adjust to dramatic shifts within a 
file, due to literal codewords and copy addressing that 
favors nearby context, while CW has no easy way to 
rapidly diminish the effect of older statistic:s. 

For all of our methods, A2, B2, and C2, window size 
is a significant consideration because it determines 
storage requirements and affects compression ratios. 
Chart 4 shows compression as a function of window 
size for the NS data set (concatenated into ,a single file 
to avoid start-up effects), and for the BF boot file. These 
two data sets were typical of the bimodal behavior we 
observed in our other data sets: large human-readable 
files benefit greatly from increasing window size, while 
other test groups show little improvement beyond a 
window size of 4K. 

9. CONCLUSIONS 
W’s have described several practical methods for loss- 
less data compression and developed data structures to 
support them. These methods are strongly adaptive in 
the sense that they adapt not only during startup but 
als:o to context changes occurring later. They are suit- 
able for most high speed applications because they 
make only one pass over source data, use only a con- 
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Chart 4. Compression vs. Window Size, Data Set NS (bottom) 
Data Set BF (top) 

stant amount of storage, and have constant amortized 
execution time per character. 

Our empirical studies point to several broad generali- 
zations. First, based on the HO and Hl theoretical lim- 
its, textual substitution via A2, B2, or C2 surpasses 
memoryless or first-order Markov methods applied on a 
character-by-character basis on half the data sets. On 
the other half, even the CW third-order method can’t 
achieve the Hl bound. This suggests that, to surpass 
textual substitution for general purpose compression, 
any Markov method must be at least second-order, and 
to date, all such methods have poor space and time 
performance. 

Going beyond these empirical results, an important 
practical consideration is the tradeoff among speed, 
storage, and degree of compression; speed and storage 
have to be considered for both compression and expan- 
sion. Of our own methods, A2 has very fast expansion 
with a minimal storage requirement; its weakness is 
slow compression; even though the suffix tree data 
structure with amortized update has constant amor- 
tized time per character, compression is still seven 
times slower than expansion. However, in applications 
which can afford relatively slow compression, A2 is 
excellent; for example, A2 would be good for mass dis- 
tribution of software on floppy disks or for overnight 
compression of files on a file server. Furthermore, if the 
parallel matching in the compression side of A2 were 
supported with VLSI, the result would be a fast, power- 
ful method requiring minimal storage both compressing 
and expanding. 

Secondly, the methods we’ve developed adapt rap- 
idly during startup and at transitions in the middle of 
files. One reason for rapid adaptation is the use of 
smaller representations for displacements to recent po- 
sitions in the window. Another reason is the inclusion 
of multi-character literal codewords. Together the liter- 
als and short displacements allow our methods to per- 
form well on short files, files with major internal shifts 
of vocabulary or statistical properties, and files with 
bursts of poorly compressing material-all properties of 
a significant number of files in our environment. 

B2 provides nearly three times faster compression 
than A2 but has somewhat slower expansion and adap- 
tation. Thus B2 is well suited for communication and 
archiving applications. 

Al and BI do not compress as well as A2 and B2, 
respectively, but because of their two-codeword, byte- 
aligned encodings they are better choices for applica- 
tions where simplicity or speed is critical. (For exam- 
ple, J. Gasbarro has designed and implemented an 
expansion method like Al to improve the bandwidth of 
a VLSI circuit tester [12].) 

Thirdly, it appears that the displacement-and-length C2 achieves significantly higher compression than 
approach to textual substitution is especially effective B2, but its expander is somewhat slower and has a 
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on small files. On ll,Oo@byte program source files, for 
example, A2 and B2 were over 20 percent more com- 
pact than textual substitution methods which did not 
use a length field (VW, MWl, and MW2). This is not 
surprising because the particular advantage of the 
length field in copy codewords is rapid adaptation on 
small files. However, even on the largest files tested, A2 
and B2 usually achieved significantly higher compres- 
sion. Only on images did other methods compete with 
them; our most powerful method, C2, achieved higher 
compression than any other textual substitution 
method we tested on all data sets. The effect of a length 
field is to greatly expand dictionary size with little or 
no increase in storage or processing time; our results 
suggest that textual substitution methods that use a 
length field will work better than those which do not. 

