
RESEARCH CONTRlBllTlONS

Algorithms and
Data Structures Data Compression with Finite
Daniel Sleator
Editor Windows

EDWARD R. FIALA and DANIEL H. GREENE

ABSTRACT: Sevt,ral methods are presented for adaptive,
invertible data complression in the style of Lempel’s and
Ziv’s first textual substitution proposal. For the first two
methods, the article describes modifications of McCreight’s
suffix tree data strut ture that support cyclic maintenance of
a window on the most recent source characters. A
percolating update i:; used to keep node positions within the
window, and the updating process is shown to have constant
amortized cost. Other methods explore the tradeoffs between
compression time, expansion time, data structure size, and
amount of compression achieved. The article includes a
graph-theoretic analysis of the compression penalty incurred
by our codeword selt’ction policy in comparison with an
optimal policy, and It includes empirical studies of the
performance of various adaptive compressors from the
literature.

1. INTRODUCTION
Compression is the coding of data to minimize its repre-
sentation. In this al,ticle, we are concerned with fast,
one-pass, adaptive, invertible (or lossless) methods of
digital compression which have reasonable memory
requirements. SUCK. methods can be used, for example,
to reduce the storal;e requirements for files, to increase
the communication rate over a channel, or to reduce
redundancy prior 11) e.ncryption for greater security.

By “adaptive” WE mean that a compression method
should be widely a:,plicable to different kinds of source
data. Ideally, it sho,lld adapt rapidly to the source to
achieve significant compression on small files, and it
should adapt to an]’ subsequent internal changes in the
nature of the SOUKI?. In addition, it should achieve very
high compression asymptotically on large regions with
stationary statistics

All the compression methods developed in this article
are substitutional. T:rpically, a substitutional compressor
functions by replac: ng large blocks of text with shorter
references to earlie:, occurrences of identical text [3, 5,
29, 34, 36, 39, 41-4:]. (This is often called Ziv-Lempel
compression, in ret Jgnition of their pioneering ideas.
Ziv and Lempel, in fact, proposed two methods. The
unqualified use of the phrase “Ziv-Lempel compres-
sion” usually refers to their second proposal [43]. In this

0,989 ACM OOOl-0782/89,‘03OO-0490 $1.50

Communications of the .4CM April 1989 Volume 3;! Number 4

article, we will be primarily concerned with. their first
proposal [42].) A popular alternative to a substitutional
compressor is a statistical compressor. A symbolwise
statistical compressor functions by accurately predict-
ing the probability of individual symbols, an.d then en-
coding these symbols with space close to -log, of the
predicted probabilities. The encoding is accomplished
with either Huffman compression [17] which has re-
cently been made one-pass and adaptive [ll, 22, 371,
or with arithmetic coding, as described in [l, 14, 20, 25,
26, 31-331. The major challenge of a statistical com-
pressor is to predict the symbol probabilities. Simple
strategies, such as keeping zero-order (single symbol) or
first-order (symbol pair) statistics of the input, do not
compress English text very well. Several authors have
had success gathering higher-order statistics, but this
necessarily involves higher memory costs an.d addi-
tional mechanisms for dealing with situations where
higher-order statistics are not available [6, 7: 261.

It is hard to give a rigorous foundation to the substi-
tutional vs. statistical distinction described above. Sev-
eral authors have observed that statistical methods can
be used to simulate textual substitution, suggesting that
the statistical category includes the substitutional cate-
gory [4, 241. However, this takes no account of the sim-
plicity of mechanism; the virtue of textual substitution
is that it recognizes and removes coherence on a large
scale, oftentimes ignoring the smaller scale statistics. As
a result, most textual substitution compressors pro-
cess their compressed representation in larger blocks
than their statistical counterparts, thereby gaining a sig-
nificant speed advantage. It was previously believed
that the speed gained by textual substitution would
necessarily cost something in compression achieved.
We were surprised to discover that with careful atten-
tion to coding, textual substitution compressors can
mat’ch the compression performance of the best statisti-
cal methods.

Consider the following scheme, which we will im-
prove later in the article. Compressed files contain two
types of codewords:

literal x pass the next x characters direc-tly into the
uncompressed output

copy x, -y go back y characters in the output and copy
x characters forward to the current position.

Research Contributions

So, for example, the following piece of literature:

IT WAS THE BEST OF TIMES,
IT WAS THE WORST OF TIMES

would compress to

(literal26)IT WAS THE BEST OF TIMES,

A Trie is a tree structure where the branching occurs
according to “digits” of the keys, rather than according
to comparisons of the keys. In English, for example, the
most natural “digits” are individual letters, with the Zth
level of the tree branching according to the Ith letter of
the words in the tree.

(copy 11-26)(literal 3)WOR(copy 11-27)

The compression achieved depends on the space re-
quired for the copy and literal codewords. Our simplest
scheme, hereafter denoted Al, uses 8 bits for a literal
codeword and 16 for a copy codeword. If the first 4 bits
are 0, then the codeword is a literal; the next 4 bits
encode a length x in the range [l . . 161 and the follow-
ing x characters are literal (one byte per character).
Otherwise, the codeword is a copy; the first 4 bits
encode a length x in the range [2 . . 161 and the next
12 bits are a displacement y in the range [l . .4096]. At
each step, the policy by which the compressor chooses
between a literal and a copy is as follows: If the com-
pressor is idle (just finished a copy, or terminated a
literal because of the 16-character limit), then the long-
est copy of length 2 or more is issued; otherwise, if the
longest copy is less than 2 long, a literal is started. Once
started, a literal is extended across subsequent charac-
ters until a copy of length 3 or more can be issued or
until the length limit is reached.

In Figure 1, many internal nodes are superfluous,
having only one descendant. If we are building an
index for a file, we can save space by eliminating the
superfluous nodes and putting pointers to the file into
the nodes rather than including characters in the data
structure. In Figure 2, the characters in parentheses are
not actually represented in the data structure, but they
can be recovered from the (position, level) pairs in the
nodes. Figure 2 also shows a suffix pointer (as a dark
right arrow) that will be explained later.

Al would break the first literal in the above example
into two literals and compress the source from 51 bytes
down to 36. Al is close to Ziv and Lempel’s first textual
substitution proposal 1421. One difference is that Al
uses a separate literal codeword, while Ziv and Lempel
combine each copy codeword with a single literal char-
acter. We have found it useful to have longer literals
during the startup transient; after the startup, it is bet-
ter to have no literals consuming space in the copy
codewords.

Figure 2 represents some, but not all, of the innova-
tions in Morrison’s PATRICIA trees. He builds the trees
with binary “digits” rather than full characters, and this
allows him to save more space by folding the leaves
into the internal nodes. Our “digits” are bytes, so the
branching factor can be as large as 256. Since there are
rarely 256 descendants of a node, we do not reserve
that much space in each node, but instead hash the
arcs. There is also a question about when the strings in
parentheses are checked in the searching process. In
what follows, we usually check characters immediately
when we cross an arc. Morrison’s scheme can avoid file
access by skipping the characters on the arcs, and doing
only one file access and comparison at the end of the
search. However, our files will be in main memory, so
this consideration is unimportant. We will use the sim-
plified tree depicted in Figure 2.

Our empirical studies showed that, for source code
and English text, the field size choices for Al are good;
reducing the size of the literal length field by 1 bit
increases compression slightly but gives up the byte-
alignment property of the Al codewords. In short, if
one desires a simple method based upon the copy and
literal idea, Al is a good choice.

For Al, we wish to find the longest (up to 16 charac-
ter] match to the current string beginning anywhere in
the preceding 4096 positions. If all preceding 4096
strings were stored in a PATRICIA tree with depth
d = 16, then finding this match would be straightfor-
ward. Unfortunately, the cost of inserting these strings
can be prohibitive, for if we have just descended d
levels in the tree to insert the string starting at position
i then we will descend at least d - 1 levels inserting the
string at i + 1. In the worst case this can lead to O(nd)

Al was designed for &bit per character text or pro-
gram sources, but, as we will see shortly, it achieves
good compression on other kinds of source data, such as
compiled code and images, where the word model does
not match the source data particularly well, or where
no model of the source is easily perceived. Al is, in
fact, an excellent approach to general purpose data
compression. In the remainder of this article, we will
study Al and several more powerful variations.

2. OVERVIEW OF THE DATA STRUCTURE
The fixed window suffix tree of this article is a modifi-
cation of McCreight’s suffix tree [28] (see also [21, 34,
38]), which is itself a modification of Morrison’s PATRI-
CIA tree [30], and Morrison’s tree is ultimately based on
a Trie data structure [22, page 4811. We will review
each of these data structures briefly.

ASTRAY ASTRIDE

FIGURE 1. A Trie

April 1989 Volume 32 Number 4 Communications of the ACM 491

Research Contributions

insertion time for a file of size n. Since later encodings
will use much larger values for d than 16, it is impor-
tant to eliminate 11 from the running time.

To insert the strings in O(n) time, McCreight added
additional suffix pointers to the tree. Each internal
node, representing the string aX on the path from the
root to the internal node, has a pointer to the node
representing X, th: string obtained by stripping a single
letter from the beginning of ax. If a string starting at i
has just been inse:.ted at level d we do not need to
return to the root to insert the string at i + 1; instead,
a nearby suffix po .nter will lead us to the relevant
branch of the tree.

