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Abstract
Grace is a dynamic object oriented programming language
designed to aid programming education. We present a for-
mal model of and give an operational semantics for its object
model and name resolution algorithm. Our main contribu-
tions are a systematic model of Grace’s name resolution using
scope graphs, relating linguistic features to other languages,
and an operationalization of this model in the form of an
operational semantics which is readable and executable. The
semantics are extensively tested against a reference Grace
implementation.

CCSConcepts •Software and its engineering→Classes
and objects; Semantics;

Keywords object orientation, name resolution, dynamic
semantics

1 Introduction
Grace is a dynamic object-oriented programming language
designed to aid learning the art of programming. It is de-
signed to be a small and simple programming language to
learn. Its designers and maintainers are experienced re-
searchers and educators in the �eld of programming lan-
guages. Grace embodies �ndings from decades of research
in the �eld, drawing inspiration from reference languages
such as Smalltalk [3], Self [52], Newspeak [11] and Java [28].
At its core Grace is lean: it consists of nested object lit-
eral expressions with multiple inheritance and anonymous
functions. Other language features (e.g. classes, traits and
modules) are de�ned in terms of these concepts [4, 32, 33].
There are two mainstream implementations: a Grace to C
compiler and a Grace to JavaScript transpiler. The latter is
available as a web-based development environment.

Various implementations and documentations of Grace
exist, each implementing and documenting slightly di�erent
semantics. Lengthy discussions around the language’s object
model and name resolution are common within the design
team. We posit (and our conversations with the Grace design
team support this basis) that the fuel for discussion is the
e�ect on name resolution of combining nested object ex-
pressions, multiple inheritance using traits, overriding and
shadowing. The use of arbitrary expressions as ancestor
objects (in the style of Newspeak) further hinders under-
standing. It becomes di�cult to explain intended behavior
to people both within and outside of the project.

The Grace community puts signi�cant e�ort in creating
and maintaining the Grace documentation which comes in
two forms: an interactive tutorial and a language speci�ca-
tion. Both are in prose with concrete code examples. The
intended audience of the documentation is the user of the
language. But a common feature of prosaic documentation
is that it cannot a�ord the verbosity to describe all special
and interesting cases of the language. Details of object con-
struction and name resolution take a back seat in favor of
explanations of how the language can be used. There is
also no formal de�nition of the core linguistic features. Lan-
guages that inspired the design of Grace also either (1) lack
formalizations themselves, (2) are conceptually distant from
Grace, or (3) are statically typed: (1) Self and Newspeak have
prose speci�cations [11, 52], (2) Smalltak-80 has an oper-
ational semantics [59] but Smalltalk lacks nested objects,
and (3) Java’s semantics [48] in K [7] de�nes static name
resolution. As a consequence it is hard to fully grasp the
underlying concepts in Grace.

In this paper we propose that a concise de�nition of Grace’s
object model and name resolution algorithm resolves this
problem. The de�nition serves as readable documentation
and as executable speci�cation that can be used for experi-
mental validation and as a reference implementation.

Our approach is to model Grace’s name resolution us-
ing scope graphs [44, 53] and to operationalize this model
as a speci�cation for Grace in the Spoofax language work-
bench [36, 56].

Figure 1 shows the architecture of our implementation.
High-level Grace features are desugared to lower level con-
cepts using source-to-source transformations. We use scope
graph notation to model the key aspects of name resolu-
tion in desugared programs. An operational semantics in
DynSem [55], a domain-speci�c language for dynamic se-
mantics speci�cations, serves as a concise and executable
de�nition for object construction and name resolution se-
mantics.

The contributions of this paper are:

• We model run-time name resolution using the scope
graph paradigm.

• We give a concise and executable de�nition of Grace’s
object model and name resolution semantics in the
DynSem dynamic semantics speci�cation language.

• We separate name resolution from naming and con-
�dential access policies. Policies are con�gurable by
the language designer.
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static dynamic (this paper)
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Figure 1. Architecture of the Grace language artifact.

• We have validated our speci�cation through extensive
testing against a reference implementation of Grace.

Outline The remainder of this paper is structured as fol-
lows. We begin with an overview of desugaring source-to-
source transformation in Section 2. In Section 3 we model
Grace name resolution using in the scope graph paradigm
and give a systematic account of key aspects of name resolu-
tion. Section 4 de�nes the operational semantics of the object
model, the name resolution algorithm and enforcement of
policies. We evaluate our approach in Section 5, discuss
related work in Section 6 and conclude with Section 7.

2 Desugaring
We desugar high-level Grace features of in terms of lower
level concepts using a transformation implemented in Strat-
ego [13]. The transformation is local (does not require global
knowledge of the program) and is performed statically. Desug-
aring reduces the feature set which we must formally de�ne.
It applies the following transformations which are relevant
to the object model and name resolution: (1) explicate the
implicit enclosing object, (2) rewrite classes and traits as
factory methods and (3) canonicalize method names.

(1) All Grace programs live in an implicit object — the mod-
ule object. Desugaring rewrites a program P to object{P}.

(2) Class and trait declarations are rewritten as factory
methods. Factory methods are regular methods which con-
tain an object expression in their bodies. For example, the
class declaration of Figure 2a desugars to the factory method
of Figure 2b. Trait declarations are treated similarly. Classes
and traits are always public, hence the public annotation
of the factory methods.

(3) Method names are canonicalized such that all name
parts are concatenated. The canonical method name encodes
the arity of the method. For example, the method and call of
Figure 2c desugar to the method and call of Figure 2d. The
canonicalized method name is if(_)then(_). The number
of _ symbols encodes the arity.

Throughout the remainder of the paper we assume that
programs have been desugared as described above.

3 Name Resolution
Much of Grace’s semantics revolves around name resolution,
a concern which is strongly related to object orientation.
Grace has lexical scoping of declarations and allows arbi-
trarily deep nesting of object expressions. Expressions may

class A {
method m {...}

}

(a)

method A is public {
object {

method m {...}
}

}

(b)method
if(e) then(b1){
...

}
if(1==1) then {

...
}

(c)

method if(_)then(_)(e, b1) {
...

}
if(_)then(_)(1==1, {...})

(d)
Figure 2. (a) class declaration before desugaring to (b) fac-
tory method. Multi-part method before (c) and after (d) name
canonicalization.

explicitly refer to lexically surrounding objects and objects
may have multiple ancestors. The use of expressions to de-
termine ancestors means that meaningful name resolution
can only be performed at run time. Method aliasing and
exclusion combined with shadowing and overriding poli-
cies complicates name resolution. When lexical nesting and
inheritance combine, name resolution becomes a complex
comb-like search [10]. Some of the design decisions taken
to aid learning Grace introduce additional name resolution
concerns.

In this section we discuss the key aspects of Grace’s name
resolution by means of scope graphs [44, 53]. A scope graph
is the result of distilling the abstract syntax tree of a program
to information about names and scoping in the program. A
scope graph is a directed graph consisting of the following
ingredients. A scope represents a region in a program that
behaves uniformly with respect to name binding. In scope
graph diagrams, scopes are represented by circles. A declara-
tion is the introduction of a name in a program. In diagrams,
declarations are represented by a box with an incoming edge
from the scope they are declared in. A reference is a use of a
name in a program. In diagrams, references are represented
by boxes with an outgoing edge to the scope in which they
reside. Edges between scopes determine visibility inclusion.
Name resolution consists of �nding a path from each ref-
erence to a declaration with the same name, following the
edges in the graph. As originally introduced, scope graphs
represent purely static information about a program. How-
ever, in a dynamic language such as Grace, the scope graph
partially emerges at run time. In diagrams we represent such
dynamically constructed connections using red edges.

The Semantics of Name Resolution in Grace SERG
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s1

s2

s3

s4

object {
  def x = …
  method m(y) {
    y
    object {
      var z := …
      x
      y
      z
      outer.x
    }
  }
}

y

s1 xm(_)

s2

P

s3

L
z

z:=(_)

s4

P

outer

s5

x

y

z

outer x

outer

y

Figure 3. Program illustrating nested scopes and its scope
graph.

As an introductory example, consider the scope graph
and program of Figure 3. It identi�es �ve scopes, of which
scopes s1, s2, s3 and s4 are in a lexical structure. Scope s1
corresponds to the top-level object. Scope s1 has two dec-
larations: one for �eld x and one for method m(_). Method
m(_)) has its own scope named s2. The P edge from s2 to
s1 corresponds to the nesting of method m(_)) in the top-
level object. The declaration of y in scope s2 corresponds to
parameter y of method m(_). Reference y in scope s2 refers
to parameter y. Scope s3 is the scope of the object created
by method m(_). The L edge from s4 to s3 corresponds to
the nesting of the object expression in the method scope.

Name resolution comes down to two tasks: maintaining
the scope graph for the program and calculating paths in the
scope graph. In a statically typed language much of these
tasks can be performed statically [47]. In a dynamic language
such as Grace the two tasks are interleaved at run time.