Fourthly, studies of A2, B2, and C2 using different 
window sizes showed that, for human-readable input 
(e.g., English, source code), each doubling of window 
size improves the compression ratio by roughly 6 per- 
cent (for details see Chart 4). Furthermore, the data 
structures supporting these methods scale well: running 
time is independent of window size, and memory usage 
grows linearly with window size. Thus increasing win- 
dow size is an easy way to improve the compression 
ratio for large files of human-readable input. For other 
types of input the window size can be reduced to 4096 
without significantly impacting compression. 
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larger storage requirement. In the compression study 
reported in Sect on a, C2 achieved the highest compres- 
sion of all methods tested on 6 of the 10 data sets. 

results demonstrate the value of window-based textual 
substitution. Together the A, B and C methods offer 
p,ood options that can be chosen according: to resource 
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APPENDIX A 
A Pathological Example 

., 

We now show a string that has the F pattern of 
equation (6) of Section 3: 

1 2 3 2 5 6 7 
710 pm p9 pl3 p7 p6 p5 

a '3 10 11 12 13 14 15 
(6) 

P4 F’3 p2 p1 p2 pm p10 p9 . . . 

-Iereafter we vrill stop abstracting the string by its 
:opy lengths; capital letters are strings, small letters 
tre single char icters, and i, j, r, p, b are integers. The 
lathological stl,ing follows the pattern: 

It remains to create the match of length 2 at posi- 
tjon 12 in equation (6). For this purpose, each of the 
c, above are either ei or 0,. They will always precede 
respectively even and odd numbered sj, and match 
in pairs with their following sj’s. For example, the e,, 
in G,, = slBls,eoszBzsz . . . will match with s2. The 
e,,sZ match is hidden in a minor block segregated 
from the odd numbered si: 

B. = xeosoeos,eos4 . . . e&-z 

MOM, . . . AA,-,M,.,M, . . . M,-IMoM, . . . (9) 

where the parameter I is chosen large enough so 
hat one iteratim exceeds the finite window (this 
Irevents direct copying from the beginning of one 
VI, to a subsequent MO). Within each Mi we have 
:roups, 

M, = GtoGi~Giz . . . Gi(n/p-1)s 

Ind each group is: 

(10) 

B P/2 = ~~‘?s1~0s3%% . . . o,Jsb-, 

(111 
This causes p and n to be related by: 

BzSI,+ip+2CiSjp+3 Bp-1S[j+ilp+p-tCi. pb = 2nr 

We have introduced two more parameters: p is the 
lumber of mirmr blocks B;, and II is the number of s 
:haracters. All 3f t.he s subscripts in the above for- 
nula are computed mod n. The groups skew so that, 
or example, th? beginning of Glo = sIBI sP+, . . . 
vi11 not match entirely with the beginning of 
. 
n,,, = slBlsl . . . . H will, however, match in two 
Iarts: the prefi>. slBl appears in both strings, and the 
uffix Glo = . . BI,~p+l . . . will match with the suffix 
If G,,l = . . . BIsi,+l. If, for example, B1 has 9 charac- 
ers, this gives two consecutive locations where 
c:opy of size II) is possible, in the pattern of 

quation 6. 

In the case of our running example, where the finite 
window is size 4096 and the maximum copy length 
is 16 characters, an appropriate setting of the above 
parameters is: 

r = 2, b = a, p = 100, II = 200 (13) 

We need to take some care that the heuristic does 
not find the optimal solution. It turns out that if we 
just start as in equation (g), then the first MO will not 
compress well, but the heuristic will start the behav- 
ior we are seeking in M,. Asymptotically we achieve 
a worst case ratio of % between the optimal algo- 
rit hm and the policy heuristic. 

APPE,NDIX B 
Computing a Unary-Based Variable Length 

Encoding of the Integers 

In Section 5 we defined a (start, step, stop) unary 
code of the integers as a string of n ones followed by 
a zero followed by a field of j bits, where j is in the 
arithmetic prog:*ession defined by (start, step, stop). 
This can be defined precisely by the following 
encoder: 

Encode Var: 
PROC [out: CARDINAL, start, step, last: CARIIINAL] - ( 

UNTIL out < PowerZ[start] no 
PutBits[l,l]; 

out t out - PowerZ[start]; 
start c start + step; 
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ENDLOOP; 

IF start C last THEN PutBits[out, start + l] 
-0 followed by field of size “start” 

ELSE IF Start> l&THEN ERROR 

ELSE PutBits[out, start]; -save a bit 

1; 

PutBits: PRoc[out: CARD, bits: INTEGER] - 

Output the binary encoding of “out” in a field of size 
“bits.” 

Notice that the encoder is able to save one bit in the 
last field size of the arithmetic progression. 
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