Figure 3 shows how suffix links are created and used.
On the previous it oration, we have matched the string
aXY, where a is a single character, X and Y are strings,
and b is the first u nmatched character after Y. Figure 3
shows a complicat sd case where a new internal node,
(Y, has been added to the tree, and the suffix link of (Y
must be computed. We insert the next string XYb by
going up the tree tl, node ,f3, representing the string ax,
and crossing its su:fix link to y, representing X. Once
we have crossed t1.e suffix link, we descend again in
the tree, first by “rsscanning” the string Y, and then by
“scanning” from 6 -rntil the new string is inserted. The
first part is called ‘ rescanning” because it covers a por-
tion of the string that was covered by the previous
insert, and so it dol?s not require checking the internal
strings on the arcs. (In fact, avoiding these checks is
essential to the linear time functioning of the algo-
rithm.) The rescan either ends at an existing node 6, or
6 is created to insermt the new string XYb; either way we
have the destination for the suffix link of LY. We have
restored the invariant that every internal node, except
possibly the one ju:;t cfreated, has a suffix link.

For the Al compressor, with a 4096-byte fixed win-
dow, we need a way to delete and reclaim the storage
for portions of the I uffix tree representing strings fur-
ther back than 4096 in the file. Several things must be
added to the suffix tree data structure. The leaves of
the tree are placed in a circular buffer, so that the
oldest leaf can be identified and reclaimed, and the
internal nodes are given “son count” fields. When an

9 10

File: ZTRI DE ASTRAY

(SW >

FIGURE 2. A DATRICIA Tree with a Suffix Pointer

R
aX 1 \ x I \ \

FIGURE 3. Building a Suffix Tree

internal “son count” falls to one, the node is deleted
and two consecutive arcs are combined. In Section 3, it
is shown that this approach will never leave a “dan-
gling” suffix link pointing to deleted nodes. .Unfortu-
nately, this is not the only problem in maintaining a
valid suffix tree. The modifications that avo:ided a re-
turn to the root for each new insertion create havoc for
deletions. Since we have not always returned to the
root, we may have consistently entered a branch of the
tree sideways. The pointers (to strings in the 4096-byte
win.dow) in the higher levels of such a branc:h can be-
come out-of-date. However, traversing the b:ranch and
updating the pointers would destroy any advantage
gained by using the suffix links.

We can keep valid pointers and avoid extensive up-
dating by partially updating according to a percolating
update. Each internal node has a single “update” bit. If
the update bit is true when we are updating a node,
then we set the bit false and propagate the update re-
cursively to the node’s parent. Otherwise, we set the bit
true and stop the propagation. In the worst case, a long
string of true updates can cause the update to propagate
to the root. However, when amortized over all new
leaves, the cost of updating is constant, and the effect of
upd,ating is to keep all internal pointers on positions
within the last 4096 positions of the file. These facts
will be shown in Section 3.

We can now summarize the operation of the inner
loop, using Figure 3 again. If we have just created node
LY, then we use (Y’S parent’s suffix link to find y. From y
we move down in the tree, first rescanning, a.nd then
scanning. At the end of the scan, we percolate an up-
date from the leaf, moving toward the root, setting the
posnion fields equal to the current position, and setting
the update bits false, until we find a node wit-h an
update bit that is already false, whereupon we set that
node’s update bit true and stop the percolation. Finally,
we go to the circular buffer of leaves and replace the
oldest leaf with the new leaf. If the oldest leaf’s parent
has only one remaining son, then it must also be de-

492 Communications of the 1lCA4 April 1989 Volume 32 Number 4

Research Contributions

leted; in this case, the remaining son is attached to its
grandparent, and the deleted node‘s position is perco-
lated upward as before, only at each step the position
being percolated and the position already in the node
must be compared and the more recent of these sent
upward in the tree.

3. THEORETICAL CONSIDERATIONS
The correctness and linearity of suffix tree construction
follows from McCreight’s original paper [28]. Here we
will concern ourselves with the correctness and the
linearity of suffix tree destruction-questions raised in
Section 2.

THEOREM 1. Delefing leaves in FIFO order and delefing
infernal nodes with single sons will never leave dangling
suffix pointers.

PROOF. Assume the contrary. We have a node a!
with a suffix pointer to a node 6 that has just been
deleted. The existence of (Y means that there are at
least two strings that agree for 1 positions and then
differ at 1 + 1. Assuming that these two strings start at
positions i and j, where both i and j are within the
window of recently scanned strings and are not equal
to the current position, then there are are two even
younger strings at i + 1 and j + 1 that differ first at 1.
This contradicts the assumption that 6 has one son. (If
either i or j are equal to the current position, then (r is
a new node, and can temporarily be without a suffix
pointer.)

There are two issues related to the percolating update:
its cost and its effectiveness.

THEOREM 2. Each percolated update has constant amor-
tized cost.

PROOF. We assume that the data structure contains
a “credit” on each internal node where the “update”
flag is true. A new leaf can be added with two “credits.”
One is spent immediately to update the parent, and the
other is combined with any credits remaining at the
parent to either: 1) obtain one credit to leave at the
parent and terminate the algorithm or 2) obtain two
credits to apply the algorithm recursively at the parent.
This gives an amortized cost of two updates for each
new leaf.

For the next theorem, define the “span” of a suffix tree
to be equal to the size of its fixed window. So far we
have used examples with “span” equal to 4096, but the
value is flexible.

THEOREM 3. Using the percolating update, every infer-
nal node will be updated at least once during every period of
length “span .”

PROOF. It is useful to prove the slightly stronger re-
sult that every internal node (that remains for an entire
period) will be updated twice during a period, and thus
propagate at least one update to its parent. To show a
contradiction, we find the earliest period and the node

p farthest from the root that does not propagate an
update to its parent. If /3 has at least two children that
have remained for the entire period, then p must have
received updates from these nodes: they are farther
from the root. If B has only one remaining child, then
it must have a new child, and so it will still get
two updates. (Every newly created arc causes a son
to update a parent, percolating if necessary.) Similarly,
two new children also cause two updates. By every
accounting, p will receive two updates during the
period, and thus propagate an update-contradicting
our assumption of /3’s failure to update its parent.

There is some flexibility on how updating is handled.
We could propagate the current position upward before
rescanning, and then write the current position into
those nodes passed during the rescan and scan; in this
case, the proof of Theorem 3 is conservative. Alterna-
tively, a similar, symmetric proof can be used to show
that updating can be omitted when new arcs are added
so long as we propagate an update after every arc is
deleted. The choice is primarily a matter of implemen-
tation convenience, although the method used above is
slightly faster.

The last major theoretical consideration is the effec-
tiveness of the Al policy in choosing between literal
and copy codewords. We have chosen the following
one-pass policy for Al: When the encoder is idle, issue
a copy if it is possible to copy two or more characters;
otherwise, start a literal. If the encoder has previously
started a literal, then terminate the literal and issue a
copy only if the copy is of length three or greater.

Notice that this policy can sometimes go astray. For
example, suppose that the compressor is idle at position
i and has the following copy lengths available at subse-
quent positions:

i i+l i+2 i+3 i+4 i+5
1 3 16 15 14 13 (1)

Under the policy, the compressor encodes position i
with a literal codeword, then takes the copy of length 3,
and finally takes a copy of length 14 at position i + 4. It
uses 6 bytes in the encoding:

(literal l)X(copy 3 - y)(copy 14 - y)

If the compressor had foresight it could avoid the
copy of length 3, compressing the same material into
5 bytes:

[literal 2)XX(copy 16 - y)

The optimal solution can be computed by dynamic
programming [36]. One forward pass records the length
of the longest possible copy at each position (as in equa-
tion 1) and the displacement for the copy (not shown in
equation 1). A second backward pass computes the
optimal way to finish compressing the file from each
position by recording the best codeword to use and the
length to the end-of-file. Finally, another forward pass
reads off the solution and outputs the compressed file.
However, one would probably never want to use dy-

April 1989 Volume 32 Number 4 Communications of the ACM 493

Research Contributions

namic programming since the one-pass heuristic is a lot
faster, and we estimated for several typical files that
the heuristically compressed output was only about
1 percent larger than the optimum. Furthermore, we
will show in the Iemiainder of this section that the size
of the compressed file is never worse than % the size of
the optimal solution for the specific Al encoding.
This will require ,leveloping some analytic tools, so the
non-mathematics. re!ader should feel free to skip to
Section 4.

The following def nitions are useful:

Definition. F(i) is the longest feasible copy at position i
in the file.

Sample F(i)‘s were, given above in equation 1. They are
dependent on the encoding used. For now, we are as-
suming that they iire limited in magnitude to 16, and
must correspond t3 copy sources within the last 4096
characters.

Definition. B(i 1 is the size of the best way to compress
the remainder of thl, file, starting at position i.

B(i)‘s would be computed in the reverse pass of the
optimal algorithm outlined above.

The following T neorems are given without proof:

THEOREM. F(i t 1) 1 F(i) - 1.

THEOREM. Then? exists an optimal solution where copies
are longest possible (i.e., only copies corresponding to F(i)‘s
are used).