We systematically describe Grace’s name resolution in
terms of scope graphs. Details of the intuition behind Grace’s
name resolution be found in the extended version [54].

Initialization statementsmake a constructor. Statements
directly within the body of an object which are not decla-
rations are initialization statements. Figure 3 illustrates an
object with scope s3. The initialization expression of �eld
z and the expressions below are initialization statements
which reside in an implicit constructor method scope s4.
The additional method scope s4 simpli�es reasoning about
initialization statements and allows us to model all state-
ments in an object uniformly.

Names are lexically scoped. Grace declarations are lexi-
cally scoped. Blocks (delimited by {}) scope declarations
within. Lexical scoping implies that the declarations in a

scope are only reachable from the scope itself or from scopes
with a path to the declaration scope.

A reference is in lexical range of its declaration if there is a
resolution path in the scope graph from the reference scope
to the declaration scope and this resolution path contains
only P and L edges. For example, in Figure 3, declarations
in scope s2 of method m(_) are only reachable from within
s2 and from nested scopes s3 and s4 which directly and
indirectly import s2.

Outer identi�es surrounding object. A distinctive feature
of Grace is the outer pseudo-variable: the outer of an object
o2 is o1 if the declaration of o2 is enclosed by the declaration
of o1. The outer of the top-level object is unde�ned. (An
exception are programs with dialects, which are outside of
the scope of this paper).

The outer pseudo-variable can be used to qualify refer-
ences to members in surrounding objects. Enclosing ob-
jects can be peeled o� with successive outer references, e.g.
outer.outer.outer.x. Consider the quali�ed reference
outer.x in the implicit constructor scope s4 of Figure 3.
The quali�ed reference to x is a reference in anonymous
scope s5, which imports outer. Reference outer in s4 re-
solves to a declaration in same scope which is dynamically
bound to the object scope s1.

We call outer a pseudo-variable because it lacks an explicit
declaration and because it is constant. Instead, every method
scope implicitly declares an outer, such that at run time
the lexically surrounding object is reachable even when the
method executes in derived objects.

The intention behind the outer feature is to give the pro-
grammer explicit resolution control when relying on nested
objects. This can become useful when members are shad-
owed by declarations in nested objects. A similar feature in
Java allows references quali�ed by the name of the surround-
ing class but the syntax is more involved. Self and JavaScript
do not support explicit referencing of surrounding objects.

Fields are slotswith ge�ers and se�ers. As Figure 3 shows,
�elds and method declaration live in the same namespace.
The declaration of �eld x in the object with scope s1 induces
a declaration for a method x which reads the value of the slot
in the object corresponding to the �eld. Mutable �elds, such
as z in the object with scope s3, also induce a declaration
for a setter method (e.g. z:=(_)) which writes the value of
the parameter into the slot for the �eld.

Common namespaces for �elds and methods allow pro-
grammers to replace �elds with methods and vice versa
without having to modify other parts of the program. A use
pattern of this feature is to override getters and setters of
an inherited �eld with methods that perform more complex
computations. From a linguistic perspective the distinction
between slots and named members conceptually separates
an object’s logic from the object’s data.

SERG The Semantics of Name Resolution in Grace
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Treatment of �elds and methods in Grace is identical to
that of Newspeak, and strongly dissimilar to that of Java
where �elds and methods reside in di�erent namespaces.
JavaScript �elds and methods also share a namespace but
�elds are not slots with getters and setters, instead the ob-
ject has named attributes and methods are function values
assigned to named attributes.

Ancestor is determined dynamically. Grace objects can
inherit from other objects, an unsurprising feature for an
object oriented language. What sets Grace aside from many
other languages is that an ancestor object is determined by
evaluating an inheritance expression. The expression can
perform arbitrary computation as long as it evaluates to a
fresh object.

Consider the scope graph of Figure 4. The inheritance
expression t2 lives in scope s7 the inheriting object scope.
The value of the inheritance expression identi�es the scope
of the ancestor — s5 from within method t2 — and induces
an import edge — I(1).

The target of this import edge can only be computed after
evaluation of the inheritance expression, thus the edge itself
can only be computed at run time, at object construction
time. (This is illustrated in scope graphs by colored edges.)
We discuss the auxiliary scopes — namely s7i1a and s7i1b
in the context of method aliasing and exclusion.

Method resolution entails �nding a path in the scope graph
from the scope of the youngest descendant object to a declar-
ing scope. For example, consider resolving the reference
a in scope s8 of the constructor method from the object
with scope s7 in Figure 4. The scope graph yields the path
[P,I(1),I,I] which traverses from the method scope to
the object scope and to inherited scope via the auxiliary im-
port scopes. The presence of an indexed I edge in the path
indicates the fact that declaration is inherited.

The designers of Grace chose to support arbitrary inher-
itance expressions with the intuition that having such a
feature increases the expressivity of the language. While it
can be desired to have control �ow determine the inheritance
hierarchy of an object, it complicates name resolution. The
complication is that static name analysis becomes dependent
on intra- and inter-procedural data-�ow analysis.

Identifying inheritance through arbitrary expression is
similar to Newspeak. In Newspeak the expression is re-
stricted, but only for parsing reasons [11]. Linguistically,
the feature is similar to assigning the result of an arbitrary
computation as the prototype of a JavaScript object. The
fundamental di�erence with Self/JavaScript is that the an-
cestor of a Grace object cannot be changed after the object’s
creation. In Java ancestor classes can be identi�ed by name
only, and classes are resolved in a distinct class namespace.

Objects have multiple ancestors. Objects in Grace can in-
herit from multiple traits. Traits are just objects without state.
Consider the object with scope s7 of Figure 4 which inherits

as a trait the object scope s3 identi�ed by t1. Firstly, the
scope graph shows that the inheritance expression for the
trait is evaluated in the object scope s7. This is a conscious
decision by the Grace designers to allow the programmer
to inherit form a trait provided by an ancestor class. For
example, it is valid to inherit a trait which is inherited over
the I(1) edge of the object scope. Import edges for traits
induce additional I edges. I edges are indexed so that a path
uniquely identi�es a resolution.

Descendants may alias and excludemethods. The pro-
grammer may choose to alias and exclude methods when
inheriting from objects and traits. The scope graph of Fig-
ure 5 illustrates how method aliasing and exclusion a�ects
name resolution. For example, the alias a = x introduces
the declaration for a as an alias to the inherited method x,
in an auxiliary alias scope s8i1b. Exclusions introduce dec-
laration �lters in a separate auxiliary scope, s8i1a, directly
importing from the alias scope.

The scope graph shows that a programmer may introduce
an alias which is immediately excluded in the same inherit
clause. Such a pattern is valid Grace although it would be
of little use in practice. As long as there is a path from the
reference part of the alias or from the reference part of an
exclusion, to a declaration in an imported scope, it is valid
to alias or exclude that method, respectively. Resolving
an alias to the actual method declaration takes place in two
steps. Firstly, the alias reference, e.g. a in scope s9 of the
constructor method, is resolved to a declaration in the aux-
iliary scope s8i1b via path [P,I(1),I]. Secondly, having
found an alias declaration, a new resolution is performed
for reference x starting from the alias scope s8i1b, yielding
path [I] to scope s3.

If resolution of a reference, say y in scope s9, reaches
a �lter declaration for that name, for example y from aux-
iliary scope s8i1a, that resolution path is abandoned and
resolution must backtrack.

The ability to inherit a method under a di�erent name has
two main uses: to preserve access to an inherited method if
another ancestor would override it; and to avoid ambiguities
when a lexically bound declaration has the same name as
an inherited method. If inheritance is seen as an implemen-
tation method, then excluding a method from the interface
of an object can be useful [50]. For example, if a particu-
lar operation is not supported by the composition of two
interfaces, that feature can be excluded from the �nal ob-
ject. Programmers be warned that excluding methods in
descendants violates the Liskov Substitution Principle. One
will eventually notice that an excluded method is not just
excluded from the object’s interface but is actually absent
from the �nal object. Invoking any method (inherited or
locally de�ned) that calls an excluded method will raise a
run time error when the call is encountered.

The Semantics of Name Resolution in Grace SERG
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s1
s2

s4

s6

s7

s3

s5

s8

object {
  method t1 {
    object {
      def a = …
    }
  }
  method t2 {
    object {
      def a = …
    }
  }

  object {
    inherit t2
    use t1
    def c = …
    a
  }
}

I(1)

I

I

I
I

I(2)

s1

t1 t2

s2

s3

s4

s5 s7a a

outer outer s6

c

t1

t2

outer

s7i
1a

s7i
1b

s7i
2a

s7i
2b

P

L

P

L L

P

s8 a

P

Figure 4. Scope graph (right) for a program with objects having multiple inheritance (left).

s1

s2

s3

s8

s4
s5

s6

s9

object {
  def z = …
  method f {
    object {
      def x = …
      def y = …
      def z = …
    }
  }
  method g {
    object {
      method x {…}
    }
  }
  object {
    inherit f
      alias a = x
      exclude y
    use g
    def z = …
    a
    x
    z
  }
}

I
I

I

I

s1

s2

s8s3

L

outer

a x

f

s8i
1b

I(2)

z

x

y

z
s8i
1a

y

s4

s5

L

x s6P

P

s8i
2a

s8i
2b

f

z

g

g

I(1)

P P

outer s7outer

L

s9

P

a

x

z

Figure 5. Multiple inheritance with aliases and excludes, shadowing and overriding (left) and corresponding scope graph
(right).