THEOREM. B(i) IS monotone decreasing.

THEOREM. Any :;olution can be modified, without affect-
ing length, so that (literal x1) followed immediately by
(literal x2) implies lhaf x1 is maximum (in this case 26).

We could continue to reason in this vein, but there is
an abstract way of looking at the problem that is both
clearer and more general. Suppose we have a non-
deterministic finite! automaton where each transition is
given a cost. A simple example is shown in Figure 4.
The machine accepts (a + b)*, with costs as shown in
parentheses.

The total cost of accepting a string is the sum of the

Start

FIGURE 4. A Nondeierministic Automaton with Transition Costs

transition costs for each character. (While it is not
important to our problem, the optimal solution can be
computed by forming a transition matrix for each let-
te:r, using the costs shown in parentheses, and then
multiplying the matrices for a given string, treating the
coefficients as elements of the closed semiring with op-
erations of addition and minimization.) We can obtain a
solution that approximates the minimum by deleting
transitions in the original machine until it becomes a
deterministic machine. This corresponds to choosing a
policy in our original data compression pro’blem. A pol-
icy for the machine in Figure 4 is shown in Figure 5.

We now wish to compare, in the worst case, the dif-
ference between optimally accepting a string with the
non-deterministic machine, and deterministically ac-
cepting the same string with the “policy” machine. This
is (done by taking a cross product of the two machines,
as shown in Figure 6.

In Figure 6 there are now two weights on each transi-
tion; the first is the cost in the non-deterministic graph,
and the second is the cost in the policy graph. Asymp-
totically, the relationship of the optimal solution to the
policy solution is dominated by the smallest ratio on a
cycle in this graph. In the case of Figure 6, there is a
cycle from 1, 1’ to 1, 2' and back that has cost in the
no:n-deterministic graph of 2 + 1 = 3, and cost in the
policy graph of 3 + 3 = 6, giving a ratio of Vi. That is,

a (1)

>

FIGURE 5. A Deterministic “Policy” Automaton for Figure 4

the policy solution can be twice as bad as the optimum
on t.he string ababababab. , . .

In general, we can find the cycle with the smallest
ratio mechanically, using well known techni.ques [8,
271. The idea is to conjecture a ratio r and th.en reduce
the pairs of weights (x, y) on the arcs to single weights
x - ry. Under this reduction, a cycle with zero weight
has ratio exactly r. If a cycle has negative weight, then r
is too large. The ratio on the negative cycle is used as a
new conjecture, and the process is iterated. (Negative
cycl.es are detected by running a shortest path algo-
rithm and checking for convergence.) Once we have
found the minimum ratio cycle, we can create a worst
case string in the original automata problem by finding
a path from the start state to the cycle and then repeat-
ing .the cycle indefinitely. The ratio of the costs of ac-

494 Communications of the AC.M April 1989 Volume 32 Number 4

Start

FIGURE 6. The Cross Product

cepting the string non-deterministically and determin-
istically will converge to the ratio of the cycle. (The
path taken in the cross product graph will not necessar-
ily bring us to the same cycle, due to the initial path
fragment; we will, nevertheless, do at least as well.)
Conversely, if we have a sufficiently long string with
non-deterministic to deterministic ratio r, then the
string will eventually loop in the cross product graph. If
we remove loops with ratio greater than r we only im-
prove the ratio of the string, so we must eventually find
a loop with ratio at least as small as r.

The above discussion gives us an algorithmic way of
analyzing our original data compression problem. The
possible values of F(i) are encoded in a 17 character
alphabet pO . . . p16, representing the length of copy
available at each position. The compression algorithm
is described by a non-deterministic machine that ac-
cepts strings of pi; this machine has costs equal to the
lengths of the codewords used by the algorithm. There
are two parameterized states in this machine: 1, means
that there is a literal codeword under construction with
x spaces still available; cY means that a copy is in prog-
ress with y characters remaining to copy. The idle state
is IO = co. In the non-deterministic machine, the possi-
ble transitions are:

lo
Pm
- 115 start a literal

1,
P.(l)
+ I,-,

l Pi@)
continue a literal (x 2 1)

* ---* Ci-I start a copy (2)
P*W

c, --* c,-, continue a copy

(An asterisk is used as a wild card to denote any state.)
Based on the theorems above we have already elimi-
nated some transitions to simplify what follows. For
example,

c, “3 115 start a literal from inside a copy (y 2 1) (3)

is unnecessary. The deterministic machine, given

April 1989 Volume 32 Number 4

Research Contributions

below, eliminates many more transitions:

lo ‘2 115 start a literal if i 5 1

1, “3 l,-, continue a literal if x 2 1 and i I z

I, “3 ci-I start a copy if i 5 3 or x = 0 and i = 2
Pm cf + cYml continue a copy

Finally, we add one more machine to guarantee that
the strings of pi are realistic. In this machine, state si
means that the previous character was pi, so the index
of the next character must be at least pi-l:

Si -% S, (j 2 i - 1) (51

The cross product of these three machines has ap-
proximately 17K states and was analyzed mechanically
to prove a minimum ratio cycle of VS. Thus the policy
we have chosen is never off by more than 25 percent,
and the worst case is realized on a string that repeats a
pi pattern as follows:

1 2 3 4 5 6 7

PI0 PI0 Pg Pa P7 Ps P5

(6)
8 9 10 11 12 13 14 15

p4 p3 pz p1 p2 p10 p10 p9 *. .

(There is nothing special about 10; it was chosen to
illustrate a long copy and to match the example in
Appendix A.) The deterministic algorithm takes a copy
of length 10 in the first position, and then switches to a
literal for positions 11 and 12. Five bytes are used in
each repetition of the pattern. The optimal solution is
one position out of phase. It takes a copy of length 10 in
the second position, and then finds a copy of length 2 at
position 12, for a total of four bytes on each iteration.

We have abstracted the problem so that the possible
copy operations are described by a string of pi, and we
have shown a pathological pattern of p, that results in
% of the optimal encoding. There might still be some
doubt that such a string exists, since the condition that
our third machine (5) guarantees, F(i + 1) 1 F(i) - 1, is
a necessary but not sufficient condition. Nevertheless,
the details of an actual pathological string can be found
in Appendix A.

4. A SIMPLER DATA STRUCTURE
Although the quantity of code associated with Al is not
enormous, it is complicated, and the data structures are
fairly large. In this section, we present simpler methods
for finding the suffix and for propagating the window
position.

The alternative to a percolating update is to update
the positions in all nodes back to the root whenever a
new leaf is inserted. Then no updates are needed when
nodes are deleted. The update flags can be eliminated.

The alternative to suffix pointers is more compli-
cated. The cost of movement in a tree is not uniform;
moving deeper requires a hash table lookup, which is
more expensive than following a parent pointer. So we
can determine the suffix by starting at the suffix leaf
and following parent pointers back toward the root un-

Communications of the ACM 495

Research Contributions

til the suffix node is reached. The suffix leaf is known
because the strin,; at i matched the string at some ear-
lier window position j; the suffix leaf j + 1 is the next
entry in the leaf array. With this change, the suffix
pointers can be e: iminated.

tage of a simple hardware implementation. We will
return to the unary code in more detail shortly.

From a theoretical perspective, these modifications,
which have O(nd I worst case performance for a file of
size n and cut-off depth d, are inferior to the O(n) per-
formance of the suffix tree. For Al, with a cutoff of 16,
these modifications improve average performance, but
the A2 method discussed in the next section has such a
deep cut-off that : uffix pointers and percolated updates
are preferable.

5. A MORE POWERFUL ENCODING
The 4,096-byte window of Al is roughly optimal for
fixed size copy and literal codewords. Longer copies
would, on average, be found in a larger window, but a
larger displacement field would be required to encode
them. To exploit a larger window, we must use a
variable-width em:od.ing statistically sensitive to the
fact that recent window positions are more likely to be
used by copy codewords than those positions further
back. Similarly, it is advantageous to use variable-
width encodings for copy and literal lengths.

Fixed Huffman. Ideally, a fixed Huffman encoder
should be applied to source consisting of the copy
length and displacement concatenated together (to cap-
ture the correlation of these two fields). However, since
we wish to expand window size to 16384 and maxi-
mum copy length to 2000, the realities of gathering
sta.tistics and constructing an implementation dictate
that we restrict the input of the fixed Huffman com-
pressor to a size much smaller than 2000 X 16384 by
grouping together codes with nearly equal copy lengths
and displacements. To improve speed we use tables to
encode and decode a byte at a time. Nevertheless, the
fixed Huffman approach is the most complex and slow-
est of the three options compared here.

There are severid approaches we might use for vari-
able-length encoding. We could use fixed or adaptive
Huffman coding, arithmetic encoding, a variable-length
encoding of the inegers, or a manageable set of hand-
designed codewords. We eliminated from consideration
adaptive Huffman and arithmetic coding because they
are slow. Moreove.:, we felt they would provide (at best)
a secondary adaptive advantage since the “front end”
textual substitution is itself adapting to the input. We
experimented witf. a fixed Huffman encoding, a hand-
designed family of codewords, and a variable-length
encoding of the integers, so we will compare these
options briefly:

To decide how much compression could be increased
with a Fixed Huffman approach, we experimented with
several groupings of nearly equal copy lengths and dis-
placements, using a finer granularity for small values,
so that the input to the Fixed Huffman compressor had
only about 30,000 states, and we computed the entropy
to give a theoretical bound on the compression. The
smallest entropy we obtained was only 4 percent more
cornpact than the actual compression achieved with the
unary encoding described below; and any real imple-
mentation would do worse than an entropy bound.
Consequently, because the Fixed Huffman approach
did not achieve significantly higher compression, we
favor the simpler unary code, though this is not an
overwhelmingly clear choice.