Lexical scope may not be imported. Objects may not be
used as proxies for their lexical scopes. It as design deci-
sion that maintains encapsulation and ensures privacy of
an object’s internal details. The context which constructed
an object should at most be relevant to the features of the
object itself, not the user of those features. This restriction
has a natural parallel in the scope graph model: a path from
a reference scope to a declaration scope may not contain P or
L edges after I edges. We can rephrase this path restriction
more intuitively: only I edges may follow I edges. This
ensures that the receiver of quali�ed calls and that inherited
objects may not be asked to resolve declarations in their
lexical scopes.

Methods and local variables have di�erent names. Grace
enforces two restrictions on local variables: (1) two local vari-
ables in lexical range may not have the same name and (2) a
local variable may not have the same name as a method in
lexical range.

We enforce both restrictions at run time by examining
resolution paths. Prior to recording a declaration for x in a
method scope s, we resolve a �ctive reference x from scope
s. Note that if a path exists, its �rst edge must be P. If a path
exists and it contains no I edges then the new declaration
for x would be in lexical range of another declaration. We
can further distinguish between restriction (1) and (2) by
examining the last path edge: L in case (1) and P in case (2).

SERG The Semantics of Name Resolution in Grace
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We �nd that discouraging multiple locals with the same
name is good practice regardless of a language’s policy. How-
ever we cannot determine a reason why locals and members
should not be able to share the same name.

Ambiguous references are illegal. A reference may have
two resolution paths in the scope graph, one strictly lexical
and one via an import edge. Such references are illegal in
Grace and raise run-time exceptions. The designers of Grace
deemed that ambiguous references introduce unnecessary
opacity in programs and that rejecting these should be a
feature of the language. It is expected that programmers
rename the inherited method using an alias, rename the
declaration in a lexical scope, or qualify the reference to
the lexically bound declaration using one or more outer
quali�cations.

Latest overridingmethodwins. Resolving a reference may
yield multiple resolution paths. For example, resolving x
from scope s9 of the constructor method in Figure 5 yields
two paths: [P,I(1),I,I] to s3 and [P,I(2),I,I] to s5;
two declarations are inherited from two separate scopes. The
Grace-speci�c disambiguation policy for this situation is to
choose the path containing the import edge with the highest
index. This translates to a method overriding semantics
where a later inherited declaration overrides earlier ones.

If a reference has both local and import path candidates,
the local path is always preferred. For example, the reference
z in s9 has two candidate paths: [P] and [P,I(1),I,I]. The
former path is preferred over the latter path. This translates
to an intuitive semantics where a local de�nition of a method
overrides all of the imported declarations for that name.

Members shadow outer’smembers. A reference may have
multiple resolution paths, all lexical. Reference z in construc-
tor method scope s9 of Figure 5 has two potential resolution
paths, both lexical: [P] and [P,L,P]. The disambiguation
policy is to prioritize the shortest path. This translates to a
shadowing semantics: member declarations shadow declara-
tions in outer object scopes.

Con�dentiality requires name resolution. We conclude
this section by claiming that con�dentiality of an object’s
members is not part of name binding. Whether or not a
reference to a particular member declaration is allowed from
outside of the object, a resolution path will exist for that ref-
erence. More so, deciding whether access should be granted
or rejected requires information about the reference and dec-
laration scopes, the latter being the result of name resolution.

Suppose for instance that a quali�ed reference o.x from
some scope sr ef resolves to a con�dential declaration in some
object scope sob j . Access should be granted if sr ef = sob j . If
sr ef , sob j , access should only be granted if the path from
sr ef to sob j has a P edge, i.e. that sr ef reaches sob j through a
lexically enclosing scope.

4 Operational Semantics
The dynamic semantics of a programming language de�nes
the run-time behavior of its constructs. In this section we
give an operational semantics for Grace’s object model, name
resolution algorithm, lookup, and enforcement of naming
policies.

We use DynSem [55] as a speci�cation language for the
semantics. DynSem is a domain-speci�c language for spec-
ifying the dynamic semantics of programming languages.
Speci�cations are given in terms of syntax-oriented rules
over named arrows from program terms to values. Rules
can access contextual evaluation information from read-only
components (mentioned left of the ` symbol) and from read-
write components (mentioned right of the :: symbol). A
rule can omit semantic components which it does not use; a
feature borrowed from I-MSOS [42]. Omitted components
are implicitly propagated. Read-only components propa-
gate downwards (environment semantics), read-write com-
ponents thread through the rules (store semantics). Implicit
propagation of components makes for more concise and
modular speci�cations. DynSem statically type checks rules
with respect to arrow, component and term signatures. In-
valid term construction and impossible pattern matching
are detected statically. A DynSem speci�cation derives an
interpreter for the object language.

4.1 Object Model
The object model is responsible for constructing objects from
object expressions and for evaluating and linking objects in
an inheritance hierarchy. We �rst describe the representation
of object expressions and object values, and then give an
operational semantics for their construction.

Desugaring object expressions. At evaluation time we fur-
ther desugar object expressions by means of two transfor-
mations. (1) We replace each �eld declaration by a slot with
a getter and an optional setter method. (2) We lift the ob-
ject initialization statements in the object expression into
a constructor method. This transformation helps to keep
the semantic rules concise without changing the meaning of
programs. In Section 3 we have discussed name resolution
for these desugared object expressions.

Desugared object expressions follow the signature de�ned
in Figure 6. An object expressions (LObj) is a triple con-
sisting of (1) a list of parent expressions (LInh) with aliases
and exclusions, (2) a list of slot numbers (LSlots), and (3)
a map (association list) mapping names to method declara-
tions, including the derived getter and setter methods for
�elds and the object constructor method named #ctr. The
transformation does not change the object hierarchy, does
not evaluate inheritance expressions, is local to the object
expression (i.e. does not require any global knowledge), and
is stateless (i.e. is not dependent on program state).

The Semantics of Name Resolution in Grace SERG
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module obj−desugar
imports grace−sig
signature

sorts LInh
sort aliases

LAliases = Map(String, String)
LExcludes = Map(String, String)
LSlots = List(Int)
LMethods = List((String * Declaration))

constructors
LObj: List(LInh) * LSlots * LMethods → Exp
LInh: Exp * LAliases * LExcludes → LInh

Figure 6. Signature of desugared objects.

Representing objects. The signature in Figure 7 de�nes the
structure of object instances which result from evaluation of
LObj terms. The value visible in a Grace program is RefV(a),
a reference value to a store address a (objects are passed
by reference rather than by value). The store associates
addresses to object data.

An object (Obj) is a quadruple of (1) the store address of
the lexically surrounding object, (2) an ordered list of parents
(ancestors), (3) the object’s data, a map of slot numbers to
values, and (4) its operations, a map from method names to
closures.

This representation of objects in the store encodes the
scope graph information. Consider the scope graph fragment
of Figure 8a. If we regard scope names (s1, s2, s3 and s4)
as store addresses then import edges from scope s2 denote
the addresses of the lexical parent and of objects inherited
into the object at store location s2, as shown in Figure 8b.
In the store, scope graph information is augmented with the
objects’ data and operations.

At any point during run time the store contains su�cient
information to inspect the scope graph of a running program.
We revisit this claim in Section 4.2 when we formalize the
semantics of name resolution.

Binding self and outer. A method declaration closes over
the address of the object which encloses its owner object.
In Section 3 we modeled this as a declaration for the outer
pseudo-variable in the method scope. It is the responsibility
of the method call mechanism to bind the correct value for
outer. The same mechanism also binds the self pseudo-
variable which identi�es the address of the object handling
the method call. In our semantics we treat self and outer as
semantic components, rather than explicit variables. Instead
of the method call mechanism binding them as variables, it
makes them available to method code as read-only evaluation
contexts.