Define a (start, step, stop) unary code of the integers
as follows: The n th codeword has n ones followed by a
zero followed by a field of size start + n . step. If the
fiehl size is equal to stop then the preceding zero can
be omitted. The integers are laid out sequentially
through these codewords. For example, (3, 2, 9) would
look like:

Hand-Designed Coc3ewords. This is a direct generaliza-
tion of Al, with shllrt copies that use fewer bits but
cannot address the full window, and longer copies that
can address larger ‘,locks further back in the window.
With a few codewords, this is fast and relatively easy to
implement. However, some care must be taken in the
choice of codewords to maximize compression.

Codeword Range
oxxx o-7
10 xxxxx 8-39
110 xxxxxxx 40-167
111 xxxxxxxxx 168-679

Appendix B contains a simple procedure that gener-
ates unary codes.

Variable-Length Integers. The simplest method we The A2 textual substitution method encodes copy
tried uses a unary code to specify field width, followed length with a (2, 1, 10) code, leading to a maximum
by the field itself. C:opy length and displacement fields copy length of 2044. A copy length of zero signals a
are coded indepenc ently via this technique, so any cor- literal, for which literal length is then encoded with a
relations are ignored. There are more elaborate codings (0, 1, 5) code, leading to a maximum literal length of 63
of the integers (such as [9], [lo], or [13]), that have been bytes. If copy length is non-zero, then copy displace-
used by [Is], and [:4] in their implementations of men.t is encoded with a (10, 2,14) code. The exact
Lempel-Ziv compression. These encodings have nice maximum copy and literal lengths are chosen to avoid
asymptotic properties :for very large integers, but the wasted states in the unary progressions; a ma.ximum
unary code is best far our purposes since, as we will see copy length of 2044 is sufficient for the kinds of data
shortly, it can be tuned easily to the statistics of the studied in Section 8. The Al policy for choosing be-
application. The unlry code has the additional advan- tween copy and literal codewords is used.

496 Commur~ications of the ,KEA April 1989 Volume 32 Number 4

Research Contributions

Three refinements are used to increase A2’s
compression by approximately 1 to 2 percent. First,
since neither another literal nor a copy of length 2 can
immediately follow a literal of less than maximum lit-
eral length, in this situation, we shift copy length codes
down by 2. In other words, in the (2, 1, 10) code for
copy length, 0 usually means literal, 1 means copy
length 2, etc.; but after a literal of less than maximum
literal length, 0 means copy length 3, 1 means copy
length 4, etc.

Secondly, we phase-in the copy displacement encod-
ing for small files, using a (10 - X, 2, 14 - x) code,
where x starts at 10 and descends to 0 as the number of
window positions grows; for example, x = 10 allows
2’ + 2’ + 24 = 21 values to be coded, so when the
number of window positions exceeds 21, x is reduced to
9; and so forth.

Finally, to eliminate wasted states in the copy dis-
placement encoding, the largest field in the (10 - x,
2, 14 - X) progression is shrunk until it is just large
enough to hold all values that must be represented; that
is, if v values remain to be encoded in the largest field
then smaller values are encoded with Llog,vJ bits and
larger values with rlog,vl bits rather than 14 - x bits.
This trick increases compression during startup, and, if
the window size is chosen smaller than the number of
values in the displacement progression, it continues to
be useful thereafter. For example, the compression
studies in Section 8 use an A2 window size of 16,384
characters, so the (10, 2, 14) code would waste 5,120
states in the 14-bit field without this trick.

Percolating update seems preferable for the imple-
mentation of A2 because of the large maximum copy
length; with update-to-root, pathological input could
slow the compressor by a factor of 20. Unfortunately,
the percolating update does not guarantee that the suf-
fix tree will report the nearest position for a match, so
longer codewords than necessary may sometimes be
used. This problem is not serious because the tree is
often shallow, and nodes near the root usually have
many sons, so updates propagate much more rapidly
than assumed in the analysis of Section 3. On typical
files, compression with percolated update is 0.4 percent
less than with update-to-root.

6. A FASTER COMPRESSOR
A2 has very fast expansion with a small storage re-
quirement, but, even though compression has constant
amortized time, it is 5 times slower than expansion. Al
and A2 are most appropriate in applications where
compression speed is not critical and where the per-
formance of the expander needs to be optimized, such
as the mass release of software on floppy disks. How-
ever, in applications such as file archiving, faster
compression is needed. For this reason, we have devel-
oped the Bl and B2 methods described here, which use
the same encodings as Al and AZ, respectively, but
compute window displacement differently. Copy code-
words are restricted to start at the beginning of the yth
previous codeword or literal character emitted; they

can no longer address every earlier character, but only
those where literal characters occurred or copy code-
words started; we refer to displacements computed this
way as “compressed displacements” throughout. Copy
length is still measured in characters, like Al. By in-
serting this level of indirection during window access,
compression speed typically triples, though expansion
and the rate of adaptation are somewhat slower.

With “compressed displacements,” suffix pointers
and update propagation are unnecessary and a simpler
PATRICIA tree can be used for the dictionary. Entries are
made in the tree only on codeword boundaries, and
this can be done in linear time by starting at the root
on each iteration. It is useful to create an array of per-
manent nodes for all characters at depth 1. Since copy
codewords of length 1 are never issued, it doesn’t mat-
ter that some permanent nodes don’t correspond to any
window character. Each iteration begins by indexing
into this node array with the next character. Then hash
table lookups and arc character comparisons are used
to descend deeper, as in Al. The new window position
is written into nodes passed on the way down, so up-
date propagation is unnecessary.

In short, the complications necessary to achieve con-
stant average time per source character with A2 are
eliminated. However, one new complication is intro-
duced. In the worst case, the 16,384 window positions
of B2 could require millions of characters, so we impose
a limit of 12 X 16,384 characters; if the full window
exceeds this limit, leaves for the oldest window posi-
tions are purged from the tree.

Because of slower adaptation, B2 usually compresses
slightly less than A2 on small files. But on text and
program source files, it surpasses A2 by 6 to 8 percent
asymptotically: the crossover from lower compression
to higher occurs after about 70,000 characters! A2 code-
words find all the near-term context, while B2 is re-
stricted to start on previous codeword boundaries but
can consequently reach further back in the file. This
gives B2 an advantage on files with a natural word
structure, such as text, and a disadvantage on files
where nearby context is especially important, such as
scanned images.

We also tried variations where the tree is updated
more frequently than on every codeword boundary and
literal character. All variations up to and including A2
can be implemented within the general framework of
this method, if speed is not an issue. For example, we
found that about 1 percent higher compression can be
achieved by inserting another compressed position be-
tween the two characters represented by each length 2
copy codeword and another 0.5 percent by also insert-
ing compressed positions after each character repre-
sented by length 3 copy codewords. However, because
these changes slow compression and expansion we
haven’t used them.

7. IMPROVING THE COMPRESSION RATIO
In Section 6 we considered ways to speed up compres-
sion at the cost of slower adaptation and expansion. In

April 1989 Volume 32 Number 4 Communications of the ACM 497

Research Contributions

this section we will explore the other direction: im-
proving the compression ratio with a slight cost to the
running time of the algorithm.

When a string 3cc:urs frequently in a file, all the
methods we havt! considered so far waste space in their
encoding; when ihe,y are encoding the repeating string,
they are capable of specifying the copy displacement to
multiple previou:: occurrences of the string, yet only
one string needs ‘:o be copied. By contrast, the data
structures we have used do not waste space. The re-
peating strings share a common path near the root. If
we base the copy codewords directly on the data struc-
ture of the dictionary, we can improve the compression
ratio significantly. (This brings us closer to the second
style of Ziv and L3mpel’s textual substitution work [19,
29, 431, where a dictionary is maintained by both the
compressor and e.cpander. However, since we still use a
window and an e:cplicit copy length coding, it is natural
to view this as a modification of our earlier compres-
sors, in the style cf Ziv and Lempel’s first textual sub-
stitution work.)

The C2 method uses the same PATRICIA tree data
structures as B2 tcl store its dictionary. Thus it takes
two pieces of info] mation to specify a word in the dic-
tionary: a node, and a location along the arc between
the node and its parent (since PATRICIA tree arcs may
correspond to strings with more than one character).
We will distinguis 1 two cases for a copy: if the arc is at
a leaf of the tree, then we will use a LeafCopy code-
word, while if the arc: is internal to the tree we will use
a NodeCopy codew 3rd.. Essentially, those strings appear-
ing two or more times in the window are coded with
NodeCopies, avoidi:lg the redundancy of A2 or B2 in
these cases.

The C2 encoding; begins with a single prefix bit that
is 0 for a NodeCopy, 1 for a LeafCopy or Literal.

For NodeCopy co jewords, the prefix is followed by a
node number in [0 . . maxNodeNo], where maxNodeNo is
the largest node nc.mber used since initialization; for
most files tested, maxNodeNo is about 50 percent the
number of leaves. Following the node number, a dis-
placement along the arc from the node to its parent is
encoded; for most lJodeCopy codewords the incoming
arc is of length 1, so no length field is required. If a
length field is requ..red, 0 denotes a match exactly at
the node, 1 a displacement 1 down the arc from the
parent node, etc. Rilrely is the length field longer than
one or two bits becimse the arc lengths are usually
short, so all possible: displacements can be enumerated
with only a few bit!;. For both the node number and the
incoming arc displacement, the trick described in Sec-
tion 5 is used to eliminate wasted states in the field;
that is: if z, values must be encoded, then the smaller
values are encoded with Llog,vJ bits and larger values
with rlog,vl bits.

LeafCopies are coc.ed with unary progressions like
those of A2 or B2. A (1, 1, 11) progression is used to
specify the distance of the longest match down the leaf
arc from its parent node, with 0 denoting a literal; this

progression leads to a maximum copy leng,th of 4094
bytes. Since another literal never occurs immediately
after a literal of less than maximum literal length, the
LeafCopy arc distance progression is shifted down by 1
when the preceding codeword was a literal (i.e., arc
displacement 1 is coded as 0, 2 as 1, etc.). On a cross
section of files from the data sets discussed. later, dis-
tance down the leaf arc was highly skewed, with about
half the arc displacements occurring one character
down the leaf arc. Because of this probabil.ity spike at 1
and the rapid drop off at larger distances, the average
length field is small. Following the length field, the
window position is coded by gradually phasing in
a (10, 2, 14) unary progression exactly like B2’s.

Literals are coded by first coding a LeafCopy arc dis-
placement of 0 and then using a (0, 1, 5) un.ary progres-
sion for the literal length exactly like B2.

Unlike A2 and B2, the expander for C2 must main-
tain a dictionary tree exactly like the compressor’s tree
to permit decoding. Notice that this is not as onerous as
it :might seem. During compression, the algorithm must
search the tree downward (root toward leaves) to find
the longest match, and this requires a hash table access
at each node. By contrast, the expander is told which
node was matched, and can recover the length and
window position of the match from the node. No hash
table is required, but the encoding is restricted: a copy
codeword must always represent the longest match
found in the tree, in particular, the superior heuristic
used by B2 to choose between Literal and Copy code-
words must be discarded; instead, when the longest
match is of length 2 or more, a copy codeword must
always be produced. With this restriction, the expander
cart reconstruct the tree during decoding sirnply by
hanging each new leaf from the node or arc indicated
by the NodeCopy or LeafCopy codeword, or in the case of
literals, by hanging the leaf from the permanent depth
1 node for each literal character.

8. EMPIRICAL STUDIES
In this section, we compare the five compression meth-
ods we have developed with other one-pass, adaptive
methods. For most other methods, we do not have well-
tun’ed implementations and report only compression
results. For implementations we have tuned for effi-
ciency, speed is also estimated (for our 3 MIP, Is-bit
word size, 8 megabyte workstations). The execution
times used to determine speed include the time to
open, read, and write files on the local disk (which has
a relatively slow, maximum transfer rate of .‘j megabits
per second); the speed is computed by dividi-ng the un-
compressed file size by the execution time for a large
file.

We tested file types important in our working envi-
ronment. Each number in Table I is the sum of the
compressed file sizes for all files in the group divided
by the sum of the original file sizes. Charts l--3 show
the dependency of compression on file size for all of the

498 Communications of the IICM April 1989 Volume 32 Number 4

Research Contributions

1.2

r

. HO. H,

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

- .- .- .- KG

-. -. -. - ”

. cw

\
?..\
: ‘:,

: \:,

: \.
‘\

:
\i

.*..........*........................... - HO o,732 V 0.749 KG 0.751

*.
-.
*.

‘. HI 0.401
*.

*/..Y’
.,.. *.a

. ..*

/
. ..*

. ..- *.
‘.

*.
. ..*

. ..* ** . . cw 0.359
..**

Chart 1. Compression vs. File Size,Data Set SC

compression methods tested on the source code (SC)
data set.

Data Sets
SC Source Code. All 8-bit Ascii source files from
which the boot file for our programming environment
is built. Files include some English comments, and a
densely-coded collection of formatting information at
the end of each file reduces compressibility. The files
themselves are written in the Cedar language. (1185
files, average size 11 Kbytes, total size 13.4 Mybtes)

TM Technical Memoranda. All files from a directory
where computer science technical memoranda and
reports are filed, excluding those containing images.
These files are s-bit Ascii text with densely-coded for-
matting information at the end (like the source code).
(134 files, average size 22 Kbytes, total size 2.9 Mbytes)

NS News Service. One file for each work day of a
week from a major wire service; these files are 8-bit
Ascii with no formatting information. Using textual
substitution methods, these do not compress as well as
the technical memoranda of the previous study group,
even though they are much larger and should be less
impacted by startup transient; inspection suggests that
the larger vocabulary and extensive use of proper
names might be responsible for this. (5 files, average
size 459 Kbytes, total size 2.3 Mbytes)

CC Compiled Code. The compiled-code files produced
from the SC data set. Each file contains several differ-
ent regions: symbol names, pointers to the symbols,
statement boundaries and source positions for the de-
bugger, and executable code. Because each region is
small and the regions have different characteristics,
these files severely test an adaptive compressor. (1220
files, average size 13 Kbytes, total size 16.5 Mbytes)

BF Boot File. The boot file for our programming envi-
ronment, basically a core image and memory map.
(1 file, size 525 Kbytes)

SF Spline Fonts. Spline-described character fonts used
to generate the bitmaps for character sets at a variety of
resolutions. (94 files, average size 39 Kbytes, total size
3.6 Mbytes)

RCF Run-coded Fonts. High-resolution character
fdnts, where the original bitmaps have been replaced
by a run-coded representation. (68 files, average size 47
Kbytes, total size 3.2 Mbytes)

SNI Synthetic Images. All 8 bit/pixel synthetic image
files from the directory of an imaging researcher. The
44 files are the red, green, and blue color separations
for 12 color images, 2 of which also have an extra file to

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

?
\
i
i

.,..*............ HO. HI

i -.-.-.-.-, MWI, WV2
i i -. -. -. - ”

i a .- .- .-
i

ESTW

i
i

‘.
A

i
i

\ *\. \.
\ * \. 1.
i ! \ \

\ ‘! i

..~yi..:~.:!, ...*
. \ 1. ;,
i ‘, \i

i ', ‘1;\
'\ + ,* '4

'\ N.?.&
i +.

'\ VJ\
i \.“d..

‘\ \. ‘.
\...“’ .*....

.* ..** . . x.
. ..* -A

/.**
. ..*

..- . ..
..*-

HO 0.732

0.428

Chart2. Compression vs. File Size, Data Set SC

April 1989 Volume 32 Number 4 Communications of the ACM 499

Research Contributions

I

. Al. A2

1.1 . -. -. -. 81. 82

1.0

0.9

0.8

0.7

0.9

0.5

0.4

0.3

HO 0.732

HI 0.401

Al 0.43 91 0.449

A2 0.366 62 0.372 c2 0.36

Chart 3. Compression vs. File Size, Data Set SC

encode backgrour d transparency; in addition, there are
6 other grey scale images. (44 files, average size 328
Kbytes, total size 1L4.4 Mbytes)

SC1 Scanned Images. The red separations for all 8
bit/pixel scanned in color images from the directory of
an imaging researcher. The low-order one or two bits of
each pixel are probably noise, reducing compressibility.
(12 files, average size 683 Kbytes, total size 8.2 Mbytes)

BI Binary Images. CCITT standard images used to
evaluate binary facsimile compression methods. Each
file consists of a lll8-byte header followed by a binary
scan of 1 page (17;:8 pixels/scan line X 2376 scan lines/
page). Some images have blocks of zeros more than
30,000 bytes long. Because these files are composed of
l-bit rather than 8-bit items, the general-purpose com-
pressors do worse tha.n they otherwise might. (8 files,
average size 513 Kbytes, total size 4.1 Mbytes)

The special-purpose CCITT 1D and 2D compression
methods reported 1.n (181 achieve, respectively, 0.112
and 0.064 compression ratios on these standard images
when the extranecas end-of-line codes required by the
facsimile standard are removed and when the extra-
neous 148-byte header is removed. The special-purpose
CCITT 2D result is significantly more compact than any
general purpose mathod we tested, and only CW and
C2 surpassed the 1 D result.

Measurements and Compression Methods

HO and Hl. These are entropy calculatio:ns made on a
per file basis according to:

n-1
HO = -C P(X = Ci)lO&P(X = Ci), (7)

i=O

n-1

HI = - 2 P(X = Ci)P(Ij = Cj 1 X '= Ci)
i,j=O

’ lO&P(y = Cj 1 X = Ci)

631

where x is a random symbol of the source, xy is a
randomly chosen pair of adjacent source characters,
and ci ranges over all possible symbols. Because of the
small file size, the curves in Charts 1 to 3 drop off to
th.e left. In theory, this small sampling problem can be
corrected according to [2], but we have found it diffi-
cult to estimate the total character set size in order to
apply these corrections. Nevertheless, Chart 1 shows
that HO is a good estimator for how well a memoryless
(zfero-order) compressor can do when file size is a large
multiple of 256 bytes, and Hl bounds the c:ompression
for a first-order Markov method. (None of our files were
large enough for Hl to be an accurate estimator.)