Figure 9 shows the declaration of components S (Self) and
O (Outer). Resolving program references to self or outer
becomes a matter of wrapping the contextual information
as a value as we show in the rules of Figure 9. We believe
this treatment of self and outer to lead to a more elegant
semantics.

module obj−repr
imports store functions values
signature
constructors

RefV: Addr → V
sorts Obj
sort aliases

Slots = Map(Int, V)
Methods = Map(String, AnnotatedClosure)
Aliases = Map(String, String)
Excludes = Map(String, String)
Parent = (Addr * Aliases * Excludes)
Parents = List(Parent)

constructors
Obj: Addr * Parents * Slots * Methods → Obj

arrows

Addr
outer−−−−−→ Addr

Addr
exist−−−−−→ Bool

Figure 7. Representation of objects.

s1

s2

P
s3

s4 x

I(1)

I(2)

(a)

{s2 7→ Obj(s1,[s3,s4],...,{x 7→ ..., #ctr 7→ ...})
s1 7→ ... s3 7→ ... s4 7→ ...}

(b)
Figure 8. (a) Scope graph fragment and (b) corresponding
store after construction of s2

module self−outer
imports obj−repr store
signature components
S : Addr
O : Addr

rules
S ` Self() −→ RefV(S)
O ` Outer() −→ RefV(O)

Figure 9. Semantics of self and outer.

Object construction and initialization. Object construc-
tion is concerned with evaluating an object expression to
create a fresh object value in the store. It encodes the struc-
ture of the scope graph into the store, and produces a value
referring to the new object. Object initialization is concerned
with evaluating the initialization statements of objects.

Object construction as de�ned in rule (1) of Figure 10a
consists of three stages: �rst the object is built using the
bld−−−→ arrow, second the policy governing local variable nam-
ing is enforced, and third the object is initialized using the
init-obj meta-function.

Rule (2) builds the object structure in the store. It al-
locates a fresh (and empty) object in the store, evaluates
parents (ancestors) and adds links to them, and creates slots
and records method declarations. The P edge in the scope

SERG The Semantics of Name Resolution in Grace
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module obj−constr
imports obj−desugar obj−repr obj−init

obj−self−outer store
signature

sorts EvalMode
constructors

E : EvalMode
B : Addr → EvalMode

components
EB : EvalMode

arrows

Exp
bld−−−→ Addr

add−parents(Addr, List(LInh)) −→ U
add−parent(Addr, LInh) −→ U

rules

o
bld−−−→ S';

enforce−locals−policy(S') −→ _;
S' ` init−obj(S') −→ _
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (1)
o@LObj(_, _, _) −→ RefV(S')

Obj(S, [], {}, {})
store−−−−−→ S';

EB ⇒ B(S'') or S' ⇒ S'';
S S'', O S ` add−parents(S', ps) −→ _;
O S ` add−slots(S', ss) −→ _;
O S ` add−methods(S', ms) −→ _
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (2)

S, EB ` LObj(ps, ss, ms)
bld−−−→ S'

par ⇒ LInherit(e, als, exs);
EB B(S) ` e −→ RefV(S'');
record−parent(S', (S'', als, exs)) −→ _
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (3)
S ` add−parent(S', par) −→ U()

EB E() ` e −→ recv; EB E() ` es −→ vs;
EB B(S) ` call−qualified(recv, x, vs) −→ v
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (4)
EB B(S) ` MCallRecvL(e, ID(x), es) −→ v

(a)

signature arrows
add−slots(Addr, LSlots) −→ U
add−slot(Addr, LSlot) −→ U
add−methods(Addr, LMethods) −→ U
add−method(Addr, LMethod) −→ U

rules
record−slot(S', {s 7→ def−val()}) −→ _
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (1)
add−slot(S', s) −→ U()

enforce−method−policy(S', m) −→ _;
method−closure(decl) −→ clos;
record−method(S', {m 7→ clos}) −→ _
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (2)
add−method(S', (m, decl)) −→ U()

(b)

Figure 10. (a) semantics of object construction and (b) slot
and method installation.

graph between nested objects materializes in the store as a
link from the fresh object to its enclosing object identi�ed
by component S.

At this phase of object construction (i.e. after arrow bld−−−→
completes), the state of the store re�ects the structure of the
scope graph. It contains su�cient information to perform

name resolution. This information is used at this stage to
enforce the policy governing local variable names (using the
enforce-locals-policy meta-function). Policy enforce-
ment must happen after building the object structure but
before the object is initialized. There is insu�cient infor-
mation about inherited methods prior to construction. We
discuss naming policies in more detail in Section 4.4, for now
it su�ces to know that enforcement will halt evaluation if
any of the object’s methods violates the policy.

As the �nal step rule (1) initializes the new object by
invoking the constructor method (using the init-obj meta-
function) in ancestor-�rst order. This order is customary in
object-oriented languages.

Ancestor Evaluation. We discuss the semantics of comput-
ing and adding links to inherited objects, as de�ned in rule
(3) of Figure 10a. During construction of a hierarchy the
value of component EB keeps track of the youngest descen-
dant in the hierarchy — the self of the new hierarchy of
objects. EB is either E() if construction is just starting, or has
value B(S) when evaluating the hierarchy of object S. Rule
(2) triggers evaluation of inheritance expressions in S bound
to the self of the hierarchy and in O bound to the outer
of their owning object. Rule (3) evaluates an inheritance
expression e to an ancestor S’’ and records it. Recording
a parent is equivalent to adding an I(i) edge in the scope
graph.

An ancestor object may not be initialized independently.
Its initialization behavior will be modi�ed by method over-
riding in descendants. The init-obj meta-function invoked
by rule (1) skips initialization if EB=B(_). Special handling
of method calls allows regular computation to proceed until
the object expression of the ancestor is reached. Rule (4)
de�nes the semantics of a method call during ancestor eval-
uation (EB=B(_)). It evaluates the receiver e and parameters
es in regular context (EB=E()) and the call in construction
context (EB=EB(_)).

As an illustration of object construction consider con-
structing the object with scope s3 and corresponding scope
graph from Figure 11. When rule (2) of Figure 10a evaluates
the object expression, the context is S=s2 and O=s1. It �rst
allocates the new object s3 and then evaluates ancestors in
a changed context: S=s3 and O=s2. Rule (3) evaluates the
inheritance expression e which eventually reaches the object
expression for s6. Had s6 itself had an inheritance expres-
sion e2, rule (2) would trigger its evaluation in context S=s3
and O=s5.

We observe an interesting aspect of evaluating inheri-
tance expressions: they evaluate in a context where self
is bound to the youngest descendant in the inheritance hi-
erarchy. Why should this be the case? Since programmers
write inheritance expressions within an object block, they
can reasonably expect that self and outer refer to the local
object and its lexical parent, respectively. A problem occurs
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s1
s2

s3

s4

s5

s6

object {
  object {
    object {
      inherit e
      method i{…};
    }
  }
  …
  object {
    object {
      method e {
        object {…}
      }
    }
  }
}

s2

s3

P

s6

s5

P

I(1)

s1

P

s4

P

P

i

e

Figure 11. Fragment of program (left) and scope graph
fragment after construction of s3 (right).

though if an inheritance expression invokes a local method.
For example, suppose that inheritance expression e from
object s3 of Figure 11 actually involves a call to method i in
the same object. Since, by the de�nition in rule (2) of Fig-
ure 10a, ancestor expressions are evaluated before recording
methods, method i does not yet exist in object s3 and the
program halts with an error. In rule (3) we model the object
construction order of the o�cial Grace implementation. It
may actually confuse beginner programmers that a method
which they can see and touch is reported by the Grace inter-
preter as unknown. Our semantics does not �atten object
hierarchies. This implies that resolving overridden methods
must happen during name resolution. The same holds for
method aliasing and exclusion.

4.2 Name Resolution
Name resolution is the task of computing a path in the scope
graph from a reference scope to a declaration scope. We �rst
describe the structure of resolution paths, the outcome of
name resolution, and then give a semantics for the name
resolution algorithm of Grace.

Local variables. Grace has a strict no-shadowing policy
for local variables. Two local variables in lexical range of
each other must have di�erent names. Grace has a strict
no-shadowing policy for local variables. Each local variable
must be unique in a chain of lexical scopes. We see this
restriction as a simpli�cation of name resolution. We choose
to stray away from the scope graph paradigm and instead
model local variables with traditional environment passing
semantics. Rules propagate a read-only environment which
associates variable names with to addresses in a variable
store. The variable store is propagated as read-write com-
ponent throughout the speci�cation. Method declarations
close over their declaration environment and the method
call mechanism extends it parameters and local variables.

module path
signature
sorts PathPart
sort aliases

Path = List(PathPart)
constructors

L: String → PathPart
I: Int * String → PathPart
P: PathPart

arrows

Path
found−−−−−→ Bool Path

local−−−−−→ Bool

Path
lex−−−→ Bool Path

s-lex−−−−−→ Bool

Path
inh−−−→ Bool Path

s-inh−−−−−→ Bool

Figure 12. De�nition of resolution paths.

Using environments for local variables means that method
resolution paths become shorter. There is possibly a perfor-
mance bene�t since a variable dereference requires fewer
store operations.

Resolution paths. A path is the list of edges traversed be-
tween the reference scope and the declaration scope. We
build on the paths of Section 3 and enrich them with more res-
olution information as de�ned in Figure 12. An empty path
indicates failure to resolve. Arrow found−−−−−→ reduces a path to a
success value. The path resulted from successful resolution
always ends with an L(x) segment, where x is the declara-
tion name. It is easier to use a path later if it includes the
declaration name. Paths into lexical scope have a P() edge.
Paths into inherited scopes have an I(i,x) edge, where i is
the index of the import edge and x is the name to resolve in
the inherited scope. Suppose, for example, that resolving a
reference x1 results in a path [P(),I(1,x2),L(x2)]. This
path indicates that the declaration is reachable in the lexical
scope, where it was imported as an alias to the declaration
of x2. Rich paths contain su�cient information to lookup
the declaration and to enforce naming policies.

Resolution semantics. Name resolution is the task of �nd-
ing a path in the scope graph from a reference scope to a
declaration scope. The recursive name resolution algorithm
is shown in Figure 13. Rule (3) over res−−−→ encodes the base
case of �nding a local declaration named x in scope S’’.

Two resolution directions are possible if the declaration is
not local: in inherited scopes and in lexical scope.

Resolution in inherited scopes. The algorithm maps over in-
herited scopes (using the res-inhs−−−−−−−−−→ arrow) in reverse order
until it �nds a matching declaration. Resolution in reverse
inheritance order describes Grace’s semantics of method
overriding. Later inherited declarations should override ear-
lier ones, so starting resolution at the last import ensures
that overriding methods will be resolved instead of the over-
ridden ones. Stopping after the �rst success guarantees that
only the latest declaration is reached.

Figure 14 shows the semantics of name resolution in inher-
ited scope. Rules over arrow res-inh−−−−−−−−→ resolve a reference x in
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module method−resolution
imports path obj−repr
signature arrows

resolve(String, Addr) −→ Path

(String, Addr)
res−−−→ Path

rules

(x, S')
res−−−→ p; p

found−−−−−→ false;
err("Unknown method " ++ x)
−−−−−−−−−−−−−−−−−−−−−−−−−−−− (1)
resolve(x, S') −→ ???

(x, S')
res−−−→ p; p

found−−−−−→ true;
−−−−−−−−−−−−−−−−−−−−−−−−−−−− (2)
resolve(x, S') −→ p

S'
read−−−−→ Obj(_, _, _, methods);

methods[x?] ≡ true
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (3)

(x, S')
res−−−→ [L(x)]

S'
read−−−−→ Obj(O', parents, _, methods);

methods[x?] ≡ false; O 6≡ O';

O, P 0 ` (x, parents)
res-inhs−−−−−−−−−→ p

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (4)

O ` (x, S')
res−−−→ p

S'
read−−−−→ Obj(O', ps, _, methods);

methods[x?] ≡ false; O ≡ O';

O ` (x, ps)
res-inhs−−−−−−−−−→ p−inh;

O, S' ` (x, S')
res-lex−−−−−−−−→ p−lex;

(x, p−inh, p−lex) disamb−−−−−−→ p
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (5)

O ` (x, S')
res−−−→ p

Figure 13. Semantics of method resolution. ??? is a term
placeholder for a rule which halts.
signature arrows

(String, Parent)
res-inh−−−−−−−−→Path

(String, Parents)
res-inhs−−−−−−−−−→ Path

rules
exs[x?] ≡ true
−−−−−−−−−−−−−−−−−−−−−−−−− (1)

(x, (_, _, exs))
res-inh−−−−−−−−→[]

exs[x?] ≡ false;
als[x?] ≡ true; als[x] ⇒ x';
O ` resolve(x', S') −→ p
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (2)

O, P ` (x,(S', als, exs))
res-inh−−−−−−−−→[I(P,x')|p]

exs[x?] ≡ false; als[x?] ≡ false;

O ` (x, S')
res−−−→ p; p

found−−−−−→ false
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (3)

O, P ` (x,(S', als, exs))
res-inh−−−−−−−−→[]

exs[x?] ≡ false; als[x?] ≡ false;

O ` (x, S')
res−−−→ p; p

found−−−−−→ true
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (4)

O, P ` (x,(S', als, exs))
res-inh−−−−−−−−→[I(P, x)|p]

Figure 14. Method resolution in inherited scope

signature arrows

(String, Addr)
res-lex−−−−−−−−→ Path

rules

outer(S) −→ O; O
exist−−−−−→ false

−−−−−−−−−−−−−−−−−−−−−−−−−−− (1)

(_, S)
res-lex−−−−−−−−→ []

S
outer−−−−−→ O; O

outer−−−−−→ O'; O'
exist−−−−−→ true

O' ` (x, O)
res−−−→ p; p

found−−−−−→ false
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (2)

(x, S)
res-lex−−−−−−−−→ []

S
outer−−−−−→ O; O

outer−−−−−→ O'; O'
exist−−−−−→ true

O' ` (x, O)
res−−−→ p; p

exist−−−−−→ true
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (3)

(x, S)
res-lex−−−−−−−−→ [P()|p]

Figure 15. Method resolution in lexical scope

s2

s1

P

s3

s4

P

I(1)

xx

x

Figure 16. Scope graph with multiple resolution paths for a
reference.

the inherited scope S’ subject to aliases (als) and exclusions
(exs). Rule (1) stops exploring the current inherited scope
if the method was explicitly excluded on the inheritance
expressions. If the reference was introduced as an alias, rule
(2) will start a new resolution from the alias declaration to
the target declaration. Rule (2) optimizes this aspect by con-
catenating the two resolution paths. Note that there is a error
checking component here, since the resolution algorithm is
reentered through the resolve(x’,S’) meta-function (rule
(1) of Figure 13).

Resolution in lexical scope. Resolution in lexical scope (Fig-
ure 15) moves the resolution outwards by one lexical scope
and sets the lexical context O accordingly. Objects may not
act as proxies to their lexical scope, so lexical resolution is
only permitted if it originated from nested scopes. Rules (4)
and (5) of Figure 13 enforce this by checking equality of
enclosing scopes. Rule (5) uses arrow disamb−−−−−−→ to choose the
successful path or to raise an error if both an inherited and
lexical declaration are reachable.

For example, consider the scope graph of Figure 16 and
suppose we invoke name resolution for x in s1. Resolu-
tion starts with O=s2, and searches inherited scope s3 after
searching local scope s1. It cannot proceed lexically because
outer(s1).outer(s3), and resolution returns to scope s1. It
may search in lexical scope and �nds the declaration of x in
scope s2.
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4.3 Lookup Using Paths
Following a resolution path from the reference scope to the
declaration itself is trivial. Figure 17 de�nes the path walking
mechanism as rules over the lookup−−−−−−→ arrow. Given a name
resolution path and a starting scope the algorithm walks the
path and returns the pair of declaration scope and declaration.
Since a path could not exist if name resolution failed no error
handling code is necessary.

It is noteworthy that rule (3) of Figure 17 which looks up a
declaration across an inherited scope edge I(i, _) does not
actually return the scope containing the declaration. Instead
it returns the inheriting scope. This gives the appearance that
all inherited methods reside in the descendant object. This
is consistent with semantics of object oriented languages in
general.

4.4 Enforcing Name Policies
Grace has three policies regarding names: a con�dential
access policy, a local variable naming policy and a method
naming policy. We brie�y discuss each of them.

Local variable naming policy. We would like to have name
policies which the language designer can easily modify. To
achieve this we introduce a policy con�guration which can
be changed without modifying the enforcement mechanism.
Figure 18 shows the local variable policy for Grace. It spec-
i�es whether a local variable name is legal in certain con-
ditions. Rule (1) of Figure 10a for object construction en-
forces this policy by invoking the enforce-locals-policy
rule after it has constructed the object. This rule iterates
through every local variable of each method and checks its
compliance with the con�gured policy.

Figure 18 illustrates the rejection mechanism for a local
variable that shadows a method. The rules use the name
resolution path p for a variable named x to decide whether
its declaration as a local variable is legal. If the path is lo-
cal (p local−−−−−→true) then variable x shadows a method of the
same object. If the path is strictly lexical (p s-lex−−−−−→true), i.e. it
contains at least one P() edge and no I(_,_) edges, then
variable x shadows a method declared in an enclosing scope.
If a resolution path does not exist then there is no member
with that name that is shadowed. We observe that con�den-
tiality of methods does not in�uence the enforcement of the
policy, so there is no interplay between policies.

Methodnaming policy. We create a similar policy for method
names, as shown in Figure 19. Rule (2) of Figure 10b en-
forces this policy before recording a method declaration.