KG and V. These adaptive methods maintain a Huff-
man tree based on the frequency of characters seen
so far in a file. The compressor and expander have
roughly equal performance. The theory behind the
KG approach appears in [ll] and [23]. The similar V
method, discussed in [37] should get better compression
during the startup transient at the expense of being
about 18 percent slower. It is also possible to bound the
performance of Vitter’s scheme closely to tbat of a fixed
non-adaptive compressor. Except on the highly com-
prlessible CCITT images, these methods ach.ieve
compression slightly worse than HO, as expected. But
because of bit quantization, the compression of the
CCITT images is poor-arithmetic coding would com-
press close to HO even on these highly compressible
sources.

CW. Based on [6], this method gathers higher-order
statistics than KG or V above (which we ran only on
zeroth-order statistics). The method that Cleary and
Witten describe keeps statistics to some order o and
encodes each new character based on the context of the
o preceding characters. (We’ve used o = 3, because any
higher order exhausts storage on most of our data sets.)
If the new character has never before appeared in the
same context, then an escape mechanism is used to
back down to smaller contexts to encode the character
using those statistics. (We’ve used their escape mecha-
nism A with exclusion of counts from higher-order con-
tex.ts.) Because of high event probabilities in some
higher-ordered contexts and the possibility of multiple
escapes before a character is encoded, the fractional bit
loss of Huffman encoding is a concern, so [6] uses arith-
metic encoding. We have used the arithmetic encoder
in 11401.

500 Communications of the ACM April 1989 Volume ;$2 Number 4

Research Contributions

TABLE I. Comparison of Compression Methods

HO .732 .612 ,590 .780
Hl .401 ,424 .467 540
KG .751 .625 .595 .804
V .749 .624 .595 .802
cw .369 ,358 .326 .768

MWl .508 .470 ,487
MW2 .458 .449 .458
uw .521 .476 .442
BSTW .426 .434 .465

.770

.784

.796
- .684

Al .430 .461 .520 .741
A2 .366 .395 .436 .676
Bl .449 .458 .501 .753
B2 .372 .403 .410 .681
c2 .360 .376 .375 .688

.752

.756

.756

.544

.538
,616
.547
.527

.626 .756 .397 ,845 .148

.380 .597 .I81 ,510 .lOl

.637 ,767 .415 .850 .205

.637 ,766 .414 .850 .205

.516 ,649 .233 .608 .106

.558

.526
561

.705 .259 .728

.692 .270 .774

.728 .255 .697
,581 - -

.117

.117
,118
-

.502

.460

.505

.459

.445

.657 .351 .766 .215
,588 ,259 .709 .123
,676 .349 .777 .213
.603 .255 .714 .117
.578 .238 .662 .105

As Table I shows, CW achieves excellent compres-
sion. Its chief drawbacks are its space and time per-
formance. Its space requirement can grow in proportion
to file size; for example, statistics for o = 3 on random
input could require a tree with 2564 leaves, though
English text requires much less. The space (and conse-
quently time) performance of CW degrades dramati-
cally on “more random” data sets like SNI and SCI. A
practical implementation would have to limit storage
somehow. Even on English, Bell, Cleary, and Witten
estimate that Moffat’s tuned implementation of CW
is 3 times slower compressing and 5 times slower ex-
panding than C2 [4].

MWl. This method, described in [29], is related to the
second style of Lempel-Ziv compression, alluded to in
the introduction. It uses a Trie data structure and 12-bit
codes. Initially (and always) the dictionary contains 256
one-character strings. New material is encoded by find-
ing the longest match in the dictionary, outputting the
associated code, and then inserting a new dictionary
entry that is the longest match plus one more charac-
ter. After the dictionary has filled, each iteration re-
claims an old code from among dictionary leaves, fol-
lowing a LRU discipline, and reuses that code for the
new dictionary entry. The expander works the same
way. MWl is simple to implement and is balanced in
performance, with good speed both compressing and
expanding (250,000 bits/set and 310 bits/set respec-
tively). The original method used 12-bit codes through-
out for simplicity and efficiency. However, our imple-
mentation starts by using g-bit codewords, increasing to
10, 11, and finally to 12 bits as the dictionary grows to
its maximum size; this saves up to 352 bytes in the
compressed file size. On text and source code, Miller
and Wegman determined that the 12-bit codeword size
is close to optimal for this method.

abcdefghi appears frequently in a document, then ab
will be in the dictionary after the first occurrence, abc
after the second, and so on, with the full word present
only after 8 occurrences (assuming no help from similar
words in the document). Al below, for example, would
be able to copy the whole word abcdefghi after the first
occurrence, but it pays a penalty for the quick response
by having a length field in its copy codeword. The idea
of MW2 is to build dictionary entries faster by combin-
ing adjacent codewords of the MWl scheme. Longer
words like abcdefghi are built up at an exponential
rather than linear rate. The chief disadvantage of MW2
is its increased complexity and slow execution. Our
implementation follows the description in [29] and uses
an upper limit of 4096 dictionary entries (or 12-bit
codewords). We did not implement the 9-12 bit phase-
in that was used in MWl so the size-dependent charts
underestimate MW2’s potential performance on small
files.

UW. This is the Compress utility found in the Berke-
ley 4.3 Unix, which modifies a method described in a
paper by Welch [39]; the authors of this method are
S. Thomas, J. McKie, S. Davies, K. Turkowski, J. Woods,
and J. Orost. It builds its dictionary like MWl, gradu-
ally expanding the codeword size from 9 bits initially
up to 16 bits. The dictionary is frozen after 65,536 en-
tries, but if the compression ratio drops significantly,
the dictionary is discarded and rebuilt from scratch. We
used this compressor remotely on a Vax-785, so it is
difficult to compare its running time and implementa-
tion difficulties with the other methods we imple-
mented. Nevertheless, because it does not use the LRU
collection of codes, it should be faster than MWl. How-
ever, it has a larger total storage requirement and gets
worse compression than MWl on most data sets
studied.

MW2. One drawback of MWl is the slow rate of BSTW. This method first partitions the input into
buildup of dictionary entries. If, for example, the word alphanumeric and non-alphanumeric “words,” so it is

April 1989 Volume 32 Number 4 Communications of the ACM 501

Research Contributions

specialized for text, though we were able to run it on
some other kind!; of data as well. The core of the com-
pressor is a mow+to-front heuristic. Within each class,
the most recentllr seen words are kept on a list (we
have used list si2 e 2156). If the next input word is al-
ready in the word list, then the compressor simply
encodes the posi..ion of the word in the list and then
moves the word to the front of the list. The move-to-
front heuristic means that frequently used words will
be near the front of the list, so they can be encoded
with fewer bits. If the next word in the input stream is
not on the word ..ist, then the new word is added to the
front of the list, while another word is removed from
the end of the list, and the new word must be com-
pressed character-by-character.

Since the empiriccal results in [5] do not actually give
an encoding for the positions of words in the list or for
the characters in new words that are output, we have
taken the liberty of using the V compressor as a subrou-
tine to generate these encodings adaptively. (There are
actually four cop:.es of Vitter’s algorithm running, one
to encode positio:ls and one to encode characters in
each of two parti:ions.) Using an adaptive Huffman is
slow; a fixed encoding would run faster, but we expect
that a fixed encoding would slightly reduce compres-
sion on larger files while slightly improving compres-
sion on small files. We could not run BSTW for all of
the data sets, sine e the parsing mechanism assumes
human-readable text and long “words” appear in the
other data sets. M’hen the unreadable input parsed
well, as in the case of run-coded fonts, the compression
was very good.

Al. This is our basic method described earlier. It has
a fast and simple expander (560,000 bits/set) with a
small storage requirement (10,000 bytes). However, the
compressor is much slower and larger (73,000 bits/set,
145,000 bytes using scan-from-leaf and update-to-root).
The encoding has a :maximum compression to ‘/a = 12.5
percent of the original file size because the best it can
do is copy 16 cha:*acters with a 16-bit codeword.

Caveat: As wz’ mentioned above, the running times
reported include :he file system overhead for a rela-
tively slow disk. Yo Iprovide a baseline, we timed a file
copy without con.pression and obtained a rate of
760,000 bits per second. Thus, some of the faster expan-
sion rates we report are severely limited by the disk.
For example, we l?stimate that without disk overhead
the Al expander would be about twice as fast. On the
other hand, remo-ring disk overhead would hardly af-
fect the compress:.on speed of Al.

AZ. This method, discussed in Section 5, enlarges the
window to 16,384 characters and uses variable-width
unary-coded copy and literal codewords to significantly
increase compres!;ion. The running time and storage
requirements are 410,000 bits/set and 21,000 bytes for
expansion and 60 000 bits/set and 630,000 bytes for
compression (using suffix pointers and percolated
update).