Figure 19 illustrates how to forbid methods that shadow
lexical methods. Rule (1) rejects a new method m if there is
a strictly lexical path to a declaration. The language designer
enables this behavior by setting member−allow−shadow−lex()
to false. The e�ect obtained is that the naming policy for
methods becomes symmetric to that of local variables.

module lookup
imports obj−repr path
signature arrows

(Path, Addr)
lookup−−−−−−→ (Addr * AnnotatedClosure)

rules

S
read−−−−→ Obj(_, _, _, methods)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (1)

([L(x)], S)
lookup−−−−−−→ (S, methods[x])

S
outer−−−−−→ S'

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (2)

([P()|p], S)
lookup−−−−−−→ lookup(p, S')

S
read−−−−→ Obj(_, parents, _, _);

parents[i] ⇒ (S', _, _);
lookup(path, S') −→ (_, clos)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (3)

([I(i, _)|path], S)
lookup−−−−−−→ (S, clos)

Figure 17. Semantics of lookup.

module policy−locals
signature arrows
local−allow−duplicates() −→ false
local−allow−shadow−local() −→ false
local−allow−shadow−method() −→ false
local−allow−shadow−inherited() −→ true

rules
local−allow−shadow−method() −→ false;

(x, S)
res−−−→ p; p

found−−−−−→ true; p
local−−−−−→ true;

err("Variable '" ++ x ++ "' shadows
member in surrounding object")

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (1)
S ` enforce−local−shadow−method(x) −→ ???

local−allow−shadow−method() −→ false;

(x, S)
res−−−→ p; p

found−−−−−→ true; p
local−−−−−→ false;

p
s-lex−−−−−→ true;

err("Variable '" ++ x ++ "' shadows
member in enclosing scope")

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (2)
S ` enforce−local−shadow−method(x) −→ ???

Figure 18. Local variable name policy and example of en-
forcement semantics.

module policy−members
signature arrows
member−allow−duplicates() −→ false
member−allow−override() −→ true
member−allow−shadow−local() −→ false
member−allow−shadow−lex() −→ true
member−allow−shadow−lex−inh() −→ true

rules
member−allow−shadow−lex() −→ false;

(m, S)
res−−−→ p; p

found−−−−−→ true; p
s-lex−−−−−→ true;

err("Member '" ++ m ++ "' shadows
member surrounding scope")

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (1)
S ` enforce−member−shadow−lex(m) −→ ???

Figure 19. Method name policy and example of enforcement
semantics.
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Con�dential access. In Section 3 we stated that enforcing
con�dentiality is a decision based on name resolution infor-
mation and not a concern for the name resolution algorithm
itself. Methods annotated public may be accessed from
anywhere. Confidential methods may only be accessed
from (1) within their declaration scope or (2) from descendant
objects. We store each method together with its annotation
so that it can be retrieved with lookup−−−−−−→. We take an access
decision for a reference x given its scope sr ef , a resolution
path p, a declaration scope sdec and visibility annotation a
as obtained from -lookup->.

If a is private then access should be granted in two cases:
(1) if sr ef = sdec or (2) if p lex−−−→true. Case (1) will hold when
the reference scope is the same as the declaration scope. This
is only the case when the reference scope is on the inheri-
tance hierarchy. Case (2) occurs if x refers to a declaration
in a lexically enclosing scope. The lex−−−→ arrow checks that
path p contains a P() edge.

If a is public access is permitted with one exception.
Grace semantics state that methods introduced through aliases
are private to the inheriting object. A path p that contains
an I(_, x’) edge where x , x’ indicates that method x is
introduced through an alias. In that case we take an access
decision using the mechanism described above for private
methods.

5 Evaluation
We evaluate our executable speci�cation of Grace with re-
spect to three criteria: (1) correctness, (2) speci�cation size
and readability, (3) time complexity of name resolution and
policy enforcement.

Correctness. We have developed an extensive test suite of
unit-style tests for corner cases of name resolution and object
model. Each test is a small program paired with an output/er-
ror expectation recorded from the output produced by the
Grace to JavaScript implementation. The test set includes
214 test programs directly testing aspects of the object model
and name resolution. The most notable of these are: 51 tests
of the object model (object creation, inheritance and initial-
ization), 31 tests of traits, aliasing and exclusion, 71 tests
for scoping and 24 tests of con�dentiality enforcement. We
use these tests to validate that our executable speci�cation
behaves the same as the mainstream Grace implementation.

Size and readability. We compare implementation size of
our solution to that of the Grace to JavaScript implementa-
tion, as a weak measure of maintenance burden. Our desug-
aring transformation and semantics speci�cation together
account for 2.0K LOC (44.8K characters). In comparison the
Grace transpiler accounts for 3.5K LOC (70.8K characters).
The compiler is quite small since Grace and JavaScript have
similar abstraction levels. While our speci�cation is com-
plete for object model and name resolution, it does not yet
cover pattern matching, lineups and Grace’s gradual type

system. We conjecture that the maintenance burden of our
speci�cation is not higher than that of the mainstream Grace
compiler.

Code readability is subjective. The transpiler encodes
Grace semantics in JavaScript which hides the semantics
of Grace. Conversely the DynSem speci�cation is explicit.
A semanticist will have no di�culties understanding the
DynSem speci�cation since rules are similar to natural se-
mantics. Our target audience consists of people wanting to
understand (or develop) Grace semantics. We think that our
DynSem speci�cation is accessible for them.

Time complexity. The number of objects visited during
name resolution dominates its execution time. We dis-
tinguish two cases: (1) resolving a reference from outside
of the object (a quali�ed call on an object) and (2) a resolv-
ing reference from within an object scope. In the �rst case
the time complexity of resolution is O (n + 1) if there are n
objects. The worst case corresponds to resolving a method
that is declared in the last queried ancestor. For complexity
of name resolution in case (2) assume that the object has
n ancestors andm enclosing objects each with n ancestors
and that the method declaration is inherited into the nth

furthest away ancestor of themth enclosing object. The time
complexity of resolving the method is O (m ∗ (n + 1)). Each
ancestor inherited into every object has to be visited before
the declaration is reached.

Enforcing naming policies for method declarations and
local variables dominates the time complexity of object con-
struction. If an object has m methods each with v local
variables, then enforcing the former policy requires m name
resolution operations and enforcing the latter policy requires
m ∗v name resolution operations.

The high cost of name resolution comes from the fact
that semantics does not �atten objects. However, it gives a
principled de�nition with a clear speci�cation that can serve
as a baseline for principled optimization.

6 Related Work
Object oriented languages

Record classes In 1965 Tony Hoare proposed handling records
of similar entities as record classes and subclasses [31]. Record
access was restricted to access quali�ed by the class or sub-
class containing the record declaration. Attribute access used
dot notation to separate the receiver part of the access from
the identi�er of the record being accessed.

Simula 67 Hoare’s proposal inspired extension of the Sim-
ula [22] programming language into Simula 67 [21] including
the concepts of classes and subclasses. Subclasses may rede-
clare attributes from superclasses. Attribute references are
disambiguated statically by qualifying references with the
class containing the intended declaration. Simula 67 extends
Hoare’s record classes with the concept of virtual procedures,
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placeholders for procedures that subclasses must provide
implementation for. There are no abstract classes, classes
containing virtual procedures may be instantiated but in-
vocation of a virtual procedure will raise a run-time error.
Calls to virtual procedures are dynamically bound. Simula
67 is considered the �rst object-oriented programming lan-
guage and inspired the design of many other object-oriented
languages.

Smalltalk Smalltalk [27] builds on Simula 67’s concepts of
classes and objects. Smalltalk is a dynamic object oriented
language and interactive programming environment. Each
method in a Smalltalk class is a message handler of the class.
A method invocation is equivalent to an object receiving a
message. The message handler is looked up by name starting
at the receiving object and extending the search upwards in
the inheritance chain until a handler is found. If a message
handler is found the expressions in its body are executed. The
linear handler search allows subclasses to rede�ne message
handlers of superclasses. A message is not understood if a
message handler cannot be found. If a receiver object does
not understand a message, it is sent a doesNotUnderstand:
message containing the original message which was not
understood. At least one doesNotUnderstand: handler exists
in the root object of all hierarchies.

The programmer may de�ne custom doesNotUnderstand:
handlers for custom behavior of messages which are not
understood. Method-local variables must be declared at the
beginning of the method body. Explicit quali�cation to the
current receiving object and to the superclass of the receiv-
ing object is possible through the self and super pseudo-
variables, respectively. When the receiver of a message is
super, the search for a message handler begins in the super-
class of the object sending the message.

Nested class declarations are not allowed in Smalltalk,
however passing control structures is possible by passing
blocks. Blocks are delimited sequences of expressions, clo-
sures over the declaration contexts which can be returned
from methods and assigned to variables. They have to be
explicitly evaluated. A search for a message handler from
within a block begins in the block and continues to the declar-
ing object.

Wolczko [59] gives a formal semantics (in a denotational
style) for a signi�cant subset of Smalltalk. The semantics
formalize the message receiver search algorithm. The seman-
tics do not make a distinction between the resolution and
lookup phases of the search, they resolve a name directly to
the handling method. A more recent [43] formalization of
Smalltalk semantics as an operational semantics introduces
the distinction between the two phases, however only in the
context of local variables, the semantics of message handler
search directly returns the message handler.

Borning et al. [8] extended Smalltalk with multiple-inheritance.
Their approach to message handler resolution is to reuse the

standard Smalltalk search algorithm for classes with a single
superclass. For classes with multiple superclasses, methods
inherited from other than the �rst superclass are recompiled
into the inheriting class at the time of class creation. At run
time methods can be found with the standard search algo-
rithm but they may appear to come from class lower in the
inheritance chain than where they were declared. Methods
inherited from multiple superclasses are compiled to special
error methods which raise run-time errors when invoked.
Manual disambiguation is needed by the programmer for
such methods and Borning et al. introduce speci�c syntax
with this purpose.

BETA BETA [39] is an object-oriented programming lan-
guage built around patterns as the single abstraction mecha-
nism. Objects and procedures are both patterns which can
be nested arbitrarily deep. Single inheritance is possible at
the level of each pattern. Optional pattern parameters spec-
ify restrictions on the types of pattern attributes. Unlike in
Smalltalk, BETA subclasses can only extend inherited meth-
ods, they cannot be rede�ned in a subclass. Name resolution
traverses lexical scopes upwards from the pattern nearest
to the reference location. Because subpatterns cannot rede-
�ne inherited patterns the name resolution algorithm can be
seen to work downwards towards the reference. Con�den-
tial pattern attributes can be declared by nesting attribute
declarations. This ensures that con�dential attributes cannot
be accessed from outside a pattern, but all legal references to
the con�dential attributes must be quali�ed with the name
of the attribute holding the grouping.

Self A dialect of Smalltalk, the Self programming language
[52] was the �rst programming language to have prototype-
based inheritance instead of classes. In Self new objects are
created by cloning and adaptation of existing objects. Of
particular interest in Self is the uni�cation of prototype at-
tributes, methods and local variables. Prototype attributes
are accessed via accessor and assigner methods. Methods
and blocks are represented as prototypes with a slot for each
local variable and message handlers for their accessors and
assigners. Method prototypes have parent links to their en-
closing objects. Name resolution of unquali�ed message
sends begins lookup at the object corresponding to the en-
closing method nearest to the reference. Self inspired the
design of the widely-used JavaScript programming language.

CLOS The Common Lisp Object System (CLOS) [5, 6] is a
powerful object oriented model supporting multiple inher-
itance. Unlike Smalltalk where a class may have a single
parent, a CLOS class may have many parent classes. A par-
ent class may appear multiple times in a class hierarchy. The
CLOS system linearizes hierarchies such that each ances-
tor appears only once. Subclasses can rede�ne inherited
methods. The function call-next-method is used to invoke

SERG The Semantics of Name Resolution in Grace

TUD-SERG-2017-011 13



PL’17, January 01–03, 2017, New York, NY, USA Vlad Vergu, Michiel Haisma, and Eelco Visser

rede�ned methods. The message sent to the ancestor is �xed
in a call-next-method.

The order in which rede�ned methods are arranged de-
pends on the result of the hierarchy linearization, which in
turns depends on the order in which parent classes appear
in class declarations. A small change in the class hierarchy,
such as removing one of many declarations of the same par-
ent class in a hierarchy, can result in a di�erent linearized
class hierarchy and therefore in a di�erent invocation order
by call-next-method [12].

CLOS provides mixins which allow abstract classes (with-
out an ancestor) to be mixed into the class hierarchy. Meth-
ods de�ned in mixins can invoke call-next-method although
their enclosing classes do not have a parent. An ancestor
is determined by the result of linearization. CLOS method
lookup is provided by the �nd-method function returning a
method object or raising an error if the method cannot be
found and no error handling was provided.

Newspeak Newspeak [11] is an object oriented language in
the Smalltalk tradition. The object model revolves around
classes and superclasses. Classes can be nested arbitrar-
ily deep, similarly to BETA classes. Nested classes can be
overridden in descendant classes. Each Newspeak object
maintains a link to its outer object, the object enclosing
the class declaration (or object literal expression). Methods
and blocks close over the object enclosing their declaration.
There is no explicit mechanism to identify the outer object
as the receiver of a message. The name resolution algorithm
searches for message handlers locally, upwards in the in-
heritance chain, and outwards in the lexical scope, giving
precedence to inherited members in favor of members in the
enclosing scope. Inheritance chains of outer enclosing ob-
jects are never searched [9, 11], avoiding a comb-like search
[10]. Class members may be annotated with public or pro-
tected. The access policy is enforced by the name resolution
algorithm.

C++ C++ [51] is an object-oriented programming language
drawing from C and Simula. C++ has a class-based object
model with multiple inheritance. Class on an inheritance
trees are linearized (concatenated) but the order of lineariza-
tion is not speci�ed and is compiler-implementation speci�c.
Classes appearing multiple times in an inheritance tree will
appear multiple times in the linearization result, hence their
members will also appear multiple times. This can be avoided
by declaring ancestor classes as virtual. Members of virtual
classes will only appear once in the concatenation. Descen-
dant classes may hide �elds of inherited classes and may
override inherited functions. Class functions having di�er-
ent number of parameters may have the same name. C++
allows nested class declarations. Nested classes may declare
�elds which hide �elds declared in enclosing classes, or vari-
ables in the global scope. Names can be resolved in the scope
of enclosing classes by qualifying them with the name of the

intended class. Hidden global variables can be accessed us-
ing the :: pre�x operator. Unquali�ed references occurring
in the de�nition body of a member function are looked up
locally, in the local class, in the ancestor classes and in the
enclosing classes if any. Unquali�ed references appearing
in class de�nitions outside of member function de�nition
bodies are looked up in the class declarations above the ref-
erence, in the entire ancestors and in the enclosing classes’
declarations above the declaration of the class containing
the reference.

Each class member may have one of the private, protected
or public visibility annotations. Public members may be ref-
erenced from anywhere, protected members may be accessed
from subclasses and from nested classes, private members
may only be accessed from within the class de�ning them
(implicitly also from the inner classes). An exception are
friend functions - specially declared functions that reside
outside the class declaration, which may access members of
the class they contribute to as if residing in the class’ de�-
nition body. Wallace [58] extends the algebraic semantics
speci�cation of C [30] with semantics of the object model.

C++ has a mechanism for explicitly scoping declarations in
a named scope - a namespace, which may be nested arbitrarily
deep. Declarations contained in namespaces can be imported
into any local scope.

Java Java [28] is a popular class-based object oriented pro-
gramming language. Java classes have single inheritance of
functionality and multiple inheritance of type, i.e a class may
have at most one ancestor class but may implement multiple
interfaces. Classes can be nested arbitrarily deep. Subclasses
may shadow inherited �elds and may overload and override
inherited methods. Inner classes and methods may shadow
�elds and methods in the enclosing scope. The same naming
rules apply to anonymous classes (inline class declaration
expressions). Nested and anonymous classes may refer to
variables in the enclosing scope. Java provides visibility an-
notations with names and semantics similar to those from
C++.

Name resolution is performed statically, at compile time.
Class, �eld and method names reside in di�erent names-
paces and cannot con�ict with one another. However, their
references cannot be distinguished syntactically (with the
exception of method reference). Reference resolution begins
in the local scope, advances to the inherited classes and then
searches outwards in enclosing scopes. Members inherited
into enclosing scopes are considered during resolution. The
rules of shadowing dictate how disambiguation of classes,
�elds and package names takes place. For example, a quali-
�ed reference to a �eld of a class in a package (p.c.f) may
become a reference to a �eld of a �eld f in the type of �eld
c if a class declaration for p is introduced at some point in
the chain of enclosing scopes from the reference location
to the root scope. The Java compiler compiles source code
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to Java bytecode. References that appear in emitted byte-
code are fully quali�ed by a path from the root scope to the
declaration.

Various formalizations of Java exist. Featherweight Java
(FJ) [34] is a minimal, but extendable, core calculus which
mimics Java’s object and name resolution models with var-
ious simpli�cations (no local variables, no interfaces, etc.).
The goal of FJ is to provide a su�ciently small calculus such
that reasoning about programs becomes humanly tractable.
FJ is accompanied by formal de�nitions for its static and
dynamic semantics. The semantics for �eld and method res-
olution directly reduce references to their declarations, i.e.
no resolution path is explicitly computed. K-Java [7] is a
complete speci�cation of static and dynamic semantics of
Java 1.4 in K [48]. The static semantics act as an elaboration
phase which to emit a modi�ed program AST containing,
among others, type annotations on references. Each (part of
a quali�ed) reference is wrapped in a type cast. For exam-
ple, a reference v may be elaborated to (int)((A) this).v.
Such type casts serve as name resolution information at run
time. They can also be seen as a materialization of part of the
resolution path for a quali�ed reference. The �nal part of the
resolution path, the part indicating which parent in the class
hierarchy contains the referred declaration, is not elaborated.
The elaboration phase also annotates actual parameter ex-
pressions in method calls with their expected type, thereby
keeping the dynamic semantics void of method overloading
rules.