Bl. This method, discussed in Section 6, uses the Al
encoding but triples compression speed by updating the
tree only at codeword boundaries and literal charac-
ters. The running time and storage requirements are
4’70,000 bits/set and 45,000 bytes for expansion and
2:30,000 bits/set and 187,000 bytes for compression.

B2. This method, discussed in Section 6, uses the
same encoding as A2 but triples compression speed by
updating the tree only at codeword boundaries and lit-
eral characters. The compressor and expander run at
170,000 and 380,000 bits/set, respectively, and have
storage requirements of 792,000 and 262,000 bytes.

C2. This method, discussed in Section 7, uses the
same data structures as B2 but a more powerful encod-
ing based directly upon the structure of th’e dictionary
tree. Compression is about the same and expansion
about 25 percent slower than B2; the compressor uses
about the same storage as B2, but the expander uses
more (about 529,000 bytes).

Table I highlights some differences between textual
substitution methods like C2 and statistical methods
like CW. (Time and space performance differences have
been discussed earlier.) There are several data sets
where these methods differ dramatically. On NS, CW is
significantly better than C2. We believe that this is be-
cause NS shows great diversity in vocabulary: a prop-
erty that is troublesome for textual substitution, since it
camnot copy new words easily from elsewhere in the
document, but is benign for CW, since new words are
likely to follow the existing English statistics. On CC,
for example, C2 is significantly better than CW. We
believe that this is because CC contains several radi-
ca.lly different parts, e.g. symbol tables, and compiled
code. C2 is able to adjust to dramatic shifts within a
file, due to literal codewords and copy addressing that
favors nearby context, while CW has no easy way to
rapidly diminish the effect of older statistic:s.

For all of our methods, A2, B2, and C2, window size
is a significant consideration because it determines
storage requirements and affects compression ratios.
Chart 4 shows compression as a function of window
size for the NS data set (concatenated into ,a single file
to avoid start-up effects), and for the BF boot file. These
two data sets were typical of the bimodal behavior we
observed in our other data sets: large human-readable
files benefit greatly from increasing window size, while
other test groups show little improvement beyond a
window size of 4K.

9. CONCLUSIONS
W’s have described several practical methods for loss-
less data compression and developed data structures to
support them. These methods are strongly adaptive in
the sense that they adapt not only during startup but
als:o to context changes occurring later. They are suit-
able for most high speed applications because they
make only one pass over source data, use only a con-

502 Communications of tl e ACM April 1989 Volume 32 Number 4

Chart 4. Compression vs. Window Size, Data Set NS (bottom)
Data Set BF (top)

stant amount of storage, and have constant amortized
execution time per character.

Our empirical studies point to several broad generali-
zations. First, based on the HO and Hl theoretical lim-
its, textual substitution via A2, B2, or C2 surpasses
memoryless or first-order Markov methods applied on a
character-by-character basis on half the data sets. On
the other half, even the CW third-order method can’t
achieve the Hl bound. This suggests that, to surpass
textual substitution for general purpose compression,
any Markov method must be at least second-order, and
to date, all such methods have poor space and time
performance.

Going beyond these empirical results, an important
practical consideration is the tradeoff among speed,
storage, and degree of compression; speed and storage
have to be considered for both compression and expan-
sion. Of our own methods, A2 has very fast expansion
with a minimal storage requirement; its weakness is
slow compression; even though the suffix tree data
structure with amortized update has constant amor-
tized time per character, compression is still seven
times slower than expansion. However, in applications
which can afford relatively slow compression, A2 is
excellent; for example, A2 would be good for mass dis-
tribution of software on floppy disks or for overnight
compression of files on a file server. Furthermore, if the
parallel matching in the compression side of A2 were
supported with VLSI, the result would be a fast, power-
ful method requiring minimal storage both compressing
and expanding.

Secondly, the methods we’ve developed adapt rap-
idly during startup and at transitions in the middle of
files. One reason for rapid adaptation is the use of
smaller representations for displacements to recent po-
sitions in the window. Another reason is the inclusion
of multi-character literal codewords. Together the liter-
als and short displacements allow our methods to per-
form well on short files, files with major internal shifts
of vocabulary or statistical properties, and files with
bursts of poorly compressing material-all properties of
a significant number of files in our environment.

B2 provides nearly three times faster compression
than A2 but has somewhat slower expansion and adap-
tation. Thus B2 is well suited for communication and
archiving applications.

Al and BI do not compress as well as A2 and B2,
respectively, but because of their two-codeword, byte-
aligned encodings they are better choices for applica-
tions where simplicity or speed is critical. (For exam-
ple, J. Gasbarro has designed and implemented an
expansion method like Al to improve the bandwidth of
a VLSI circuit tester [12].)

Thirdly, it appears that the displacement-and-length C2 achieves significantly higher compression than
approach to textual substitution is especially effective B2, but its expander is somewhat slower and has a

Research Contributions

on small files. On ll,Oo@byte program source files, for
example, A2 and B2 were over 20 percent more com-
pact than textual substitution methods which did not
use a length field (VW, MWl, and MW2). This is not
surprising because the particular advantage of the
length field in copy codewords is rapid adaptation on
small files. However, even on the largest files tested, A2
and B2 usually achieved significantly higher compres-
sion. Only on images did other methods compete with
them; our most powerful method, C2, achieved higher
compression than any other textual substitution
method we tested on all data sets. The effect of a length
field is to greatly expand dictionary size with little or
no increase in storage or processing time; our results
suggest that textual substitution methods that use a
length field will work better than those which do not.

Fourthly, studies of A2, B2, and C2 using different
window sizes showed that, for human-readable input
(e.g., English, source code), each doubling of window
size improves the compression ratio by roughly 6 per-
cent (for details see Chart 4). Furthermore, the data
structures supporting these methods scale well: running
time is independent of window size, and memory usage
grows linearly with window size. Thus increasing win-
dow size is an easy way to improve the compression
ratio for large files of human-readable input. For other
types of input the window size can be reduced to 4096
without significantly impacting compression.

April 1989 Volume 32 Number 4 Communications of the ACM 503

Research Contributions

larger storage requirement. In the compression study
reported in Sect on a, C2 achieved the highest compres-
sion of all methods tested on 6 of the 10 data sets.

results demonstrate the value of window-based textual
substitution. Together the A, B and C methods offer
p,ood options that can be chosen according: to resource

1

a

(

r
C

f:

II

1:
S

0

t1
a
e

We believe th St our implementations and empirical requirements.

-

APPENDIX A
A Pathological Example

.,

We now show a string that has the F pattern of
equation (6) of Section 3:

1 2 3 2 5 6 7
710 pm p9 pl3 p7 p6 p5

a '3 10 11 12 13 14 15
(6)

P4 F’3 p2 p1 p2 pm p10 p9 . . .

-Iereafter we vrill stop abstracting the string by its
:opy lengths; capital letters are strings, small letters
tre single char icters, and i, j, r, p, b are integers. The
lathological stl,ing follows the pattern:

It remains to create the match of length 2 at posi-
tjon 12 in equation (6). For this purpose, each of the
c, above are either ei or 0,. They will always precede
respectively even and odd numbered sj, and match
in pairs with their following sj’s. For example, the e,,
in G,, = slBls,eoszBzsz . . . will match with s2. The
e,,sZ match is hidden in a minor block segregated
from the odd numbered si:

B. = xeosoeos,eos4 . . . e&-z

MOM, . . . AA,-,M,.,M, . . . M,-IMoM, . . . (9)

where the parameter I is chosen large enough so
hat one iteratim exceeds the finite window (this
Irevents direct copying from the beginning of one
VI, to a subsequent MO). Within each Mi we have
:roups,

M, = GtoGi~Giz . . . Gi(n/p-1)s

Ind each group is:

(10)

B P/2 = ~~‘?s1~0s3%% . . . o,Jsb-,

(111
This causes p and n to be related by:

BzSI,+ip+2CiSjp+3 Bp-1S[j+ilp+p-tCi. pb = 2nr

We have introduced two more parameters: p is the
lumber of mirmr blocks B;, and II is the number of s
:haracters. All 3f t.he s subscripts in the above for-
nula are computed mod n. The groups skew so that,
or example, th? beginning of Glo = sIBI sP+, . . .
vi11 not match entirely with the beginning of
.
n,,, = slBlsl H will, however, match in two
Iarts: the prefi>. slBl appears in both strings, and the
uffix Glo = . . BI,~p+l . . . will match with the suffix
If G,,l = . . . BIsi,+l. If, for example, B1 has 9 charac-
ers, this gives two consecutive locations where
c:opy of size II) is possible, in the pattern of

quation 6.

In the case of our running example, where the finite
window is size 4096 and the maximum copy length
is 16 characters, an appropriate setting of the above
parameters is:

r = 2, b = a, p = 100, II = 200 (13)

We need to take some care that the heuristic does
not find the optimal solution. It turns out that if we
just start as in equation (g), then the first MO will not
compress well, but the heuristic will start the behav-
ior we are seeking in M,. Asymptotically we achieve
a worst case ratio of % between the optimal algo-
rit hm and the policy heuristic.