Obliq Obliq [18] is an untyped interpreted object-oriented
programming with distributed computation. Obliq does not
have classes, it only has object literal expressions, which
can be nested arbitrarily deep. All declarations are lexically
scoped. Each object resides at a single computation site, the
site which created it but can be referenced and its members
may be invoked from other sites. The result is a program
state which is global but an object state which is local to
each to site. Obliq provides four semantic operations on
objects: select (invoke), update (assign), clone and delegate.
Delegation on an object introduces new members, or over-
rides existing ones, as aliases to existing methods. Delegate
members can be introduced at point in the lifecycle of an
object. Inheritance of objects is obtained through cloning
ancestor methods.

A method may modify the object that contains its decla-
ration - a self -in�icted operation for the object, or it may
modify another object - an external operation on the other
object. External operations can come either from the same
site or from a di�erent site. Objects can be declared to be
protected. Protected object reject operations which are not
self -in�icted.

Name resolution starts in the scope closest to the reference
and moves outwards towards the root scope. A reference
to a remote object can be obtained from a name server. A

reference to a remote object can be used identically to a local
object. Name resolution is performed dynamically but the
results are cached to reduce lookup time. Obliq objects are
automatically garbage collected, reference counts to objects
are maintained even across sites.

Formal de�nitions of object-oriented languages Besides
the formal de�nitions of languages mentioned in the previ-
ous section, our work is related to formalizations of other
object oriented languages.

Baby Modula-3 [2] is a subset of Modula-3 [19] restricted
to focus on the object model. A formalized static and dy-
namic semantics is given for Baby Modula-3. The opera-
tional semantics are trivial with respect to object creation
and name resolution. Object values are represented as a pair
of symbol tables - named �elds and named methods. Objects
are constructed incrementally by inheriting from existing
objects and updating the associative arrays of the inherited
object. Since a name is always resolved locally in one of the
two associative arrays, a distinction is not made between
name resolution and lookup in either of the denotational and
operational semantics.

C# [1] is a class-based object oriented programming lan-
guage. A dynamic semantics following the language speci-
�cation is proposed by Börger [17]. The de�nition is given
in terms of orthogonal extensions of semantics. The de�ni-
tion assumes that the program has already been processed
by the C# compiler. As such all class instantiations, �eld
and method references are already resolved and no name
resolution algorithm is needed.

Objective ML [49] is an extension of ML with class-based
objects. The object model of Objective ML is at the base
of the OCaml object model. Rémy et al. describe a static
and dynamic semantics of Objective ML. Classes are reduced
to structs with strict member ordering which simpli�es the
problem of class inheritance. Name resolution is encoded
in the evaluation contexts by the reduction rules of class
instantiation. The resolution of a reference remains a matter
of looking up in name in the intended evaluation context.

TOOPLE [14] and PolyTOIL [15, 16] are statically typed
object oriented languages designed to be provably type safe.
PolyTOIL is a polymorphic extension to TOOPLE. Both lan-
guages have formal de�nitions of their operational seman-
tics. In both cases the semantics model a �attened object
representation. The semantic rules for class update and class
extension encode the intended name resolution behavior in
their result. The outcome is that a quali�ed reference is re-
solved by evaluating the receiver which must locally de�ne
the referred name.

JavaScript [23] is a popular dynamically typed object-
oriented language inspired from Self, widely used in web
browsers and increasingly on the server-side. Its seman-
tics are lengthily and informally described in the language
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speci�cation. Ma�eis et al. [40] give a small-step opera-
tional semantics of JavaScript. Object are stored on a heap,
are not �attened and are referred to by reference values in
the semantics. Each object has a reference to its prototype
object. Functions are special types of objects with a proto-
type common to all functions. Static scopes 1 are encoded
as hierarchies of scope objects. Resolution of an identi�er
involves looking up the identi�er in the nearest scope object
or upwards in its inheritance chain. The semantics given by
Ma�eis et al. use an assortment of meta-functions to specify
the name resolution (Scope, HasProperty, etc. ). The Scope
meta-function returns the address of the (scope) object de�n-
ing the identi�er. The traversal path to that object is not
returned.

Guha et al. [29] take a di�erent approach to a formal se-
mantics for JavaScript. Their approach is to de�ne the seman-
tics of JavaScript core, λ JS , and to desugar whole JavaScript
programs to λ JS . The full system is able to pass the entire
JavaScript test suite.

Objects are modeled in the core language. Each object
has a __proto__ attribute which contains a reference to the
prototype object. Objects are not �attened. Functions are
modeled as objects where local variables are object attributes
and the code portion is encapsulated in a code attribute. The
λ JS core has simple lexical scoping. Lexical scoping alleviates
the need to represent scopes as objects. The semantics of
name resolution are to perform eager substitution. Much of
the complex name resolution logic of JavaScript is embedded
in the desugaring rules.

A similar approach is taken by Politz et al. [46] in de�ning
the semantics of Python. Python is notorious for its compli-
cated scoping rules, for its �exibility and for the fact that it
has classes with multiple inheritance. Politz et al. introduce
a desugaring of Python programs to a Python core - λπ , and
a semantics for this core language. Much of the scoping is-
sues are resolved in the desugaring by using let statements.
The desugaring is context-aware and therefore embeds name
resolution logic. In λπ semantics all let-bound variables are
heap allocated and all unquali�ed variable references are
resolved directly from the heap. Quali�ed variable reference,
i.e. �eld accesses, are either resolved locally to the class or
the class hierarchy is traversed. The class hierarchy is bound
as the __mro__ (method resolution order) attribute for each
class. It contains the list of ancestor classes. The linearized
class hierarchy is computed and bound to the __mro__ at-
tribute at class initialization time.

Dynamic semantics de�nition formalisms DynSem as
a semantics de�nition language is most related to I-MSOS [42].
It borrows the notion of semantic components from MSOS [41]
and propagates these implicitly as in I-MSOS. Speci�cations
in DynSem are typically given in a big-step (natural seman-
tics) style [35]. Use of meta-functions and relying on implicit

1JavaScript’s scoping is arguably non-lexical

reductions leads to speci�cations that resemble SOS [45]
semantics, but the behavior is still big-step.

Other notable semantics formalisms are as follows. fun-
cons [20] is a formalisms which aims to provide a de�nitive
collection of reusable semantics. Redex [26] embeds meta-
notation for semantics as Felleisen-Hieb reduction rules.
K [48] is a language and toolchain for dynamic semantics
speci�cation. It has been applied to production-sized lan-
guages (C [24] and Java [7]). Semantics in K are given in
terms of rewrite rules.

DynSem speci�cation are interpreted. Most of the seman-
tics de�nition languages mentioned above support execution:
funcons generates an interpreter in Haskell, the Redex inter-
preter enacts reduction semantics, K generates an interpreter
in Maude.

Language workbenches We used the Spoofax language
workbench [36, 56] to specify Grace. The Spoofax approach
is to provide a closely nit set of meta domain speci�c lan-
guages for each aspect of a language’s de�nition: SDF3 [57]
for syntax de�nition, NaBL [38] for name bind and type
system rules, Stratego [13] for program transformation and
DynSem [55] for dynamic semantics. Spoofax is part of the
family of language workbenches. In Rascal [37] the approach
is to use a single language for all aspects of a language. There
is no speci�c formalism for dynamic semantics, but inter-
preters can be written using rewrite rules. In the Redex [26]
approach a single language is extended with meta-notation
for the various aspects of a programming language. Dynamic
semantics are given as reduction semantics using speci�c
meta-notation. Other language workbenches exist, Erdweg
et al. [25] provide a thorough comparison.

7 Conclusion and Future Work
We have modeled the run-time name resolution of Grace
using the scope graph paradigm. This served as a basis for
discussion of the key aspects of name resolution in Grace.
We de�ned operational semantics for the object model which
encodes the name binding information from scope graphs
into the object representation. We have de�ned the opera-
tional semantics of the name resolution algorithm in Grace.
Separating name resolution from naming policies allowed
us to keep the name resolution algorithm concise. We have
shown how name resolution results are used to enforce nam-
ing policies. The speci�cation as a whole serves as readable
documentation and as executable speci�cation that can be
used for experimental validation and as reference implemen-
tation. We developed an extensive suite of unit-style tests
and used it to validate the correct behavior of the speci�ca-
tion with respect to the mainstream Grace implementation.

As future work, we plan to explore principled optimiza-
tions of the name resolution algorithm, in particular to �nd
ways to reduce the number of objects that name resolution
must search. One idea is to de�ne evaluation contexts for
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which caching of name resolution results is allowed. We
also plan to de�ne the semantics of the missing features:
pattern matching, lineups and the gradual type system. Our
hope is that by collaborating with the Grace community
the speci�cation becomes a reference implementation of the
language.
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