APPE,NDIX B
Computing a Unary-Based Variable Length

Encoding of the Integers

In Section 5 we defined a (start, step, stop) unary
code of the integers as a string of n ones followed by
a zero followed by a field of j bits, where j is in the
arithmetic prog:*ession defined by (start, step, stop).
This can be defined precisely by the following
encoder:

Encode Var:
PROC [out: CARDINAL, start, step, last: CARIIINAL] - (

UNTIL out < PowerZ[start] no
PutBits[l,l];

out t out - PowerZ[start];
start c start + step;

504 Communications of tile ACM April 1989 Volume 32 Number 4

Research Contributions

ENDLOOP;

IF start C last THEN PutBits[out, start + l]
-0 followed by field of size “start”

ELSE IF Start> l&THEN ERROR

ELSE PutBits[out, start]; -save a bit

1;

PutBits: PRoc[out: CARD, bits: INTEGER] -

Output the binary encoding of “out” in a field of size
“bits.”

Notice that the encoder is able to save one bit in the
last field size of the arithmetic progression.

Acknowledgments. We would like to thank Jim
Gasbarro, John Larson, Bill Marsh, Dick Sweet, Ian
Witten, and the anonymous referees for helpful com-
ments and assistance.

REFERENCES
1. Abramson, N. information Theory and Coding. McGraw-Hill, 1963. 61.
2. Basbarin, C.P. On a statistical estimate for the entropy of a sequence

of independent random variables. Theory Prob. Appl. 4, (1959),
333-336.

3. Bell, T.C. Better OPM/L text compression. IEEE Trans. Commun.
COM-34,lZ (1986). 1176-1182.

4. Bell, T.C.. Cleary, J.C.. and Witten. I.H. Text Compression. In press
with Prentice-Hall.

5. Bentley, J.L.. Sleator, D.D., Tarjan, R.E., and Wei, V.K. A locally
adaptive data compression scheme. Commun. ACM 29, 4 (1985).
320-330.

6. Cleary, J.G., and Witten, I.H. Data compression using adaptive cod-
ing and partial string matching. IEEE Trans. Commun. COM-32.4
(1984), 396-402.

7. Cormack, G.V., and Horspool, R.N.S. Data compression using dy-
namic markov modelling. The Computer Journal, 30, 6 (1987).
541-550.

8. Dantzig, G.B., Blattner. W.O., and Rae. M.R. Finding a Cycle in a
Graph with Minimum Cost to Time Ratio with Application to a Ship
Routing Problem. Theory of Graphs, P. Rosenstiehl, ed. Gordon and
Breach, 1966.

9. Elias, P. Universal codeword sets and representations of the integers.
IEEE Trans. Info. Theory IT-21, 2 (1975). 194-203.

10. Even, S.. and Rodeh, M. Economical Encoding of Commas Between
Strings. Commun. ACM 21 (1978), 315-317.

11. Gallager, R.G. Variations on a theme by Hoffman. ZEEE Trans. Info.
Theory IT-24, 6 (1978), 668-674.

12. Gasbarro, J. An Architecture for High-Performance VLSI Testers.
Ph.D. dissertation, Department of Electrical Engineering, Stanford
University, 1988.

13. Golomb, S.W. Run-Length Encodings. IEEE Trans. Info. Theory IT-12
(19661, 399-401.

14. Guazzo, M. A General Minimum Redundancy Source-coding Algo-
rithm. IEEE Tmns. Info. Theory IT-26,l (1980), 15-25.

15. Guoan, G., and Hobby, J. Using string matching to compress Chinese
characters. Stanford Tech. Rep. STAN-CS-82-914, 1982.

16. Horspool. R.N.. and Cormack, G.V. Dynamic Markov Modelling-
A Prediction Technique. In Proceedings of rhe 19th Annual Hawaii
International Conference on System Sciences (1986), 700-707.

17. Hoffman, D.A. A method for the construction of minimum-redun-
dancy codes. In Proceedings of the I.R.E. 40 (1952), 1098-1101.

18. Hunter. R., and Robinson, A.H. International digital facsimile coding
standards. In Proceedings of the IEEE 68, 7 (1980). 854-667.

19. Jakobsson, M. Compression of character strings by an adaptive dic-
tionary. BIT 25 (1985), 593-603.

20. Jones, C.B. An efficient coding system for long source sequences.
IEEE Trans. Info. Theory IT-27, 3 (1981), 280-291.

21. Kempf, M., Bayer, R.. and Giintzer, U. Time Optimal Left to Right
Construction of Position Trees. Acta Informutica, 24 (1987), 461-474.

22. Knuth, D.E. The Art of Compukr Programming, Volume 3: Sorting and
Searching. Addison-Wesley, second printing, 1975.

23. Knutb, D.E. Dynamic Huffman coding. I. Algo. 6 (1985), 163-180.
24. Langdon, G.G., Jr. A note on the Ziv-Lempel model for compressing

individual sequences IEEE Trans. Info. Theory IT-29. 2 (1983),
284-287.

25. Langdon, G.G., Jr., and Rissanen, J. Compression of Black-White
Images with Arithmetic Coding. IEEE Trans. Commun. COM-29, 6
(19&I), 858-867.

26. Langdon, G.G., Jr., and Rissanen, J. A Double Adaptive File
Compression Algorithm. IEEE Trans. Commun. COM-31, 11 (1983),
1253-1255.

27. Lax&r, E.L. Combinatorial Optimization: Networks nnd Mntroids. Holt,
Rinehart and Winston, 1976.

28. McCreight, E.M. A space-economical suffix tree construction algo-
rithm. /. ACM 23, 2 (1976), 262-272.

29. Miller, VS., and Wegman. M.N. Variations on a theme by Ziv and
Lempel. IBM Res. Rep. RC 10630 (#47798). 1984. Combinatorial Algo-
rithms on Words, NATO ASI Series F. 12 (1985). 131-140.

30. Morrison, D.R. PATaxm-Practical Algorithm To Retrieve Informa-
tion Coded in Alphanumeric. 1. ACM 1.5, 4 (1968), 514-534.

31. Pasco. R.C. Source Coding Algorithms for Fast Dafa Compression. Ph.D.
dissertation. Department of Electrical Engineering, Stanford Univer-
sity, 1976.

32. Rissanen, J.. and Langdon. G.G.. Jr. Arithmetic Coding. IBM Journal
of Research and Developmenf 23, 2 (1979). 149-162.

33. Rissanen, J.. and Langdon, G.G., Jr. Universal Modeling and Coding.
IEEE Trans. Info. Theory IT-27. 1 (1981). 12-23.

34. Rodeh. M., Pratt, V.R.. and Even. S. Linear algorithm for data
compression via string matching. J. ACM 28, 1 (1981). 16-24.

35. Shannon, C.E. A mathematical theory of communication. The Bell
Syskm Technical @unal 27. 3, 379-423 and 27, 4 (1948), 623-656.

36. Storer, J.A., and Szymanski. T.G. Data compression via textual sub-
stitution. 1. ACM 29, 4 (1982), 928-951.

37. Vitter, J.S. Design and analysis of dynamic Hoffman coding. Brown
University Technical Report No. CS-85.13, 1985.

38. Weiner, P. Linear Pattern Matching Algorithms. Fourteenth Annual
Symposium on Switching and Automafa Theory, l-11, 1973.

39. Welch, T.A. A technique for high performance data compression.
IEEE Camp. 17,6 (1984). 8-19.

40. Witten, I.H.. Neal. R.M., and Cleary J.G. Arithmetic coding for data
compression. Commun. ACM 30. 6 (1987), 520-540.

41. Ziv, J. Coding theorems for individual sequences IEEE Trans. Info.
Theory IT-24, 4 (1978), 405-412.

42. Ziv, J.. and Lempel, A. A universal algorithm for sequential data
compression. IEEE Trans. Info. Theory IT-23, 3 (1977), 337-343.

43. Ziv, J., and Lempel, A. Compression of individual sequences via
variable-rate coding. IEEE Trans. Info. Theory IT-24, 5 (19781,
530-536.

CR Categories and Subject Descriptors: E.4 [Data]: Coding and Infor-
mation Theory-data compaction and compression; F.2.2 [Analysis of Al-
gorithms and Problem Complexity]: Nonnumerical Algorithms and
Problems-compufations on discrete structures, pattern matching

General Terms: Algorithms, Design, Experimentation, Theory
Additional Key Words and Phrases: Amortized efficiency, automata

theory, minimum cost to time ratio cycle, suffix trees, textual substitu-
tion

ABOUT THE AUTHORS:

EDWARD R. FIALA is a member of the research staff in
the Computer Sciences Laboratory at the Xerox Palo Alto
Research Center. He has general system interests including
data compression and digital video. Author’s Present Address:
Xerox PARC, 3333 Coyote Hill Rd., Palo Alto, CA 94304; ARPA
Internet: Fiala.pa@Xerox.com

DANIEL H. GREENE is presently a member of the research
staff at Xerox’s Palo Alto Research Center (PARC). He received
his Ph.D. in 1983 from Stanford University. His current re-
search interests are in the design and analysis of algorithms for
data compression, computational geometry, and distributed
computing. Author’s Present Address: Xerox PARC. 3333 Coy-
ote Hill Rd., Palo Alto, CA 94304; Greene.pa@Xerox.com

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

April 1989 Volume 32 Number 4 Communications of the ACM

